广东中山纪念中学等比数列试题及答案 百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等比数列选择题
1.公差不为0的等差数列{}n a 中,2
3711220a a a -+=,数列{}n b 是等比数列,且
77b a =,则68b b =( )
A .2
B .4
C .8
D .16
2.已知正项等比数列{}n a 的公比不为1,n T 为其前n 项积,若20172021T T =,则2020
2021
ln ln a a =
( ) A .1:3 B .3:1 C .3:5 D .5:3 3.若1,a ,4成等比数列,则a =( )
A .1
B .2±
C .2
D .2-
4.已知数列{}n a 满足112a =
,*
11()2
n n a a n N +=∈.设2n n n b a λ-=,*n N ∈,且数列
{}n b 是单调递增数列,则实数λ的取值范围是( )
A .(,1)-∞
B .3
(1,)2
-
C .3(,)2
-∞
D .(1,2)-
5.在等比数列{}n a 中,132a =,44a =.记12(1,2,)n n T a a a n ==……,则数列{}n T ( )
A .有最大项,有最小项
B .有最大项,无最小项
C .无最大项,有最小项
D .无最大项,无最小项
6.已知等比数列{}n a 满足12234,12a a a a +=+=,则5S 等于( ) A .40
B .81
C .121
D .242
7.已知各项均为正数的等比数列{}n a 的前4项和为30,且53134a a a =+,则3a =( ) A .2
B .4
C .8
D .16
8.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n n
n S a b n =---⨯+,*n N ∈,则
存在数列{}n b 和{}n c 使得( )
A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列
B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列
C .·
n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·
n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 9.公比为(0)q q >的等比数列{}n a 中,1349,27a a a ==,则1a q +=( ) A .1
B .2
C .3
D .4
10.在数列{}n a 中,32a =,12n n a a +=,则5a =( )
A .32
B .16
C .8
D .4 11.已知1,a ,x ,b ,16这五个实数成等比数列,则x 的值为( )
A .4
B .-4
C .±4
D .不确定
12.在数列{}n a 中,12a =,121n n a a +=-,若513n a >,则n 的最小值是( ) A .9
B .10
C .11
D .12
13.已知单调递增数列{}n a 的前n 项和n S 满足()(
)*
21n n n S a a n =+∈N
,且0n
S
>,记
数列{}
2n
n a ⋅的前n 项和为n T ,则使得2020n T >成立的n 的最小值为( )
A .7
B .8
C .10
D .11
14.已知{}n a 是各项均为正数的等比数列,121a a +=,344a a +=,则
5678a a a a +++=( )
A .80
B .20
C .32
D .
255
3
15.已知数列{}n a 为等比数列,12a =,且53a a =,则10a 的值为( ) A .1或1-
B .1
C .2或2-
D .2
16.数列{a n }满足2
1
1232222
n n n
a a a a -+++⋯+=
(n ∈N *),数列{a n }前n 和为S n ,则S 10等于( )
A .55
12⎛⎫ ⎪⎝⎭
B .10
112⎛⎫- ⎪⎝⎭
C .9
112⎛⎫- ⎪⎝⎭ D .66
12⎛⎫ ⎪⎝⎭
17.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第一次操作;再将剩下的两个区间1[0,]3,2[,1]3
分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于
9
10
,则需要操作的次数n 的最小值为( )(参考数据:lg 20.3010=,lg30.4771=)
A .4
B .5
C .6
D .7
18.设等差数列{}n a 的公差10,4≠=d a d ,若k a 是1a 与2k a 的等比中项,则k =( ) A .3或6 B .3 或-1 C .6
D .3
19.设等比数列{}n a 的前n 项和为n S ,若
4
2
5S S =,则等比数列{}n a 的公比为( )