3.1线性代数方程组的解法——列主元高斯消去算法讲解

合集下载

方程组的行列式解法和高斯消元法

方程组的行列式解法和高斯消元法

方程组的行列式解法和高斯消元法方程组是我们学习高等数学的基础,而解方程组的方法则是数学研究的重点之一。

其中,行列式解法和高斯消元法是两种常见的解方程组的方法。

本文将会介绍这两种方法的具体操作和优缺点。

一、行列式解法行列式解法是一种基于行列式的方法,它适用于二元线性方程组和三元线性方程组。

对于二元线性方程组:$$\left\{\begin{aligned}&a_{11}x_1 + a_{12}x_2 = b_1 \\&a_{21}x_1 + a_{22}x_2 = b_2\end{aligned}\right.$$我们可以将这个方程组转换为矩阵形式:$$\begin{pmatrix}a_{11} & a_{12} \\a_{21} &a_{22}\end{pmatrix}\begin{pmatrix}x_1 \\x_2\end{pmatrix}=\begin{pmatrix}b_1 \\b_2\end{pmatrix}$$然后,我们可以求出系数矩阵的行列式$D$以及增广矩阵的行列式$D_x$和$D_y$,其中$D_x$和$D_y$分别表示将系数矩阵中第一列和第二列替换为增广矩阵的列向量得到的矩阵的行列式。

这个过程可以表示为:$$D=\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix},D_x=\begin{vmatrix}b_1&a_{12}\\b_2&a_{22}\end{vmatrix},D_y=\begin{vmatrix}a_{11}&b_1\\a_{21}&b_2\end{vmatrix}$$最后,我们可以通过克拉默法则得到方程组的解:$$x_1=\frac{D_x}{D},x_2=\frac{D_y}{D}$$对于三元线性方程组,我们可以采用类似的方法求解。

用列主元高斯消元法求线性代数方程组的解

用列主元高斯消元法求线性代数方程组的解

课程设计任务书前 言回顾普通解方程组的方法,一般都是先逐个削去未知变量,最终得到只有一个未知变量的方程,解之,把得到的值回代到消去变量过程中得到的方程组,逐个求出未知变量。

这种解线性方程组的基本方法就是这里要介绍的高斯消去法。

数学上,高斯消元法(或译:高斯消去法),是线性代数中的一个算法,可用来为线性方程组求解,求出矩阵的秩,以及求出可逆方阵的逆矩阵。

当用于一个矩阵时,高斯消元法会产生出一个“行梯阵式”。

高斯消元法可以用在电脑中来解决数千条等式及未知数。

高斯消元法可以用来找出一个可逆矩阵的逆矩阵。

用关联矩阵表述网络拓扑结构,并根据厂站拓扑结构和网络拓扑结构等概念简化了电力系统的拓扑结构。

根据广义乘法和广义加法的运算规则,将改进的高斯消元算法应用于电力系统拓扑结构分析中,并引入稀疏、分块处理等技术提高了上述拓扑分析的效率。

采用上述高斯消元算法对山东电网220kV 以上的变电站进行拓扑结构分析,结果表明了运用该高斯消元法进行网络拓扑分析的正确性和有效性。

用列主元素法,选取每列的绝对值最大的元素作为消去对象并作为主元素。

然后换行使之变到主元位子上,在进行消元计算。

设)()(k k b X A ,确定第k 列主元所在位置k i ,在交换k i 行和k 行后,在进行消元,并用MATLAB 软件进行求解。

目录摘要......................................................................................... 错误!未定义书签。

第1章绪论 ........................................................................... 错误!未定义书签。

第2章高斯消元法的算法描述 (2)2.1高斯消元法的原理概述 (2)2.1.1高斯消元法的消元过程 (2)2.1.2高斯消元法的回带过程 (3)2.1.3高斯消元法的复杂度分析 (4)2.2列主高斯消元法原理简介 (5)2.2.1列主高斯消元法的消元过程 (6)2.2.2列主高斯消元法的回带过程 (6)2.2.3列主高斯消元法的算法描述 (6)第3章高斯消元法的物理应用 (9)3.1电网模型的描述 (9)3.2电网模型的问题分析 (9)3.3求解计算 (11)参考文献 (13)摘 要用列主元素高斯消去法法,选取每列的绝对值最大的元素作为消去对象并作为主元素。

第3章3-01高斯消元法-列主元法ppt课件

第3章3-01高斯消元法-列主元法ppt课件
.
顺序高斯消去法的计算量
消元中各步需乘除法次数
第i 步
乘法次数
1
(n 1)2
2
(n 2)2
n 1
合计
1
n (n 1)(2 n 1) 6
除法次数
n 1 n 2
1
n (n 1) 2
.
3.1.2 列主元高斯消去法
为什么列选主:数值不稳定
当高斯消去法的主元
a
(k kk
)
0
时 , 尽管“当
A
非奇异时,
0,
a(2) 22
0,
,
a(n) nn
0
消元过程
mik ai(jk1)
a(k) ik
a(k) kk
(k
1,2,
a(k) ij
mik ak(jk)
, n 1) (i, j k 1,k 2,
,n)
bi(k`)
b(k) i
mikbk(k )
.
回代过程
上 三 角 形 方 程 组 A(n)x b(n) 求 解 过 程
列选主元高斯消去法的优越性,不增加求解过程的运算量,而 大大减小误差。
经过 k 1次消元后得到增广矩阵 ( A(k) | b(k) ) ,在此增广
矩阵的第
k
列的元素
a(k kk
)
,
a(k) k 1,k
,
a(k nk
)
中选取
绝对值最大的
一个,记为
a(k) rk
,然后交换
(
A(k )
|
b(k)
)
中的第
k
第3章 线性代数方程组的数值解法
3.1 高斯消去法 3.2 矩阵三角分解法 3.3 平方根法 3.4 向量和矩阵的范数 3.5 迭代法 3.6 迭代法的收敛性 3.7 方程组的形态和误差分析

高斯列主元消去法

高斯列主元消去法

如果在高斯顺序消去法消去过程进行到第i 步时,现选取ri a )(n r i ≤≤中绝对值最大的元素,设为第j 行的元素ji a ,把矩阵的第i 行和第j 行互换,这时ii a 变为ji a ,然后将第i+1行至第n 行中的每一行减去第i 行乘以ii ki a a (k 代表行号),依次进行消元。

Gauss 列主元消去法的算法步骤如下:将方程组写成以下的增广矩阵的形式:⎪⎩⎪⎪⎨⎧43212423222114131211............n n n n a a a a a a a a a a a a对k=1,2,3,...,n-1,令∑==nks sk pk a a max ;交换增广矩阵的第k 行与第p 行;对j=k+1,k+2,...,n,计算kk jkkm jm jm a a a a a ⋅-=(m=看,k+1,...,n )kk jkk j j a a b b b ⋅-=算法结束。

三角分解法程序如下:建立相应的M 文件,其函数名为LU,程序如下:function y=LU(A,B);n=length(A);A=[A B];for k=1:n-1;for i=k:n;if (abs(A(i,k))==max(abs(A(k:n,k)))) P(k)=i;temp=A(k,:);A(k,:)=A(i,:);A(i,:)=temp;endendfor j=k+1:n;A(j,k)=A(j,k)/A(k,k);A(j,k+1:n+1)=A(j,k+1:n+1)-A(j,k)*A(k,k+1:n+1);endendP(n)=n;L(1,1)=1;L(2:n,1)=A(2:n,1);L(1,2:n)=0;U(1,1)=A(1,1);U(2:n,1)=0;U(1,2:n)=A(1,2:n);for i=2:n;L(i,1:i-1)=A(i,1:i-1);L(i,i)=1;L(i,i+1:n)=0;U(i,1:i-1)=0;U(i,i:n)=A(i,i:n);endx(n) = A(n,n+1)/U(n,n);for k = n-1:-1:1x(k)=A(k,n+1);for p=n:-1:k+1;x(k) = x(k)-U(k,p)*x(p); endx(k)=x(k)/U(k,k);endxLUPend在程序命令行输入:a=[0.101 2.304 1.5355;-1.347 3.712 4.623;-2.835 1.072 5.643];b=[1.183,2.137,3.035]';LU(a,b)运行结果为:x =3.1160 -1.1960 2.3305 L =1.0000 0 00.4751 1.0000 0-0.0356 0.7313 1.0000 U =-2.8350 1.0720 5.64300 3.2027 1.94180 0 0.3359 P =3 2 3。

高斯消元法与线性方程组的解法知识点总结

高斯消元法与线性方程组的解法知识点总结

高斯消元法与线性方程组的解法知识点总结在数学中,线性方程组是一个常见的问题。

解决线性方程组的一个重要方法是高斯消元法。

本文将对高斯消元法及其相关知识点进行总结。

一、高斯消元法概述高斯消元法是一种通过进行行变换将线性方程组转化为简化行阶梯形矩阵,从而求解方程组的方法。

它通过不断的行变换,将系数矩阵化为单位矩阵,从而得到方程组的解。

二、高斯消元法的步骤1. 构造增广矩阵:将线性方程组中的系数矩阵和常数矩阵合并,形成增广矩阵。

2. 主元选择:选取增广矩阵中的第一个非零元作为主元,将主元所在列的其他元素进行行变换,使其化为零。

3. 交换行:如果主元所在行的系数为零,则可以进行行交换,将非零行移到主元所在行。

4. 迭代计算:从第二行开始,重复进行主元选择和行变换,使整个增广矩阵形成简化行阶梯形矩阵。

5. 回代求解:根据形成的简化行阶梯形矩阵,反向求解线性方程组,得到方程组的解。

三、高斯消元法的优缺点1. 优点:a. 算法简单,易于实现。

b. 可以准确求解线性方程组的解。

c. 可以判断线性方程组的解的个数和解的形式。

2. 缺点:a. 当方程组的系数矩阵存在大量零元或接近零元时,可能会产生较大的舍入误差。

b. 在某些情况下,方程组的解可能无法唯一确定,或者无解。

四、高斯消元法的应用高斯消元法在科学与工程领域有着广泛的应用,特别是在线性代数、计算机图形学、金融数学等领域。

它可以用于求解线性方程组的解,计算矩阵的逆、行列式等。

五、高斯消元法的拓展1. 高斯-约旦消元法:在高斯消元法的基础上,通过对主元所在列的其他元素进行行变换,将主元化为1,从而形成行简化阶梯形矩阵。

2. 列主元高斯消元法:在主元选择时,选取主元所在列中绝对值最大的元素作为主元,从而减小舍入误差的影响。

3. 高斯消元法的数值稳定性:在进行高斯消元法计算时,需要注意舍入误差的积累,通过一些数值稳定的改进方法,可以提高计算的精度。

六、总结高斯消元法是解决线性方程组的一种常用方法,通过不断的行变换,将系数矩阵化为简化行阶梯形矩阵,从而求解方程组的解。

列主元素消去法

列主元素消去法

列主元素消去法列主元素消去法(Gauss-Jordan 消元法)是一种线性代数中常用的消元方法,用于求解线性方程组的解。

这种方法的基本思想是,将线性方程组的增广矩阵通过一系列的初等变换,化为一个阶梯矩阵或行简化阶梯矩阵,从而得到线性方程组的解。

具体步骤如下:构造增广矩阵,即将系数矩阵和常数矩阵组合成一个矩阵。

将增广矩阵转化为一个上三角矩阵(也叫阶梯矩阵)。

反向消元,将阶梯矩阵转化为一个行简化阶梯矩阵。

根据简化矩阵求解方程组。

这种方法的优点是计算简单、容易理解,且可避免误差的积累。

但是,如果矩阵的规模较大,运算量会很大,计算时间较长。

此时可以使用更高效的算法,如LU分解、QR分解等。

假设有一个 $n$ 个未知量和 $n$ 个方程的线性方程组,可以写成矩阵形式如下:$Ax = b$其中,$A$ 是一个 $n \times n$ 的系数矩阵,$x$ 是一个 $n \times 1$ 的未知量向量,$b$ 是一个 $n \times 1$ 的常数向量。

为了求解 $x$,可以将方程组的增广矩阵表示如下:$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} & b_{1} \ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} & b_{2} \ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} & b_{n} \end{bmatrix}$ 其中,$a_{ij}$ 表示矩阵的第 $i$ 行第 $j$ 列的元素。

列主元素Gauss消去法Jacobi迭代法原理及计算方法

列主元素Gauss消去法Jacobi迭代法原理及计算方法

一、 列主元素Gauss 消去法、Jacobi 迭代法原理及计算方法1. 列主元素Gauss 消去法:1.1 Gauss 消去法基本原理设有方程组Ax b =,设A 是可逆矩阵。

高斯消去法的基本思想就是将矩阵的初等行变换作用于方程组的增广矩阵[]B A b = ,将其中的A 变换成一个上三角矩阵,然后求解这个三角形方程组。

1.2 列主元Gauss 消去法计算步骤将方程组用增广矩阵[]()(1)ijn n B A b a ⨯+== 表示。

1). 消元过程对1,2,,1k n =-(1) 选主元,找{},1,,k i k k n ∈+ 使得 ,max k i k ik k i na a ≤≤= (2) 如果,0k i k a =,则矩阵A 奇异,程序结束;否则执行(3)。

(3) 如果k i k ≠,则交换第k 行与第k i 行对应元素位置,k kj i j a a ↔,,,1j k n =+ 。

(4) 消元,对,,i k n = ,计算/,ik ik kk l a a =对1,,1j k n =++ ,计算.ij ij ik kj a a l a =-2). 回代过程(1) 若0,nn a =则矩阵奇异,程序结束;否则执行(2)。

(2) ,1/;n n n nn x a a +=对1,,2,1i n =- ,计算,11/n i i n ij j ii j i x a a x a +=+⎛⎫=- ⎪⎝⎭∑2. Jacobi 迭代法2.1 Jacobi 迭代法基本原理Jacobi 迭代法的基本思想是对n 元线性方程组b Ax =,.,n n R b R A ∈∈将其变形为等价方程组f Bx x +=,其中.,,n n n n R x R f R B ∈∈∈⨯B 成为迭代矩阵。

从某一取定的初始向量)0(x 出发,按照一个适当的迭代公式 ,逐次计算出向量f Bx x k k +=+)()1( ( 1,0=k ),使得向量序列}{)(k x 收敛于方程组的精确解.(1)输入1,,,,)0(=k n xb A ε,. (2) )(1,1)0()1(∑≠=-=n j i i j ij i iii x a b a x )1,0(n i = (3)判断 ε≤--≤≤)0()1(10max i i n i x x ,若是,输出1)1(2)1(1,,n x x x ,若否,置1+=k k ,)1()0(i i x x =,)2,1(n i =。

列主元高斯消去法和列主元三角分解法解线性方程

列主元高斯消去法和列主元三角分解法解线性方程

计算方法实验报告1课题名称用列主元高斯消去法和列主元三角分解法解线性方程目的和意义高斯消去法是一个古老的求解线性方程组的方法,但由它改进得到的选主元的高斯消去法则是目前计算机上常用的解低阶稠密矩阵方程组的有效方法;用高斯消去法解线性方程组的基本思想时用矩阵行的初等变换将系数矩阵A 约化为具有简单形式的矩阵上三角矩阵、单位矩阵等,而三角形方程组则可以直接回带求解 用高斯消去法解线性方程组b Ax =其中A ∈Rn ×n 的计算量为:乘除法运算步骤为32(1)(1)(21)(1)(1)262233n n n n n n n n n n nMD n ----+=+++=+-,加减运算步骤为(1)(21)(1)(1)(1)(25)6226n n n n n n n n n n AS -----+=++=;相比之下,传统的克莱姆法则则较为繁琐,如求解20阶线性方程组,克莱姆法则大约要19510⨯次乘法,而用高斯消去法只需要3060次乘除法;在高斯消去法运算的过程中,如果出现absAi,i 等于零或过小的情况,则会导致矩阵元素数量级严重增长和舍入误差的扩散,使得最后的计算结果不可靠,所以目前计算机上常用的解低阶稠密矩阵方程的快速有效的方法时列主元高斯消去法,从而使计算结果更加精确; 2、列主元三角分解法高斯消去法的消去过程,实质上是将A 分解为两个三角矩阵的乘积A=LU,并求解Ly=b 的过程;回带过程就是求解上三角方程组Ux=y;所以在实际的运算中,矩阵L 和U 可以直接计算出,而不需要任何中间步骤,从而在计算过程中将高斯消去法的步骤进行了进一步的简略,大大提高了运算速度,这就是三角分解法采用选主元的方式与列主元高斯消去法一样,也是为了避免除数过小,从而保证了计算的精确度计算公式1、 列主元高斯消去法设有线性方程组Ax=b,其中设A 为非奇异矩阵;方程组的增广矩阵为第1步k=1:首先在A 的第一列中选取绝对值最大的元素1l a ,作为第一步的主元素:111211212222112[,]n n n l n nn n a a a a b a a a b a a a b ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦a b然后交换A,b 的第1行与第l 行元素,再进行消元计算;设列主元素消去法已经完成第1步到第k -1步的按列选主元,交换两行,消元计算得到与原方程组等价的方程组 Akx=bk第k 步计算如下:对于k=1,2,…,n -11按列选主元:即确定t 使 2如果t ≠k,则交换A,b 第t 行与第k 行元素; 3消元计算消元乘数mik 满足:4回代求解2、 列主元三角分解法 对方程组的增广矩阵 经过k -1步分解后,可变成如下形式:111max 0l i i n a a ≤≤=≠(1)(1)(1)(1)(1)1112111(2)(2)(2)(2)22222()(()1)()()()()()1,1()(,)()[,][,] k k k k nk k nk n k k k k k kk kn k k k k n k k k n nn a a a a b a a a b a a b a b b a a a +++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A b A b ()()max 0k k tk ik k i na a ≤≤=≠,(1,,)ik ik ik kka a m i k n a ←=-=+, (,1,,), (1,,)ij ij ik kji i ik k a a m a i j k n b b m b i k n ←+=+⎧⎨←+=+⎩⎪⎪⎩⎪⎪⎨⎧--=-←←∑+=)1,,2,1(,)(1n n i a x a b x a b x ii n i j j ij i i nnn n [,]A A b =11121,11111222,122221,11,1,1,211,11,2121,112,112,1k k k k k k k j n k k j n k k k i i i k n n kk kj kn k ik ij in i nknjk k k j k n n nnk k n a a a b A a u u u u u u y l l l l l l ll l l l u u u u u y u u u u y a a b a a b l a -------------⎡→⎣⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦第k 步分解,为了避免用绝对值很小的数kku 作除数,引进量1111 (,1,,;1,2,,) ()/ (1,2,,;1,2,,)k kj kj km mj m k ik ik im mk kkm u a l u j k k n k n l a l u u i k k n k n -=-=⎧=-=+=⎪⎪⎨⎪=-=++=⎪⎩∑∑11(,1,,)k i ik im mk m s a l u i k k n -==-=+∑,于是有kk u =ks ;如果 ,则将矩阵的第t 行与第k 行元素互换,将i,j 位置的新元素仍记为jjl 或jja ,然后再做第k 步分解,这时列主元高斯消去法程序流程图max t ik i n s s ≤≤= ()/ 1,2,,)1 (1,2,,),kk k k t iki k ik u s s s l s s i k k n l i k k n ===++≤=++即交换前的,(且列主元高斯消去法Matlab主程序function x=gauss1A,b,c %列主元法高斯消去法解线性方程Ax=bif lengthA~=lengthb %判断输入的方程组是否有误disp'输入方程有误'return;enddisp'原方程为AX=b:' %显示方程组Abdisp'------------------------'n=lengthA;for k=1:n-1 %找列主元p,q=maxabsAk:n,k; %找出第k列中的最大值,其下标为p,qq=q+k-1; %q在Ak:n,k中的行号转换为在A中的行号if absp<cdisp'列元素太小,detA≈0';break;elseif q>ktemp1=Ak,:; %列主元所在行不是当前行,将当前行与列主Ak,:=Aq,:; 元所在行交换包括bAq,:=temp1;temp2=bk,:;bk,:=bq,:;bq,:=temp2;end%消元for i=k+1:nmi,k=Ai,k/Ak,k; %Ak,k将Ai,k消为0所乘系数Ai,k:n=Ai,k:n-mi,kAk,k:n; %第i行消元处理bi=bi-mi,kbk; %b消元处理endenddisp'消元后所得到的上三角阵是'A %显示消元后的系数矩阵bn=bn/An,n; %回代求解for i=n-1:-1:1bi=bi-sumAi,i+1:nbi+1:n/Ai,i;endclear x;disp'AX=b的解x是' x=b;调用函数解题列主元三角分解法程序流程图列主元三角分解法Matlab主程序①自己编的程序:function x=PLUA,b,eps %定义函数列主元三角分解法函数if lengthA~=lengthb %判断输入的方程组是否有误disp'输入方程有误'return;enddisp'原方程为AX=b:' %显示方程组Abdisp'------------------------'n=lengthA;A=A b; %将A与b合并,得到增广矩阵for r=1:nif r==1for i=1:nc d=maxabsA:,1; %选取最大列向量,并做行交换if c<=eps %最大值小于e,主元太小,程序结束break;elseendd=d+1-1;p=A1,:;A1,:=Ad,:;Ad,:=p;A1,i=A1,i;endA1,2:n=A1,2:n;A2:n,1=A2:n,1/A1,1; %求u1,ielseur,r=Ar,r-Ar,1:r-1A1:r-1,r; %按照方程求取ur,iif absur,r<=eps %如果ur,r小于e,则交换行p=Ar,:;Ar,:=Ar+1,:;Ar+1,:=p;elseendfor i=r:nAr,i=Ar,i-Ar,1:r-1A1:r-1,i; %根据公式求解,并把结果存在矩阵A中endfor i=r+1:nAi,r=Ai,r-Ai,1:r-1A1:r-1,r/Ar,r; %根据公式求解,并把结果存在矩阵A中endendendy1=A1,n+1;for i=2:nh=0;for k=1:i-1h=h+Ai,kyk;endyi=Ai,n+1-h; %根据公式求解yiendxn=yn/An,n;for i=n-1:-1:1h=0;for k=i+1:nh=h+Ai,kxk;endxi=yi-h/Ai,i; %根据公式求解xiendAdisp'AX=b的解x是'x=x'; %输出方程的解②可直接得到P,L,U并解出方程解的的程序查阅资料得子函数PLU1,其作用是将矩阵A分解成L乘以U的形式;PLU2为调用PLU1解题的程序,是自己编的Ⅰ.function l,u,p=PLU1A %定义子函数,其功能为列主元三角分解系数矩阵A m,n=sizeA; %判断系数矩阵是否为方阵if m~=nerror'矩阵不是方阵'returnendif detA==0 %判断系数矩阵能否被三角分解error'矩阵不能被三角分解'endu=A;p=eyem;l=eyem; %将系数矩阵三角分解,分别求出P,L,Ufor i=1:mfor j=i:mtj=uj,i;for k=1:i-1tj=tj-uj,kuk,i;endenda=i;b=absti;for j=i+1:mif b<abstjb=abstj;a=j;endendif a~=ifor j=1:mc=ui,j;ui,j=ua,j;ua,j=c;endfor j=1:mc=pi,j;pi,j=pa,j;pa,j=c;endc=ta;ta=ti;ti=c;endui,i=ti;for j=i+1:muj,i=tj/ti;endfor j=i+1:mfor k=1:i-1ui,j=ui,j-ui,kuk,j;endendendl=trilu,-1+eyem;u=triuu,0Ⅱ.function x=PLU2A,b %定义列主元三角分解法的函数l,u,p=PLU1A %调用PLU分解系数矩阵A m=lengthA; %由于A左乘p,故b也要左乘p v=b;for q=1:mbq=sumpq,1:mv1:m,1;endb1=b1 %求解方程Ly=b for i=2:1:mbi=bi-sumli,1:i-1b1:i-1;endbm=bm/um,m; %求解方程Ux=y for i=m-1:-1:1bi=bi-sumui,i+1:mbi+1:m/ui,i;endclear x;disp'AX=b的解x是' x=b;调用函数解题①②编程疑难这是第一次用matlab编程,对matlab的语句还不是非常熟悉,因此在编程过程中,出现了许多错误提示;并且此次编程的两种方法对矩阵的运算也比较复杂;问题主要集中在循环控制中,循环次数多了一次或者缺少了一次,导致数据错误,一些基本的编程语句在语法上也会由于生疏而产生许多问题,但是语句的错误由于系统会提示,比较容易进行修改,数据计算过程中的一些逻辑错误,比如循环变量的控制,这些系统不会提示错误,需要我们细心去发现错误,不断修正,调试;。

列主元高斯消去法算法流程图讲解

列主元高斯消去法算法流程图讲解

列主元高斯消去法算法流程图讲解下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!深入理解:列主元高斯消去法的算法流程图列主元高斯消去法,也称为部分主元高斯消去法,是一种在线性代数中用于解线性方程组的数值方法。

高斯消元法与线性方程组的求解

高斯消元法与线性方程组的求解

高斯消元法与线性方程组的求解线性方程组是数学中的基本问题之一。

几乎所有的科学领域都需要求解线性方程组。

例如,在物理学中,线性方程组通常用于描述物理系统的特性;在工程学中,线性方程组用于解决力学问题,如桥梁设计等;在经济学中,线性方程组用于描述经济模型。

在计算科学中,线性方程组则是求解各种问题的基础,如最小二乘法、信号处理、图形图像处理等等。

高斯消元法是一种用来求解线性方程组的通用方法,它是非常著名的线性方程组求解方法之一。

本文将会介绍高斯消元法的基础思想、算法流程和一些优化技巧。

一. 高斯消元法的基础思想高斯消元法的基本思想是将一个矩阵转换成一个三角矩阵,并用前向回带法求解。

可以通过消元后得到两个部分:上三角形式矩阵和右侧向量的新值。

这个过程可以通过以下三个基本操作实现:1. 将一行乘以一个非零常数,即消元操作。

2. 将一行乘以一个非零常数加到另一行,即加法操作。

3. 交换两行,即交换操作。

这些基本操作可以用来把线性方程组矩阵的行变成简化行梯矩阵。

最终简化行梯矩阵将使求解线性方程组更加容易。

二. 算法流程高斯消元法可以分为两个步骤:高斯消元和回带。

高斯消元将矩阵转换为上三角矩阵,然后使用上三角矩阵求解线性方程。

高斯消元与回带两个步骤如下:1. 高斯消元其中,n是矩阵的列数,m是矩阵的行数。

2. 回带三. 优化技巧高斯消元算法中存在一些优化技巧,它们有助于提高算法的效率。

以下是一些常见的优化技巧:1. 消元时在当前行选择主元。

2. 交换行操作可以改用更快的指针交换。

3. 为了消除误差影响,使用列主元消元。

4. 如果某一行的所有元素都是0,可以跳过这一行。

这些技巧都可以加速高斯消元算法,让我们更快地求解线性方程组。

四. 总结高斯消元法是一种求解线性方程组的经典算法,它具有广泛的应用。

通过本文的介绍,我们可以了解到高斯消元法的基础思想、算法流程和一些优化技巧。

但需要注意的是,高斯消元法的计算复杂度很高,对于大规模矩阵的处理,存在稳定性和计算时间的问题。

列主元高斯消元法

列主元高斯消元法

列主元高斯消元法《列主元高斯消元法》被认为是一种十分有效的非负定线性方程组求解方法,在研究过程中曾被用于解决多项式的根的问题,例如求解二次方程及其高次多项式的根。

在数学分析理论及应用中,高斯消元法曾大量的被使用,因此需要对其进行深入的研究。

高斯消元法,又称列主元消元法,其核心思想是通过行变换,将线性方程组变化为上三角矩阵,从而求解问题。

推广到一般情况,假设给定一个下三角矩阵A,它的行列式为D,其定义为D=det(A)。

现在,对矩阵A做行变换,可得到新的矩阵A,其满足det(A=det(A)。

如果变换的主要元素来自第一列的元素,则称之为列主元变换。

一般来说,列主元变换可以将矩阵变为上三角形,高斯消元法就是以此为基础,通过连续重复列主元变换,使得矩阵变为上三角形,从而解决非负定线性方程组求解问题。

首先,对非负定方程组进行矩阵化,可以得到一个系数矩阵A和一个常数项向量b,把它们组合进一个矩阵X,则可以表示成AX=b。

即用AE=b来表示,其中E可以代表某一个线性空间的基,比如n维空间的基Ai=(1,0,….,0),i=1,2…,n。

接下来,再以矩阵X进行转变,以第一列的元素A1、A2、A3、…、An作为主元,对A、b作列主元变换,从而使得A矩阵变为上三角矩阵。

由于变换的主元是第一列的元素,所以整个消元过程将按此进行,使得矩阵A变为三角形,如:A11 A12 A13 A14 An10 A22 A23 A24 An20 0 A33 A34 An30 0 0 A44 An4最后,只需将A阵最后一行转变为单位向量,所有的行变换就完成了,即得到上三角形:A11 A12 A13 A14 An10 A22 A23 A24 An20 0 A33 A34 An30 0 0 1 An4解这种上三角矩阵就会变得十分容易,例如,若A=(A11,A22,A33,… An-1,An),要求解每个矩阵对应的未知数向量x,只需进行下面的步骤:1. 令xn=An/An2.知xn,令xn-1=(A(n-1)-(A(n-1),A)xn)/ A(n-1)3.续令xn-2=(A(n-2)-(A(n-2),A)xn)/A(n-2)4. 一直重复上述步骤,直到x1=(A1-(A1,A)x2)/A1由此,就可以得到所求的向量X,最后,将方程组AX=b转换为可求解的上三角矩阵,即可用列主元高斯消元法得出求解的结果。

高斯消去法解方程组

高斯消去法解方程组

高斯消去法解方程组
高斯消去法是数值计算中一种解线性方程组的标准算法,由查尔斯·高斯在 18 年发明,是向量空间下线性方程组的计算最有效的算法。

它利用线性变换(例如交换、加减乘除),逐步将线性方程组化简成上三角形形式进而得到解,称为高斯消去法。

其核心思想是:由方程组的关系式可得出系数矩阵,采用层层消去的方法使其变成上三角矩阵,再解出解向量。

高斯消去法的具体步骤是:
(1)以第一列为基元,化为消去向量,即第一列第一项(用a表示)对应的消去系数,然后将其他行的第一项做除法,消去第一列。

(2)以第二列为基元,化为消去向量,消去其余行第二项。

(3)以此类推,以每一列为基元,化为消去向量,将其
余行此列之项全部消去;直至消去完毕。

(4)最后一步是逆序求出解向量。

由最后一个方程式,
可直接求出最后一列解向量(用x表示)特征值,若n表示方程组的阶数,则n=1时即可求得解向量的所有特征值,若n>1,则逆序回代求出前面的特征值。

高斯消去法解线性方程组的算法比较简单,易于理解,
但它会遇到数值误差、文本输入错误等问题,所以在使用高斯消去法时,应当注意它的准确性,以及在使用这种解法时可能出现的数值不稳定性。

此外,高斯消去法的效率较低,其计算
时间与方程组系数的规模呈指数增长关系,因此也可以通过其他算法来求解线性方程组,如 LU 分解等。

高斯列主元消去法

高斯列主元消去法

问题提出:采用高斯列主元消去法解线性方程组。

算法(公式)推导:高斯顺序消去法有一个最大的缺点就是一旦对角元素为0,就进行不下去了,为了解决这个问题就有了高斯主元消去法。

如果在高斯顺序消去法消去过程进行到第i 步时,先选取a ri ()n r i ≤≤中(即第i 列)绝对值最大的元素,设为第j 行的元素aji ,然后将第i+1行至第n 行中的每一行减去第i 行乘以ii kj a a (k 代表行号),依次进行消元,这样得到的算法叫高斯按列主元消去法。

高斯按列主元消去法的算法步骤介绍如下:1. 将方程组写成以下的增广矩阵的形式: 432144434241343332312423222114131211b b b b a a a a a a a a a a a a a a a a 2. 对k=1,2,3,…..,n-1,令∑==nk s sk pk a a max ,交换增广矩阵的第k 行与第p 行;对j=k+1,K+2,……..,n,计算*km jkjm jm kk a a a a a =-(m=k,k+1,....n)kk jk k j j a a b b b *-=算法结束。

3. 在MATLABE 中编程实现的高斯按列主元消去法函数为:GaussXQLineMain功能:高斯按列主元消去法求线性方程组Ax=b 的解调用格式:[x,XA]=GaussXQLineMain(A,b)其中,A :线性方程组的系数矩阵;B:线性方程组中的常数向量;x:线性方程组的解:XA:消元后的系数矩阵(可选的输出参数)。

高斯列主元消去法用MATLAB实现如下所示:4.其中用到上三角矩阵求解函数:在MATLABE中编程实现的上三角系数矩阵求解函数为:SolveUPTriangle 功能:求上三角系数矩阵的线性方程组Ax=b的解调用格式:x=SolveUpTriangel(A,b)其中,A :线性方程组的系数矩阵;b :线性方程组中的常数向量; X :线性方程组的解;上三角系数矩阵求解函数用MATLAB 实现如下所示:高斯按列主元消去法解线性方程组应用实例:用高斯按列主元消去法求解下列线性方程组的解。

高斯消元法和列主元消元法

高斯消元法和列主元消元法

用第二列的3、4行除以 k22得
- 25 - 5 = 11 = k 32 90 18 11
k
42
=
3 1 9 1
2 1 = 0 1
16 45
第三行减去第二行乘以 k 3 2 , 第四行减去第二行乘以k 4 2 。
由以上可得:
骣 1 5 ç11 ç ç 32 ç 0 19 ç ç 11 11 ç ç ç ç 1870 ç0 0 ç ç 198 ç ç ç ç 0 0 - 1727 ç ç 桫 495 - 4 25 11 1133 198 8195 495 13 ÷ ÷ ÷ 147 ÷ ÷ ÷ 11 ÷ ÷ ÷ ÷ 3003 ÷ ÷ ÷ ÷ 198 ÷ ÷ ÷ 6468 ÷ ÷ ÷ ÷ 495 ÷
- 4 25 11 1133 198 3421705518 183278700
÷ ÷ ÷ ÷ 147 ÷ ÷ ÷ 11 ÷ ÷ ÷ ÷ 3003 ÷ ÷ ÷ ÷ 198 ÷ ÷ 3421705518 ÷ ÷ ÷ ÷ 183278700 ÷
13
回代过程可得:
X 4 = 1; X 3 = 1; X 2 = 1; X 1 = 1;
1 k 41 = 11
第二行减去第一行乘以 k 21 , 第三行减去第一行乘以 第四行减去第一行乘以
k k
31


41
由此上可得:
骣 1 ç11 ç ç 90 ç0 ç ç 11 ç ç ç ç ç 0 - 25 ç ç 11 ç ç ç 32 ç0 ç ç 桫 11 5 - 4 13 ÷ ÷ ÷ 32 25 147 ÷ ÷ ÷ 11 11 11 ÷ ÷ ÷ ÷ 95 56 126 ÷ ÷ ÷ ÷ 11 11 11 ÷ ÷ ÷ - 27 191 196 ÷ ÷ ÷ ÷ 11 11 11

3.1线性代数方程组的解法——列主元高斯消去算法

3.1线性代数方程组的解法——列主元高斯消去算法

Mathematical Methods & its Applications 2015/10/20 第二步: 若 (2) , a 22 a12 a13 11
a11 a12 ( 2) 0 a22 0 a ( 2) n2

a
0
J. G. Liu
a1n a a
(n+1)n/2 次运算
众所周知,对方程组作如下变换,解不变, ①交换两个方程的次序; ②一个方程的两边同时乘以一个非零的数; ③一个方程的两边同时乘以一个数,加到另一个方程上。
School of Math. & Phys.
5
North China Elec. P.U.
Mathematical Methods & its Applications
n 1
n 1
3
2
加上 解上三角形方程组的计算量(n+1)n/2,总共为:
n n 2 3 n O( n ) 3 3
注: (1)
(1) ( 2) ( n) det A a11 a22 ann
3
这是计算行列式的一种有效数值方法!
(2) 求逆阵;
(3) 该方法又称顺序高斯消去法。
14 North China Elec. P.U.

下面看求解n元线性方程组的一般过程,
9
School of Math. & Phys.
North China Elec. P.U.
Mathematical Methods & its Applications
第一步:

a11 a12 a21 a22 a a n1 n 2

列选主元高斯消去法

列选主元高斯消去法

列选主元高斯消去法
列选主元高斯消去法是一种常用的线性方程组求解方法,在求解大规模线性方程组时具有较高的数值稳定性和计算效率。

该方法的基本思想是,通过选取主元来消除非主元系数的影响,以减小计算误差。

具体步骤如下:
1. 首先将线性方程组的系数矩阵进行列选主元,即对每一列选取绝对值最大的元素所在的行,然后将该行与第一行交换位置。

2. 对于第一列,将选取的主元所在行除以主元的值,使主元变为1。

3. 利用第一行的主元,通过消去操作将其他行的第一列元素变为零。

具体操作是,对于每一行,将该行与第一行乘以适当的倍数后相减,使得第一列元素为零。

4. 重复以上步骤,对第二列以及其后的列重复进行列选主元和消去操作,直到系数矩阵变成上三角矩阵。

5. 根据上三角矩阵进行回代求解,从最后一行开始,依次代入已求解的变量值,计算出未知数的值。

需要注意的是,在进行列选主元时,要注意避免主元为零或接近零的情况,以免造成计算错误或数值不稳定性。

列选主元高斯消去法可以有效地提高线性方程组的求解精度和计算效率,特别适用于存在较大数值差异或特殊矩阵结构的情况。

然而,在某些情况下,该方法可能会导致数值不稳定性或计算量较大,因此在实际应用中需综合考虑问题的特点和求解需求,选择合适的方法。

解线性方程组的列主元素高斯消去法和lu分解法

解线性方程组的列主元素高斯消去法和lu分解法

数值试验报告分析一、实验名称:解线性方程组的列主元素高斯消去法和LU 分解法二、实验目的及要求:通过数值实验,从中体会解线性方程组选主元的必要性和LU 分解法的优点,以及方程组系数矩阵和右端向量的微小变化对解向量的影响。

三、算法描述:本次试验采用的是高斯列主元消去法和LU 分解法求解线性方程组的解。

其中,高斯消去法的基本思想是避免接近于零的数作分母;能进行到底的条件:当A 可逆时,列主元Gauss(高斯)消去法一定能进行到底。

优点:具有很好的数值稳定性;具有与顺序Gauss 消去法相同的计算量。

列主元Gauss(高斯)消去法的精度显著高于顺序Gauss(高斯)消去法。

注意:省去换列的步骤,每次仅选一列中最大的元。

矩阵的三角分解法是A=LU,L 是下三角阵,U 是上三角阵,Doolittle 分解:L 是单位下三角阵,U 是上三角阵;Crout 分解:L 是下三角阵,U 是单位上三角阵。

矩阵三角分解的条件 是矩阵A 有唯一的Doolittle 分解的充要条件是A 的前n-1顺序主子式非零;矩阵A 有唯一的Crout 分解的充要条件是A 的前n-1顺序主子式非零。

三角分解的实现是通过(1)Doolittle 分解的实现; (2)Doolittle 分解的缺点:条件苛刻,且不具有数值稳定性。

(3)用Doolittle 分解求解方程组: AX=b LUX=b LY=bA=LU UX=Y ;四、实验内容:解下列两个线性方程组(1) ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--11134.981.4987.023.116.427.199.103.601.3321x x x (2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----15900001.582012151526099999.23107104321x x x x a 、用你熟悉的算法语言编写程序用列主元高斯消去法和LU 分解求解上述两个方程组,输出Ax=b 中矩阵A 及向量b, A=LU 分解的L 及U ,detA 及解向量x.b 、将方程组(1)中系数3.01改为3.00,0.987改为0.990,用列主元高斯消去法求解变换后的方程组,输出列主元行交换次序,解向量x及detA,并与(1)中结果比较。

解线性方程组-高斯消去法列主元

解线性方程组-高斯消去法列主元

6
1
3 3 1
1 3 1
15 15 6


A
0
b0

l21 12 18,.l31 1 18 ,消元得
18 0 0
3 1 1.1667
1 2.3333 0.9444
15
18
5 交换第2,3行 0
5.1667
0
1 2 4
1 3 1
6 5
11


A1
b1

1 第二次消元: l32 2 ,消元得 0
0
1 2 0
1 3 7
6 5
21


A 2
b
2


回代过
程: x3 21 7 3 , x2 5 3x3 2 2, x1 6 x2 x3 1 1。
例:
用顺序消去法求解方程组:

x1 x2 x3 6 x1 3x2 2x3 1

5x1 x2 4x3 19
1
解: A b 1
5
1 3 1
1 2 4
6 1 19


A0
b
0

1 第一次消元: l21 1, l31 5 ,消元得 0
对于i 2, 3, , n 做

li1 ai10 a110
: ai11 0

对于j 2, 3, , n 做

aij1

aij0

l
i
1a1
0
j
bi1 bi0 li1b10
计算流程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当方程组阶数较高时,计算量很大,因此克莱姆法则通 常仅有理论上的应用价值,计算线性方程组的解还要考 虑数值解法。
求解线性方程组的数值方法分为直接解法和迭代解法:
直接解法 若计算过程没有舍入误差,经过有限次算术 运算就能求出方程组(1)精确解的数值方法。
迭代解法 若计算过程没有舍入误差,也不能经过有限 次算术运算求得方程组(1)的精确解,而只能是逐步 逼近的数值方法。
①交换矩阵的两行; ②某一行乘以一个非零的数; ③某一行乘以一个数,加到另一行。
消去法 就是对增广矩阵作上述行变换,化为可以直接求解的
3种方程之一,而后求解。
思 Gauss消去法就是先将(1)的系数矩阵A化为上三角阵, 路: 再回代求解。
School of Math. & Phys.
6
North China Elec. P.U.
1 2 3 14
r3 5r2
0 1
4
10
0 0 24 72
x3
72
24
3
1
x2
(10
4x3 ) 1
2
x1
(14
2x2
3x3 ) 1
1
x 2 3
下面看求解n元线性方程组的一般过程,
School of Math. & Phys.
9
North China Elec. P.U.
Mathematical Methods & its Applications 2020/8/13
Mathematical Methods & its Applications 2020/8/13
线性方程组的解法
考虑如下线性方程组
a11
x1
a1n xn
b1
an1x1 ann xn bn
写成矩阵形式
Ax b
其中 det(A) 0 ,
J. G. Liu
(1)
School of Math. & Phys.
我们先考虑直接方法。
School of Math. & Phys.
3
North China Elec. P.U.
Mathematical Methods & its Applications 2020/8/13
1 基本思想
Gauss消去法
J. G. Liu
我们知道,下面有3种方程的解我们可以直接求出: n次运算
7
North China Elec. P.U.
Mathematical Methods & its Applications 2020/8/13
J. G. Liu
2 计算步骤
例1 求解方程组 1 2 3 x1 14
2
5
2
x
2
18
3 1 5 x3 20
解:
1
Ab 2
2 5
3
2
14 18
J. G. Liu
第一步: 若 a11 0 ,
a11 a21
a12 a22
a1n a2n
b1 a11 b2 0
a12 a(2)
22
a1n
a(2) 2n
b1 b(2)
2
an1
an2
ann
bn
0
a(2) n2
a(2) nn
b(2) n
即 第i行 第1行 ai1 , i 2, , n
1
North China Elec. P.U.
Mathematical Methods & its Applications 2020/8/13
由克莱姆法则可知 (1)有唯一的解,而且解为:
xi
Di D
,D
det( A),
(i 1, 2,
其中
a11
Di
det
Hale Waihona Puke an1a1i1 b1 a1i1 ani1 bn ani1
Mathematical Methods & its Applications 2020/8/13
J. G. Liu

(n+1)n/2
u11
A
u12 u22
次运算
u1n
u2n
unn
xi
bi
n
uij x j
j i 1
uii
,i
n,,1
众所周知,对方程组作如下变换,解不变,
①交换两个方程的次序; ②一个方程的两边同时乘以一个非零的数; ③一个方程的两边同时乘以一个数,加到另一个方程上。
Mathematical Methods & its Applications
a11
[
A
|
b]
a21
a12
a22
a1n
a2n
b1 b2
an1 an2 ann bn
a(1) 11 0
a(1) 12
a(2) 22
a (1) 13
a(2) 23
0
0
a(3) 33
0 0 0
rr32
2r1 3r1
1 0
2 1
3 14
4
10
3 1 5 20
0 5 4 22
School of Math. & Phys.
8
North China Elec. P.U.
Mathematical Methods & its Applications 2020/8/13
J. G. Liu
J. G. Liu
, n)
a1n
ann
School of Math. & Phys.
2
North China Elec. P.U.
Mathematical Methods & its Applications 2020/8/13
J. G. Liu
若行列式用按行(列)展开的方法计算 ,
用克莱姆法则求解(1)的计算量为: (n 1)(n 1)n!
School of Math. & Phys.
5
North China Elec. P.U.
Mathematical Methods & its Applications
考虑到:
2020/8/13
方程组(1)
增广矩阵 (A,b)
J. G. Liu
因此,对应的,对增广矩阵(A,b),作如下的行变换,解不变,
其中
a(2) ij
aij

A

A
diag(a11, a22 ,, ann )
l11
l21 l22
xi
ln1 ln2 lnn
xi bi
bi aii
i 1
j 1
lii
,i 1,, n
(n+1)n/2
lij x j
次运算
,i 1,, n
School of Math. & Phys.
4
North China Elec. P.U.
2020/8/13
其中
J. G. Liu
a (1) 1j
a1 j (
j
1,2,, n),
b1(1) b1
a(k) kk
, (k
1,2,,
n)
a (1) 1n
a(2) 2n
——主元素
b(1) 1
b(2) 2
a(3) 3n
b(3) 3
a(n) nn
b(n) n
School of Math. & Phys.
相关文档
最新文档