用表格表示变量之间的关系
七年级下《3.1用表格表示的变量间关系》同步练习含答案
3.1用表格表示的变量间关系基础训练1.某人要在规定时间内加工100个零件,则工作效率y与时间t之间的关系中,下列说法正确的是()A.y,t和100都是变量B.100和y都是常量C.y和t是变量D.100和t都是常量2.下表是某报纸公布的世界人口数情况:年份19571974198719992010人口数30亿40亿50亿60亿70亿上表中的变量是()A.仅有一个,是年份B.仅有一个,是人口数C.有两个变量,一个是人口数,另一个是年份D.一个变量也没有3.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,填写下表.份数/份价钱/元1234……在这个问题中,___________是常量;__________是变量.4.王老师开车去加油站加油,发现加油表如图所示.加油时,单价其数值固定不变,表示“数量”、金额”的量一直在变化,在数量2.45(升)金额16.66(元)单价6.80(元/升)这三个量中,是常量,是自变量,是因变量.5.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器6.一个圆柱的高h为10cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也发生了变化,在这个变化过程中()A.r是因变量,V是自变量B.r是自变量,V是因变量C.r是自变量,h是因变量D.h是自变量,V是因变量7.声音在空气中传播的速度y(m/s)(简称声速)与气温x(℃)的关系如下表所示.气温x/℃声速y/(m/s)3315334103371534020343上表中___________是自变量,__________是因变量.照此规律可以发现,当气温x为__________℃时,声速y达到346m/s.8.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系:x/kg012345y/cm1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0cmC.在弹性限度内,物体质量每增加1kg,弹簧长度y增加0.5cmD.在弹性限度内,所挂物体质量为7kg时,弹簧长度为13.5cm9.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:鸭的质量/kg 烤制时间/min 0.51 1.52 2.53 3.54 406080100120140160180设烤鸭的质量为x kg,烤制时间为t min,估计当x=3.2时,t的值为()A.140B.138C.148D.16010.赵先生手中有一张记录他从出生到24岁期间的身高情况表(如下表所示):年龄x/岁03691215182124身高h/cm48100130140150158165170170.4对于赵先生从出生到24岁期间身高情况下列说法错误的是()A.赵先生的身高增长速度总体上先快后慢B.赵先生的身高在21岁以后基本不长了C.赵先生的身高从0岁到21岁平均每年约增高5.8cmD.赵先生的身高从0岁到24岁平均每年增高7.1cm提升训练11.父亲告诉小明:“距离地面越高,气温越低.”并给小明出示了下面的表格:距离地面高度/km012345气温/℃201482-4-10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t 是怎么变化的?(3)你知道距离地面6km的高空气温是多少吗?12.在烧水时,水温达到100℃就会沸腾,下表是某同学做“观察水的沸腾”试验时记录的数据:时间/min 温度/℃0302444586728101214…86100100100…(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)水的温度是如何随着时间的变化而变化的?(3)时间每推移2min,水的温度如何变化?(4)时间为8min时,水的温度为多少?你能得出时间为9min时水的温度吗?(5)根据表格,你认为时间为16min和18min时水的温度分别为多少?(6)为了节约能源,你认为应在什么时间停止烧水?13.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:min)之间有如下关系(其中0≤x≤20):提出概念所257101213141720用时间x/min对概念的接47.853.556.35959.859.959.858.355受能力y(注:接受能力值越大,说明学生的接受能力越强)(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当提出概念所用时间是10min时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念所用时间为多少时,学生的接受能力最强?(4)从表格中可知,当提出概念所用时间x在什么范围内时,学生的接受能力逐步增强?当提出概念所用时间x在什么范围内时,学生的接受能力逐步降低?参考答案1.【答案】C2.【答案】C3.【答案】0.4;0.8;1.2;1.6;0.4;x,y4.【答案】单价;数量;金额5.【答案】B解:所晒时间和水的温度都是变量,但水的温度随所晒时间的变化而变化,所以所晒时间是自变量,水的温度是因变量.6.【答案】B7.【答案】气温;声速;25解:气温是自变量,声速是因变量,气温每上升5℃,声速增加3m/s,而x=20时,y=343,所以当x=25时,y=346.8.【答案】B9.【答案】C10.【答案】D解:(170.4-48)÷24=5.1(cm),从0岁到24岁平均每年增高7.1cm是错误的.11.解:(1)反映了距离地面高度与气温之间的关系.距离地面高度是自变量,气温是因变量.(2)随着h的升高,t逐渐降低.(3)观察表格,可得距离地面高度每上升1km,气温下降6℃.当距离地面5km时,气温为-10℃,故当距离地面6km时,气温为-16℃.12.解:(1)上表反映了水的温度与时间的关系,时间是自变量,水的温度是因变量.(2)水的温度随着时间的增加而增加,到100℃时恒定.(3)时间每推移2min,水的温度增加14℃,到10min时恒定.(4)时间为8min时,水的温度是86℃,时间为9min时,水的温度是93℃.(5)根据表格,时间为16min和18min时水的温度均为100℃.(6)为了节约能源,应在第10min后停止烧水.13.解:(1)反映了提出概念所用的时间x和对概念的接受能力y两个变量之间的关系;其中x是自变量,y是因变量.(2)由表格可知,当提出概念所用时间是10min时,学生的接受能力是59.(3)由表格可知提出概念所用时间为13min时,学生的接受能力最强.(4)当x在2至13的范围内,学生的接受能力逐步增强;当x在13至20的范围内,学生的接受能力逐步降低.。
初一变量之间的关系知识点归纳实用-变量之间的关系知识点
变量之间的关系【基础知识】知识网络自变量变量的概念因变量变量之间的关系 1.表格法2.关系式法变量的表达方法速度时间图象3.图象法路程时间图象知识点一、变量、自变量、因变量1、在某一变化过程中,不断变化的量叫做变量。
2、如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。
3、自变量与因变量如何确定:(方法技巧)(1)自变量是先发生变化的量;因变量是后发生变化的量。
(2)自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量。
(3)利用具体情境来体会两者的依存关系。
知识点二:变量的表示方法1.列表法1.定义:表格是采用数表相结合的形式,运用表格表示两个变量之间的关系,从中获取信息、研究不同量之间的关系。
(1)首先要明确表格中所列的是哪两个变量;(2)分清哪一个量为自变量,哪一个量为因变量;列表时一般第一行代表自变量,第二行代表因变量.(3)自变量从小到大的顺序列出,再分别求出对应的因变量的值。
结合实际情境理解它们之间的关系。
特点:优点:直观,可以直接从表中找出自变量与因变量的对应值,缺点:具有局限性,只能表示因变量的一部分。
2.关系式法(又叫解析式法)1、定义:关系式(即解析式)是利用数学式子来表示变量之间关系的等式,通常是用含有自变量(用字母表示)的代数式表示因变量(也用字母表示),这样的数学等量关系式叫做关系式。
2、本质:是数学等量关系式3.写法注意,必须将因变量单独写在等号的左边。
3、求关系式的方法:--(就是找等量关系)类型:(1)将自变量和因变量看作两个未知数,根据等量关系,并最终写成关系式的形式。
(2)根据表格中所列的数据相同的变化关系写出变量之间的关系式;(例如:y变化一样都和第一个比)(3)根据实际问题中的基本数量关系写出变量之间的关系式;(4)根据图象写出与之对应的变量之间的关系式。
注:有些表达式要分段写出(分类讨论思想),例如:分段收水费(煤气费、电话费)等.4、关系式的应用:(代入法)(1)利用关系式能根据任何一个自变量的值求出相应的因变量的值;代入法格式:当x= ,y=(2)同样也可以根据任何一个因变量的值求出相应的自变量的值;当y= ,x=5.特点:优点:关系简洁,清楚、准确,知一变量可求另一变量。
相关性分析excel
相关性分析excel相关性分析是指分析两个或多个变量之间的关系,以及其中潜在影响变量的影响程度。
相关性分析是数据分析中最常用的技术之一。
Excel是一种专业的工具,用于收集和分析数据。
使用Excel可以轻松地完成相关性分析。
它可以帮助分析师更快地找到两个或多个变量之间的关系,并建立出一个有用的模型。
在Excel中使用相关性分析,首先需要准备数据。
这些数据通常来自一个表格,其中包含每个变量的详细信息,包括观察值,并且可以按照你的需求进行排序。
然后,你可以使用Excel的函数来分析数据。
其中最常用的Excel函数是Pearson相关性系数。
它可以用来衡量两个变量之间的线性相关,用来衡量它们之间的强弱。
Pearson相关性系数的值介于-1到1之间,其中-1表示完全负相关,1表示完全正相关,0表示没有相关性。
使用Excel相关性分析时,还可以使用Spearman相关系数。
Spearman相关系数用于测量两个无序变量之间的相关性,它的值介于-1到1之间。
与Pearson相关性系数不同的是,Spearman相关系数可以有助于判断两个变量之间的非线性关系。
Excel还有几个其他类型的相关性系数,包括Kendall相关系数和Spearman-Brown相关性系数。
它们可以用来更精确地衡量两个变量之间的相关性,并了解它们之间的相互影响。
使用Excel可以很容易地完成相关性分析,只需输入数据,然后运行函数即可。
更重要的是,Excel可以轻松地帮助分析师找到两个或多个变量之间的关系。
它可以帮助他们建立出一个有用的模型,并可以更好地理解这些变量之间的联系。
总之,Excel是一款强大的工具,可以用来完成相关性分析,帮助分析师更好地理解数据之间的关系。
它可以让分析过程变得更加容易,更可靠,更快捷。
最后,Excel可以帮助分析师更好地利用数据,从而更好地决策和行动。
《用表格表示的变量间关系》教案
《用表格表示的变量间关系》教案一、教学目标1. 让学生理解什么是变量,能够识别常量和变量。
2. 让学生掌握表格表示变量间关系的方法。
3. 培养学生运用表格解决实际问题的能力。
二、教学重点与难点1. 教学重点:识别变量和常量。
运用表格表示变量间的关系。
2. 教学难点:理解变量间关系的表达方式。
将实际问题转化为表格表示。
三、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、思考、操作、交流等活动,发现变量间的关系。
2. 利用实例讲解,让学生在实际问题中体验变量间关系的表达方法。
3. 组织小组讨论,培养学生合作学习的能力。
四、教学准备1. 教学课件或黑板。
2. 实例材料。
3. 纸张、笔等学习用具。
五、教学过程1. 导入新课利用生活中的实例,如身高、体重等,引导学生认识变量。
讲解常量和变量的概念。
2. 讲解变量间关系通过实例,讲解变量间的关系,如身高与体重之间的关系。
引导学生观察、分析实例,发现变量间的规律。
3. 学习用表格表示变量间关系讲解如何用表格表示变量间的关系。
示例:以身高和体重为例,制作一个表格,展示身高和体重之间的对应关系。
4. 实践操作让学生分组,每组选择一个实际问题,如“某班级学生的身高和体重数据”,用表格表示变量间的关系。
学生分组讨论、操作,教师巡回指导。
5. 总结与拓展对学生进行总结,巩固所学知识。
提出拓展问题,激发学生思考,如“如何用表格表示复杂的多变量关系?”6. 布置作业让学生完成课后练习,运用表格表示变量间关系。
选择一个实际问题,制作表格,并分析变量间的关系。
六、教学评价1. 评价内容:学生对变量和常量的理解程度。
学生运用表格表示变量间关系的能力。
学生解决实际问题的能力。
2. 评价方法:课堂提问,检查学生对概念的理解。
作业批改,评估学生的实际操作能力。
小组讨论,观察学生的合作和问题解决能力。
七、教学反思1. 教师在课后应对本节课的教学效果进行反思,包括:学生对课堂内容的掌握情况。
用表格表示的变量间关系
第二行表示因变量,从表格中 在某个变化过程中,数值始终不变的量叫做常量,可以取不同数值的量叫做变量
在某一变化过程中,如果有两个变量x和y,当其中一个变量x在一定范围取一个数值时,另一个变量y也有唯一一个数值与其对应,那 么通常把前一个变量x叫做自变量,后一个变量y叫做自变量的因变量。
可以发现因变量随自变量变化 在某个变化过程中,数值始终不变的量叫做常量,可以取不同数值的量叫做变量
• 借助表 格,可 以表示 因变量 随自变 量的变 化而变 化
• 两者都是某一变化过程中的变 量,两者因研究的侧重点或先 后顺序不同可以互相转化。比 如路程一定时,时间随速度的 变化而变化,这时,速度是自 变量,时间是因变量。而当速 度一定时,路程随时间的变化 而变化,这时,时间是自变量, 路程是因变量。
•因变量பைடு நூலகம்自 变量的变化 而变化
律——或者增加或者减少或者呈规律性地起伏变化,从而利用变化趋势对结果做出预测 而当速度一定时,路程随时间的变化而变化,这时,时间是自变量,路程是因变量。
《用表格表示的变量间关系》变量之间的关系PPT课件
小车下滑时间/s 4.23 3.00 2.45 2.13 1.89 1.71 1.59 1.50 1.41 1.35
t
1.23 0.55 0.32 0.24 0.18 0.12
根据上表回答下列问题:
0.09 0.09 0.06
(1)支撑物高度为70cm时,小车下滑时间是多少?
解:1.59 s
(2) 如果用h表示支撑物高度,t表示小车下滑时间,随 着h逐渐变大,t的变化趋势是什么?
一、通过数据感受变化
王波学习小组利用同 一块木板,测量小车 从不同的高度下滑的 时间,并将得到的数 据填入下表:
支撑物高 10 20 30 40 50 60 70 80 90 100 度/cm 小车下滑 时间/s
小车下滑实验
50厘米 40厘米 30厘米 20厘米 10厘米
4.23秒
50厘米 40厘米 30厘米 20厘米 10厘米
小树苗长到 3.5 米时:3.5 = 0.2 x + 1.5 x =10
随堂练习
3、某河受暴雨袭击,某天此河水的水位记录为下表:
时间/小时 0
4
8
12 16 20 24
水位/米
2 2.5 3
4
5
6
8
(1)上表中反映了哪两个变量之间的关系?自变量和 因变量各是什么?
解:表中反映了记录水位的时间与河水水位两个变量之间 的关系;自变量:记录水位的时间; 因变量:河水的水 位 (2)12小时,水位是多少? 解:4米 (3)哪一时段水位上升最快?
• 小车下滑的时间t是因变量
被动发生变化的量(变化导致的结果) 在这一变化过程中,小车下滑的距离(木板长度) 一直没有变化.像这种在变化过程中数值始终不 变的量叫做常量.
六年级数学下册9.1用表格表示变量之间的关系-优秀课件鲁教版五四制
((132))上 根某述据婴的表儿哪中在些的出量 数生在 据时发 ,的生 说体变 一重化 说是? 儿3童.5千从克出,生请到把10 周他岁在之发间育体过重程是中怎的样体随重着情年况龄填的入增下长表而:变化的.
年龄 刚出 6个月 1周岁 2周岁 6周岁 10周
生
岁体Leabharlann / 千克3.57.0
10.5 14.0 21.0
像这种在变化过程中数值始终不变
的量叫做常量.
始终不变
的量
练习:
• 例题1. 指出下列各题中,哪些量在发生改 变?其中的自变量与因变量各是什么?
(1) 用总长为60m的篱笆围成一个长为a, 面积为S的长方形场地.
(2) 正方形的边长为3,若边长增加x,则面 积增加y.
议一议:
我国从1949年到1999年的人口统计数据如下: (精确到0.01亿):
合作学习
1.圆的面积公式为 S r2, 取 r 的些不同的值,
算出相应的 S 的值:
r _2__ cm
S __4___ cm2
r __3_ cm
S __9___ cm2
r __5_ cm
3
r __2_ cm
S __5___ cm2
S __94___ cm2
在计算半径不同的圆的面积的过程中,哪些 量在改变,哪些量不变?
(2)当圆锥的高由1 厘米变化到10 厘米时,圆锥的体积由 ( V=4π /3 ) 厘米3变化到(V=40π /3 )厘米3。
2厘米
1、到今天为止我们一共学了几种方法来表示自变量与 因变量之间的关系?
列表格与列关系式两种方法
2、列表与列关系式表示变量之间的关系各有什么特点?
通过列表格,可以较直观地表示因变量随自变量 变化而变化的情况。 利用关系式,我们可以根据一个自变量的值求出 相应的因变量的值 .
《用表格表示变量之间的关系》教案2
《用表格表示变量之间的关系》教案教学目标一、知识与技能1.通过学习知道常量,变量,自变量,因变量等概念.2.根据实例能够自己总结出函数的概念,体会两个变量之间的关系.二、过程与方法体会表格法的优点,能借助表格中的数据探究变量的变化规律,推算或预测变量的变化趋势.三、情感态度和价值观1.经历探索具体情境中两个变量之间的关系的过程,进一步发展符号感和抽象思维,培养学生分析问题的能力与归纳思维的能力.2.能发现实际情境中的变量及其相互关系,并确定其中的自变量和因变量.教学重点能从表格的数据中分清什么是变量,自变量,因变量以及因变量随自变量的变化情况.教学难点对表格所表达的两个变量关系的理解.教学方法学生通过实验自主探究,体会小车的速度和运动时间之间的关系,从而总结出速度和时间之间的关系,进而升华到函数的两个变量之间的关系.课前准备1.PPT课件,2.实验小车下滑的器材(小车、木板、秒表、调节高度的装置)课时安排1课时教学过程一、导入新课活动内容:以地壳随时间推移而运动为例,让学生关注到我们生活在变化的世界中,很多东西都在发生变化,请学生列举一些日常生活中常见的发生变化的事物。
如:随年龄的增长,身高、体重都发生了变化;随着时间的变化汽车行驶的路程也在变化;烧一壶水10分钟水开了,时间和水温的变化;……活动目的:通过举例,希望学生体会身边的事物无时无刻不在发生变化,培养学生善于观察的能力。
活动的注意事项:大部分学生能够举出例子。
从学生熟悉的事例入手,提高了他们的学习热情,培养了他们的学习兴趣,并能深刻体会到数学来源于生活。
生活中有很多变化的量,从数学角度来研究,将有助于认识世界。
二、新课学习活动内容:1.儿童从出生到10岁的体重变化。
婴儿在6个月、1周岁、2周岁时体重分别大约是出生时的2倍、3倍、4倍,6周岁、10周岁时体重分别约是1周岁时的2倍、3倍。
(1)上述的哪些量在发生变化?(2)某婴儿在出生时的体重是3.5千克,请把他在发育过程中的体重情况填入下表:年龄刚出生6个月1周岁2周岁6周岁10周岁体重/千克(3)根据表中的数据,说一说儿童从出生到10周岁之间体重是怎样随着年龄的增长而变化的。
用表格表示变量之间的关系教学反思
用表格表示变量之间的关系教学反思心理学研究表明,让学生亲自参加有情趣的活动,亲自感受到需要的满足,始终处在愉快的心境中,才能最大限度地发挥、发展自身的智力和非智力因素。
这就要求教师努力为学生创设条件,使学生充分活动,让学生动手操作,动口表述,动脑思考,调动学生的多种感官参与活动,培养学生思维的逻辑性和口头表达能力,让学生动脑想象,动眼观察,才能在活动中培养他们的能力,发展个性。
利用实验操作及大量的生活情境让学生感受到变量无处不在;通过操作,观察体会变量之间的关系,对概念的准确性、使用技能不是强加给学生,而是通过实例让学生自然掌握,为学生提供探索的空间。
建立数学模型让学生用数学的眼光去观察研究周围的世界,体现了数学的价值,体会收集数据、整理数据、由数据进行推断的思考方式。
本节课是一种自主探索的学习活动过程,在课堂中利用多媒体教学,展示教学情境,吸引学生的注意力,再引导学生通过对相应数据的观察、计算、比较以及分组讨论相对应的问题,让学生在探索中形成自己的观点,明确变量的概念,并能准确判断哪个是自变量?哪个是因变量?结合生活的实例,学生能够巩固对变量的理解。
更重要的是,学生学会了自主、合作、探究的学习方式向纵深发展,能通过数据预测事物的变化趋势。
当然,这节课我还有许多需要改进的地方,比如在引导学生分析问题时,对于学生回答的答案,要让其他学生先判断,再给出点评或结论;对学生的回答要多进行表扬;要多给学生讨论的时间等等。
在今后的教学中,我会克服以完成教学任务为目标、不注重学生学习过程所表现出的品质,在课堂上多给学生提供较为充分的思维、探索的时间和空间。
相信在将来定能取得更大的进步!反思二:用表格表示变量之间的关系教学反思1.这节课从现实生活入手,数据来自于学生可以参与的试验过程,来自于现实生活关注的人口问题、环境问题,培养了学生的探究、试验精神,而且始终贯穿对学生的德育教育。
通过本节课的学习,学生可以意识到研究变量之间的关系是可以帮助我们把握事物发展的一定规律的,是可以帮我们找出影响事物发展的一些因素的。
用表格表示的变量间关系(精讲)
3.1用表格表示的变量间关系题型1:常量和变量的辨识1.一本笔记本5元,买x本共付y元,则5和x分别是()A.常量,变量B.变量,变量C.常量,常量D.变量,常量【变式1-2】分析并指出下列关系中的变量与常量:(1)球的表面积S cm2与球的半径R cm的关系式是S=4πR2;(2)以固定的速度v0米/秒向上抛一个小球,小球的高度h米与小球运动的时间t秒之间的关系式是h=v0t﹣4.9t2;(3)一物体自高处自由落下,这个物体运动的距离h m与它下落的时间t s的关系式是h=gt2(其中g取9.8m/s2);(4)已知橙子每千克的售价是1.8元,则购买数量W千克与所付款x元之间的关系式是x=1.8W.自变量和因变量一般地,在某个变化过程中,如果有两个变量x,y并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是因变量.自变量与因变量的联系与区别(1)联系∶二者都是某一变化过程中的变量,因研究的侧重点或先后顺序不同可以互相转化,如当路程一定时,若时间随速度的变化而变化,这时速度是自变量,时间是因变量;当速度一定时,若路程随时间的变化而变化,这时时间是自变量,路程是因变量.(2)区别∶自变量是在一定范围内主动发生变化的量,因变量是随着自变量的变化而被动发生变化的量. 题型2:自变量和因变量的辨识2.正方形边长为5厘米,若边长减少x,则面积减少y.下列说法正确的是()A.边长x是自变量,面积减少量y是因变量B.边长是自变量,面积是因变量C.上述关系式为y=(5﹣x)2D.上述关系式为y=52﹣(5﹣x)2【变式2-1】世纪花园居民小区收取电费的标准是0.6元/千瓦时,当用电量为x(单位:千瓦时)时,收取电费为y(单位:元).在这个问题中,下列说法中正确的是()A.x是自变量,0.6元/千瓦时是因变量B.0.6元/千瓦时是自变量,y是因变量C.y是自变量,x是因变量D.x是自变量,y是因变量,0.6元/千瓦时是常量【变式2-2】圆的周长公式C=2πR中,下列说法正确的是()A.π、R是自变量,2是常量B.C是因变量,R是自变量,2π为常量C.R为自变量,2π、C为常量D.C是自变量,R为因变量,2π为常量用表格表示变量间的关系1.借助表格,我们可以表示因变量随自变量的变化而变化的情况.2.用表格表示两个变量之间关系的步骤(1)确定各行、各列的栏目(一般有两行,第一行表示自变量,第二行表示因变量);(2)写出栏目名称并根据问题内容写上单位;(3)在第一行列出自变量的各个变化取值,在第二行对应列出因变量的各个变化取值.一般情况下,自变量的取值从左到右应按由小到大的顺序排列,这样便于反映因变量随自变量变化的趋势. 3. 用表格表示两个变量之间关系的优缺点(1)优点∶直观,可以直接从表格中找出自变量和因变量的对应值;(2)缺点∶具有局限性,只能部分反映两个变量之间的关系,因此要从这部分数据中得出两个变量之间的关系时,需要对表格中的数据进行分析.题型3:利用表格获取变量的值3.对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,从温度计上可以看出,摄氏温度x(℃)与华氏温度y(℉)有如下对应的关系.下列说法不正确的是()x/℃…﹣100102030…Y/℉…1432506886…A.摄氏温度x(℃)与华氏温度y(℉)都是变量,且摄氏温度(℃)是自变量,华氏温度(℉)是因变量B.随着摄氏温度x的逐渐升高,华氏温度y也逐渐升高C.摄氏温度每升高10℃,华氏温度升高18℉D.当摄氏温度为40℃,华氏温度为102℉题型4:利用表格分析变量的关系4.研究表明,当每公顷钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当氮肥的施用量是101kg/hm2(hm2是单位“公顷”的符号)时,土豆的产量是多少?如果不施氮肥呢?(3)根据表格中的数据,你认为氮肥的施用量是多少时比较适宜?说说你的理由.(4)粗略说一说氮肥的施用量对土豆产量的影响.【变式4-1】植物呼吸作用受温度影响很大,观察如图,回答问题:(1)此图反映的自变量和因变量分别是什么?(2)温度在什么范围内时豌豆苗的呼吸强度逐渐变强?在什么范围内逐渐减弱?(3)要使豌豆呼吸作用最强,应控制在什么温度左右?要抑制豌豆的呼吸应控制在什么温度左右?.【变式4-2】已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与铝用量有如下关系:上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当易拉罐底面半径为2.4cm时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由.(4)粗略说一说易拉罐底面半径对所需铝质量的影响.题型5:利用表格进行规律探究5.一种手持烟花,这种烟花每隔0.5秒发射一发花弹,每一发花弹的飞行路径,爆炸时的高度均相同.皮皮小朋友发射出的第一发花弹的飞行高度h(米)随飞行时间t(秒)变化的规律如下表所示.下列这一变化的过程说法正确的是()A.飞行时间t每增加0.5秒,飞行高度h就增加5.5米B.飞行时间t每增加0.5秒,飞行高度h就减少5.5米C.估计飞行时间t为5秒时,飞行高度h为11.8米D.只要飞行时间t超过1.5秒后该花弹爆炸,就视为合格。
北师大版七年级下册数学《用表格表示的变量间关系》变量之间的关系研讨说课复习课件
4.2 3
3.0 0
2.45 2.13
1.89
1.71 1.59 1.50 1.41 1.35
1.23 0.55 0.32 0.24 0.18 0.12 0.09 0.09 0.06
(4)估计当h=110时,t的值是多少.你是怎样估计的?
估计是1.30秒,因为时间越来越少.
(5)随着支撑物高度h的变化,还有哪些量发生变化?哪些量始终不发生变
学习目标
1.在具体情境中体验什么是变量、自变量、因变量且能判断: 2.能从表格中获取变量间关系的信息,能分析变量之间的变化 趋势,进行初步预测; 3.感受到自变量、因变量之间的对应关系,积累研究变量间关 系的经验。
情境导入 王波学习小组做了一个实验:小车下滑的时间.
单位:cm
100
80
60 40
会区分自 变量和因 变量了吗?
自变量和因变量的区分方法: 1.看变化的先后顺序,自变量是先发生变化的量,因 变量是后发生变化的量; 2.看变化的方式,自变量是一个主动变化的量,因变 量是一个被动变化的量; 3.看因果关系,自变量是起因,因变量是结果.
例2 父亲告诉小明:“距离地面越远,温度越低”,并且出示 了下面的表格:
定价/元 100
110
120
130
140
150
销量/个 80
100
110
100
80
60
A.定价是常量,销量是变量 B.定价是变量,销量是常量 C.定价与销量都是变量,定价是自变量,销量是因变量 D.定价与销量都是变量,销量是自变量,定价是因变量80
4.下表所列为某商店薄利多销的情况.某商品原价 为560元,随着不同幅度的降价,日销量(单位:件) 发生相应的变化(如表):
变量之间的关系知识点及常见题型
变量之间的关系及常见题型一、基础知识1、常量:在变化过程中一组数据中或者关系式中数值保持不变的量;2、变量:数值发生变化的量在一变化过程中一般有两个变量1自变量:在一定范围内主动发生变化的变量;2因变量:随自变量的变化而变化的变量.二、表示方式1、表格法1一般第一栏表示自变量,第二栏表示因变量;2从表格中可以获取一些信息,发现因变量随自变量的变化存在一定规律;2、关系式1表示自变量与因变量之间关系的数学式子叫关系式;关系式一般用含自变量的代数式表示因变量的等式2能利用关系式进行计算;3、图像法(1)水平方向的数轴横轴表示自变量;竖直方向的数轴纵轴表示因变量;(2)利用图像尽可能地获取自变量因变量的信息,特点是直观.练习:1、明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中,因变量是A、明明B、电话费C、时间D、爷爷2、某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置:上述问题中,第五排、第六排分别有个、个座位;第排有个座位.3、据世界人口组织公布,地球上的人口从1600年到1999年一直呈递增趋势,即随时间的变化,地球上的人口数量在逐渐地增加,如果用t表示时间,y表示人口数量, 是自变量, 是因变量.4、下表中的数据是根据某地区入学儿童人数编制的:1上表反映了哪两个变量之间的关系哪个是自变量哪个是因变量2随着自变量的变化,因变量变化的趋势是什么3你认为入学儿童的人数会变成零吗5、心理学家发现,学生对概念的接受能力y与提出概念所用的时间x单位:分之间有如下关系其中0≤x≤301上表中反映了哪两个变量之间的关系那个是自变量哪个是因变量2当提出概念所用时间是10分钟时,学生的接受能力是多少3根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强4从表格中可知,当时间x在什么范围内,学生的接受能力逐步增强当时间x 在什么范围内,学生的接受能力逐步降低5 根据表格大致估计当时间为23分钟时,学生对概念的接受能力是多少6 下表是某同学做“观察水的沸腾”实验时所记录的数据:1时间为8分钟时,水的温度是多少2上表反应了哪两个变量之间的关系哪个是自变量哪个是因变量3水的温度是怎样随时间变化的4根据表格,你认为13分钟、14分钟时水的温度是多少5为了节约能源,在烧开水时,你认为应在几分钟左右关闭煤气巩固练习:一、选择题每小题3分,共24分1.我们都知道,圆的周长计算公式是c=2πr,下列说法正确的是A. c,π,r 都是变量B. 只有r 是变量C. 只有c 是变量D. c,r 是变量2.一汽车以平均速度60千米/时速度在公路上行驶,则它所走的路程s 千米与所用的时间t 时的关系式为 A.t s +=60 B. ts 60= C. 60ts =D. t s 60= 3.雪撬手从斜坡顶部滑了下来,下图中可以大致刻画出雪撬手下滑过程中速度—时间变化情况的是4.“人间四月芳菲尽,山寺桃花始盛开”,说明温度随者海拔的升高而降低,已知某地面温度为20℃,且每升高1千米温度下降6℃,则山上距离地面h 千米处的温度t 为 A. 206t h =- B. 206h t =-C. 206h t -= D. 206t h -=5.根据图示的程序计算变量y 的对应值,若输入变量x 的值为-1,则输出的结果为A. –2B. 2C. –1D. 0 6.如下图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t ,正方形除去圆部分的面积为S 阴影部分,则S 与t 的大致图象为7.星期天,小王去朋友家借书,下图是他离家的距离y 千米与时间x 分钟的图象,根据图象信息,下列说法正确的是 A .小王去时的速度大于回家的速度 B .小王在朋友家停留了10分钟C .小王去时所花的时间少于回家所花的时间D .小王去时走上坡路,回家时走下坡路DCBA时间时间时间速度速度速度时间速度100y 千米x 分钟220 30 40 stOA .st OB .stOC .stOD .8.如图,四边形ABCD 是边长为2cm 的正方形,动点P 在ABCD 的边上沿A B C D →→→的路径以1cm/s 的速度运动点P 不与A D ,重合.在这个运动过程中,APD △的面积2(cm )S 随时间()t s 的变化关系用图象表示,正确的为二、填空题:每小题3分,共24分9.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中________是自变量, 是因变量.10.在体积为20的圆柱中,底面积S 高h 的关系式是 .11.飞机着陆后滑行的距离s 单位:米与滑行时间t 单位:秒之间的关系是s=60t -,当t=40时,s=______________.12.小雨拿5元钱去邮局买面值为80分的邮票,小雨买邮票后所剩钱数y 元与买邮票的枚数x 枚之间的关系式为 .13.声音在空气中传播的速度y m/s 与气温x oC 之间在如下关系:33153+=x y .当气温x =15 oC 时,声音的速度y = m/s.若某人看到烟花燃放5s 后才听到声音响,则此人与燃放的烟花所在地相距 m.14.如图所示的图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x 表示时间,y 表示小明离他家的距离,则小明从学校回家的平均速度为 千米∕小时15.一支原长为20cm 的蜡烛,点燃后,其剩余长度与燃烧时间的关系可以从下表看出:则剩余长度y cm 与燃烧时间x 分的关系式为______________,估计这支A . O t s 1 2BO ts12CO ts 12 DO ts12 AD CB P蜡烛最多可燃烧___________分钟.16.有一本书,每20页厚为1mm,设从第1页到第x 页的厚度为y mm,则y 与x 之间的关系式为_______________.三、解答题:本大题共8小题,共52分17.本题6分小华粉刷他的卧室共花去10小时,他记录的完成工作量的百分数如下:15小时他完成工作量的百分数是 ; 2小华在 时间里工作量最大;3如果小华在早晨8时开始工作,则他在 时间没有工作.18.本题8分弹簧挂上物体后会伸长, 已知一弹簧的长度cm 与所挂物体的质量kg 之间的关系如下表:1上表反映的变量之间的关系中哪个是自变量 哪个是因变量 2当所挂物体是3kg 时,弹簧的长度是多少 不挂重物时呢19.本题8分如图,长方形ABCD 的边长分别为AB=12cm,AD=8cm,点P 、Q 都从点A 出发,分别沿AB,AD 运动,且保持AP=AQ,在这个变化过程中,图中的阴影部分的面积也随之变化.当AP 由2cm 变到8cm 时,图中阴影部分的面积是增加了,还是减少了增加或减少了多少平方厘米20.本题10分如图是一辆汽车的速度随时间变化的图象.根据图象填空: 1汽车在整个行驶过程中,最高时速是________千米/时;2汽车在________,________保持匀速行驶,时速分别是________,________;3汽车在________、________、________时段内加速行驶,在________、________时 段内减速行驶;4出发后,12分到14分之间可能发生________情况;21.本题10分如图,小明的爸爸去参加一个重要会议,小明坐在汽车上用所学知识绘制了一张反映小车速度与时间的关系图,第二天,小明拿着这张图给同学看,并向同学提出如下问题,你能回答吗 1在上述变化过程中,自变量是什么因变量是什么 2小车共行驶了多少时间最高时速是什么 3小车在哪段时间保持匀速行驶,时速达到多少 4用语言大致描述这辆汽车的行驶情况PQ DCBA102030405060708090100110102040503060速度(千米/时)时间/分课后练习:1、骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,因变量是A、沙漠B、体温C、时间D、骆驼2、正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同.下图反映了一天24小时内小明体温的变化情况,下列说法错误的是A.清晨5时体温最低 B.下午5时体温最高C.这一天中小明体温T单位:℃的范围是≤T≤D.从5时至24时,小明体温一直是升高的.3、下列图象中,哪个图象能大致刻画在太阳光的照射下,太阳能热水器里面的水的温度与时间的关系.水温水温水温水温0 时间 0 时间 0 时间 0A.B.C. D.4.某市一天的温度变化如图所示,看图回答下列问题:1这一天中什么时间温度最高是多少度什么时间温度最低是多少度2在这一天中,从什么时间到什么时间温度开始上升在这一天中,从什么时间到什么时间温度开始下降5某种动物的体温随时间的变化图如图示:1一天之内,该动物体温的变化范围是多少2一天内,它的最低和最高体温分别是多少是几时达到的.3一天内,它的体温在哪段时间内下降.4依据图象,预计第二天8时它的体温是多少课堂检测1、在平地上投掷手榴弹,下面哪幅图可以大致刻画出手榴弹投掷过程中落地前速度变化情况A B C D2、某种储蓄的月利率是%,现存入本金100元,本金与利息的和y 元与所存月数x 月之间的关系式为A 、x y 36.0100+=B 、x y 6.3100+=C 、x y 36.11+=D、x y 36.1001+= 3、有一旅客携带了30公斤行李从南京禄口国际机场乘飞机去天津,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的%购买行李票,现该旅客购买了120元的行李票,则他的飞机票价格应是A 、1000元B 、800元C 、600元D 、400元4、某人骑车外出,所行的路程S 千米与时间t 小时的关系如图所示,现有下列四种说法:①第3小时中的速度比第1小时中的速度快; ②第3小时中的速度比第1小时中的速度慢; ③第3小时后已停止前进; ④第3小时后保持匀速前进.其中说法正确的是A 、②、③B 、①、③C 、①、④D 、②、④5、李老师骑车外出办事,离校不久便接到学校要他返校的紧急电话,李老师急忙赶回学校.下面四个图象中,描述李老师与学校距离的图象是 S 距离距离 S 距离距离0 0 0 0t 时间 t 时间 t 时间t 时间A 、B 、C 、D 、6、三峡大坝从6月1日开始下闸蓄水,如果平均每天流入库区的水量为a 立方米米时,a b <;当天变化的大致图象是A 、B 、C 、D 、。
初中数学-变量之间的关系
变量之间的关系第一节用表格表示变量之间的关系知识点一变量、自变量、因变量、常量的定义一般地,在某一变化过程中,数值发生变化的量成为变量. 如果有两个变量,当其中一个变量在一定范围内取一个数值时,两一个变量也有唯一的一个数值与其对应,那么,通常前一个变量叫自变量,后一个变量叫做因变量. 在变化过程中数值始终不变的的那个量叫做常量.注意:(1)常亮与变量往往是相对的,相当于某个变化过程.(2)在某一变化过程中,可能有一个或几个常量,不可能没有变量,也不可能只有一个变量,一般有两个变量.知识点二自变量与因变量的区别与联系自变量与因变量共同存在于一个变化过程中,它们既有区别又有联系.因变量随自变量的变化情况:知识点三从表格中获取信息对变化趋势进行初步预测借助表格可以表示两个变量之间的关系.表示两个变量之间关系的表格,一般第一行表示自变量,第二行表示因变量,从表格中发现因变量随自变量变化存在一定的规律——或者增加或者减少或者呈规律性的起伏变化,从而利用变化趋势对结果作出预测.用列表法表示两个变量之间的关系时,表格只能提供自变量与因变量对应的部分数据,不能全面反映两个变量之间的关系,想要知道表格中没有出现的自变量与因变量的对应数据,需要对表格中的数据进行分析,从已知部分数据中观察变量的变化规律并依此估计未在表格中出现的数据.例题1. 某人要在规定时间内加工100个零件,则工作效率y与时间t之间的关系中,下列说法正确的是()A.y,t和100都是变量 B.100和y都是常量C.y和t是变量D.100和t都是常量练习1. 下表是某报纸公布的世界人口数情况:上表中的变量是()A.仅有一个,是年份B.仅有一个,是人口数C.有两个变量,一个是人口数,另一个是年份D.一个变量也没有在这三个量中,__________是常量,__________是自变量,__________是因变量.练习4. 在利用太阳能热水器给水加热的过程中,热水器里水的温度随所晒太阳光时间的长短而变化,这个问题中因变量是()A.太阳光的强弱B.热水器里水的温度C.所晒太阳光的时间D.热水器练习5. 一个圆柱的高h为10 cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也发生了变化,在这个变化过程中()A.r是因变量,V是自变量B.r是自变量,V是因变量C.r是自变量,h是因变量D.h是自变量,V是因变量练习6. 明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中,因变量是()。
专题05 变量之间的关系压轴题五种模型(老师版)
专题05变量之间的关系压轴题五种模型【类型一表格表示变量之间的关系模型】例题:(2021·全国·八年级专题练习)根据心理学家研究发现,学生对一个新概念的接受能力y与提出概念所用的时间x(分钟)之间有如表所示的关系:提出概念所用时间(x)257101213141720对概念的接受能力(y)47.853.556.35959.859.959.858.355(1)上表中反映的两个变量之间的关系,哪个是自变量?哪个是因变量?(2)根据表格中的数据,提出概念所用时间是多少分钟时,学生的接受能力最强?(3)学生对一个新概念的接受能力从什么时间开始逐渐减弱?【答案】(1)“提出概念所用时间”是自变量,“对概念的接受能力”为因变量;(2)13分钟;(3)从第13分钟以后开始逐渐减弱【解析】【分析】(1)根据表格中提供的数量的变化关系,得出答案;(2)根据表格中两个变量变化数据得出答案;(3)提供变化情况得出结论.【详解】解:(1)表格中反映的是:提出概念所用时间与对概念的接受能力这两个变量,其中“提出概念所用时间”是自变量,“对概念的接受能力”为因变量;(2)根据表格中的数据,提出概念所用时间是13分钟时,学生的接受能力最强达到59.9;(3)根据表格中的数据,学生对一个新概念的接受能力从第13分钟以后开始逐渐减弱.【点睛】本题考查用表格表示变量之间的关系,理解自变量、因变量的意义以及变化关系是解决问题的关键.【变式训练1】(2021·全国·七年级专题练习)某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如表所示(每位乘客的公交票价是固定不变的).x(人)50010001500200025003000…y(元)﹣3000﹣2000﹣1000010002000…(1)在这个变化过程中,每月的乘车人数x与每月利润y分别是变量和变量;(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)当每月乘车人数为4000人时,每月利润为多少元?【答案】(1)每月的乘车人数,每月利润;(2)2000人;(3)4000元【解析】【分析】(1)根据函数的定义即可求解;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损,即可求解;(3)有表中的数据推理即可求解.【详解】解:(1)在这个变化过程中,每月的乘车人数是自变量,每月利润是因变量;故答案为:每月的乘车人数,每月利润;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损,故答案为:2000;(3)有表中的数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,利润为0元,故每月乘车人数为4000人时,每月的利润是(4000-2000)÷500×1000=4000元.【点睛】本题考查了根据表格与函数知识,正确读懂表格,理解表格体现变化趋势是解题关键.【变式训练2】(2020·全国·八年级课时练习)一辆小汽车在告诉公路上从静止到起动10秒内的速度经测量如下表:时间(秒)012345678910速度(米/秒)0.31.32.8 1.97.611.014.118.424.228.9(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用时间t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是什么?(3)当t 每增加1秒,v 的变化情况相同吗?在哪个时间段内,v 增加的最快?(4)若高速公路上小汽车行驶速度的上限为120千米/小时,试估计大约还需几秒这辆小汽车的速度就将达到这个上限.【答案】(1)时间与速度;时间;速度;(2)0到3和4到10,v 随着t 的增大而增大,而3到4,v 随着t 的增大而减小;(3)不相同;第9秒时;(4)1秒.【解析】【分析】(1)根据表中的数据,即可得出两个变量以及自变量、因变量;(2)根据时间与速度之间的关系,即可求出v 的变化趋势;(3)根据表中的数据可得出V 的变化情况以及在哪1秒钟,V 的增加最大;(4)根据小汽车行驶速度的上限为120千米/小时,再根据时间与速度的关系式即可得出答案.【详解】解:(1)上表反映了时间与速度之间的关系,时间是自变量,速度是因变量;(2)如果用t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是0到3和4到10,v 随着t 的增大而增大,而3到4,v 随着t 的增大而减小;(3)当t 每增加1秒,v 的变化情况不相同,在第9秒时,v 的增加最大;(4)由题意得:120千米/小时=12010003600⨯(米/秒),由33.328.9 4.4-=,且28.924.2 4.7 4.4-=>,所以估计大约还需1秒.【点睛】本题主要考查函数的表示方法,常量与变量;关键是理解题意判断常量与变量,然后结合图表得到问题的答案即可.【变式训练3】(2019·广东深圳·七年级期末)某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用-支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的);(1)在这个变化过程中,是自变量,是因变量;(填中文)(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为元?(4)若5月份想获得利润5000元,则请你估计5月份的乘客量需达人.【答案】(1)每月的乘车人数,每月利润;(2)2000;(3)3000;(4)4500.【解析】【分析】(1)直接利用常量与变量的定义分析得出答案;(2)直接利用表中数据分析得出答案;(3)利用由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,进而得出答案;(4)由(3)得出当利润为5000元时乘客人数,即可得出答案.【详解】解:(1)在这个变化过程中,每月的乘车人数是自变量,每月利润是因变量;(2)∵观察表中数据可知,当每月乘客量达到2000人以上时,每月利润为0,∴每月乘客量达到2000人以上时,该公交车才不会亏损;(3)∵每月乘客量增加500人时,每月利润增加1000元,∴当每月乘车人数为3500人时,每月利润为3000元;(4)∵每月乘客量增加500人时,每月利润增加1000元,∴若5月份想获得利润5000元,5月份的乘客量需达4500人.【点睛】本题主要考查了常量与变量以及函数的表示方法,正确把握函数的定义是解题关键.【变式训练4】(2021·山西晋中·七年级期末)研究表明,当钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:氮肥施用量/(千03467101135202259336404471克/公顷)土豆产量/(吨/15.1821.3625.7232.2934.0339.4543.1543.4640.8330.75公顷)(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当氮肥的施用量是101千克/公顷时,土豆的产量是多少?如果不施肥氮肥呢?(3)根据表格中的数据,你认为氮肥的施用量是多少时比较适宜?说说你的理由.(4)粗略说一说氮肥的施用量对土豆产量的影响.【答案】(1)土豆的产量与氮肥的施用量,氮肥施用量是自变量,土豆产量是因变量;(2)32.29吨/公顷,15.18吨/公顷;(3)336千克/公顷;(4)当氮肥的施用量低于336千克/公顷时,土豆产量随氮肥的施用量的增加而增产,当氮肥的施用量高于336千克/公顷时,土豆产量随氮肥的施用量的增加而减产.【解析】【分析】(1)根据变量、自变量、因变量的定义,结合表格解答即可;(2)直接从表格中找出施用氮肥和不用氮肥时对应的土豆产量;(3)从表格中找出土豆的最高产量,此时施用氮肥量是最合适的;(4)根据表格中土豆产量的增长和减少数量来说明氮肥的施用量对土豆产量的影响.【详解】解:(1)上表反映了土豆的产量与氮肥的施用量的关系,氮肥施用量是自变量,土豆产量是因变量;(2)由表可知:当氮肥的施用量是101千克/公顷时,土豆的产量是:32.29吨/公顷,如果不施氮肥,土豆的产量是:15.18吨/公顷;(3)当氮肥的施用量是336千克/公顷时,氮肥的施用量是比较适宜的,因为此时土豆产量最高,施肥太多或太少都会使土豆产量减产;(4)当氮肥的施用量低于336千克/公顷时,土豆产量随氮肥的施用量的增加而增产,当氮肥的施用量高于336千克/公顷时,土豆产量随氮肥的施用量的增加而减产.【点睛】本题主要考查了函数的定义和结合实际土豆产量和施用氮肥量确定函数关系.函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量.【类型二关系式表示变量之间的关系模型】例题:(2021·山东·东营市垦利区教学研究室期末)一辆汽车油箱内有油56升,从某地出发,每行驶1千米,耗油0.08升,如果设油箱内剩油量为y (升),行驶路程为x (千米),则y 随x 的变化而变化.(1)在上述变化过程中,自变量是,因变量是.(2)用表格表示汽车从出发地行驶100千米、200千米、300千米、400千米时的剩油量.请将表格补充完整:行驶路程x (千米)100200300400油箱内剩油量y (升)4024(3)试写出y 与x 的关系式是.(4)这辆汽车行驶350千米时,剩油量是多少?汽车油箱内剩油8升时,汽车行驶了多少千米?【答案】(1)行驶路程,油箱内剩油量(2)48,32(3)560.08y x =-(0700)x ≤≤(4)28升,600千米(1)因变量随自变量的变化而变化,根据题意,油箱内剩油量随行驶路程的变化而变化,即可求解;(2)根据每行驶1千米,耗油0.08升,用油箱内原有油量减去耗油量,可以分别求出行驶100千米和300千米时的剩油量;(3)由已知条件,油箱内原有油量为56升,行驶x 千米耗油0.08x 升,根据“剩余油量=原有油量-耗油量”即可求出函数关系式;(4)将350x =和8y =分别代入y 与x 的关系式即可求解.(1)根据题意,油箱内剩油量随行驶路程的变化而变化,故自变量是行驶路程,因变量是油箱内剩油量,故答案为:行驶路程,油箱内剩油量.(2)汽车从出发地行驶100千米时的剩油量为:560.0810056848-⨯=-=(升);汽车从出发地行驶300千米时的剩油量为:560.0830*******-⨯=-=(升);故答案为:48,32.(3)油箱内原有油量为56升,行驶x 千米耗油0.08x 升,560.08y x ∴=-,当0y =时解得700x =,∴x 的取值范围是0700x ≤≤,∴y 与x 的关系式是560.08y x ∴=-(0700)x ≤≤,故答案为:560.08y x =-(0700)x ≤≤.(4)当350x =千米时,560.0835*******y =-⨯=-=(升);当8y =时,得8560.08x =-,解得600x =,故这辆汽车行驶350千米时,剩油量是28升;汽车油箱内剩油8升时,汽车行驶了600千米.【点睛】本题考查自变量与因变量的概念,求函数解析式等知识,学会用关于自变量的数学式子表示函数与自变量之间的关系是解题的关键.【变式训练1】(2021·黑龙江大庆·七年级期中)将长为40cm 、宽为15cm 的长方形白纸,按如图所示的方法黏合起来,黏合部分宽为5cm .(1)根据图,将表格补充完整:白纸张数12345⋯纸条长度/cm40110145⋯(2)设x 张白纸黏合后的总长度为cm y ,则y 与x 之间的关系式是什么?(3)你认为白纸黏合起来总长度可能为2020cm 吗?为什么?【答案】(1)75,180;(2)355y x =+;(3)不可能,理由见解析(1)理解题意分别求得白纸张数为2和5时的长度即可;(2)根据题意,找到等量关系,列出式子即可;(3)将2020y =代入,求解x ,判断是否为正整数,即可求解.【详解】解:(1)由题意可得,白纸张数为2时,长度为4040575cm +-=当白纸张数为5时,长度为40545180cm ⨯-⨯=故答案为:75,180;(2)当白纸张数为x 张时,长度()4051355y x x x =--=+故答案为355y x =+()3不可能.理由:将2020y =代入355y x =+,得2020355x =+,解得57.6x ≈.因为x 为整数,所以总长度不可能为2020cm .【点睛】本题主要考查了函数关系式的知识,解答本题的关键在于熟读题意发现题目中纸张长度的变化规律,并求出正确的函数关系式.【变式训练2】(2021·贵州毕节·七年级期末)威宁粮食二库需要把晾晒场上的120吨苞谷入库封存.受设备影响,每天只能入库15吨.入库所用的时间为x (单位:天),未入库苞谷数量为y (单位:吨).(1)直接写出y 和x 间的关系式为:______.(2)二库职工经过钻研,改进了入库设备,现在每天能比原来多入库5吨.则①直接写出现在y 和x 间的关系式为:______.②求将120吨苞谷入库封存所需天数现在比原来少多少天?【答案】(1)y =120-15x ;(2)①y =120-20x ;②2【解析】【分析】(1)入库所用的时间为x ,未入库苞谷数量为y 的函数关系式为y =120-15x ;(2)①改进了入库设备,每天入库15+5=20吨;y 和x 间的关系式为:y =120-20x ;②120吨苞谷入库封存现在所需天数一原来所需天数,即可求得答案.【详解】解:(1)晾晒场上的120吨苞谷入库封存,每天只能入库15吨,入库所用的时间为x ,未入库苞谷数量为y 的函数关系式为y =120-15x ;故答案为:y =120-15x ;(2)①改进了入库设备,则每天入库20吨;y 和x 间的关系式为:y =120-20x ;故答案为:y =120-20x ;②12012021520-=答:求将120吨苞谷入库封存所需天数现在比原来少2天.【点睛】主要考查了函数的实际应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式,再根据自变量的值求算对应的函数值.【变式训练3】(2021·山东青岛·七年级期中)果实成熟从树上落到地面,它下落的高度与经过的时间有如下的关系:时间t /秒0.50.60.70.80.9…高度h /米4.90.25⨯ 4.90.36⨯ 4.90.49⨯ 4.90.64⨯ 4.90.81⨯…(1)上表反映了哪两个变量之间的关系?其中自变量是什么?因变量是什么?(2)请你按照表中呈现的规律,列出果子下落的高度h (米)与时间t (秒)之间的关系式;(3)现有一颗果子经过2秒后离地面一米,请计算这颗果子开始下落时离地面的高度是多少米?【答案】(1)下落的角度h 与经过的时间t 之间的关系,自变量:经过的时间t ,因变量:下落的高度h ;(2)24.9h t =;(3)这颗果子开始下落时离地面高度为20.6m .【解析】【分析】(1)根据自变量与因变量的定义即可求解;(2)根据表格中数据发现规律,即可得到果子落下的度h (米)与时间t (秒)之间的关系式;(3)根据一颗果子经过2秒后离地面一米计算即可求解.【详解】解:(1)下落的高度h 与经过的时间t 之间的关系自变量:经过的时间t 因变量:下落的高度h(2)根据表格中数据可得到果子落下的度h (米)与时间t (秒)之间的关系式为24.9h t =;(3)果子开始下落时离地面高度为24.92120.6⨯+=m 答:果子开始下落时离地面高度为20.6m .【点睛】本题考查了函数的图表示方法,考查了学生的探究能力,要求学生有较强的分析数据和描述数据的能力及从图象得出规律的能力.能够正确找到h 和t 的关系是解题的关键.【变式训练4】(2021·山东济南·七年级期末)某公空车每天的支出费用为600元,每天的乘车人数x (人)与每天利润(利润=票款收入-支出费用)y (元)的变化关系,如下表所所示(每位委文的乘车票价固定不变):x (人)…200250300350400…p (元)…-200-100100200…根据表格中的数据,回答下列问题:(1)观察表中数据可知,当乘客量达到________人以上时,该公交车才不会亏损;(2)当一天乘客人数为500人时,利润是多少(3)请写出公交车每天利润y (元)与每天乘车人数x (人)的关系式.【答案】(1)300;(2)400;(3)y =2x -600【解析】【分析】(1)根据表格中的数据,当y 大于0时,相应的x 的取值即可;(2)根据表格中的变量之间的变化关系,可得“每增加50人,利润将增加100元”,可求出答案;(3)“每增加50人,利润将增加100元”也就是“每增加1人,利润将增加2元”,根据乘坐人数可得利润即可.【详解】解:(1)当y =0时,x =300,当x >300时,y >0,故答案为:300;(2)200+100×(50040050-)=400(元),答:一天乘客人数为500人时,利润是400元;(3)由表格中的数据变化可知,当乘坐人数为300人时,利润为0元,每增加50人,利润就增加100元,每减少50人,利润就减少100元,所以利润y =0+30050x -×100=2x -600,即:y =2x -600,答:公交车每天利润y (元)与每天乘车人数x (人)的关系式为y =2x -600.【点睛】y 元”与“乘坐的人数x ”之间的变化关系是正确解答的关键.【变式训练5】(2021·江西吉安·七年级期末)如图,是若干个粗细均匀的铁环最大限度的拉伸组成的链条,已知铁环粗0.8厘米,每个铁环长5厘米,设铁环间处于最大限度的拉伸状态.求:(1)2个、3个、4个铁环组成的链条长分别有多少.(2)设n 个铁环长为y 厘米,请用含n 的式子表示y ;(3)若要组成2.09米长的链条,需要多少个铁环?【答案】(1)2个铁环组成的链条长8.4cm ,3个铁环组成的链条长为11.8cm ,4个铁环组成的链条长15.2cm ;(2)3.4 1.6y n =+;(3)需要61个铁环【解析】【分析】(1)根据铁环粗0.8厘米,每个铁环长5厘米,进而得出2个、3个、4个铁环组成的链条长;(2)根据铁环与环长之间的关系进而得出y 与n 的关系式;(3)由(2)得,3.4n +1.6=209,进而求出即可.【详解】解:(1)由题意可得:2520.810 1.68.4()cm ⨯-⨯=-=,3540.815 3.211.8()cm ⨯-⨯=-=,4560.820 4.815.2()cm ⨯-⨯=-=.故2个铁环组成的链条长8.4cm ,3个铁环组成的链条长为11.8cm ,4个铁环组成的链条长15.2cm ;(2)由题意得:n 个铁环一共有n -1个相接的地方,∴52(1)0.8y n n =--⨯,即 3.4 1.6y n =+;(3)∵2.09米=209cm ∴据题意有3.4 1.6209n +=,解得:61n =,答:需要61个铁环.【点睛】本题主要考查了用关系式表示的变量之间的关系,利用链条结构得出链条长的变化规律是解题的关键.【类型三动点问题与关系式间变量之间的关系模型】例题:(2021·全国·七年级专题练习)如图,长方形ABCD 的边长分别为AB =12cm ,AD =8cm ,点P 、Q 从点A 出发,P 沿线段AB 运动,点Q 沿线段AD 运动(其中一点停止运动,另一点也随着停止),设AP =AQ =xcm 在这个变化过程中,图中阴影部分的面积y (cm 2)也随之变化.(1)写出y 与x 的关系式.(2)当AP 由2cm 变到8cm ,图中阴影部分的面积y 是如何变化的?请说明理由.【答案】(1)21962y x =-;(2)y 由294cm 变到264cm ,理由见详解.【解析】【分析】(1)表示出APQ 的面积,用长方形的面积减去APQ 的面积可得y 与x 的关系式;(2)当AP 由2cm 变到8cm ,由(1)中y 与x 的关系式计算出相应的y 的值,可知其变化.【详解】解:(1)21122APQ S AP AQ x =⋅=V ,长方形的面积为212896cm ⨯=,所以21962y x =-;(2)当AP 等于2cm 时,即2x =时,221962962942y cm =-⨯=-=,当AP 等于8cm 时,即8x =时,2219689632642y cm =-⨯=-=,所以当AP 由2cm 变到8cm ,图中阴影部分的面积y 由294cm 变到264cm .【点睛】本题考查了和动点有关的图形的面积,灵活的表示出阴影部分的面积是解题的关键.【变式训练1】(2021·黑龙江大庆·七年级期中)如图所示,在三角形ABC 中,已知16BC =,高10AD =,动点Q 由点C 沿CB 向点B 移动(不与点B 重合).设CQ 的长为x ,三角形ACQ 的面积为S ,则S 与x 之间的关系式为___________________.【答案】()5016S x x =<<【解析】【分析】根据三角形的面积公式可知1=2AQC S AD CQ ⋅△,由此求解即可.【详解】∵AD 是△ABC 中BC 边上的高,CQ 的长为x ,∴1==52AQC S AD CQ x ⋅△,∴()5016S x x =<<.故答案为:()5016S x x =<<.【点睛】本题主要考查了列关系式,解题的关键在于能够熟练掌握三角形面积公式.【变式训练2】(2021·全国·七年级期末)如图在直角梯形ABCD 中,//AD BC ,90B ∠=︒,5cm AB =,8cm AD =,14cm BC =,点P ,Q 同时从点B 出发,其中点P 以1cm/s 的速度沿着点B A D →→运动;点Q 以2cm/s 的速度沿着点B C →运动,当点Q 到达C 点后,立即原路返回,当点P 到达D 点时,另一个动点Q 也随之停止运动.(1)当运动时间4s t =时,则三角形BPQ 的面积为_____2cm ;(2)当运动时间6s t =时,则三角形BPQ 的面积为_____2cm ;(3)当运动时间为3(s)1t t ≤时,请用含t 的式子表示三角形BPQ的面积.【答案】(1)16;(2)30;(3)当运动时间为3(s)1t t ≤时,三角形BPQ 的面积()255(57)705(713)t t t t t t ⎧⎪=<⎨⎪-<⎩【解析】【分析】(1)根据AB 、BC 的值和点Q 的速度是2cm/s ,点P 的速度是1cm/s ,求出BP 、BQ 的值,再根据三角形面积公式计算即可;(2)求出BQ 的值,再根据三角形面积公式计算即可;(3)分三种情况讨论:根据三角形面积公式列出即可.【详解】解:(1)AB =5cm ,AD =8cm ,BC =14cm ,点Q 的速度是2cm /s ,点P 的速度是1cm /s ,当运动时间t =4s 时,QB =2t =2×4=8(cm ),BP =t =4(cm ),则三角形BPQ 的面积为:()2118416cm 22BQ BP ⋅=⨯⨯=,故答案为:16;(2)当运动时间6s t =时,∵AB =5cm ,点P 的速度是1cm /s ,∴点P 运动到了AD 上,()22612cm QB t ==⨯=,则三角形BPQ 的面积为:()21112530cm 22BQ AB ⨯⋅=⨯⨯=,故答案为:30;(3)当P 在AB 上时,此时5t ≤,则三角形BPQ 的面积为211222BQ BP t t t ⋅=⋅=;当P 在AD 上,且Q 沿着点B C →运动时,∵BC =14cm ,点Q 的速度是2cm /s ,此时1452t <≤,即57t <≤,则三角形BPQ 的面积为1125522BQ AB t t ⋅=⨯⨯=;当P 在AD 上,且Q 沿着点C B →运动时,∵AB =5cm ,AD =8cm ,点P 的速度是1cm /s ,此时1371t <≤,即713t <≤,则三角形BPQ 的面积为()()112142551470522BQ AB t t t ⋅=⨯⨯-⨯=-=-;综上,当运动时间为3(s)1t t ≤时,三角形BPQ 的面积()255(57)705(713)t t t t t t ⎧⎪=<⎨⎪-<⎩.【点睛】本题考查了列代数式,三角形的面积,数形结合、分类讨论是解题的关键.【变式训练3】(2019·全国·七年级课时练习)如图,在Rt △ABC 中,已知∠C =90°,边AC =4cm ,BC =5cm ,点P为CB边上一点,当动点P沿CB从点C向点B运动时,△APC的面积发生了变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)如果设CP长为x cm,△APC的面积为y cm,则y与x的关系可表示为_____;(3)当点P从点D(D为BC的中点)运动到点B时,则△APC的面积从____cm2变到_____cm2.【答案】(1)自变量是CP的长,因变量是△APC的面积;(2)y=2x;(3)5,10【解析】【分析】(1)根据函数自变量和因变量的概念解答即可;(2)根据三角形的面积公式列出关系式;(3)计算出CD的长度,求出相应的面积,求差得到答案.【详解】(1)自变量是CP的长,因变量是△APC的面积;(2)y=12×4×x=2x所以y与x的关系可表示为y=2x;(3)当x=52时,y=5;当x=5时,y=10,所以△APC的面积从5cm2变到10cm2.【点睛】考查的是函数关系式、自变量和因变量、求函数值的知识,属于基础题,学生认真阅读题意即可作答.【类型四动点问题与图象间变量之间的关系模型】例题:(2021·全国·八年级单元测试)如图,正方形ABCD的边长为2,动点P从点B出发,在正方形的边上沿B C D→→的方向运动到点D停止,设点P的运动路程为x,在下列图象中,能表示PAD△的面积y关于x的函数关系的图象是()A.B.C.D.【答案】D【解析】【分析】分02x ≤≤、24x <≤两种情况,分别求出函数表达式,即可求解.【详解】解:当02x ≤≤时,如图,则1122222y AD AB =⋅=⨯⨯=,为常数;当24x <≤时,如下图,则112(22)422y AD PD x x =⨯=⨯⨯+-=-,为一次函数;故选:D .【点睛】本题考查了动点函数图象问题,在图象中应注意自变量的取值范围,注意分类讨论.【变式训练1】(2017·江西景德镇·七年级期末)如图,直线l 是菱形ABCD 和矩形EFGH 的对称轴,点C 在EF 边上,若菱形ABCD 沿直线l 从左向右匀速运动直至点C 落在GH 边上停止运动.能反映菱形进入矩形内部的周长y 与运动的时间x 之间关系的图象大致是()A .B .C .D .【答案】B【解析】【详解】周长y 与运动的时间x 之间成正比关系,故选B点睛:函数图象是典型的数形结合,图象应用信息广泛,通过看图象获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题能力、解决问题能力.用图象解决问题时,要理清图象的含义即会识图.【变式训练2】(2021·全国·八年级专题练习)如图(a )所示,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,ABP △的面积为y ,如果y 关于x 的关系如图(b )所示,则m 的值是________.【答案】5【解析】【分析】先根据点(2,3)在图象上得出BC 的长,然后利用三角形的面积求出AB 的长,进而可得答案.【详解】解:由图象上的点(2,3)可知:2BC =,由三角形面积公式,得:132BC AB ⨯⨯=,解得:3AB =.3CD AB ∴==,5m BC CD =+=.故答案为:5.【点睛】本题考查了利用图象表示变量之间的关系,属于常见题型,根据题意和图象得出BC 和AB 的长是解题关键.【变式训练3】(2021·全国·七年级专题练习)如图①所示,在△ABC 中,AD 是三角形的高,且AD =6cm ,E 是一个动点,由B 向C ②所示,已知BC =8cm .(1)求当E 点在运动过程中△ABE 的面积y 与运动时间x 之间的关系式;(2)当E 点停止后,求△ABE 的面积.【答案】(1)y =9x (0<x ≤2);(2)△ABE 的面积是18cm 2.【解析】【分析】根据三角形的面积公式,可得答案.【详解】(1)由图2可知E 点的速度为3,∴y=12×3x×AD=9x,即y=9x(0<x≤2);(2)当E点停止后,BE=6,∴x=2时,y=9×2=18.∴△ABE的面积是18cm2.【点睛】本题考查了函数关系式,三角形的面积公式是解题关键.【类型五用图象表示变量之间的关系模型】例题:(2021·四川成都·七年级期末)下列各情境,分别描述了两个变量之间的关系:(1)一杯越晾越凉的开水(水温与时间的关系);(2)一面冉冉升起的旗子(高度与时间的关系);(3)足球守门员大脚开出去的球(高度与时间的关系);(4)匀速行驶的汽车(速度与时间的关系).依次用图象近似刻画以上变量之间的关系,排序正确的是()A.③④①②B.②①③④C.①④②③D.③①④②【答案】A【解析】【分析】根据题干对应图像中变量的变化趋势即可求解.【详解】解:(1)一杯越来越凉的水,水温随着时间的增加而越来越低,故③图象符合要求;(2)一面冉冉上升的旗子,高度随着时间的增加而越来越高,故④图象符合要求;(3)足球守门员大脚开出去的球,高度与时间成二次函数关系,故①图象符合要求;(4)匀速行驶的汽车,速度始终不变,故②图象符合要求;正确的顺序是③④①②.故选:A.【点睛】本题考查用图像表示变量之间的关系,关键是将文字描述转化成函数图像的能力.【变式训练1】(2021·广东深圳·七年级期末)一辆公共汽车从车站开出,加速行驶一段时间后开始匀速行驶.过了一段时间,汽车到达下一车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下图中近似地刻画出汽车在这段时间内的速度变化情况的是()。
用表格表示的变量间关系
水旳温度伴随时间旳增长而增长,到100℃时恒定
下面是试验得到旳数据: 预习检测(二)
支撑物高度 h 10 20 30 40 50 60 70 80 90 100
(厘米)
小车下滑时间 t
(秒) 4.23 3.00 2.45 2.13 1.89 1.71 1.59 1.50 1.41 1.35
(1)上表反应了哪两个变量之间旳关系? 氮肥施用量是自变量, 土豆产量 是因变量.
(2)当氮肥旳施用量是101公斤/公顷时,土豆旳产量 是 32.29吨/公顷,假如不施氮肥呢? 15.18吨/公顷
(3)根据表格,你以为氮肥旳施用量是 336公斤/公顷时 比较合适?说说你旳理由。
闯关D
万达电影院地面一部分是扇形,座位按下列方式设置:
在烧开水时,水温到达l00℃就会沸腾,下表是某同学做“观 察水旳沸腾”试验时统计旳数据:
时间(分) 0 2 4 6 8 10 12 14 ……
温度( ℃ ) 30 44 58 72 86 100 100 100 ……
(1)上表反应了哪两个量之间旳关系?哪个是自变量?哪 个是因变量?
上表反应了水旳温度与时间旳关系,时间是自变量,水旳温度是因变量.
表格法
1.23 0.55 0.32 0.24 0.18 0.12
根据上表回答下列问题:Βιβλιοθήκη 0.09 0.09 0.06
(2)支撑物高度为70厘米时,小车下滑时间是__1_.5_9__秒。
(3)h每增长10厘米,t旳变化情况相同吗? t旳变化越来越小
(4)估计当h=110厘米时,t旳值是多少?
你是怎样估计旳? 1.35秒到1.29秒中旳任一值
日期
北师大版数学七年级下册3.1.1用表格表示的变量间关系优秀教学案例
3.培养学生运用数学知识解决实际问题的能力。
(三)情感态度与价值观
1.激发学生对数学的兴趣,感受数学与生活的紧密联系,培养学生的数学情感。
2.培养学生积极思考、探索问题的习惯,增强学生的自信心。
3.通过对生活中变量之间关系的探究,培养学生的责任感,使学生懂得关爱他人,关爱生活。
本节课内容与学生的生活实际紧密相连,有利于激发学生的学习兴趣,培养学生运用数学知识解决实际问题的能力。在教学过程中,教师应以学生为主体,注重引导学生主动探究、发现和总结,提高学生的动手操作能力和数学思维能力。同时,本节课涉及到的知识具有一定的抽象性,教师应采用直观的教学手段,降低学生的学习难度,使学生能够轻松地掌握所学知识。
(四)总结归纳
1.教师引导学生总结本节课所学的内容,让学生明确用表格表示变量间关系的方法和步骤。
2.教师强调变量间关系在实际生活中的应用,激发学生学习数学的兴趣。
3.教师对本节课的学习内容进行归纳,为后续Βιβλιοθήκη 学习做好铺垫。(五)作业小结
1.教师布置一些有关用表格表示变量间关系的作业,让学生巩固所学知识。
2.教师引导学生总结用表格表示变量间关系的方法和步骤。
3.教师通过讲解和示范,让学生掌握如何用数学语言描述两种变量之间的关系。
(三)学生小组讨论
1.教师给出几个实例,让学生以小组为单位,讨论并尝试用表格表示变量间的关系。
2.各小组将自己的讨论结果进行汇报,其他小组成员进行评价,教师进行指导和总结。
3.教师针对学生的讨论情况,进行点评和讲解,帮助学生巩固所学知识。
2.教师要求学生在作业中运用所学的知识和方法,解决实际问题。
3.教师对学生的作业进行批改和评价,了解学生的学习情况,为下一步的教学做好准备。
七年级下《3.1用表格表示的变量间关系》课时练习含答案解析
北师大版数学七年级下册第三章3.1用表格表示的变量间关系课时练习一、选择题(共15小题)1.在利用太阳能热水器来加热水的过程中,热水器里的水温会随着太阳照射时间的长短而变化,这个问题中因变量是()A.水的温度B.太阳光强弱C.太阳照射时间D.热水器的容积答案:A解析:解答:根据函数的定义可知,水温是随着所晒时间的长短而变化,可知水温是因变量,所晒时间为自变量.故选:A分析:函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的函数,x叫自变量.函数关系式中,某特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量.2.对于圆的周长公式C=2πR,下列说法错误的是()A.π是变量B.R、C是变量C.R是自变量D.C是因变量答案:A解析:解答:A.是一个常数,是常量,故选项符合题意;B.R、C是变量,故选项不符合题意;C.R是自变量,故选项不符合题意;D.C是因变量,故选项不符合题意;故选:A.分析:根据函数以及常量、变量的定义即可判断.3.如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为p (m),一边长为a(m),那么S,p,a中是变量的是()A.S和p B.S和a C.p和a D.S,p,a答案:B解析:解答:∵篱笆的总长为60米,∴周长P是定值,而面积S和一边长a是变量,故选B.分析:根据篱笆的总长确定,即可得到周长、一边长及面积中的变量.4.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b 与下降高度d 的关系,下面能表示这种关系的式子是( ) d 50 80 100 150 b 254050 75A .b =d 2B .b =2dC .b =2d D .b =d +25 答案:C 解析:解答:由统计数据可知: d 是b 的2倍, 所以,b =21d . 故选:C .分析:这是一个用图表表示的函数,可以看出d 是b 的2倍,即可得关系式.5.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm )与所挂的物体的质量x (kg )间有下面的关系: x 0 1 2 3 4 5 y1010.51111.51212.5A .x 与y 都是变量,且x 是自变量,y 是因变量B .所挂物体质量为4kg 时,弹簧长度为12cmC .弹簧不挂重物时的长度为0cmD .物体质量每增加1kg ,弹簧长度y 增加0.5cm 答案:D 解析:解答:A .x 与y 都是变量,且x 是自变量,y 是因变量,故A 正确; B .所挂物体质量为4kg 时,弹簧长度为12cm ,故B 正确; C .弹簧不挂重物时的长度为10cm ,故C 错误;D .物体质量每增加1kg ,弹簧长度y 增加0.5cm ,故D 正确. 故选:D .分析:根据给出的表格中的数据进行分析,可以确定自变量和因变量以及弹簧伸长的长度,得到答案.6.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据: 鸭的质量/千克0.5 11.5 22.5 33.5 4烤制时间/分4060 80100 120 140 160 180) A .140 B .138 C .148 D .160 答案:C 解析:解答:从表中可以看出,烤鸭的质量每增加0.5千克,烤制的时间增加20分钟,由此可知烤制时间是烤鸭质量的一次函数.设烤制时间为t 分钟,烤鸭的质量为x 千克,t 与x 的一次函数关系式为:t =kx +b ,则⎩⎨⎧=+=+100260b k b k ,解得⎩⎨⎧==2040b k所以t =40x +20.当x =3.2千克时,t =40×3.2+20=148. 故选C .分析:观察表格可知,烤鸭的质量每增加0.5千克,烤制时间增加20分钟,由此可判断烤制时间是烤鸭质量的一次函数,设烤制时间为t 分钟,烤鸭的质量为x 千克,t 与x 的一次函数关系式为:t =kx +b ,取(1,60),(2,100)代入,运用待定系数法求出函数关系式,再将x =3.2千克代入即可求出烤制时间t .7.在某次实验中,测得两个变量m 和v 之间的4组对应数据如下表:则m 与v 之间的关系最接近于下列各关系式中的( ) m 1 2 3 4 v0.012.98.0315.1答案:B 解析:解答:当m =4时, A .v =2m ﹣2=6; B .v =m 2﹣1=15; C .v =3m ﹣3=9; D .v =m +1=5. 故选:B .分析:一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式. 8.下面说法中正确的是( )A .两个变量间的关系只能用关系式表示B .图象不能直观的表示两个变量间的数量关系C .借助表格可以表示出因变量随自变量的变化情况D .以上说法都不对 答案:C 解析:解答:A .两个变量间的关系只能用关系式表示,还能用列表法和图象法表示,故错误; B .图象能直观的表示两个变量间的数量关系,故错误; C .借助表格可以表示出因变量随自变量的变化情况,正确; D .以上说法都不对,错误; 故选C .分析:表示函数的方法有三种:解析法、列表法和图象法.9.一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如下数据: 支撑物高度h (cm ) 10 20 30 40 50 60 70 80 小车下滑时间t (s ) 4.23 3.002.452.131.891.711.591.50A .当h =50cm 时,t =1.89sB .随着h 逐渐升高,t 逐渐变小C .h 每增加10cm ,t 减小1.23sD .随着h 逐渐升高,小车的速度逐渐加快 答案:C 解析:解答:A .当h =50cm 时,t =1.89s ,故A 正确; B .随着h 逐渐升高,t 逐渐变小,故B 正确; C .h 每增加10cm ,t 减小的值不一定,故C 错;D .随着h 逐渐升高,小车的时间减少,小车的速度逐渐加快,故D 正确; 故选:C .分析:根据函数的表示方法,可得答案. 10.在三角形面积公式S =21ah ,a =2cm 中,下列说法正确的是( ) A .S ,a 是变量,21h 是常量 B .S ,h 是变量,21是常量 C .S ,h 是变量,21a 是常量 D .S ,h ,a 是变量,21是常量解析:解答:在三角形面积公式S =21ah ,a =2cm 中,21a 是常数,h 和S 是变量. 故选C .分析:根据函数的定义:对于函数中的每个值x ,变量y 按照一定的法则有一个确定的值y 与之对应;来解答即可.11.当前,雾霾严重,治理雾霾方法之一是将已生产的PM 2.5吸纳降解,研究表明:雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是( ) A .雾霾程度 B .PM 2.5 C .雾霾 D .城市中心区立体绿化面积 答案:D 解析:解答:雾霾的程度随城市中心区立体绿化面积的增大而减小,雾霾的程度是城市中心区立体绿化面积的函数,城市中心区立体绿化面积是自变量,故选:D . 分析:根据函数的关系,可得答案.12.以21m /s 的速度向上抛一个小球,小球的高度h (m )与小球运动的时间t (s )之间的关系是h =21t ﹣4.9t 2.下列说法正确的是( ) A .4.9是常量,21,t ,h 是变量 B .21,4.9是常量,t ,h 是变量 C .t ,h 是常量,21,4.9是变量 D .t ,h 是常量,4.9是变量答案:B 解析:解答:A .21是常量,故A 错误;B .21,4.9是常量,t ,h 是变量,故B 是正确;C 、D .t 、h 是变量,21,4.9是常量,故C 、D 错误; 故选:B .分析:根据在变化过程中,数值发生变化的量是变量,数值始终不变的量是常量,可得答案. 13.笔记本每本a 元,买3本笔记本共支出y 元,在这个问题中: ①a 是常量时,y 是变量; ②a 是变量时,y 是常量; ③a 是变量时,y 也是变量; ④a ,y 可以都是常量或都是变量. 上述判断正确的有( )A .1个B .2个C .3个D .4个答案:B解答:由题意得:y=3a,此问题中a、y都是变量,3是常量,或a,y都是常量,则③④,故选:B.分析:根据题意列出函数解析式,再根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可得答案.14.学校计划买100个乒乓球,买的乒乓球的总费用w(元)与单价n(元/个)的关系式w=100n中()A.100是常量,w、n是变量B.100、w是常量,n是变量C.100、n是常量,w是变量D.无法确定答案:A解析:解答:∵买的乒乓球的总费用W(元)与单价n(元/个)的关系式W=100n,∴100是常量,在此式中W、n是变量,故选A.分析:根据函数的定义:对于函数中的每个值x,变量y按照一定的法则有一个确定的值y 与之对应;来解答即可.15.小明给在北京的姑姑打电话,电话费随时间的变化而变化,在这个问题中,因变量是()A.时间B.电话费C.电话D.距离答案:B解析:解答:根据函数的定义,电话费随时间的变化而变化,则电话费是因变量.故选B.分析:函数的定义:设x和y是两个变量,对于x的每一个值,y都有唯一确定的值和它对应,则x是自变量,y是x的函数,也叫因变量.二、填空题(共5小题)16.水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率(圆周长与直径的比)为π,指出其中的变量为.答案:圆的半径r和圆的周长C解析:解答:自变量是圆的半径r,因变量是圆的周长C.分析:根据函数的定义:函数中的每个值x,变量y按照一定的法则有一个确定的值y与之对应来解答.17.表示变量之间关系的常用方法有,,.答案:解析式|表格法|图象法解析:解答:表示变量之间关系的常用方法有 解析式,表格法,图象法. 分析:18.已知方程x ﹣3y =12,用含x 的代数式表示y 是 . 答案:y =31x ﹣4 解析:解答:移项得:﹣3y =12﹣x , 系数化为1得:y =31x ﹣4. 故答案为:y =31x ﹣4. 分析:要用含x 的代数式表示y ,就要将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再将系数化为1即可.19.圆的面积S 与半径R 之间的关系式是S =πR 2,其中自变量是 . 答案:R 解析:解答:根据函数的定义:对于函数中的每个值R ,变量S 按照一定的法则有一个确定的值S 与之对应可知R 是自变量,π是常量,故答案为:R . 分析:根据函数的定义来判断自变量、函数和常量.20.在一个过程中,固定不变的量称为 ,可以取不同的值的量称为 . 答案:常量|变量 解析:解答:在一个过程中,固定不变的量称为常量,可以取不同的值的量称为变量, 故答案为:常量,变量.分析:根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可答题.三、解答题(共5小题)21.齿轮每分钟120转,如果n 表示转数,t 表示转动时间. ①用n 的代数式表示t ; 答案:解答:由题意得: 120t =n , t =120n; ②说出其中的变量与常量.答案:变量:t,n常量:120.解析:分析:①根据题意可得:转数=每分钟120转×时间;②根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可得x、y是变量.22.按如图方式摆放餐桌和椅子.用x来表示餐桌的张数,用y来表示可坐人数.①题中有几个变量?答案:解答:观察图形:x=1时,y=6,x=2时,y=10;x=3时,y=14;…可见每增加一张桌子,便增加4个座位,因此x张餐桌共有6+4(x﹣1)=4x+2个座位.故可坐人数y=4x+2,故答案为:有2个变量;②你能写出两个变量之间的关系吗?答案:解答:能,由①分析可得:函数关系式可以为y=4x+2.解析:分析:由图形可知,第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子.x张餐桌共有6+4(x﹣1)=4x+2.23.在一次实验中,小明把一根弹簧的上端固定、在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.所挂物体质量x/kg 0 1 2 3 4 5弹簧长度y/cm 18 20 22 24 26 28答案:解答:上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;②当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?答案:解答:当所挂物体重量为3千克时,弹簧长24厘米;当不挂重物时,弹簧长18厘米;③若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?答案:解答:根据上表可知所挂重物为7千克时(在允许范围内)时的弹簧长度=18+2×7=32厘米.解析:分析:①因为表中的数据主要涉及到弹簧的长度和所挂物体的质量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;②由表可知,当物体的质量为3kg时,弹簧的长度是24cm;不挂重物时,弹簧的长度是18cm;③由表中的数据可知,x=0时,y=18,并且每增加1千克的质量,长度增加2cm,依此可求所挂重物为7千克时(在允许范围内)时的弹簧长度.24.某中学为筹备校庆活动,准备印制一批校庆纪念册.该纪念册每册需要10张8K大小的纸,其中4张为彩页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩页300元/张,黑白页50元/张;印刷费与印数的关系见下表.印数a (单位:千册)1≤a<5 5≤a<10彩色(单位:元/张)2.2 2.0黑白(单位:元/张)0.7 0.6①印制一本纪念册的制版费为元;答案:解答:4×300+6×50=1500(元);②若印制2千册,则共需多少费用?答案:解答:若印制2千册,则印刷费为:(2.2×4+0.7×6)×2 000=26000(元),∴总费用为:26000+1500=27500(元).解析:分析:彩页和黑白页的制版费的和;制版费加上印刷费就是总费用.25.秋天到来了,小明家的苹果获得了丰收,他主动帮助妈妈到集市上去卖刚刚采摘下的苹果.已知销售数量x(千克)与售价y(元)的关系如下表所示:数量x(千克) 1 2 3 4 5售价y(元)2.1 4.2 6.3 8.4 10.5答案:解答:销售量每增加1千克,售价就增加2.1元.②求当x=15时,y的值是多少?答案:解答:当x=15时,y=2.1×15=31.5(元).解析:分析:①根据表可以得到:销售量每增加1千克,售价就增加2.1元;②当x=15时,y的值是2.1元的15倍,据此即可求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用表格表示变量之间的关系
一、教材分析:
教科书提供了探讨小车下滑时间与支撑物高度关系的活动,通过这样的活动,使学生经历分析小车下滑时间与支撑物高度的关系,从而引入自变量、因变量之间的关系,及变量之间关系的第一种表示方法——表格。
使学生初步体会变量之间的相依关系,并尝试从表格中分析变量之间的关系。
教师可以让学生体会“此时字母表示的是变量”,以进一步发展学生对“字母表示”的理解。
二、学情分析:
学生在上一学期已经学习了用字母表示数以及表示字母之间的关系,对于本节学习有一定的基础。
初一学生已经具有根据图表找到变量之间的关系的能力,本节可为用表达式表示变量之间的关系打下基础。
三、教学目标:
1、知识与技能目标:理解什么是变量、自变量、因变量、常量。
能从表格中获取变量之间关系的信息,并能用表格表示两个变量之间的关系。
2、过程与方法目标:经历探索具体情境中两个变量之间的关系的过程。
通过从表格中分析两个变量之间的关系,并用自己的语言进行表述,发展学生有条理地思考和表达能力。
3、情感态度与价值观目标:经历探索具体情境中两个变量之间的关系的过程,获得探索变量之间关系的体验,进一步发展符号感,增强学习数学的成就感,发展学生对数学的认识。
四、教学重、难点:
1、教学重点:理解变量、自变量、因变量、常量。
能从表格中获取变量之间关系的信息,并能用表格表示两个变量之间的关系,并对变化趋势进行预测。
2、教学难点:在探索活动中理解变量之间的相依关系,并尝试用语言和符号去刻画,根据表格中的数据对变化的趋势作初步的预测。
四、教学方法:
启发式教学
五、教学过程:
1、自主学习:随着年龄的增长我们的身高在逐年变化,小明测量了自己不同年龄时
(1)年龄为9岁时,小明的身高是多少?11岁、13岁呢?
(2)如果用m表示年龄,n表示身高,随着m逐渐变大,n的变化趋势是什么?(3)在表格中,________、________在发生着变化,_______随_______的变化而变化,起主导作用的是__________
2、创设问题情境,引入新知:
王波学习小组利用同一块木板,测量小车从不同高度沿斜放的木板从顶部下滑到底部所用的时间
提出问题: 1.支撑物高度为70厘米时,小车下滑时间是多少?
2.如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?
3.h每增加10厘米,t的变化情况相同吗?
4.估计当h=110时,t的值是多少,你是怎样估计的?
5.随着h的变化,还有哪些量发生变化?哪些量不发生变化?
学生观察思考,解决问题。
如果有困难可发挥小组的力量。
全班交流。
由此例题可以得到结论:h越高,t越短。
3、知识总结、归纳:
在学生回答基础上归纳变量、自变量、因变量、常量的概念,并学会两个变量之间的关
1.如果用x表示时间,y表示我国人口总数,那么随着x的变化,y的变化趋势是什么?
2.找出问题中的自变量、因变量。
3.从1949年起,时间每向后推移10年,我国人口是怎样变化的?
从表格的数据可知:随着x的增加y也增加。
1949—1959年人口增加1.30亿,1959—1969年人口增加1.35亿,1969—1979年人口增加1.68亿,1979—1989年人口增加1.32亿,1989—1999年人口增加1.52亿。
因此,变化为增加约1.50亿人。
(同时也可以预测2009年人口)
在前一个问题中,支撑物高度h和小车下滑的时间t都在变化,它们都是变量,其中h 是自变量,t是因变量。
在第二个问题中,我国人口总数y随时间x 的变化而变化,x是自变量,y是因变量。
而因变量随自变量的变化而变化的情况借助于表格就可以表示出来
5、随堂练习:
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)当氮肥的施用表量是101千克/公顷时,土豆的产量是多少?如果不施氮肥呢?(3)根据表格中的数据,你认为氮肥的施用量是多少时比较适宜?说说你的理由。
(4)粗略说一说氮肥的施用量对土豆产量的影响。
(1)上述哪些量在变化?自变量和因变量分别是什么?(2)第5排、第6排各有多少个座位?(3)第n排有多少个座位?请说明你的理由.
问题2的设置,不仅巩固了本节所学知识,回顾了探索规律,也为下节课学习用表达式表示变量之间的关系。
8、小结收获,布置作业:
我的收获是
六、板书设计:
七、教学后记及反思:。