13-管理决策——管理运筹学课件PPT

合集下载

管理运筹学-PPT精品

管理运筹学-PPT精品

(50*60+100*250) - (50*50+100*250) = 500
, 500 / 10 = 50 元
说明在一定范围内每增加(减少)1个台时的设备能力就可增加(减少)50元利 润,称为该约束条件的对偶价格。
• 假设原料 A 增加10 千克时,即 b2变化为410,这时可行域扩大,但最优解仍为 x2 = 250 和 x1 + x2 = 300 的交点 x1 = 50,x2 = 250 。 此变化对总利润无影响,该约束条件的对偶价格为 0 。
§1问题的提出
例1. 某工厂在计划期内要安排甲、乙两种产品的生产,已知生产单位产品所需的设备台时 及A、B两种原材料的消耗以及资源的限制,如下表:
设 备 原 料A 原 料B 单 位 产 品 获 利
甲 1 2 0 50元
乙 1 1 1 100元
资 源 限 制 300台 时 400千 克 250千 克
17
第三章 线性规划问题的计算机求解(2)
• 结果考察:(演示例1) 1、当目标函数的系数 ci 单一变化时,只要不超过其上、下限,最优解不变; 2、当约束条件中右边系数 bj 变化时,当其不超过上、下限,对偶价格不变(最优
解仍是原来几个线性方程的解); 3、当有多个系数变化时,需要进一步讨论。 • 百分之一百法则:对于所有变化的目标函数决策系数(约束条件右边常数值),
线性规划的最优解如果存在,则必定有一个顶点(极点)是最优解; 有的线性规划问题存在无穷多个最优解的情况; 有的线性规划问题存在无有限最优解的情况,也称无解; 有的线性规划问题存在无可行解的情况。
作业:P24---1,2,3,4,5
14ቤተ መጻሕፍቲ ባይዱ
§3图解法的灵敏度分析

运筹学PPT完整版

运筹学PPT完整版
线性规划通常解决下列两类问题:
(1)当任务或目标确定后,如何统筹兼顾,合理安排,用 最少的资源 (如资金、设备、原标材料、人工、时间等) 去完成确定的任务或目标 (2)在一定的资源条件限制下,如何组织安排生产获得最 好的经济效益(如产品量最多 、利润最大.)
线性规划问题的数学模型
例1.1 如图所示,如何截取x使铁皮所围成的容积最 大?
(2)
x j 0, j 1,2,, n (3)
求解线性规划问题,就是从满足约束条件(2)、(3)的方程组 中找出一个解,使目标函数(1)达到最大值。
线性规划问题的数学模型
Page 27
可行解:满足约束条件②、③的解为可行解。所有可行解 的集合为可行域。
最优解:使目标函数达到最大值的可行解。
绪论
本章主要内容: (1)运筹学简述 (2)运筹学的主要内容 (3)本课程的教材及参考书 (4)本课程的特点和要求 (5)本课程授课方式与考核 (6)运筹学在工商管理中的应用
运筹学简述
Page 2
运筹学(Operations Research) 系统工程的最重要的理论基础之一,在美国有人把运筹
学称之为管理科学(Management Science)。运筹学所研究的 问题,可简单地归结为一句话: “依照给定条件和目标,从众多方案中选择最佳方案” 故有人称之为最优化技术。
Page 3
运筹学的主要内容
Page 4
数学规划(线性规划、整数规划、目标规划、动态 规划等) 图论 存储论 排队论 对策论 排序与统筹方法 决策分析
本课程的教材及参考书
Page 5
❖选用教材 ➢ 《运筹学基础及应用》胡运权主编 哈工大出版社
❖参考教材 ➢ 《运筹学教程》胡运权主编 (第2版)清华出版社 ➢ 《管理运筹学》韩伯棠主编 (第2版)高等教育出版社 ➢ 《运筹学》(修订版) 钱颂迪主编 清华出版社

《管理学运筹学》ppt课件

《管理学运筹学》ppt课件
(4) 约束条件右端的负常数化为非负常数
对于右端常数为负数的约束,可以两端同时乘以-1。
例 将以下LP问题化成规范方式
m in z x1 x2 2 x1 x2 2 x1 2 x2 2 s.t. x 1 x 2 5 x1 0
m ax
z'
x1
(
x
' 2
x
" 2
)
2 x1
(
x
' 2
二、线性规划问题的构造特征:
1. 线性规划问题的特征; 〔1〕都有一组决策变量。 〔2〕都有一组线性的约束条件,它们是线性 等式或不等式。
〔3〕都有一个确定的目的,这个目的可以表 示成决策变量的线性函数,根据问题不同,有 的要务虚现极大化,有的要务虚现极小化。
线性规划问题的本质:研讨在一组线性约束下, 一个线性函数的极值问题。
am1x1 am2x2 ... amnxn (, )bm
x1, x2,..., xn 0
〔2〕 〔3〕
普通方式的简化表达
n
max(min)z cjxj j1
n
aij x j (, )bi
j1
x
j
0
规范方式
m in C X
AX b
s .t .
X
0
极小化问题
m ax C X
x
" 2
)
x3
2
s.t.
x1
2
(
x
' 2
x
" 2
)
x4
2
x1
(
x
' 2
x
" 2
)
x5
5
x

运筹学ppt课件

运筹学ppt课件
– 无穷多个最优解。若将例1中的目标函数变为 max z=50x1+50x2,则线段BC上的所有点都代表 了最优解;
– 无界解。即可行域的范围延伸到无穷远,目标 函数值可以无穷大或无穷小。一般来说,这说 明模型有错,忽略了一些必要的约束条件;
– 无可行解。若在例1的数学模型中再增加一个约 束条件4x1+3x2≥1200,则可行域为空域,不存在 满足约束条件的解,当然也就不存在最优解了。
• 交叉学科 --涉及经济、管理、数学、工程和系统等 多学科
• 开放性 --不断产生新的问题和学科分支
• 多分支 --问题的复杂和多样性
2
运筹学的主要内容
线性规划
数 非线性规划

整数规划

动态规划

多目标规划

双层规划
最优计数问题

组 合
网络优化

优 排序问题 化 统筹图

对策论
随 排队论
机 优 化
13
组织 宝洁公司 法国国家铁路
应用
Interface 每年节支 期刊号 (美元)
重新设计北美生产和分销系统以 1-2/1997 2亿 降低成本并加快了市场进入速 度
制定最优铁路时刻表并调整铁路 1-2/1998 1500万更多
日运营量
年收入
Delta航空公司 IBM
进行上千个国内航线的飞机优化 配置来最大化利润
负。当某一个右端项系数为负时,如 bi<0,则把该 等式约束两端同时乘以-1,得到:-ai1 x1-ai2 x2… -ain xn = -bi。
30
例:将以下线性规划问题转化为标准形式
则该极小化问题与下面的极大化问题有相同的最优解,

管理运筹学全套ppt课件

管理运筹学全套ppt课件
线性规划模型
设置变量:生产Ⅰ 产品x1个, Ⅱ产品 x2个
目标函数是利润最大化:
maz x5x 0 110x20
资源是有限的,第一个限制是设备台时 的限制:
x1x2 300
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
线性规划模型
建模型如下:设生产Ⅰ 产品x1件, Ⅱ产品 x2件。
max z 50 x1 100 x 2 (1)
x1 x 2 300
s
.t
.
2 x
x1 x 2 2 250
400 (2)
x1 , x 2 0
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
线性规划模型
第二个限制是原材料A的限制: 2x1x2 400
第三个限制是原材料B的限制:
x2 250
显然,产量不可能为负数:
x1,x2 0
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
考核方法
平时成绩占20%,每位同学的初始成绩都 是60分(按100分为满分计算)。
每次作业交上加1分,不交不加不减,拷 贝别人作业一次扣2分。
运筹学的体系和发展历史
二次世界大战中,英美科学家研究如何 有效运用雷达,研究船队遇到袭击如何 减少损失,以及如何使用深水炸弹等紧 迫问题。

《管理运筹学》13-管理决策

《管理运筹学》13-管理决策
案。根据目标的需求和决策者的价值标准,对各个方案进
行评论和比较:在比较的基础上,对各个方案的优劣、利
弊和得失等进行综合分析和全面衡量,从中选出最优(或
满意)的方案。
决策要遵循的基本原则




系统原则
择优原则
可行原则
反馈原则
决策树

恒通物流案例
新建一个仓库,三个方案:小型仓库,中型仓库,大型仓库
4
EV(d3)= 0.8(20) + 0.2(-9) = $14.2
大型(d3)
完全信息价值


信息便于管理者对自然状态发生的概率做出更为准
确的评估。
为了确定该信息的潜在价值,我们假设提供有关自
然状态的完全信息,也就是说,我们假设在制定决
策之前,可以十分确定自然状态将如何发生。
完全信息价值——恒通的例子
点,菱形是表示结果的节点。连接节点之间的线称为弧,
箭头表示二者之间的影响关系。
需求
自然状态
需求强劲(s1)
需求疲软(s2)
可选决策
小型仓库(d1)
中型仓库(d2)
大型仓库(d3)
规模大小
利润
结果
利润
决策树

恒通仓库项目收益表
单位:百万元
自然状态
可选决策
需求强劲(s1)
需求疲软( s2)
小型仓库(d1)
P (sj )=自然状态sj 发生的概率

由于N 种自然状态仅有一种会发生,所以自然状态
发生的概率满足两个条件:
P(sj )≥0
(13-2)
N
P( s )
j 1
j
= P(s1)+ P(s2 )+…+ P(sN )=1

管理运筹学ppt课件

管理运筹学ppt课件

最小生成树问题
要点一
总结词
最小生成树问题是网络优化中的另一类重要问题,旨在寻 找一个子图,该子图包含图中所有节点且边的总权重最小 。
要点二
详细描述
最小生成树问题是网络优化中的另一类重要问题。在一个 加权图中,我们希望找到一个子图,该子图包含图中所有 节点且边的总权重最小。这个子图被称为最小生成树。 Kruskal算法和Prim算法是最著名的最小生成树问题的求 解方法。这些算法可以帮助我们在加权图中找到一个最小 生成树,从而在实际应用中实现最小成本的网络设计或路 由选择。
决策变量
整数规划的决策变量是整数类型的变量,用于表 示决策结果。
ABCD
约束条件
整数规划的约束条件可以是等式或不等式,例如 资源限制、时间限制等。
整数约束
整数规划的约束条件要求决策变量取整数值,以 确保问题的可行解是整数解。
整数规划的求解方法
枚举法
枚举法是一种暴力求解方法,通 过列举所有可能的决策变量组合 来找到最优解。
约束条件
非线性规划的约束条件可以是等式或不等式, 限制决策变量的取值范围。
决策变量
非线性规划的决策变量可以是连续的或离散的,根据问题的具体情况而定。
非线性规划的求解方法
梯度法
通过计算目标函数的梯度,逐步逼近最优解。
牛顿法
利用目标函数的二阶导数信息,迭代逼近最优解。
拟牛顿法
通过构造一个近似于目标函数的二次函数,迭代 逼近最优解。
07 决策分析
决策分析的基本概念
决策分析
指在面临多种可能的选择时,基于一 定的目标,通过分析、比较和评估,
选择最优方案的过程。
决策要素
包括决策者、决策对象、决策信息、 决策目标、决策方案和决策评价。

运筹学教学课件(全)

运筹学教学课件(全)

实用举例
某公司通过市场调研,决定生产高中档新型拉杆箱。 某分销商决定买进该公司3个月内的全部产品。拉杆箱生 产需经过原材料剪裁、缝合、定型、检验和包装4过程。
通过分析生产过程,得出:生产中档拉杆箱需要用 7/10小时剪裁、5/10小时缝合、1小时定型、1/10小时检 验包装;生产高档拉杆箱则需用1小时剪裁、5/6小时缝合、 2/3小时定型、1/4小时检验包装。由于公司生产能力有限, 3月内各部的最大生产时间为剪裁部630小时、缝合部600 小时、定型部708小时、检验包装部135小时。
D {x | Ax b, x (x1,, xi ,, xn ) 0}
是凸集(凸多面体)。
引理2.1:线性规划的可行解 x (x1 ,, xn )T 为基本可行解的 充分必要条件是x的正分量所对应的系数列向量是线性无关的, 即每个正分量都是一个基变量。
定理2.2:线性规划问题的基本可行解x对应于可行域的顶点
通过分析生产过程,得出:生产中档拉杆箱需要用
7/10小时可剪裁以、通5/1过0小线时性缝合规、划1小求时定解型!、1/10小时
检验包装;生产高档拉杆箱则需用1小时剪裁、5/6小时 缝合、2/3小时定型、1/4小时检验包装。由于公司生产 能力有限,3月内各部的最大生产时间为剪裁部630小时、 缝合部600小时、定型部708小时、检验包装部135小时。
x2
L1:x1=6 L3:2x1+3x2=18
B 可行域
L2:x2=4 最优解
x1
4x1+3x2
解的特殊情况——解的特殊情况——无界解
线性规划的基本性质
若线性规划有最 优解,则最优解必在可 行域的顶点上达到。
X
可行域内部的点 • 可行解? 是 • 最优解? 不

第1章 绪论《管理运筹学》PPT课件

第1章 绪论《管理运筹学》PPT课件
非可控输入既可以是非常明确的,也可以是不确定的 、变化的。
如果一个模型的非可控输入都是已知的、不可变的, 这样的模型称为确定模型。
如果一个模型的非可控输入是不确定的、变化的,这 样的模型就称为随机模型或概率模型。
本书主要研究确定型数学模型。
1.2 运筹学问题的求解过程
了解模型的相关概念之后,下一个问题就是如何将一 个现实问题转化为数学模型,也就是建模过程。既然运筹 学模型的几个要素是:目标函数,约束条件(包括自然约 束和强加约束),决策变量。那么根据我们要解决的问题 ,只要我们经常问自己下面这些问题,一个模型的框架是 不难建立的。
1.2 运筹学问题的求解过程
1.2.1 从现实系统到理论模型:模型建立
模型是现实世界的抽象化反映。运筹学的实质在于建 立和使用模型来解决实际问题。尽管模型的具体结构和形 式总是与要解决的问题相联系,但在这里将抛弃模型在外 表上的差别,从最广泛的角度抽象出它们的共性。模型在 某种意义上说是客观事物的简化与抽象,是研究者经过思 维抽象后用文字、图表、符号、关系式以及实体模样对客 观事物的描述。
第1章 绪论
“运筹于帷幄之中,决胜于千里之外”。运筹学 将科学的方法、技术和工具应用到经济管理、工程设计 等领域,以便为人们提供最佳的解决方案。
在这一章里,首先介绍运筹学的基本概况,包括 运筹学的历史和发展,运筹学的性质和特点,运筹学研 究的主要内容和以后的发展趋势。然后从运筹学问题解 决过程的角度,依次介绍建模、求解和实际应用时应该 注意的一些问题,使初学者对运筹学概念和方法有初步 的认识。
我们需要什么目标? 通过调节哪些因素可以使得我们达到这一目标? 调节的因素是变动的吗? 要与实际情况相符合有什么 限制条件吗? 在实现目标的过程中,有哪些约束条件? 这样建立的模型是相对完备的吗?

《管理运筹学》课件

《管理运筹学》课件
目标函数
目标函数是最大化或最小化的函数,通常表示为$f(x) = c_1x_1 + c_2x_2 + ... + c_nx_n$。
约束条件
约束条件是决策变量必须满足的条件,通常表示为$a_1x_1 + a_2x_2 + ... + a_nx_n leq b$或$a_1x_1 + a_2x_2 + ... + a_nx_n
PART 05
动态规划
动态规划的基本概念
动态规划是一种通过将原问 题分解为相互重叠的子问题 ,并存储子问题的解以避免
重复计算的方法。
它是一种优化策略,适用于 多阶段决策问题,其中每个 阶段的决策都会影响后续阶
段的决策。
动态规划的基本思想是将一 个复杂的问题分解为若干个 相互重叠的子问题,并逐个 求解子问题,以获得原问题 的最优解。
对偶算法
对偶算法是一种基于对偶理论的求解线性规划问题的算法,其基本思想是通过构造对偶问题来求解原问题。对偶算法 可以在某些情况下比单纯形法更高效,尤其是在处理大规模问题时。
内点法
内点法是一种求解线性规划问题的迭代算法,其基本思想是通过不断逼近问题的最优解来寻找最优解。 内点法在处理大规模问题时非常有效,因为它可以利用问题的结构来加速收敛速度。
= b$。
线性规划的数学模型
• 线性规划的数学模型由决策变量 、目标函数和约束条件组成,可 以表示为
线性规划的数学模型01Βιβλιοθήκη $begin{aligned}
02
text{maximize} & f(x) = c_1x_1 + c_2x_2 + ... + c_nx_n
03

《管理运筹学教案》课件

《管理运筹学教案》课件

《管理运筹学教案》PPT课件第一章:管理运筹学概述1.1 管理运筹学的定义解释管理运筹学的概念和内涵强调管理运筹学在实际管理中的应用价值1.2 管理运筹学的发展历程介绍管理运筹学的起源和发展过程提及著名学者和管理运筹学的重要成果1.3 管理运筹学的方法和工具概述管理运筹学常用的方法和工具简要介绍线性规划、整数规划、动态规划等方法1.4 管理运筹学的应用领域列举管理运筹学在不同领域的应用实例强调管理运筹学在企业经营、物流管理、生产计划等方面的应用第二章:线性规划2.1 线性规划的基本概念解释线性规划的目标函数和约束条件引入可行解、最优解等基本概念2.2 线性规划的图解法演示线性规划问题的图解法步骤提供实际例子进行图解法的应用演示2.3 线性规划的代数法介绍线性规划的代数法解题步骤使用具体例子进行代数法的应用解释2.4 线性规划的应用案例提供实际案例,展示线性规划在企业决策、资源分配等方面的应用强调线性规划在解决实际问题中的重要性第三章:整数规划3.1 整数规划的基本概念解释整数规划与线性规划的区别引入整数规划的目标函数和约束条件3.2 整数规划的解法介绍整数规划常用的解法,如分支定界法、动态规划法等使用具体例子进行整数规划解法的应用解释3.3 整数规划的应用案例提供实际案例,展示整数规划在人员排班、物流配送等方面的应用强调整数规划在解决实际问题中的重要性3.4 整数规划与线性规划的比较对比整数规划与线性规划的解法和技术强调整数规划在处理离散决策问题时的优势第四章:动态规划4.1 动态规划的基本概念解释动态规划的定义和特点引入动态规划的基本原理和基本定理4.2 动态规划的解法步骤演示动态规划的解题步骤,如最优子结构、状态转移方程等使用具体例子进行动态规划解法的应用解释4.3 动态规划的应用案例提供实际案例,展示动态规划在库存管理、项目管理等方面的应用强调动态规划在解决多阶段决策问题中的重要性4.4 动态规划与其他运筹学方法的比较对比动态规划与其他运筹学方法的特点和适用场景强调动态规划在处理具有时间序列特征的问题时的优势第五章:决策分析5.1 决策分析的基本概念解释决策分析的目的和意义引入决策问题的基本要素和决策方法5.2 确定型决策分析介绍确定型决策分析的方法和步骤使用具体例子进行确定型决策分析的应用解释5.3 不确定型决策分析介绍不确定型决策分析的方法和步骤使用具体例子进行不确定型决策分析的应用解释5.4 风险型决策分析介绍风险型决策分析的方法和步骤使用具体例子进行风险型决策分析的应用解释5.5 决策分析的应用案例提供实际案例,展示决策分析在企业战略规划、新产品开发等方面的应用强调决策分析在解决实际问题中的重要性第六章:网络计划技术6.1 网络计划技术的基本概念解释网络计划技术的定义和作用引入节点、箭线、活动等基本元素6.2 常用网络计划技术介绍常用的网络计划技术,如PERT、CPM等演示这些网络计划技术的绘制和应用方法6.3 网络计划技术的应用案例提供实际案例,展示网络计划技术在项目管理和生产调度等方面的应用强调网络计划技术在时间管理和资源分配中的重要性6.4 网络计划技术的优化介绍网络计划技术的优化方法和步骤使用具体例子进行网络计划技术优化的应用解释第七章:排队论7.1 排队论的基本概念解释排队论的定义和研究对象引入队列、服务设施、顾客等基本元素7.2 排队论的模型构建介绍排队论的模型构建方法和步骤使用具体例子进行排队论模型的应用解释7.3 排队论的应用案例提供实际案例,展示排队论在服务业、制造业等方面的应用强调排队论在解决等待问题和提高服务水平中的重要性7.4 排队论的优化策略介绍排队论的优化策略和方法使用具体例子进行排队论优化策略的应用解释第八章:存储论8.1 存储论的基本概念解释存储论的定义和研究对象引入存储成本、缺货成本、需求量等基本元素8.2 存储论的模型构建介绍存储论的模型构建方法和步骤使用具体例子进行存储论模型的应用解释8.3 存储论的应用案例提供实际案例,展示存储论在库存管理、供应链等方面的应用强调存储论在解决存货控制和降低成本中的重要性8.4 存储论的优化策略介绍存储论的优化策略和方法使用具体例子进行存储论优化策略的应用解释第九章:对偶理论9.1 对偶理论的基本概念解释对偶理论的定义和意义引入对偶问题、对偶关系等基本元素9.2 对偶理论的解法介绍对偶理论的解法方法和步骤使用具体例子进行对偶理论的应用解释9.3 对偶理论的应用案例提供实际案例,展示对偶理论在优化问题和经济学中的应用强调对偶理论在解决实际问题中的重要性9.4 对偶理论与灵敏度分析解释对偶理论与灵敏度分析的关系介绍灵敏度分析的方法和步骤第十章:总结与展望10.1 管理运筹学的重要性和局限性总结管理运筹学在实际管理中的应用价值和局限性强调管理运筹学在解决问题和创新方面的潜力10.2 管理运筹学的发展趋势展望管理运筹学未来的发展趋势和研究方向提及新兴领域和技术在管理运筹学中的应用前景10.3 提高管理运筹学能力的建议给出提高管理运筹学能力的建议和指导鼓励学习者持续学习和实践,以提升解决实际问题的能力重点解析本文教案主要介绍了管理运筹学的十个重点内容,具体如下:1. 管理运筹学的定义、发展历程、方法与工具,以及应用领域。

运筹学基础教学课件PPT

运筹学基础教学课件PPT

都江堰水利工程
Page 4
川西太守李冰 父子主持修建, 其目标是利用 岷江上游的水 资源灌溉川西 平原,追求的 效益还有防洪 与航运。其总 体构思是系统 思想的杰出运 用
北宋丁谓主持修复皇宫
Page 5
例2、北宋丁谓主持修复皇宫 面临的问题:木材、石材、 砖瓦等建筑材料如何取得?
修建如何进行?
大街 开封 皇宫
2、策略集
策 略:在对策中,局中人在整个决策过程中针对一系 列行动制定的完整行动方案。
策略集:每个局中人策略的全体集合。 局 势:每个局中人从自己的策略集合中选择一个策
略,构成一个局势。
3、赢得函数
利用全部局势集合上的一个实值函数,来描述 每个局势完结后局中人的得失的报酬数值。
对策的分类
Page 23
目标函数: 约束条件:1原材料的限制 2工时的限制 3座椅的限制 4非负限制 数学模型:
图解法
x2
1000
5x1+2.5x2≤2500
x1=400
800
Z=2600
600
400
Z=1800
Page 20
max Z=4x1+3x2
2x1 2x2 1600 5x1x1420.05x2 2500 x1 0、x2 0
线平衡率 秒表法/PTS
动作和方法研究
动改法
成本控制 设施规划
双手操作法 人机配合法
物流分析
防错法
PMP体系
PAC体系
系统设计
……
工作抽样法 流程程序法
五五法 其它
1工程学 2人机学(人因工程学) 3材料学 4管理学 5统计学 6运筹学 7系统工程学 8材料力学 9工程力学 10物流与设施规划

管理运筹学课件

管理运筹学课件
层次分析法
将多目标问题分解为若干层次,逐层进行分析和比较 ,确定各目标的优先级。
进化算法
借鉴生物进化原理,通过种群进化、基因交叉、变异 等操作,寻找多目标问题的非劣解集。
多目标规划的应用案例
生产计划问题
在生产过程中,需要平衡产量、成本、交货期等多个目标 ,通过多目标规划进行优化。
ห้องสมุดไป่ตู้
01
金融投资组合
投资者需要在风险和收益之间进行权衡 ,通过多目标规划选择最优的投资组合 。
02
03
城市交通规划
城市交通规划需要考虑交通流量、道 路建设成本、环境影响等多个目标, 通过多目标规划进行优化。
06
动态规划
动态规划的基本概念
1
动态规划是一种通过将原问题分解为相互重叠的 子问题,并存储子问题的解以避免重复计算的方 法。
2
它是一种优化技术,用于解决多阶段决策问题, 其中每个阶段的决策都会影响后续阶段的决策。
02
线性规划
线性规划的基本概念
01
线性规划是一种数学优化技术,用于在有限资源约 束下最大化或最小化线性目标函数。
02
它通过建立和解决线性等式或不等式约束下的优化 问题,来找到最优解决方案。
03
线性规划问题具有可加性、齐次性和凸性的特点。
线性规划的求解方法
单纯形法
单纯形法是解决线性规划问题的 经典算法,通过迭代过程逐步改 进可行解,直到找到最优解。
管理运筹学主要研究如何运用定量方 法对组织中的各种资源进行最优配置 和有效利用,以实现组织的目标和战 略。
管理运筹学的应用领域
01
生产与运作管理
涉及生产计划、调度、质量控制等 方面的优化问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档