数学:9.2单项式乘多项式同步练习1(苏科版七年级下)

合集下载

七年级数学下册 9.1 单项式乘单项式知识点梳理+练习 (新版)苏科版

七年级数学下册 9.1 单项式乘单项式知识点梳理+练习 (新版)苏科版

§9.1 单项式乘单项式【知识平台】单项式的乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.【思维点击】单项式相乘的一般步骤:(1)各因式系数的积作为积的系数;(2)利用同底数幂的乘法法则,把相同字母分别相乘;(3)只在一个单项式里含有的字母,连同指数作为积的一个因式.【考点浏览】例计算:(-2ab2)3·abc2·12(-a3b)2.【解析】(-2ab2)3·abc2·12(-a3b)2=-8a3b6·abc2·14a6b2=-8×14(a3·a·a6)·(b6·b·b2)·c2=-2a10b9c2.说明在进行单项式乘法时,有乘方的要先算乘方,再进行乘法运算.【在线检测】下列1~5题计算是否正确,若不正确,加以改正:1.3a2·2a3=6a6._____________________;2.3a2·4a4=7a6.___________________; 3.2a3·5a2=10a5.__________________; 4.a2b·2a2b2c=2a4b3.____________;5.4ab·3ab=12ab._________________.计算:6.3m2·2m4. 7.13xy·23x2y3. 8.5x2y·(-15xy2)·xyz3.9.4x2n+2·(-34x n-2). 10.(-mn)2·(-m2n)3.11.(-ab)3·(-a2b)·(-a2b4c)2. 12.12ab2c·(-0.5ab)2·(-3bc2)3.13.2(x+y)3·5(x+y)k+2·4(x+y)4.14.3(3m-2n)3·0.5(3m-2n)·13(2n-3m).15.[-12(x-y)2] ·(y-x)3·[-3(x-y)4].16.5(a-b)m·94(b-a)2m-1·715(b-a)2m+2.17.-2(ab2c)2·12b·(ac)3+(abc)2·(-abc)3.18.(6×108)×(7×109)×(4×104). 19.(3×2)10×(23×25)10.20.(12×103)2×(4×102)3. 21.(-1.2×102)2×(5×102)×(-2×103)2.22.光的速度约是每秒3×105千米,有一颗恒星发射的光要10•年才能到达地球,若一年以3.1×107秒计算,这颗恒星距离地球有多少千米?参考答案1~5.略 6.6m6 7.29x3y4 8.-x4y4z2 9.-3x3n 10.-m8n5 11.a9b12c212.-278a3b7c7 13.•40(x+y)k+9 14.-12(3m-2n)5 15.-32(x-y)916.-214(a-b)5m+1 17.-2a5b5c5 18.1.68×1023 19.1020 •20.1.6×101321.2.88×1013 22.这颗恒星距离地球有9.3×1013千米.。

七年级数学下册 9.1 单项式乘单项式知识点梳理+练习 苏科版(2021学年)

七年级数学下册 9.1 单项式乘单项式知识点梳理+练习 苏科版(2021学年)

七年级数学下册9.1 单项式乘单项式知识点梳理+练习(新版)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学下册9.1 单项式乘单项式知识点梳理+练习(新版)苏科版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学下册9.1 单项式乘单项式知识点梳理+练习(新版)苏科版的全部内容。

§9。

1 单项式乘单项式【知识平台】单项式的乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.【思维点击】单项式相乘的一般步骤:(1)各因式系数的积作为积的系数;(2)利用同底数幂的乘法法则,把相同字母分别相乘;(3)只在一个单项式里含有的字母,连同指数作为积的一个因式.【考点浏览】例计算:(-2ab2)3·abc2·12(-a3b)2.【解析】(-2ab2)3·abc2·12(-a3b)2=-8a3b6·abc2·14a6b2=-8×14(a3·a·a6)·(b6·b·b2)·c2=-2a10b9c2.说明在进行单项式乘法时,有乘方的要先算乘方,再进行乘法运算.【在线检测】下列1~5题计算是否正确,若不正确,加以改正:1.3a2·2a3=6a6._____________________;2.3a2·4a4=7a6.___________________;3.2a3·5a2=10a5.__________________; 4.a2b·2a2b2c=2a4b3.____________;5.4ab·3ab=12ab._________________。

2021年苏科新版七年级数学下册《9.2单项式乘多项式》自主学习同步训练题(附答案)

2021年苏科新版七年级数学下册《9.2单项式乘多项式》自主学习同步训练题(附答案)

2021年苏科新版七年级数学下册《9.2单项式乘多项式》自主学习同步训练题(附答案)1.计算x(1+x)﹣x(1﹣x)等于()A.2x B.2x2C.0D.﹣2x+2x22.一个长方体的长、宽、高分别是3m﹣4,2m和m,则它的体积是()A.3m3﹣4m2B.3m2﹣4m3C.6m3﹣8m2D.6m2﹣8m33.已知,a+b=2,b﹣c=﹣3,则代数式ac+b(c﹣a﹣b)的值是()A.5B.﹣5C.6D.﹣64.要使﹣x3(x2+ax+1)+2x4中不含有x的四次项,则a等于()A.1B.2C.3D.45.要使(﹣6x3)(x2+ax﹣3)的展开式中不含x4项,则a=()A.1B.0C.﹣1D.6.已知x2﹣4x﹣1=0,则代数式x(x﹣4)+1的值为()A.2B.1C.0D.﹣17.若﹣x2y=2,则﹣xy(x5y2﹣x3y+2x)的值为()A.16B.12C.8D.08.化简5a•(2a2﹣ab),结果正确的是()A.﹣10a3﹣5ab B.10a3﹣5a2b C.﹣10a2+5a2b D.﹣10a3+5a2b 9.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写()A.3xy B.﹣3xy C.﹣1D.110.下列运算中,正确的是()A.﹣2x(3x2y﹣2xy)=﹣6x3y﹣4x2yB.2xy2(﹣x2+2y2+1)=﹣4x3y4C.(3ab2﹣2ab)•abc=3a2b3﹣2a2b2D.(ab)2(2ab2﹣c)=2a3b4﹣a2b2c11.计算:(x﹣2y)(﹣5x)=.12.计算a(a﹣b)+b(a﹣b)的结果是.13.计算()•()=.14.计算:﹣3x•(2x2y﹣xy)=.15.一个长方形的长、宽分别是3x﹣4和x,它的面积等于.16.已知a﹣2b=﹣2,则代数式a(b﹣2)﹣b(a﹣4)的值为.17.﹣2xy(x2y﹣3xy2)=.18.一个长方体的长、宽、高分别是3x﹣4、2x、x,它的体积等于.19.计算:•ab=.20.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记本复习,发现一道题:﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+□,□的地方被墨水弄污了,你认为□处应填写.21.计算:(x﹣2y)(﹣xy2).22.计算:(﹣2a)2•(3a2﹣a﹣1).23.计算:(3x2﹣y+)•6xy.24.[xy(x2﹣xy)﹣x2y(x﹣y)]•3xy2.25.计算:2x(x﹣1)﹣3x(x﹣)26.计算:.27.计算:(1)5a2•(﹣3a3)2 (2)3a•(a2+2a)﹣2a2(a﹣3)28.计算:a•a2+(﹣2a2b)2+2a2(a﹣a2b2)29.计算:6m•(3m2﹣m﹣1)30.解方程:2x(x﹣1)﹣x(2x+3)=15.参考答案1.解:原式=x+x2﹣x+x2=2x2.故选:B.2.解:根据长方体体积的计算公式得,(3m﹣4)•2m•m=6m3﹣8m2,故选:C.3.解:ac+b(c﹣a﹣b)=ac+bc﹣ab﹣b2=c(a+b)﹣b(a+b)=(a+b)(c﹣b),把a+b=2,b﹣c=﹣3代入(a+b)(c﹣b)=2×3=6,故选:C.4.解:原式=﹣x5﹣ax4﹣x3+2x4=﹣x5+(2﹣a)x4﹣x3∵﹣x3(x2+ax+1)+2x4中不含有x的四次项,∴2﹣a=0,解得,a=2.故选:B.5.解:原式=﹣6x5﹣6ax4+18x3,由展开式不含x4项,得到a=0,故选:B.6.解:∵x2﹣4x﹣1=0,∴x2﹣4x=1,x(x﹣4)+1=x2﹣4x+1=1+1=2,故选:A.7.解:原式=﹣x6y3+x4y2﹣2x2y,当﹣x2y=2时,原式=﹣(﹣2)3+(﹣2)2﹣2×(﹣2)=16,故选:A.8.解:5a•(2a2﹣ab)=10a3﹣5a2b,故选:B.9.解:∵左边=﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+3xy.右边=﹣12xy2+6x2y+□,∴□内上应填写3xy.故选:A.10.解:A、﹣2x(3x2y﹣2xy)=﹣6x3y+4x2y,故本选项错误;B、2xy2(﹣x2+2y2+1)=﹣4x3y2+4xy4+2xy2,故本选项错误;C、(3ab2﹣2ab)•abc=3a2b3c﹣2a2b2c,故本选项错误;D、(ab)2•(2ab2﹣c)=a2b2•(2ab2﹣c)=2a3b4﹣a2b2c,故本选项正确;故选:D.11.解:(x﹣2y)(﹣5x)=﹣5x2+10xy.故答案为:﹣5x2+10xy.12.解:a(a﹣b)+b(a﹣b)=a2﹣ab+ab﹣b2=a2﹣b2.故答案为:a2﹣b2.13.解:()•()=x2y•()﹣6xy•(﹣xy2)=﹣x3y3+3x2y3.故答案为:﹣x3y3+3x2y3.14.解:﹣3x•(2x2y﹣xy)=﹣6x3y+3x2y.故答案为:﹣6x3y+3x2y.15.解:长方形的面积是(3x﹣4)•x=3x2﹣4x,故答案为:3x2﹣4x.16.解:a(b﹣2)﹣b(a﹣4)=ab﹣2a﹣ab+4b=﹣2a+4b=﹣2(a﹣2b),∵a﹣2b=﹣2,∴原式=﹣2×(﹣2)=4.故答案为:4.17.解:﹣2xy(x2y﹣3xy2)=﹣2xy•x2y+2xy•3xy2=﹣2x3y2+6x2y3.故答案为:﹣2x3y2+6x2y3.18.解:由题意可得,(3x﹣4)×2x×x=(3x﹣4)×2x2=6x3﹣8x2.故答案为:6x3﹣8x2.19.解:•ab=ab2•ab﹣2ab•ab=a2b3﹣a2b2.故答案为:a2b3﹣a2b2.20.解:根据题意得:﹣3xy(4y﹣2x﹣1)+12xy2﹣6x2y=﹣12xy2+6x2y+3xy+12xy2﹣6x2y=3xy.故答案为:3xy.21.解:原式=﹣x2y2+xy3.22.解:原式=4a2•(3a2﹣a﹣1)=12a4﹣4a3﹣4a2.23.解:原式=(3x2)•6xy+(﹣y)•6xy+•6xy=18x3y﹣8xy2+3xy.24.解:[xy(x2﹣xy)﹣x2y(x﹣y)]•3xy2=(x3y﹣x2y2﹣x3y+x2y2)•3xy2=0.28.解:原式=x2﹣2x﹣x2+5x=3x.26.解:原式=9x2y2﹣6xy3﹣9x2y2=﹣6xy3.27.解:(1)原式=5a2•9a6=45a8;(2)原式=3a3+6a2﹣2a3+6a2=a3+12a2.28.解:原式=a3+4a4b2+2a3﹣2a4b2=3a3+2a4b229.解:6m•(3m2﹣m﹣1)=18m3﹣4m2﹣6m.30.解:2x(x﹣1)﹣x(2x+3)=152x2﹣2x﹣2x2﹣3x=15,整理得:﹣5x=15,解得:x=﹣3.。

9.2_单项式乘多项式

9.2_单项式乘多项式

乘法分配 律
=(-3a) ·(-2a2)+(-3a) ·(-3a)+(-3a) ·(-2) =6a3+9a2+6a 单项式乘单项式运算法则
建湖县实验初中
计算:
⑴ a (2a-3)
⑵ a2 (1-3a)
⑶ 3x(x2-2x-1) ⑷-2x2y(3x2-2x-3) (5) (2x2-3xy+4y2)(-2xy) 1 2 2 3 (6) 2a (a a a 1) 2
3
2x
2x
2
3
2
2
3x
3x
30x
3
建湖县实验初中
计算:
2 2 (1)0.5ab ( ab 2ab ); 3
(2) x( x xy y ) y( x xy y );
2 2 2 2
(3)4ab[2a b (ab ab ) 3b].
2 2
建湖县实验初中
小结与回顾
初中数学八年级下册 (苏科版)
单项式乘多项式
建湖县实验初中
b
c
d
a
如果把它看成一个大长方形,那么它的长 为__________,面积可表示为_________. a(b+c+d) b+c+d
建湖县实验初中
b
c
d
a
a
a
如果把它看成三个小长方形,那么它们的 面积可分别表示为_____、_____、_____. ab ac ad
3a
人民广场
1.课本第75页练一练
2.计算:
⑴ 3x(x2-2x-1)-2x2(x-3) ⑵ -6xy(x2-2xy-y2)+3xy(2x2-4xy+y]

苏科版七年级数学下册9.3 多项式乘多项式 同步练习(包含答案解析)

苏科版七年级数学下册9.3 多项式乘多项式 同步练习(包含答案解析)

9.3多项式乘多项式一、选择题1.计算的结果为( )A. B. C. D.2.若,则( )A. B.C. D.3.若,则的值是( )A. B. C. D. 14.已知,,那么的值为( )A. B. C. 0 D. 55.设,,则A、B的大小关系为( )A. B. C. D. 无法确定6.下列各式中,计算正确的是( )A. B.C. D.7.若与的乘积中不含x的一次项,则n的值为( )A. B. 2 C. 0 D. 18.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为,宽为的大长方形,则需要A类、B类和C类卡片的张数分别为( )A. 2,3,7B. 3,7,2C. 2,5,3D. 2,5,79.如图,边长为的正方形纸片剪出一个边长为的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则另一边长为( )A. B. C. D.10.若a,b,k均为整数,则满足等式的所有k值有( )个.A. 2B. 3C. 6D. 8二、填空题11.计算:_________________.12.若矩形的面积为,长为,则宽为______.13.已知,则c的值为_____________.14.把化成的形式后为__________.15.已知多项式恰等于两个多项式和的积,则______.16.已知,则代数式的值为______ .17.小青和小红分别计算同一道整式乘法题:,小青由于抄错了一个多项式中a的符号,得到的结果为,小红由于抄错了第二个多项式中的x的系数,得到的结果为,则这道题的正确结果是______.18.若,那么________.三、计算题19.计算:四、解答题20.欢欢与乐乐两人共同计算,欢欢抄错为,得到的结果为;乐乐抄错为,得到的结果为.(1)式子中的a、b的值各是多少?(2)请计算出原题的正确答案.21.某市有一块长为米,宽为米的长方形地块,规划部门计划将阴影部分进行绿化中间修建一座边长是米的正方形雕像.(1)请用含a,b的代数式表示绿化面积S;(2)当,时,求绿化面积.22.如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证恒等式成立.(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式______;(2)试将等式______补充完整,并用上述拼图的方法说明它的正确性.答案和解析1.【答案】B【解析】【分析】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.了多项式乘多项式,熟练掌握运算法则是解本题的关键.原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式,故选:B.2.【答案】D【解析】解:,而,,,,,.故选D.首先根据多项式的乘法法则展开,然后利用根据对应项的系数相等列式求解即可.此题主要考查了多项式的乘法法则,利用多项式的乘法法则展开多项式,再利用对应项的系数相等就可以解决问题.3.【答案】A【解析】解:,,解得:,,.故选:A.直接利用多项式乘以多项式运算法则计算得出m,n,再代入计算可得答案.此题主要考查了多项式乘以多项式运算,正确掌握运算法则是解题关键.4.【答案】C【解析】【分析】此题考查了整式的混合运算化简求值,涉及的知识有:多项式乘多项式,去括号合并,以及合并同类项法则,熟练掌握法则是解本题的关键.所求式子利用多项式乘多项式法则计算,整理后将与xy的值代入计算即可求出值.【解答】解:当、时,,故选C.5.【答案】A【解析】解:,,,;故选:A.根据多项式乘以多项式的法则,先把A、B进行整理,然后比较即可得出答案.本题主要考查多项式乘以多项式的法则,注意不要漏项,漏字母,有同类项的合并同类项.6.【答案】B【解析】【分析】本题考查了单项式与多项式相乘的法则、平方差公式、完全平方公式、多项式乘以多项式法则;熟记公式和法则是解决问题的关键.根据单项式与多项式相乘的法则得出选项A不正确;根据平方差公式得出选项B正确;根据完全平方公式得出选项C不正确;根据多项式乘以多项式法则得出选项D不正确;即可得出结论.【解答】解:,选项A不正确;B.,选项B正确;C.,选项C不正确;D.,选项D不正确;故选B.7.【答案】A【解析】解:,又与的乘积中不含x的一次项,,;故选:A.根据多项式乘以多项式的法则,可表示为,再根据与的乘积中不含x的一次项,得出,求出n的值即可.本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.8.【答案】A【解析】解:长为,宽为的长方形的面积为:,类卡片的面积为,B类卡片的面积为,C类卡片的面积为ab,需要A类卡片2张,B类卡片3张,C类卡片7张.故选:A.根据长方形的面积长宽,求出长为,宽为的大长方形的面积是多少,判断出需要A类、B类、C类卡片各多少张即可.此题主要考查了多项式乘多项式的运算方法,熟练掌握运算法则是解题的关键.9.【答案】B【解析】【分析】此题主要考查了多项式乘法,正确利用图形面积关系是解题关键.首先求出大正方形面积,进而利用图形总面积不变得出等式求出答案.【解答】解:,拼成的长方形一边长为m,.故另一边长为:.故选:B.10.【答案】C【解析】解:,,,,,b,k均为整数,,,;,,;,,;故k的值共有6个,故选:C.先把等式左边展开,由对应相等得出,;再由a,b,k均为整数,求出k的值即可.本题考查了多项式乘以多项式,是基础知识要熟练掌握.11.【答案】【解析】【分析】此题主要考查多项式乘多项式直接利用平方差公式计算解答即可.【解答】解:,故答案为.12.【答案】a【解析】解:矩形的宽,故答案为:a.根据多项式除以多项式的运算法则计算即可.本题考查的是整式的除法,掌握多项式除以多项式的运算法则、因式分解是解题的关键.13.【答案】【解析】【分析】本题考查了多项式乘多项式,已知等式右边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出c的值即可【解答】解:已知等式整理得:,则,故答案为.14.【答案】【解析】【分析】本题考查了二次函数的三种形式:一般式:b,c是常数,,该形式的优势是能直接根据解析式知道抛物线与y轴的交点坐标是;顶点式:h,k是常数,,其中为顶点坐标,该形式的优势是能直接根据解析式得到抛物线的顶点坐标为,熟练掌握二次函数的一般式是解题的关键,根据二次函数的一般式形式把整理即可.【解答】解:,把化成的形式后为.故答案为.15.【答案】【解析】解:,由题意知,,则,所以,故答案为:.先计算出,根据得出n、a的值,代入计算可得.本题主要考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则.16.【答案】【解析】【分析】此题主要考查了多项式乘以多项式以及代数式求值,正确利用整体思想代入是解题关键.直接利用已知得出,再利用多项式乘法去括号进而求出答案.【解答】解:,,.故答案为.17.【答案】【解析】解:根据题意可知小青由于抄错了一个多项式中a的符号,得到的结果为,那么,可得,小红由于抄错了第二个多项式中的x的系数,得到的结果为,可知,即,可得,解关于的方程组,可得,,.故答案为:.根据小青由于抄错了一个多项式中a的符号,得到的结果为,可知,根据等于号的性质可得;再根据小红由于抄错了第二个多项式中的x的系数,得到的结果为,可知常数项是,可知,可得,解关于的方程组即可求a、b的值,进而可求一次项系数.本题考查了多项式乘以多项式的法则、解方程组,解题的关键是理解题目表达的意思.18.【答案】1【解析】【分析】本题考查了多项式的乘法,完全平方公式等有关知识,先用完全平方公式计算出,再确定,、、、的值,得结论.【解答】解:,,,,,.故答案为1.19.【答案】解:原式;原式【解析】原式利用多项式乘以多项式法则计算,去括号合并即可得到结果;原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式乘以多项式法则计算即可得到结果.此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.20.【答案】解:根据题意可知,由于欢欢抄错了第一个多项式中的a的符号,得到的结果为,那么,可得乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为,可知即,可得,解关于的方程组,可得,;正确的式子:【解析】根据由于欢欢抄错了第一个多项式中的a符号,得出的结果为,可知,于是;再根据乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为,可知常数项是,可知,可得到,解关于的方程组即可求出a、b的值;把a、b的值代入原式求出整式乘法的正确结果.本题主要是考查多项式的乘法,正确利用法则是正确解决问题的关键.21.【答案】解:根据题意得:长方形地块的面积,正方形雕像的面积为:,则绿化面积,即用含a,b的代数式表示绿化面积,把,代入,得,即绿化面积为87平方米.【解析】本题考查多项式乘多项式,正确掌握整式乘法法则是解题的关键.根据绿化面积长方形地块的面积正方形雕像的面积,列式计算即可,把,带入所求结果,计算后可得到答案.22.【答案】;;如图所示:恒等式是.故答案为:.【解析】【分析】本题主要考查对多项式乘多项式的理解和掌握,能表示各部分的面积是解此题的关键.根据图形是一个长方形求出长和宽,相乘即可;正方形的面积是2个长方形的面积加上2个正方形的面积,代入求出即可.【解答】解:观察图乙得知:长方形的长为:,宽为,面积为:;故答案为:.见答案.。

苏科版七年级数学下册9.2 单项式乘多项式同步练习(包含答案解析)

苏科版七年级数学下册9.2 单项式乘多项式同步练习(包含答案解析)

9.2单项式乘多项式一、选择题1.化简,结果正确的是()A. B. C. D.2.计算:的结果是()A. B.C. D.3.化简的结果为()A. B. C. 9 D.4.计算的结果是()A. B. C. D.5.要使的展开式中不含项,则k的值为()A. B. 0 C. 2 D. 36.一个多项式除以,其商为,则该多项式为()A. B.C. D.7.下列计算中:;;;,错误的个数有()A. 1个B. 2个C. 3个D. 4个8.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式,你认为其中正确的有();;;.A. B. C. D.9.若,则的值为()A. 216B. 246C.D. 17410.若与的值永远相等,则m、n、k分别为()A. 6,3,1B. 3,6,1C. 2,1,3D. 2,3,1二、填空题11.计算:_______________.12.已知,那么______.13.若多项式与单项式的积是,则该多项式为______.14.一个长方体的长、宽、高分别是、、x,则它的表面积为______.15.已知,则的值为______.16.若,则__________,__________.17.一个矩形的面积为,一边长为2ab cm,则它的周长为________cm.18.要使成立,则a和b的值分别为.三、计算题19.计算:;.四、解答题20.先化简,再求值:,其中.21.阅读:已知,求的值.解:.你能用上述方法解决以下问题吗试一试已知,求的值.22.某同学在计算一个多项式乘以时,因抄错运算符号,算成了加上,得到的结果是,那么正确的计算结果是多少?答案和解析1.【答案】B【解析】【分析】此题考查了单项式乘以多项式的知识,牢记法则是解答本题的关键,属于基础题,比较简单.按照单项式乘以多项式的运算法则进行运算即可.【解答】解:故选B.2.【答案】A【解析】【分析】本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:.故选:A.3.【答案】C【解析】解:原式.故选:C.直接利用完全平方公式以及单项式乘以多项式运算法则化简得出答案.此题主要考查了完全平方公式以及单项式乘以多项式运算,正确掌握相关运算法则是解题关键.4.【答案】C【解析】解:原式,故选C.【分析】原式利用单项式乘以多项式法则计算即可得到结果.此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.5.【答案】C【解析】【分析】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.直接利用单项式乘以多项式运算法则求出答案.【解答】解:的展开式中不含项,中不含项,,解得:.故选C.6.【答案】D【解析】【分析】本题考查了多项式除以单项式,弄清被除式、除式、商三者之间的关系是求解的关键.根据被除式商除式列出算式,再利用单项式乘多项式,用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:依题意:所求多项式.故选D.7.【答案】C【解析】【分析】此题考查了单项式乘多项式和完全平方公式,熟练掌握公式及运算法则是解本题的关键.各项计算得到结果,即可作出判断.【解答】解:,故错误;,故错误;,故错误;,故正确,错误的有3个.故选C.8.【答案】D【解析】解:表示该长方形面积的多项式正确;正确;正确;正确.故选:D.根据图中长方形的面积可表示为总长总宽,也可表示成各矩形的面积和,此题主要考查了多项式乘以多项式,关键是正确掌握图形的面积表示方法.9.【答案】B【解析】解:原式,当时,原式,故选:B.将原式变形为,再将代入计算可得.本题主要考查单项式乘多项式,解题的关键是熟练掌握单项式乘多项式的运算法则.10.【答案】A【解析】【分析】本题考查的是单项式乘以多项式有关知识,首先对该式进行相乘,然后再利用等式两边的式子相等进行解答即可.【解答】解:,,,,解得:,,.故选A.11.【答案】【解析】解:故答案为:单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.依此计算即可求解.此题考查了单项式乘多项式,单项式与多项式相乘时,应注意以下几个问题:单项式与多项式相乘实质上是转化为单项式乘以单项式;用单项式去乘多项式中的每一项时,不能漏乘;注意确定积的符号.12.【答案】【解析】解:,,解得.故答案为:.根据单项式与多项式相乘的运算法则进行计算,使结果对应相等,得到关于x的方程,解方程得到答案.本题考查的是单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.13.【答案】【解析】解:多项式与单项式的积是,该多项式为:.故答案为:.直接利用整式的除法运算法则计算得出答案.此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.14.【答案】【解析】解:表面积是,故答案为:.先根据题意列出算式,再求出即可.本题考查了整式的混合运算,能根据题意列出算式是解此题的关键.15.【答案】16【解析】解:,,即,则,故答案为:16.将已知等式去括号、合并可得,整体代入到原式可得答案.本题主要考查代数式的求值,解题的关键是掌握去括号、合并同类项的法则及因式分解的应用、整体代入思想的运用.16.【答案】;.【解析】【分析】这是一道考查单项式乘以多项式的题目,解题关键在于掌握法则,根据对应相等,即可求出M和N.【解答】解:,,,即,,故答案为;.17.【答案】【解析】【分析】此题考查了多项式除以单项式、单项式乘多项式在实际中的应用.求出矩形的另一边长是解题的关键.先根据矩形的面积公式求出另一边的长,再根据矩形的周长长宽列式,通过计算即可得出结果.解:,.故答案为.18.【答案】2,【解析】【分析】【分析】先将等式左边去括号合并同类项,再根据多项式相等的条件即可求出a与b的值.此题考查了整式的混合运算,涉及的知识有:去括号法则,合并同类项法则,以及多项式相等的条件,熟练掌握法则是解本题的关键.【解答】解:因为,所以,,解得,.19.【答案】解:原式;原式.【解析】本题考查了单项式乘以多项式,按照单项式乘以多项式法则进行计算即可;本题考查了幂的乘方与积的乘方、单项式乘以多项式,先算幂的乘方与积的乘方再算单项式乘以多项式即可求得答案.20.【答案】解:原式,,当时,原式.【解析】本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并同类项的法则和方法先根据整式相乘的法则进行计算,然后合并同类项,最后将字母的值代入求出原代数式的值.21.【答案】解:,,,,,.【解析】本题考查了单项式乘多项式,整体代入是解题关键.根据单项式乘多项式,可得一个多项式,根据把已知代入,可得答案.22.【答案】解:这个多项式是,正确的计算结果是:.【解析】用错误结果减去已知多项式,得出原式,再乘以得出正确结果.。

七年级数学下册 第9章 9.2 单项式乘多项式同步练习(含解析)苏科版(2021年整理)

七年级数学下册 第9章 9.2 单项式乘多项式同步练习(含解析)苏科版(2021年整理)

七年级数学下册第9章9.2 单项式乘多项式同步练习(含解析)(新版)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学下册第9章9.2 单项式乘多项式同步练习(含解析)(新版)苏科版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学下册第9章9.2 单项式乘多项式同步练习(含解析)(新版)苏科版的全部内容。

第9章 9.2单项式乘多项式一、单选题(共9题;共18分)1、一个长方体的长,宽,高分别是5x﹣2,3x,2x,则它的体积是( )A、30x3﹣12x2B、25x3﹣10x2C、18x2D、10x﹣22、m(a2﹣b2+c)等于()A、ma2﹣mb2+mB、ma2+mb2+mcC、ma2﹣mb2+mcD、ma2﹣b2+c3、下列计算中正确的是( )A、(﹣3x3)2=9x5B、x(3x﹣2)=3x2﹣2xC、x2(3x3﹣2)=3x6﹣2x2D、x(x3﹣x2+1)=x4﹣x34、计算a(1+a)﹣a(1﹣a)的结果为()A、2aB、2a2C、0D、﹣2a+2a5、化简﹣3a•(2a2﹣a+1)正确的是( )A、﹣6a3+3a2﹣3aB、﹣6a3+3a2+3aC、﹣6a3﹣3a2﹣3aD、6a3﹣3a2﹣3a6、一个三角形的底为2m,高为m+2n,它的面积是()A、2m2+4mnB、m2+2mnC、m2+4mnD、2m2+2mn7、已知:(x4﹣n+y m+3)•x n=x4+x2y7 , 则m+n的值是()A、3B、4C、5D、68、要使(x3+ax2﹣x)•(﹣8x4)的运算结果中不含x6的项,则a的值应为()A、8B、﹣8C、D、09、下列说法正确的是( )A、多项式乘以单项式,积可以是多项式也可以是单项式B、多项式乘以单项式,积的次数等于多项式的次数与单项式次数的积C、多项式乘以单项式,积的系数是多项式系数与单项式系数的和D、多项式乘以单项式,积的项数与多项式的项数相等二、解答题(共1题;共5分)10、先化简,再求值:。

苏科版七年级下册 9.2 单项式乘多项式 同步练习(含答案)

苏科版七年级下册 9.2 单项式乘多项式 同步练习(含答案)

(苏科版)七年级下册第9章整式乘法与因式分解9.2单项式乘多项式同步练习一、单选题1.下列运算正确的是( )A .236428m m m ⋅=B .()326m m -=-C .2(2)2m m m m --+=--D .236m m m += 2.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,其运算的实质为( ) A .同底数幂的乘法法则B .乘法交换律C .乘法结合律D .乘法分配律 3.计算231232x y xy y ⎛⎫⋅-+ ⎪⎝⎭的结果是( ) A .2242x y x y -+ B .2432223x y x y x y -+C .322462x y x y -+D .2423226x y x y x y +- 4.已知31222828a7m n a b b b +÷=,则m ,n 的值分别为( ) A .m=4,n=3 B .m=4,n=2C .m=2,n=2D .m=2,n=3 5.数学课上,老师讲了单项式与多项式相乘,放学后,小丽回到家拿出课堂笔记,认真地复习老师课上讲的内容,她突然发现一道题-3x 2(2x -█+1)=-6x 3+3x 2y -3x 2中有一项被污损了,那么被污损的内容是( )A .-yB .yC .-xyD .xy6.计算2x(9x 2-3ax+a 2)+a(6x 2-2ax+a 2)等于( )A .18x 3-a 3B .18x 3+a 3C .18x 3+4ax 2D .18x 3+3a 37.某同学在计算23x -乘一个多项式时错误的计算成了加法,得到的答案是21x x -+,由此可以推断正确的计算结果是( )A .241x x -+B .21x x -+C .4321233x x x -+-D .无法确定8.图为“L ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )A .2ab c -B .() ac b c c +-C .() bc a c c +-D .2ac bc c +-9.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy (4y -2x -1)=-12xy 2+6x 2y +□,□的地方被钢笔水弄污了,你认为□内应填写( )A .3xyB .-3xyC .-1D .110.设a 、b 是实数,定义@的一种运算如下:@a b a b ab =++,则下列结论:①若1a =,2b =-,则@3a b =-. ②若(2)@3x -=-,则1x =.③@@a b b a =. ④(@(@@))@a b c a b c =.其中正确的是( )A .①②③B .①③④C .②③④D .①②③④11.若a 3(3a n -2a m +4a k )=3a 9-2a 6+4a 4,则m ,n ,k 的值分别为( )A .6,3,1B .3,6,1C .2,1,3D .2,3,112.已知边长分别为a 、b 的长方形的周长为10,面积4,则ab 2+a 2b 的值为( )A .10B .20C .40D .80二、填空题13.计算 ()()36x y x --= _______.14.已知233m n -=-,则代数式()()46m n n m ---的值为______.15.图中的四边形均为长方形,根据图形,写出一个正确的等式:_____.16.已知2A ab =-,()4B ab a b =-,则A B ⋅=______.17.如果一个长方体的长为3a -4,宽为2a ,高为a ,那么它的体积是________.18.计算()2242a a 9a 39⎛⎫--⋅- ⎪⎝⎭的结果是____________.19.若B 是一个单项式,且223(4)82B a b a b ab -=-+g ,则B =__.20.若规定一种运算a c b d =ad -bc ,则化简1x x - 4x x+=______. 21.若x=2019567891×2019567861,y=2019567881×2019567871,则x__y (填>,<或=).三、解答题22.计算:2223335()(2)()53xy x y x y x -+÷-23.计算:2x (12x ﹣1)﹣3x (13x ﹣53)24.先化简,再求值:32212232x x x x ⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭,其中4x =.25.若23()3265x x a x b x x -+-=-+成立,请求出a 、b 的值.26.先化简,再求值:A =3a 2b ﹣ab 2,B =ab 2+3a 2b ,其中a =12,b =13.求5A ﹣B 的值.27.已知长方体的高为cma,宽是高的2倍,长是高的3倍少5cm,求长方体的体积.28.根据等式和不等式的性质,可以得到:若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b.这是利用“作差法”比较两个数或两个代数式值的大小.(1)试比较代数式5m2-4m+2与4m2-4m-7的值之间的大小关系;(2)已知A=5m2﹣4(7142m ),B=7(m2﹣m)+3,请你运用前面介绍的方法比较代数式A与B的大小.29.请先阅读下列解题过程,再仿做下面的题.已知x2+x-1=0,求x3+2x2+3的值.解:x3+2x2+3=x3+x2-x+x2+x+3=x(x2+x-1)+x2+x-1+4=0+0+4=4如果1+x+x2+x3=0,求x+x2+x3+x4+x5+x6+x7+x8的值.参考答案1.B2.D3.D4.B5.B6.B7.C8.A9.A10.D11.B12.B 13.2618x xy -+14.615.m (a +b )=ma +mb .16.233288a b a b -17.6a 3-8a 218.-18a 3+6a 2+4a .19.22ab -.20.-5x21.<22.339x y -23.3x .24.218233x x +-;14. 25.9a =,52b =- 26.2.3 27.()323610cm a a -. 28.(1)代数式5m 2﹣4m+2大于代数式4m 2﹣4m ﹣7;(2)A <B. 29.0。

【开学春季备课】苏科版七年级数学下册9.2单项式乘多项式【教案三】

【开学春季备课】苏科版七年级数学下册9.2单项式乘多项式【教案三】

9.2 单项式乘多项式
一、教学目标:
1、知道利用乘法分配律可以将单项式乘多项式转化为单项式乘单项式。

2、会进行单项式乘多项式的计算。

3、通过面积的计算领会用长方形面积图或乘法的分配律说明单项式与多项式相乘的法则。

二、教学重点和难点:
1、教学重点:单项式乘多项式。

2、教学难点:推测整式乘法的运算法则。

三、教学过程
)所示的面积,并把你的算法与同学交流。

1
2)画,用不同的形式表示图画的面积,并做比较。

2
如何计算图中长方形的面积,用代数式表示出来。

a(b+c+d)=ab+ac+ad。

a(b+c+d)
单项式与多项式相乘,用单项式乘多项式的每一项,再把所得加,即
1
4
正整数
)所示,一长方形地块用来建造住宅、广场、商厦,求
图3
(1)-3x2(x2-2x+3)-3x(-x3+2x2-3x)+2008,其中+9y-12)-3(3y n+1-4y n),其中n=2,y=-2。

拓展升华
的值。

-2,
教学反思:。

苏科版数学七年级下册9.2《单项式乘多项式》教学设计

苏科版数学七年级下册9.2《单项式乘多项式》教学设计

苏科版数学七年级下册9.2《单项式乘多项式》教学设计一. 教材分析苏科版数学七年级下册9.2《单项式乘多项式》是学生在学习了单项式和多项式的基本概念之后,进一步研究单项式与多项式之间的运算。

这一节内容通过实例引入单项式乘多项式的运算方法,让学生体会数学与实际生活的联系,培养学生的数学应用能力。

教材通过例题和练习题的安排,使学生掌握单项式乘多项式的运算规则,提高学生的数学运算技巧。

二. 学情分析学生在学习本节内容前,已经掌握了单项式和多项式的基本概念,对基本的代数运算有了一定的了解。

但是,对于单项式乘多项式的运算规则,学生可能还存在一定的困惑。

因此,在教学过程中,教师需要通过具体的实例,引导学生理解并掌握单项式乘多项式的运算方法。

三. 教学目标1.知识与技能:使学生掌握单项式乘多项式的运算方法,能熟练地进行运算。

2.过程与方法:通过实例分析,让学生理解单项式乘多项式的运算规则,培养学生的数学思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、勇于探索的精神。

四. 教学重难点1.重点:单项式乘多项式的运算方法。

2.难点:理解并掌握单项式乘多项式的运算规则。

五. 教学方法采用启发式教学法、实例教学法和小组合作学习法。

通过启发式教学法,引导学生主动思考,发现单项式乘多项式的运算规则;通过实例教学法,使学生直观地理解单项式乘多项式的运算方法;通过小组合作学习法,让学生在合作中交流,共同提高。

六. 教学准备1.准备相关的实例,用于引导学生理解和掌握单项式乘多项式的运算方法。

2.准备练习题,用于巩固学生对单项式乘多项式的运算方法的掌握。

3.准备课件,用于辅助教学。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节内容,如:“小明买了3个苹果和2个香蕉,苹果每个2元,香蕉每个3元,请问小明一共花了多少钱?”让学生思考并解答。

2.呈现(10分钟)教师通过课件呈现单项式乘多项式的运算规则,并用实例进行讲解。

七年级数学下册 第9章 9.3 多项式乘多项式同步练习(含解析)(新版)苏科版-(新版)苏科版初中七

七年级数学下册 第9章 9.3 多项式乘多项式同步练习(含解析)(新版)苏科版-(新版)苏科版初中七

第9章多项式乘多项式一、单选题(共5题;共10分)1、(x﹣1)(2x+3)的计算结果是()A、2x2+x﹣3B、2x2﹣x﹣3C、2x2﹣x+3D、x2﹣2x﹣32、若(x﹣3)(x+5)=x2+ax+b,则a+b的值是()A、﹣13B、13C、2D、﹣153、李老师做了个长方形教具,其中一边长为2a+b,另一边长为a﹣b,则该长方形的面积为()A、6a+bB、2a2﹣ab﹣b2C、3aD、10a﹣b4、已知则的值为()A、2B、-2C、0D、35、如果(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A、﹣3B、3C、0D、1二、填空题(共9题;共10分)6、如果要使(x+1)(x2﹣2ax+a2)的乘积中不含x2项,则a=________.7、计算:(a﹣2)(a+3)﹣a•a=________.8、若(x+2)(x﹣n)=x2+mx+8,则mn=________.9、a+b=5,ab=2,则(a﹣2)(3b﹣6)=________.10、已知x+y=5,xy=2,则(x+2)(y+2)=________.11、若多项式5x2+2x﹣2与多项式ax+1的乘积中,不含x2项,则常数a=________.12、计算:(x﹣1)(x+3)=________.13、如果(x+1)(x+m)的积中不含x的一次项,则m的值为________.14、我国南宋时期杰出的数学家杨辉是钱塘人,下面的图表是他在《详解九章算术》中记载的“杨辉三角”.此图揭示了(为非负整数)的展开式的项数及各项系数的有关规律.(1)请仔细观察,填出(a+b)4的展开式中所缺的系数.(a+b)4=a4+4a3b+________a2b2+4ab2+b4(2)此规律还可以解决实际问题:假如今天是星期三,再过7天还是星期三,那么再过天是星期________.三、计算题(共7题;共55分)15、解方程:(2x+5)(x﹣1)=2(x+4)(x﹣3)16、计算:(1)(2x﹣7y)(3x+4y﹣1);(2)(x﹣y)(x2+xy+y2).17、计算:①(x+2)(x﹣4)②(x+2)(x﹣2)18、计算:(1)(a2+3)(a﹣2)﹣a(a2﹣2a﹣2);(2)(2m+n)(2m﹣n)+(m+n)2﹣2(2m2﹣mn).19、已知(x3+mx+n)(x2﹣3x+1)展开后的结果中不含x3和x2项.(1)求m、n的值;(2)求(m+n)(m2﹣mn+n2)的值.20、计算题:(1)(a﹣2b﹣3c)2;(2)(x+2y﹣z)(x﹣2y﹣z)﹣(x+y﹣z)2.21、已知(x+my)(x+ny)=x2+2xy﹣8y2,求m2n+mn2的值.四、解答题(共1题;共10分)22、对于任意有理数,我们规定符号= ,例如:== .(1)求的值;(2)求的值,其中=0.答案解析部分一、单选题=2x2﹣2x+3x﹣3,=2x2+x﹣3.故选:A.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.2、【答案】A 【考点】多项式乘多项式【解析】【解答】解:∵(x﹣3)(x+5) =x2+5x ﹣3x﹣15=x2+2x﹣15,∴a=2,b=﹣15,∴a+b=2﹣15=﹣13.故选:A.【分析】先计算(x﹣3)(x+5),然后将各个项的系数依次对应相等,求出a、b的值,再代入计算即可.3、【答案】B 【考点】多项式乘多项式【解析】【解答】解:根据题意得:(2a+b)(a﹣b)=2a2﹣2ab+ab﹣b2=2a2﹣ab﹣b2.故选B.【分析】两边长相乘,利用多项式乘以多项式法则计算,合并即可得到长方形面积.4、【答案】B 【考点】多项式乘多项式【解析】【解答】 ( 2 −m ) ( 2 −n )=4-2(m+n)+mn=4-2×2-2=-2.故选B.【分析】计算 ( 2 − m ) ( 2 − n ),再将m + n = 2 , m n = − 2 代入求值.5、【答案】A 【考点】多项式乘多项式【解析】【解答】(x+m)(x+3)=x2+(3+m)x+3m,因为乘积不含x项,则3+m=0,则m=-3.故选A.【分析】求出它们的乘积,使含x项的系数为0,即可求出m的值.二、填空题6、【答案】【考点】多项式乘多项式【解析】【解答】解:原式=x3﹣2ax2+a2x+x2﹣2ax+a2=x3+(1﹣2a)x2+a2x+a2,∵乘积中不含x2项,∴1﹣2a=0,解得:a= ,故答案为:.【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.7、【答案】a﹣6 【考点】同底数幂的乘法,多项式乘多项式【解析】【解答】解:(a﹣2)(a+3)﹣a•a =a2+3a﹣2a﹣6﹣a2=a﹣6.故答案为:a﹣6.【分析】根据多项式乘以多项式,即可解答.8、【答案】-24 【考点】多项式乘多项式【解析】【解答】解:∵(x+2)(x﹣n)=x2+mx+8,∴x2﹣nx+2x﹣2n=x2+mx+8,x2+(2﹣n)x﹣2n=x2+mx+8则,解得:故mn=﹣24.故答案为:﹣24.【分析】直接利用多项式乘以多项式运算法则去括号,进而得出关于m,n的等式,即可求出答案.∴(a﹣2)(3b﹣6)=3ab﹣6a﹣6b+12=3ab﹣6(a+b)+12=3×2﹣6×5+12=﹣12.故答案为:﹣12.【分析】直接利用多项式乘以多项式运算法则去括号,进而将已知代入求出答案.10、【答案】16 【考点】多项式乘多项式【解析】【解答】解:当x+y=5,xy=2时,(x+2)(y+2)=xy+2x+2y+4=xy+2(x+y)+4=2+2×5+4=16,故答案为:16.【分析】将原式展开可得xy+2(x+y)+4,代入求值即可.11、【答案】﹣【考点】多项式乘多项式【解析】【解答】解:根据题意得:(5x2+2x﹣2)(ax+1)=5ax3+(5+2a)x2+2x﹣2ax﹣2,由结果不含x2项,得到5+2a=0,解得:a=﹣,故答案为:﹣【分析】根据题意列出算式,计算后根据结果不含二次项确定出a的值即可.12、【答案】x2+2x﹣3 【考点】多项式乘多项式【解析】【解答】解:(x﹣1)(x+3)=x2+3x﹣x﹣3=x2+2x﹣3.故答案为:x2+2x﹣3.【分析】多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.依此计算即可求解.13、【答案】-1 【考点】多项式乘多项式【解析】【解答】解:原式=x2+(1+m)x+m,由于式子中不含x的一次项,则x的一次项系数为零,则:1+m=0解得:m=-1【分析】先将括号去掉,然后将含x的项进行合并.14、【答案】(1)6(2)四【考点】多项式乘多项式【解析】【解答】(1)(a+b)4的系数在第5层,第3个系数刚好是上面相邻两个数的和是3+3=6;故答案为6.(2)∵814=(7+1)14=714+14×713+91×712+…+14×7+1,∴814除以7的余数为1,∴假如今天是星期三,那么再过814天是星期四,故答案为:四.【分析】(1)根据杨辉三角,下一行的系数是上一行相邻两系数的和,然后写出各项的系数即可;(2)运用前面的规律,将814化为(7+1)14.三、计算题15、【答案】解:∵(2x+5)(x﹣1)=2(x+4)(x﹣3),∴2x2+3x﹣5=2x2+2x﹣24,移项合并,得x=﹣19.【考点】多项式乘多项式【解析】【分析】根据多项式乘多项式的法则计算后,可得到一元一次方程,解方程即可求得.16、【答案】(1)解:原式=6x2+8xy﹣2x﹣21xy﹣28y2+7y =6x2﹣2x﹣13xy﹣28y2+7y(2)解:原式=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3【考点】多项式乘多项式【解析】【分析】(1)原式利用多项式乘多项式法则计算,合并即可得到结果;(2)原式利用多项式乘多项式法则计算,合并即可得到结果.17、【答案】解:①(x+2)(x﹣4)=x2﹣2x﹣8;②(x+2)(x﹣2)=x2﹣4.故答案为:①x2﹣2x﹣8;②x2﹣4 【考点】多项式乘多项式【解析】【分析】①原式利用多项式乘以多项式法则计算,合并即可得到结果;②原式利用平方差公式化简即可得到结果.18、【答案】(1)解:原式=a3﹣2a2+3a﹣6﹣a3+2a2+2a =5a﹣6(2)解:原式=4m2﹣n2+m2+2mn+n2﹣4m2+2mn =m2+4mn 【考点】多项式乘多项式【解析】【分析】(1)原式第一项利用多项式乘多项式法则计算,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果;(2)原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并即可得到结果.19、【答案】(1)解:原式=x5﹣3x4+(m+1)x3+(n﹣3m)x2+(m﹣3n)x+n,由展开式不含x3和x2项,得到m+1=0,n﹣3m=0,解得:m=﹣1,n=﹣3;(2)解:当m=﹣1,n=﹣3时,原式=m3﹣m2n+mn2+m2n﹣mn2+n3=m3+n3=﹣1﹣27=﹣28.【考点】多项式乘多项式【解析】【分析】(1)原式利用多项式乘以多项式法则计算,根据结果中不含x3和x2项,求出m与n的值即可;(2)原式利用多项式乘以多项式法则计算,将m与n的值代入计算即可求出值.20、【答案】(1)解:原式=(a﹣2b)2﹣2×(a﹣2b)×3c+9c2=a2+4b2﹣4ab﹣6ac+12bc+9c2=a2+4b2+9c2﹣4ab﹣6ac+12bc(2)解:原式=[(x﹣z)+2y][(x﹣z)﹣2y]﹣[(x﹣z)+y]2=(x﹣z)2﹣4y2﹣(x﹣z)2﹣2(x﹣z)y﹣y2=﹣5y2﹣2xy+2yz 【考点】多项式乘多项式,完全平方公式【解析】【分析】(1)将a﹣2b看做一个整体=[(a﹣2b)﹣3c]2,运用完全平方差公式,逐步展开去括号计算.(2)首先将(x+2y﹣z)(x﹣2y﹣z)看做[(x﹣z)+2y][(x﹣z)﹣2y]运用平方差公式,再运用完全平方式,对(x+y﹣z)2看做[(x﹣z)+y]2运用完全平方式,两式相减利用有理式的混合运算.21、【答案】解:∵(x+my)(x+ny)=x2+2xy﹣8y2,∴x2+nxy+mxy+mny2=x2+(m+n)xy+mny2=x2+2xy﹣8y2,∴m+n=2,mn=﹣8,∴m2n+mn2=mn(m+n)=﹣8×2=﹣16 【考点】多项式乘多项式【解析】【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn计算,再把m2n+mn2因式分解,即可得出答案.四、解答题22、【答案】(1)解:( - 2 , 3 )⊗( 4 , 5 )=(-2)×5-3×4=-10-12=-22.(2)解:(3 a+ 1 ,a- 2 )⊗( a+ 2 , a- 3 ) =(3a+1)(a-3)-(a-2)(a+2)=3a2-8a-3-a2+4=2a2-8a+1,因为a2- 4 a+ 1 =0,所以a2-4a=-1,则原式=2a2-8a+1=2(a2-4a)+1=2×(-1)+1=-1. 【考点】多项式乘多项式【解析】【分析】(1)根据题中的新定义,得( - 2 , 3 )⊗( 4 , 5 )=(-2)×5-3×4;(2)根据新定义化简(3 a+ 1 , a- 2 )⊗( a+ 2 , a- 3 ),根据a2 - 4 a+ 1 =0,得a2-4a=-1,。

7年级数学苏科版下册课件第9单元 《9.3多项式乘多项式》

7年级数学苏科版下册课件第9单元 《9.3多项式乘多项式》

表示为_____、_____、_____、_____.面积可表示为
______________________.
a
a
b
c
c
d
d
b
如果把它们看成四个小长方形,那么它们的面积可分别
bc
bd
ac
ad
+ + +
表示为_____、_____、_____、_____.面积可表示为
______________________.
b
=
=
a b c d
a c d b c d
c a b d a b
= ac ad bc bd




根据单项式乘多项式法则
(a+b)(c+d)
c(a+b) + d(a+b)
ac + bc + ad + bd
(2) (3x+1)(x-2)
解:= 3 ⋅ + 3 ⋅ −2 + + −2
= 3 2 − 5 − 2
注意:多项式与多项式相乘的结果中,要合并同类项.
例2:计算:
(1)(a+4)(a+3)
(2)(x+2)(x-3)
(3)(x-2)(x-3)
例2:计算:
(1)(a+4)(a+3)
(2)(x+2)(x-3)
a
b
c
b
c
d
a c d b c d
c a b d a b
a
b
c

七年级数学下册 9.2 单项式乘多项式同步练习 (新版)苏科版

七年级数学下册 9.2 单项式乘多项式同步练习 (新版)苏科版

9.2 单项式乘多项式1.计算:(6x 2-4xy+3y 2)·(-13x 2 y)等于 ( ) A .42223423x x y x y -++ B .42223423x x y x y --- C .42223423x x y x y -+- D .42223423x x y x y --+ 2.下列运算正确的是 ( )A .-2x(3x 2 y -2xy)=-6x 3y -4x 2yB .2xy 2·(-x 2 +2y 2 +1)=-4x 3y 4C .(3a b 2-2a b)·a bc=3a 2b 3-2a 2b 2D .(a b) 2·(2a b 2-c)=2a 3b 4-a 2b 2c3.计算:3x(9x 2-3a x+a 2)+a (9x 2-3a x+a 2)等于 ( )A .27x 3+a 3B .27x 3-a 3C .27x 3+6a x 2+a 3D .27x 34.一个长方体的长、宽、高分别为3x -4,2x 和x .则它的体积等于 ( )A .3x 3-4x 2B .x 2C .6x 3-8x 2D .6x 2-8x5.2mn(m 2-n)=____________.6.()244199x x x ⎛⎫--- ⎪⎝⎭=___________. 7.研究下列算式,你会发现有什么规律?1×3+1=4,2×4+1=9,3×5+1=16,4×6+1=25,…请将你找出的规律,用公式表示出来:_______________.8.计算:(1)4xy(3x 2+2xy -1);(2)(-12x)·(8x 3-7x+4).9.计算:(-13xy 2) 2·[xy(2x -y)+xy 2]10.已知a b 2=-6,求代数式-a b(a 2b 5-a b 3-b)的值.11.化简求值:(-13xy)2 [xy(2x-y)-2x(xy-y2)],其中x=-112,y=-2.12.计算:2a2 (12a b+b2)+(3a2b-2a b2)·(-2a).13.解方程:2y(y+1)-y(3y-2)+2y2=y2-2.14.张叔叔刚分到一套新房,其结构如图所示,(单位:米),他打算除卧室外,其余部分都铺地砖.(1)至少需要多少平方米的地砖?(2)如果铺的这种地砖的价格为m元/平方米,那么张叔叔至少要花多少元钱?参考答案1.C 2.D 3.A 4.C 5.2m 3n -2mn 2 6.-36x 3+4x 2+9x7.n(n+2)+1=(n+1) 28.(1)12x 3y+8x 2y 2-4xy (2)427422x x x -+-9.2519x y10.当a b 2=-6时.原式=246.11.当x=112-,y=-2时,原式=- 6.12.6a 2b 2-5a 3b .13.12y =14.(1)11a b(平方米): (2)11a bm(元).答:至少需要11a b 平方米的地砖,要花11a bm 元钱。

9.2单项式乘多项式

9.2单项式乘多项式
解:长方形地块的长为:(3a+2b)+(2a-b),
宽为4a,这块地的面积为:
4a·【(3a+2b)+(2a-b)】
= 4a·(5a+b)
= 4a·5a+4a·b
= 20a +4ab.
答:这块地的面积为20a +4ab.
3.巩固练习
根据乘法分配律,请同学们计算
(-2a)·(2a2-3a+1)
解:(-2a)·(2a2-3a+1)
(3)(-3x2)·(4x2- x+1);(4)(-2ab2)2(3a2b-2ab-4b3)
B组:
(1)3x2·(-3xy)2-x2(x2y2-2x);
(2)2a·(a2+3a-2)-3(a3+2a2-a+1)
课本72页第1,2题
三、小结与作业
小结:这节课你有何收获?
学生回答
由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充.
如果把上图看成是由3个小长方形组成的,那么它的面积为ab+ac+ad.
由此得到:a(b+c+d)= ab+ac+ad.
好,我们再一起来看这个等式,等式的左边是一个单项式乘多项式,右边是若干个单项式的和组成的。同学们是不是觉得它很眼熟呀?
其实呀,对于任意的a、b、c、d,由乘法分配律同样可以得到a(b+c+d)= ab+ac+ad.
=(-2a)·2a2+(-2a)·(-3a)+(-2a)·1 (乘法分配律)
=-4a3+6a2-2a (单项式与多项式相乘)
(1)(-4x)·(2x2+3x-1);(2)( ab2-2ab)· ab
计算-2a2·( ab+b2)-5a(a2b-ab2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档