支持向量机(SVM)算法推导及其分类的算法实现
支持向量机算法与应用

支持向量机算法与应用支持向量机(Support Vector Machine, SVM)是一种很常用的分类算法,它在分类和回归问题中表现出极高的性能,被广泛应用于机器学习和数据挖掘中。
本文将介绍支持向量机的基本概念、算法原理和应用场景。
一、基本概念1. SVM分类器SVM分类器是一种基于二分类的监督学习算法。
其主要原理是利用数据集进行训练,通过对数据的分析来建立一个模型,并用此模型来对新样本进行分类。
2. 超平面在SVM中,超平面是指将一个n维空间划分为两个部分的一个n-1维的平面。
在二维空间中,超平面就是一条直线。
在多维空间中,由于难以想象,所以通常使用非常高维度的空间来表示超平面。
3. 分类边界在SVM中,分类边界是指位于超平面两侧的两个边界。
这两个边界是可以调节的,可以根据数据点的分布来设置。
分类边界的目标是使位于不同分类的数据点最大化间隔,并尽可能地避免分类错误。
4. 支持向量在SVM中,支持向量是指与分类边界最接近的那些点。
这些点是分类边界的构成要素,也是构建分类器的关键。
二、算法原理支持向量机的核心思想是通过最大化分类边界的间隔来实现分类。
具体来说,原始的线性可分SVM问题可以表述为:在n维空间中,找到一个超平面,将不同类别的点尽可能分开。
这个超平面可以表示如下:w·x+b=0其中,w表示超平面的法向量,x表示数据点,b表示平面的截距。
当两类点都被正确分类时,超平面的分类间隔为2/‖w‖。
在这种情况下,数据点的分类可以表示为:y(w·x+b)>0其中y表示数据点的类别,+1或-1。
当数据集不能被完全分开时,就需要使用软间隔。
软间隔允许一些数据点被错误分类,并对公式进行修改。
具体来说,我们添加一个松弛变量ξi,使得y(w·x+b)≥1-ξi。
此时分类器的目标就是最小化误差的总和:min ||w||²/2+C∑ξis.t. y(w·x+b)≥1-ξi其中C是超参数,我们可以通过交叉验证等方法来确定它的值。
如何使用支持向量机进行分类(Ⅱ)

支持向量机(Support Vector Machine, SVM)是一种常用的机器学习算法,它在数据分类和回归分析中表现出色。
它的优点之一是可以处理高维数据,并且对于非线性数据也有较好的分类效果。
本文将介绍支持向量机的基本原理和使用方法,以及如何利用支持向量机进行分类。
支持向量机的基本原理是找到一个最优的超平面来将不同类别的数据进行分隔。
在二维空间中,这个超平面就是一条直线,而在三维空间中则是一个平面。
对于高维数据,这个超平面就是一个超平面。
支持向量机的目标是找到一个最优的超平面,使得两个类别的数据点离这个超平面的距离尽可能远。
支持向量机的核心思想是最大化间隔,即最大化两个类别数据点到超平面的距离。
这样可以提高分类的准确性,降低分类错误的概率。
在支持向量机中,离超平面最近的几个数据点被称为支持向量,它们决定了最终的分类结果。
支持向量机的训练过程就是找到这个最优的超平面,并确定支持向量的位置。
在使用支持向量机进行分类时,首先需要准备好数据集。
数据集包括特征和标签,特征是用来描述数据的属性,标签是用来表示数据的类别。
然后,将数据集分为训练集和测试集,用训练集来训练支持向量机模型,用测试集来评估模型的性能。
支持向量机有多种核函数可供选择,常用的核函数包括线性核函数、多项式核函数和高斯径向基函数(Gaussian Radial Basis Function, RBF)。
不同的核函数对于不同类型的数据有不同的适用性,可以根据实际情况来选择合适的核函数。
在训练支持向量机模型时,需要调节一些参数来使模型达到最佳的性能。
这些参数包括惩罚参数C、核函数的参数和松弛变量ε。
惩罚参数C决定了分类边界的软硬程度,核函数的参数决定了超平面的形状,松弛变量ε决定了支持向量的位置。
在实际应用中,可以通过交叉验证的方法来选择最优的参数组合。
交叉验证将训练集分为若干个子集,在每一轮训练中,将其中一个子集作为验证集,其余子集作为训练集。
SVM支持向量机算法的详细推导(详细到每个步骤,值得推荐)

建立非线性可分数据的最优超平面可以采用与线性可 分情况类似的方法,即对于给定的训练样本 {(X1,d1), (X2,d2),…,(Xp,dp),…(XP,dP)} ,寻找权值W和 阈值B的最优值,使其在式(8.19)的约束下,最小化关 于权值W和松弛变量 ξp 的代价函数
C是选定的正参数。 与前述方法相似,采用Laglange系数方法解决约束最 优问题。需要注意的是,在引入Lagrange函数时,使 e函数变为
WT XP+b<0
dp =-1
超平面与最近的样本点之间的间隔称为分离边缘,用ρ表示。 支持向量机的目标是找到一个分离边缘最大的超平面,即最优 超平面。也就是要确定使ρ最大时的W和b。 图8.1给出二维平面中最优超平面的示意图。可以看出,最优 超平面能提供两类之间最大可能的分离,因此确定最优超平面 的权值W0和偏置b0应是唯一的。在式(8.1)定义的一簇超平面中, 最优超平面的方程应为: WT X0+b0=0(应该是W0 X + b0 = 0吧? ) 直接求W0和b0基本上不太可能,除了训练集无别的信息可用, 如何办? 一种方法:使求得的预测函数 y = f(x) = sgn(W· + b)对原有 X 样本的分类错误率最小。 如何使分类错误率最小?下面慢慢分 析。
αp>0 以上为不等式约束的二次函数极值问题(Quadratic Programming,QP)。由Kuhn Tucker定理知,式 (8.14)的最优解必须满足以下最优化条件(KKT条件)
上式等号成立的两种情况:一是αp为零;另一种是 (WT XP+b) dp=1 。第二种情况仅对应于样本为支持向量。 设Q(α)的最优解为{α01, α02,......, α0p} ,可通过式(8.12) 计算最优权值向量,其中多数样本的Lagrange系数为零, 因此
svm算法公式

svm算法公式SVM算法公式支持向量机(Support Vector Machine,简称SVM)是一种常用的机器学习算法,被广泛应用于分类和回归问题的解决中。
它的核心思想是通过找到一个最优超平面来划分不同类别的数据点,从而实现分类的目标。
SVM算法的公式可以用如下方式表达:1. 数据准备假设我们有一个包含N个样本的训练集D={(x1, y1), (x2, y2), ... , (xN, yN)},其中xi表示第i个样本的特征向量,yi表示第i个样本的类别标签。
特征向量xi具有n个维度,即xi=(x1i, x2i, ... , xni)。
2. 寻找最优超平面SVM的目标是找到一个最优超平面,使得该超平面能够最大化样本点到该超平面的间隔,并且能够正确地将不同类别的样本点分开。
最优超平面可以用如下公式表示:w·x + b = 0其中,w表示超平面的法向量,b表示超平面的截距。
w·x表示w 和x的内积。
根据这个公式,我们可以将样本点分为两类:w·x + b > 0的样本点属于一类,w·x + b < 0的样本点属于另一类。
3. 线性可分情况如果训练集D是线性可分的,即存在一个超平面完全能够将两类样本点分开,那么我们可以通过一个优化问题来求解最优超平面。
优化问题可以用如下公式表示:min 1/2 ||w||^2s.t. yi(w·xi + b) ≥ 1, i=1,2,...,N其中,||w||表示向量w的范数,yi表示第i个样本点的类别标签。
这个优化问题的目标是最小化w的范数,同时满足所有样本点的分类约束条件。
4. 线性不可分情况如果训练集D不是线性可分的,那么我们可以通过引入松弛变量(xi, ξi)来解决这个问题。
松弛变量可以将样本点分类约束条件放宽,使得一些样本点可以位于超平面的错误一侧。
此时,优化问题可以用如下公式表示:min 1/2 ||w||^2 + C Σξis.t. yi(w·xi + b) ≥ 1 - ξi, i=1,2,...,Nξi ≥ 0, i=1,2,...,N其中,C是一个正则化参数,用来平衡最小化w的范数和最小化松弛变量的重要性。
SVM算法详解范文

SVM算法详解范文SVM(支持向量机)是一种常用的监督学习算法,广泛应用于分类和回归问题。
它的基本思想是找到一个最优的超平面,能够将不同类别的样本点分开。
支持向量机具有较好的泛化能力和鲁棒性,在实际应用中取得了很好的效果。
一、SVM的基本原理1.线性可分情况下当训练样本线性可分时,SVM算法的目标是找到一个能够将正负样本完全分开的超平面。
这个超平面的选择是使得所有样本点到超平面的距离最大化,即最大化间隔。
2.线性不可分情况下当样本线性不可分时,SVM使用核函数将样本映射到高维特征空间中,使得样本可以在高维空间线性可分。
常用的核函数有线性核函数、多项式核函数和高斯核函数等。
二、SVM的数学模型SVM的数学模型可以表示为一个凸二次规划问题,即:min 1/2 ∥w∥²s.t. yi(w·xi+b)≥1 , i=1,2,...,n其中w是超平面的法向量,b是超平面的截距,(xi,yi)是训练样本点,n是样本总数。
这个问题可以通过拉格朗日函数和KKT条件等方法求解。
三、SVM的优缺点SVM具有以下优点:1.SVM能够处理高维特征空间中的分类问题。
2.SVM对于小样本数据集效果较好。
3.SVM能够处理非线性问题,通过核函数将样本映射到高维特征空间。
SVM的缺点包括:1.SVM对于大规模样本集需要较长的训练时间。
2.SVM对于噪声和缺失数据敏感。
3.SVM模型的选择和核函数的选取对结果有较大影响。
四、SVM算法的步骤1.数据预处理:对数据进行标准化和归一化处理。
2.选择核函数:根据问题的特点选择合适的核函数。
3.参数选择:确定正则化项参数和核函数的参数。
4.求解凸二次规划问题:通过优化算法求解凸二次规划问题。
5.模型评估:通过交叉验证等方法评估模型的性能。
6.预测与分类:使用训练好的SVM模型进行预测和分类。
五、SVM的改进和拓展1.核函数选择:根据问题需求和数据特点选择合适的核函数。
2.超参数调优:使用交叉验证等方法调优SVM模型的超参数。
一文解析支持向量机(附公式)

一文解析支持向量机(附公式)本文为你详细描述SVM产生的过程。
前言众所周知SVM 是非常强大的一种分类算法,有着媲美神经网络的分类效果,实现过程却简单得多。
受限于我的能力,这篇文章不会系统地介绍SVM(因为我并不是线性代数、凸优化等方面的专家),而是以一个学习者的角度描述SVM 产生的过程,由于内容较长,计划分成三到四篇一个好的分类是怎么样的图中的两组数据,显然它们是线性可分(linear separable)的,图里给出的三条分界线都可以准确区分这两类数据,它们是不是一样好?如果不是,哪一条看起来更加合适?直觉告诉我们是a。
相比之下,b 和c 离个别点太近了,我们很难拍着胸脯说“这个点在分界线下面,所以绝对是X',因为分界线稍微挪一挪就可以改变这些点的属性,我们想要的是一个相对自信的分界线,使靠近分界线的点与分界线的距离足够大,上图中的分界线 a 就符合我们的需求。
ps. 这里所说的分界线严格来说是decision boundary,decision boundary 在二维空间是一条线,在三维空间是一个平面,更高维的空间里称作超平面,为了方便本文都用分界线来代表decision boundary。
进入向量的世界你或许已经注意到SVM 的全称是Support Vector Machine (支持向量机),在推导SVM 公式过程中,我们几乎都是在和向量打交道。
刚接触SVM 的时候我对这个名字非常诧异,SVM 很强是没错,但是名字也太「随意」了吧?希望写完这篇文章以后我能理解为什么这种算法叫做支持向量机。
如果你之前没有接触过向量,建议花一个小时左右的时间熟悉一下向量的概念和基本性质。
我们先把空间上的点用向量来表示(以原点为起点的向量):虽然写成了向量的形式,其实并没有什么大不了的,我们可以把它和初中时候学过的直线表达式联系起来:对于SVM 来说仅仅这样是不够的,还记得吗我们要修一条路出来,我们得确保在一条足够宽的路里面没有数据点:这样前面的式子就可以写成更为简洁的形式:什么是支持向量这是一个基于KKT 条件的二次规划问题,优化原理的内容超出了这篇文章的范畴,在这里我们只要知道拉格朗日乘数法可以求得这个最优解,引入新的系数αi :令以上两式为0,我们可以得到:。
SVM算法推导及其分类的算法实现

SVM算法推导及其分类的算法实现SVM(Support Vector Machine)是一种常用的监督学习算法,被广泛应用于二分类和多分类问题中。
它的基本原理是找到一个超平面,将不同类别的数据分开。
这篇文章将介绍SVM算法的推导及其分类的算法实现。
一、推导1.数据预处理:将数据进行标准化或归一化处理,使不同特征之间具有相同的重要性。
2.确定超平面:SVM算法的目标是找到一个超平面,能够将不同类别的数据完全分开。
超平面可以表示为w*x+b=0的形式,其中w是法向量,b是偏置项。
3.确定分类边界:SVM算法中存在两个平行的超平面,它们与训练数据中的支持向量间隔相等。
这两个平面被称为分类边界。
4.样本分类:根据数据点到超平面的位置,确定其所属类别。
点在超平面之下表示负类数据,点在超平面之上表示正类数据。
5.寻找最优超平面:SVM算法的目标是寻找一个最优超平面,使分类误差最小。
通常使用最大间隔法来确定最优超平面。
6.引入松弛变量:考虑到有时数据无法完全线性分开,SVM算法允许一定程度上的分类错误。
通过引入松弛变量,可以允许部分数据点落在错误的一侧。
7.目标函数确定:根据以上步骤,可以得到SVM的目标函数,即在最大间隔的同时,使得分类误差最小。
8.优化求解:使用优化算法来求解目标函数,例如使用拉格朗日对偶问题等方法。
二、算法实现下面是SVM算法的基本实现步骤:1.数据预处理:将原始数据进行标准化或者归一化处理,使得不同特征之间的取值范围一致。
2.确定超平面:假设训练数据是线性可分的,通过训练数据找到一个超平面,将不同类别的数据完全分开。
3.最大间隔法:选择两个平行的超平面,使其与训练数据中的支持向量间隔最大。
4.构建目标函数:根据最大间隔法,构建目标函数,同时引入松弛变量。
5.目标函数求解:使用优化算法,求解目标函数,例如使用拉格朗日对偶问题等方法。
6.分类边界:根据超平面和支持向量,确定分类边界。
7.样本分类:根据数据点到超平面的位置,确定其所属类别。
20.ENVI4.3 支持向量机分类原理、操作及实例分析

ENVI4.3 支持向量机分类原理、操作及实例分析一、支持向量机算法介绍1.支持向量机算法的理论背景支持向量机分类(Support Vector Machine或SVM)是一种建立在统计学习理论(Statistical Learning Theory或SLT)基础上的机器学习方法。
与传统统计学相比,统计学习理论(SLT)是一种专门研究小样本情况下及其学习规律的理论。
该理论是建立在一套较坚实的理论基础之上的,为解决有限样本学习问题提供了一个统一的框架。
它能将许多现有方法纳入其中,有望帮助解决许多原来难以解决的问题,如神经网络结构选择问题、局部极小点问题等;同时,在这一理论基础上发展了一种新的通用学习方法——支持向量机(SVM),已初步表现出很多优于已有方法的性能。
一些学者认为,SLT和SVM正在成为继神经网络研究之后新的研究热点,并将推动机器学习理论和技术的重大发展。
支持向量机方法是建立在统计学习理论的VC维(VC Dimension)理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。
支持向量机的几个主要优点有:(1)它是专门针对有限样本情况的,其目标是得到现有信息下的最优解而不仅仅是样本数趋于无穷大时的最优值;(2)算法最终将转化成为一个二次型寻优问题,从理论上说,得到的将是全局最优点,解决了在神经网络方法中无法避免的局部极值问题;(3)算法将实际问题通过非线性变换转换到高维的特征空间(Feature Space),在高维空间中构造线性判别函数来实现原空间中的非线性判别函数,特殊性质能保证机器有较好的推广能力,同时它巧妙地解决了维数问题,其算法复杂度与样本维数无关;2.支持向量机算法简介通过学习算法,SVM可以自动寻找那些对分类有较大区分能力的支持向量,由此构造出分类器,可以将类与类之间的间隔最大化,因而有较好的推广性和较高的分类准确率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
支持向量机算法推导及其分类的算法实现摘要:本文从线性分类问题开始逐步的叙述支持向量机思想的形成,并提供相应的推导过程。
简述核函数的概念,以及kernel在SVM算法中的核心地位。
介绍松弛变量引入的SVM算法原因,提出软间隔线性分类法。
概括SVM分别在一对一和一对多分类问题中应用。
基于SVM在一对多问题中的不足,提出SVM 的改进版本DAG SVM。
Abstract:This article begins with a linear classification problem, Gradually discuss formation of SVM, and their derivation. Description the concept of kernel function, and the core position in SVM algorithm. Describes the reasons for the introduction of slack variables, and propose soft-margin linear classification. Summary the application of SVM in one-to-one and one-to-many linear classification. Based on SVM shortage in one-to-many problems, an improved version which called DAG SVM was put forward.关键字:SVM、线性分类、核函数、松弛变量、DAG SVM1. SVM的简介支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。
支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。
对于SVM的基本特点,小样本,并不是样本的绝对数量少,而是与问题的复杂度比起来,SVM算法要求的样本数是相对比较少的。
非线性,是指SVM擅长处理样本数据线性不可分的情况,主要通过松弛变量和核函数实现,是SVM 的精髓。
高维模式识别是指样本维数很高,通过SVM建立的分类器却很简洁,只包含落在边界上的支持向量。
2. 线性分类器及其求解线性分类器,是最简单也很有效的分类器形式。
在一个线性分类器中,可以看到SVM 形成的思路,并接触很多SVM 的核心概念。
用一个二维空间里仅有两类样本的分类问题来举例。
如图1所示图1 两类样本分类C1和C2是要区分的两个类别,在二维平面中它们的样本如图1所示。
中间的直线就是一个分类函数,它可以将两类样本完全分开。
一般的,如果一个线性函数能够将样本完全正确的分开,就称这些数据是线性可分的,否则称为非线性可分的。
很容易看出来,图1中间那条分界线并不是唯一的,旋转一下,只要不把两类数据分错,仍然可以达到分类的效果,稍微平移一下,也可以。
对同一个问题存在多个分类函数的时候,哪一个函数更好呢?必须要先找一个指标来量化“好”的程度,通常使用分类间隔来衡量。
设平面中的直线方程为:(x)wx b g =+ (1) 设i x 是一个有某一对象抽取出的n 维向量,i y 为分类标记,则可以定义点到某一超平面的间隔:(w b)i i y x δ=+(2) 用||||w w 和||||b w 替代(2)式中的w 和b 得: 1|(x )|||||i i g w δ= (3)将(3)式得到的间隔称为几何间隔,几何间隔所表示的正是点到超平面的欧氏距离,以上是单个点到某个超平面的距离定义,同样可以定义一个点的集合(就是一组样本)到某个超平面的距离为此集合中离超平面最近的点的距离。
图2更加直观的展示出了几何间隔的含义。
图2 分割超平面图2中,H 是分类面,H1和H2是平行于H ,且过离H 最近的两类样本的直线,H1与H ,H2与H 之间的距离就是几何间隔。
几何间隔与样本的误分次数间存在关系:22()R δ≤误差分数其中的δ是样本集合到分类面的间隔,max ||x ||,i 1,...,n i R ==,即R 是所有样本中向量长度最长的值。
从上式可以看出,误分次数的上界由几何间隔决定。
因此选择几何间隔来作为评价一个解优劣的指标,几何间隔越大的解,它的误差上界越小。
因此最大化几何间隔成了我们训练阶段的目标。
从(3)式可知,几何间隔与||w||是成反比的,因此最大化几何间隔与最小化||w||等价。
通常不是固定||w||的大小而寻求最大几何间隔,而是固定间隔(例如固定为1),寻找最小的||w||。
此时变成一个最优化问题,若想寻找一个小||w||,就可以用下面的式子表示:min ||||w但实际上对于这个目标,常常使用另一个完全等价的目标函数来代替,如下:21min ||||2w如果直接来解这个求最小值问题,很容易看出当||w||=0的时候就得到了目标函数的最小值。
反映在图2中,就是1H 与2H 两条直线间的距离无限大,这个时候,所有的样本点都位于1H 和2H 中间,而我们原本的意图是,1H 右侧的被分为正类,2H 左侧的被分为负类,位于两类中间的样本则拒绝分类。
这样,所有样本点都进入了无法分类的灰色地带。
造成这种结果的原因是在描述问题的时候只考虑了目标,而没有加入约束条件,于是可以添加约束条件:[()b]1(i 1,2,...,n)i i y w x ⋅+≥=(n 是总的样本数)于是可以将两类分类转化成数学形式,如下:21min ||||2[()b]-10(i 1,2,...,n)i i w y w x ⎧⎪⎨⎪⋅+≥=⎩ (4)在这个问题中,自变量就是w ,而目标函数是w 的二次函数,所有的约束条件都是w 的线性函数,这种规划问题就是二次规划(Quadratic Programming ,QP ),由于它的可行域是一个凸集,因此它是一个凸二次规划。
样本确定了w ,用数学的语言描述,就是w 可以表示为样本的某种组合:1122n n w x x x ααα=++⋯+ (5)式子中的i α是拉格朗日乘子,而i x 是样本点,也是向量,n 就是总样本点的个数。
为了方便描述,以下开始严格区别数字与向量的乘积和向量间的乘积,我会用i i x α表示数字和向量的乘积,而用,i j x x <>表示向量,i j x x 的内积。
因此(1)式严格的形式应该是:(x ),g w x =<>+ (6)w 不仅跟样本点的位置有关,还跟样本的类别有关。
因此用下面这个式子表示w :121122n n n w x x y x y y ααα=++⋯+ (7)其中的i y 就是第i 个样本的标签,它等于1或者-1。
其实以上式子的拉格朗日乘子12,,,n ααα⋯中,只有很少的一部分不等于0,这部分不等于0的拉格朗日乘子后面所乘的样本点,其实都落在1H 和2H 上,也正是这部分样本唯一的确定了分类函数。
这部分可以确定分类的样本点,就叫做支持向量。
因此原来的g(x)表达式可以写为:1(x),b(),n i i i i g w x y x x bα==<>+=<>+∑, (8)其中,1()n i i i i w y x α==∑上式可以变形为:1(x ),n i i i i g y x x bα==<>+∑ (9)此时消去了上式中的w ,问题从求w 变成了求α。
这样就简化了原问题的求解,以这样的形式描述问题以后,优化问题少了很大一部分不等式约束。
接下来看看 SVM 在线性分类器上所做的重大改进——核函数。
3. SVM 中的核函数根据模式识别理论,低维空间线性不可分的模式通过非线性映射到高维特征空间则可能实现线性可分,但是如果直接采用这种技术在高维空间进行分类或回归,则存在确定非线性映射函数的形式和参数、特征空间维数等问题,而最大的障碍则是在高维特征空间运算时存在的“维数灾难”。
采用核函数技术可以有效地解决这样问题。
如图3所示,当分类问题在低纬空间无法用线性分类方法解决时,可以通过φ将低纬空间的数据映射到高纬特征空间中,从而达到线性可分的目的。
图3 低纬度向高纬度空间映射从低纬度向高纬度转化关键在于寻在一个φ函数,但对目前没有一个系统的方法。
对映射过程推导如下:1212123123222211221122222211121222211222(,),(,)(,,),(,,)(,),(,)2()(,)(,)T T T T T T TTT T TTT T T T T x x x x z z z z z z x x x x x x x x x x x x x x x x x x x x K x x φφ<>=<>=<>=++=+=<>= (10)从上式可以得出,我们只关心高维空间里内积的值,而核函数就是接受低空间的输入,并计算出在高纬空间的内积值。
(,)T K x x ,就是我们要找的核函数。
如图4图4 在映射过程中的核函数于是上式,可以表示为1(x)(,)n i i i i g y K x x bα==+∑。
尽管给的问题是线性不可分的,但凡是要求内积的时候我们就选定的核函数来算。
这样求出来的α再和你选定的核函数一组合,就可以得到线性分类器。
但是任然存在以下两个问题:1.既然有很多的核函数,针对具体问题该怎么选择?2.如果使用核函数向高维空间映射后,问题仍然是线性不可分的,那怎么办?第一个问题:对核函数的选择,现在还缺乏指导原则!各种实验的观察结果的确表明,某些问题用某些核函数效果很好,用另一些就很差,但是一般来讲,径向基核函数是不会出太大偏差的一种,首选。
对第二个问题的解决则引出了SVM 中的另一个概念:松弛变量。
4. SVM 中的松弛变量假设有另一个训练集,只比原先这个训练集多了一个样本,映射到高维空间以后,也就多了一个样本点,但是这个样本的位置是这样的,如图5:图5 新增加了一个样本后分类的结果就是图中黄色那个点,它是方形的,因而它是负类的一个样本,这单独的一个样本,使得原本线性可分的问题变成了线性不可分的。
这样类似的问题(仅有少数点线性不可分)叫做“近似线性可分”的问题。
对于人类思维,在大量的样本基础上,可能会认为图5中的黄点是错误的,是噪声,会自动的剔除掉。