初中数学 反比例函数教学参考资料
人教版九年级数学下册《反比例函数》章节复习教案
第26章-反比例函数复习教案一、【教材分析】
二、【教学流程】
2.双曲线y1、y2在第一象限的图象如
3.病人按规定的剂量服用某种药物,得服药后2小时,每毫升血液中的含药量达到最大值为4 毫克.已知服药后,2 小时前每毫升血液中的含药量y(单位:毫克)与时间x(单位:小时
2.近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主
三、【板书设计】
四、【教后反思】
通过本节课的复习,有成功的地方,也有不足之处.
成功之处:
一、定位较准,立足于本校学情。
由于是复习课,学生对知识点的掌握相对而言就稍微轻松些。
我目的是落实知识点和掌握一些基本的题型.
二、习题设计合理,立足于思维训练。
本节课每个知识点都设计了针对性的变式练习,通过练习,学生的解题技巧、方法、思维都得到了一定训练.
三、注重了数学思想方法的渗透。
在复习反比例函数的性质时,我紧紧抓住关键词语,突破难点.性质强调“在同一象限内”,几何意义强调k的绝对值,而我们学生往往忽略这些问题,对此,采用讨论的观点,结合图像观察,让学生不仅看到还要理解到.这样,非常明了的让学生把最容易混淆的知识分清了,突破难点的同时及时总结.这样来渗透数学思想方法:分类讨论和数形结合的思想方法.
不足之处:
一、讲的太多。
这主要体现在知识点回顾时,本来打算一点而过,结果学生的回答偏离了我的预想,让学生讲解我总怕学生不会,自己来讲从而浪费了学生练习的时间。
不能大胆放心把课堂交还给学生.
二、对学生的情感关注太少.在教学过程中对少数同学的回答能及时给予表扬和激励,对大部分学生关注太少.不能激大部分发学生的兴趣,坚定他们学习的信心.。
初中数学八年级下册苏科版11.3用反比例函数解决问题教学课件说课稿
1.知识与技能目标:使学生掌握反比例函数在实际问题中的应用,培养学生运用反比例函数解决实际问题的能力。
2.过程与方法目标:通过小组合作、讨论交流的方式,培养学生主动探索、解决问题的能力,提高学生的数学思维水平。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的自主学习能力,使学生感受到数学与生活实际的紧密联系,提高学生运用数学知识解决实际问题的意识。
(二)学习障碍
在学习本节课之前,学生需要具备对反比例函数的基本理解和运用能力,能够从实际问题中抽象出反比例函数模型。此外,他们需要能够理解和运用比例关系,以及基本的代数运算。在学习障碍方面,部分学生可能对反比例函数的概念理解不深,难以将其应用于实际问题中;还有部分学生可能在代数运算上存在困难,影响他们对反比例函数解决问题的掌握。
初中数学八年级下册苏科版11.3用反比例函数解决问题教学课件说课稿
一、教材分析
(一)内容概述
本节课的教学内容是初中数学八年级下册苏科版11.3用反比例函数解决问题。这部分内容在整个课程体系中处于反比例函数知识点的深化与运用阶段,是对反比例函数知识的巩固和提高。主要知识点包括:反比例函数在实际问题中的应用,如何根据实际问题选择合适的函数模型,以及如何利用反比例函数解决实际问题。
(二)媒体资源
为了辅助教学,我将使用多媒体课件、实物模型和计算器等资源。多媒体课件可以帮助我更直观地展示反比例函数的图像和实际应用,使学生更容易理解和记忆。实物模型则可以帮助学生更直观地理解反比例函数的概念和原理。计算器则可以为学生提供实际的操作平台,让他们在解决实际问题时能够更准确地进行计算。
(三)互动方式
在教学过程中,我计划设计多种师生互动和生生互动的环节。例如,在引入新知识时,我会提出问题,引导学生进行思考和讨论,以激发他们的学习兴趣。在讲解反比例函数的应用时,我会组织学生进行小组合作,共同解决实际问题,以培养他们的团队合作和解决问题的能力。此外,我还会设置一些练习题,让学生进行互相讲解和评价,以提高他们的理解和表达能力。通过这些互动方式,我希望能够促进学生的积极参与和合作,提高他们的学习效果。
人教版九年级数学下册 26.2 反比例函数综合 讲义(PDF版 )
反比例函数的应用复习:反比例函数y =kx 比例系数k 的意义知识点一:反比例函数与正比例函数的交点问题 直线y =k 1x 与双曲线y =k2x 的交点情况:①当k 1与k 2满足:______________,直线y =k 1x 与双曲线y =k2x无交点②当k 1与k 2满足:_______________,直线y =k 1x 与双曲线y =k2x有两个交点。
若其中一个交点坐标为(m ,n ),另一个交点坐标为___________. 【例1】已知函数y =ax 和y =4−a x的图象有两个交点,其中一个交点的横坐标为1,则两个函数图象的交点坐标是 .【变式一】已知函数y =k1x 与y =k 2x x 的图象交点是(-2,5)是,则它们的另一个交点是( )A .(2,5)B .(5,-2)C .(-2,-5)D .(2,-5)【变式二】在同一直角坐标平面内,如果直线y =k 1x 与双曲线y =k2x 有交点,那么k 1和k 2的关系一定是( )A. k 1<0,k 2>0B. k 1>0,k 2<0 C . k 1、k 2同号 D. k 1、k 2异号【变式三】已知:如图,在平面直角坐标系xOy 中,Rt △OCD 的一边OC 在x 轴上,∠C =90°,点D 在第一象限,OC =3,DC =4,反比例函数的图象经过OD 的中点A . (1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt △OCD 的另一边交于点B ,求过A 、B 两点的直线的解析式.yxN M AOPQ知识点二:反比例函数与一次函数直线y =k 1x +b 与双曲线y =k2x 的交点情况:【例2】当k <0时,反比例函数y =kx 和一次函数y =k 1x +2的图象大致是图中的 ( )A B C D【变式1】如图,已知一次函数y 1=x +m (m 为常数)的图象与反比例函数y 2=kx (k 为常数,k ≠0)的图象相交于点A (1,3).(1)求这两个函数的解析式及其图象的另一交点B 的坐标; (2)观察图象,写出使函数值y 1≥y 2的自变量x 的取值范围.【变式二】如图,已知一次函数y =kx +b(k ≠0)的图象与反比例函数y =−8x (m ≠0)的图象交于A ,B 两点,且A 点的横坐标与B 点的纵坐标都是2 ; (1)求一次函数的解析式; (2)求△AOB 的面积.yxBAO【变式三】已知正比例函数和反比例函数的图象都经过点A(3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;(3)在(2)中的一次函数图象与x轴、y轴分别交于C、D,求四边形OABC的面积.【综合例题1】已知正比例函数y=2x的图象与反比例函数y=kx(k≠0)在第一象限内的图象交于点A,过点A作x轴的垂线,垂足为点P,已知△OAP的面积为1.(1)求反比例函数的解析式;(2)有一点B的横坐标为2,且在反比例函数图象上,则在x轴上是否存在一点M,使得MA+MB最小?若存在,请求出点M的坐标;若不存在,请说明理由.【综合练习一】已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=nx(n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D.若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式:kx+b≤nx的解集.【综合练习二】如图,一次函数y=kx+1(k≠0)与反比例函数y=mx(m≠0)的图象有公共点A(1,2),直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别相交于点B,C,连接AC. (1)求k和m的值;(2)求点B的坐标;(3)求△ABC的面积.【综合练习三】如图,反比例函数y=2x的图象与一次函数y=kx+b的图象交于点A、B,点A、B的横坐标分别为1、-2,一次函数图象与y轴交于点C,与x轴交于点D.(1)求一次函数的解析式;(2)对于反比例函数y=2x,当y<-1时,写出x的取值范围;(3)在第三象限的反比例函数图象上是否存在一点P,使得S△ODP=2S△OCA?若存在,请求出点P的坐标;若不存在,请说明理由.【综合练习四】如图,点A(-2,n),B(1,-2)是一次函数y=kx+b的图象和反比例函数y=mx的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围;(3)若C是x轴上一动点,设t=CB-CA,求t的最大值,并求出此时点C的坐标.。
人教版 九年级下册数学 26.1 反比例函数 教案
反比例函数一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●会用描点法画反比例函数的图象●结合图象分析并掌握反比例函数的性质●体会函数的三种表示方法,领会数形结合的思想方法重点难点:●重点:理解并掌握反比例函数的图象和性质●难点:正确画出图象,通过观察、分析,归纳出反比例函数的性质学习策略:●通过观察、分析及归纳,对比正比例和一次函数,更好地理解和掌握反比例函数的概念以及图象的性质与意义。
二、学习与应用“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对性。
知识回顾---复习学习新知识之前,看看你的知识贮备过关了吗?(一)一般地,在一个变化过程中,如果有两个变量X与Y ,并且对于X的每个确定的值,Y都有确定的值与其对应,那么我们就说X是,Y是X的函数。
(二)正比例函数的定义一次函数y=kx+b(k≠0),当时,一次函数y=kx(k≠0)就叫正比例函数。
(三)一般用法求一次函数的解析式。
(四)反比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的一定,这两种量就叫成反比例的量,它们的关系叫做反比例关系。
知识要点——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习。
请在虚线部分填写预习内容,在实线部分填写课堂学习内容。
课堂笔记或者其它补充填在右栏。
知识点一:反比例函数的概念一般地,形如 的函数称为反比例函数,其中x 是自变量,y是函数或叫因变量,x k y =也可以写成: , . 要点诠释:(1)在y=x k 中,自变量x 是分式x k 的分母,当 时,分式xk 无意义,所以自变量x 的取值范围是 ,因变量y 的取值范围是 .。
故函数图象与x 轴、y 轴 ;(2)x k中分母x 的指数为 ,如,2x 3y =就不是反比例函数;(3)y=x k (0k ≠)可以写成1y kx -=(0k ≠)的形式,自变量x 的指数是 ,在解决有关自变量指数问题时应特别注意系数_________这一条件;(4)y=x k(0k ≠)也可以写成 的形式,用它可以迅速地求出反比例函数解析式中的k ,从而得到反比例函数的解析式.两个变量的积均是一个常数(或定值),这也是识别两个量是否成反比例函数关系的关键.知识点二:反比例函数的图象(一)反比例函数的图象特征:(1)反比例函数的图象是一条 ,它有 个分支,这两个分支分别位于第____、_____象限或第_____、_______象限;(2)若点(a ,b )在反比例函数x ky =的图象上,则点(-a ,-b )也在此图象上,故反比例函数的图象关于 对称;(3)在反比例函数中由于x ≠0,k ≠0,所以y ≠0,函数图象永远不会与x 轴、y轴相交,只是无限靠近两坐标轴.(二)画反比例函数的图象的基本步骤:(1)________:自变量的取值应以0为中心,在0的两侧取三对(或三对以上)互为相反数的值,填写y 值时,只需计算右侧的函数值,相应左侧的函数值是与之对应的相反数;(2)_________:描出一侧的点后,另一侧可根据中心对称去描点;(3)_________:按照从左到右的顺序连接各点并延伸,连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交;(4)反比例函数图象的分布是由k 的符号决定的:当k >0时,两支曲线分别位于第 、 象限内,当k <0时,两支曲线分别位于第 、 象限内.知识点三:反比例函数的性质要点诠释:(1)反比例函数xk y =(k 为常数,k 不等于零)的图象是 ; (2)当k >0时,双曲线的两个分支分别位于第 、 象限,在每个象限内,y 值随x 值的 ;(3)当k <0时,双曲线的两个分支分别位于第 、 象限,在每个象限内,y 值随x 值的 ;(4)在反比例函数x ky =(k 为常数,k 不等于零)中,由于00x y ≠≠且,所以两个分支都无限___________但永远不能达到x 轴和y 轴.知识点四:反比例函数ky x =(0k ≠)中的比例系数k 的意义如图所示,过双曲线上任一点(,)P x y 作x 轴、y 轴垂线段PM 、PN ,所得矩形PMON 的面积_________||_______S PM x =⋅=⋅=.∵ ky x =,∴ xy k =.∴ ||S k =,即反比例函数(0)ky k x =≠中的比例系数k 的绝对值表示______________________________________________________.如图所示,过双曲线上一点Q 向x 轴或y 轴引垂线,则所得的三角形的面积_______AOQ S ∆=,即反比例函数(0)ky k x =≠中的比例系数k 的绝对值的一半表示___________________________________________________________________________________________________________________________.知识点五:反比例函数解析式的确定要点诠释:(1)待定系数法,由于在反比例函数关系式x ky =中,只有一个待定系数k ,只要确定了k 的值,也就确定了反比例函数,因此只需给出一组x 、y 的对应值或图象上点的坐标,代入x ky =中即可求出 的值,从而确定反比例函数的关系式.(2)用待定系数法求反比例函数关系式的一般步骤是:①设所求的反比例函数为:xk y =(k ≠0); ②根据已知条件,列出含 的方程;③解出待定系数k 的值;④把k 值代入函数关系式xk y =中. 类型一:反比例函数的概念例1.下列等式中,哪些是反比例函数(1)3x y =; (2)2y x =-; (3)21xy =; (4)52y x =+; (5)32y x =-; (6)13y x =+; (7)4y x =-.思路点拨:根据反比例函数的定义,关键看上面各式能否改写成 (k 为常数,0k≠)的形式,这里 、 是整式, 的分母不是只单独含x ,改写后是13x y x +=,分子不是常数,只有 能写成定义的形式.解: 是反比例函数.总结升华:.举一反三:【变式1】已知函数22)1(--=m x m y 是反比例函数,则此函数解析式为 .解:总结升华:.经典例题——自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三。
九年级数学上册《反比例函数的应用》教案、教学设计
6.小组合作,拓展提高
设置小组合作任务,让学生在合作中探讨反比例函数的更深入问题,如反比例函数与一次函数、二次函数的关系等。培养学生团队合作精神和创新能力。
7.课堂小结,总结提升
在课堂尾声,引导学生对所学知识进行总结,梳理反比例函数的定义、性质和应用。教师进行点评,强调重点,突破难点。
1.请同学们完成课本第十章第3节后的练习题,特别是第1、3、5、7、9题,这些题目涵盖了反比例函数的基本概念和性质,通过练习,加深对反比例函数的认识。
2.结合生活实际,设计一个反比例函数的应用问题,并尝试自己解决。这个问题可以涉及行程、面积、比例分配等方面,要求学生在解决过程中明确反比例函数的应用步骤和关键点。
九年级数学上册《反比例函数的应用》教案、教学设计
一、教学目标
(一)知识与技能
1.理解反比例函数的概念,掌握反比例函数的一般形式,了解常数k的几何意义。
2.能够绘制反比例函数的图像,掌握反比例函数图像的对称性、渐近线等性质。
3.学会运用反比例函数解决实际生活中的问题,如行程问题、面积问题等。
(二)过程与方法
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结反比例函数的定义、图像性质和应用。
2.强调反比例函数在实际问题中的应用,让学生认识到数学知识在生活中的重要性。
3.提醒学生课后复习,巩固所学知识。
4.布置课后作业,适当拓展,提高学生的自主学习能力。
五、作业布置
为了巩固学生对反比例函数的理解和应用,特布置以下作业:
3.加强师生互动,关注学生的个体差异,给予每个学生足够的关注和指导。
反比例函数教案(优秀7篇)
反比例函数教案(优秀7篇)反比例函数教案篇一一、背景分析1.对教材的分析本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。
本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。
本节课前一课时是在具体情境中领会反比例函数的意义和概念。
函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。
同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。
传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。
本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。
因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。
在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。
这也充分体现了重视获取知识过程体验的新课标的精神。
(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。
(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。
(3)难点:探索并掌握反比例函数的主要性质。
2、对学情的分析九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用z+z智能教育平台进行教学,比较形象,便于学生接受。
人教版九年级数学下册26.1.2反比例函数的图象与性质优秀教学案例
在学生掌握了反比例函数的基本性质后,我会组织小组讨论。每个小组选取一个或几个反比例函数,通过绘制图象、分析性质,探讨反比例函数在实际问题中的应用。我会鼓励学生尝试用反比例函数解决一些简单的几何问题,如求两个反比例函数交点的问题。
(四)总结归纳
在总结归纳环节,我会邀请几个小组代表展示他们的讨论成果,让学生通过对比和讨论,总结出反比例函数的普遍性质和图象特征。我会引导学生从数形结合的角度,理解反比例函数的本质,并强调反比例函数在实际问题中的应用价值。
二、教学目标
(一)知识与技能
1.理解反比例函数的定义,掌握反比例函数的一般形式,并能准确表述。
2.学会绘制反比例函数的图象,分析图象特征,总结反比例函数的性质。
3.能够运用反比例函数的性质解决实际问题,提高数学应用能力。
4.掌握反比例函数与一次函数、二次函数等其他类型函数之间的关系,拓展函数知识体系。
(五)实施多元化评价
本案例采用多元化的评价方式,包括自评、互评、师评等,全面评价学生的学习过程和结果。这种评价方式有助于激发学生的学习动力,促使学生反思自己的学习,不断提高。
(二)问题导向
在教学过程中,我将采用问题导向法,引导学生发现问题、提出问题、解决问题。首先,通过提出问题“反比例函数的图象有什么特点?”让学生进行独立思考。然后,组织学生进行小组讨论,共同探讨反比例函数的性质。在学生掌握性质后,再提出问题:“反比例函数在实际生活中有哪些应用?”引导学生将所学知识运用到实际问题中。
(五)作业小结
为了巩固本节课的学习内容,我会布置以下作业:
1.绘制并分析至少三个不同反比例函数的图象,总结它们的性质。
2.结合实际情境,编写至少两个反比例函数的应用问题,并解答。
初中数学八年级下册苏科版11.2反比例函数的图像与性质优秀教学案例
2.反比例函数的性质有哪些?
3.如何运用反比例函数解决实际问题?
(四)总结归纳
在学生小组讨论后,我会引导学生总结反比例函数的性质,并归纳出反比例函数的一般形式。同时,我会强调反比例函数在实际生活中的应用,让学生认识到学习反比例函数的重要性和实际意义。
(五)作业小结
在课堂的最后,我会布置相关的作业,让学生巩固所学知识。作业包括填空题、选择题和解答题,难度适中。在学生完成作业后,我会及时进行批改和反馈,帮助学生巩固知识,提高解题能力。同时,我还会鼓励学生在课后进行自主学习,深入探究反比例函数的知识,提高学生的综合素质。
(四)反思与评价
在教学过程中,我将引导学生进行反思与评价,让学生总结自己在学习过程中的收获和不足。例如,可以让学生回答以下问题:
1.你觉得反比例函数的性质是什么?
2.你认为自己在学习反比例函数的过程中遇到了哪些困难?是如何克服的?
3.你如何评价自己在学习反比例函数的表现?
四、教学内容与过程
(一)导入新课
2.反比例函数的图像有哪些特点?
3.反比例函数的性质有哪些?如何证明?
4.如何运用反比例函数解决实际问题?
(三)小组合作
在教学过程中,我将组织学生进行小组合作,共同探讨反比例函数的性质。例如,可以让学生分组讨论以下问题:
1.反比例函数的图像有哪些特点?
2.反比例函数的性质有哪些?
3.如何运用反比例函数解决实际问题?
在教学过程中,我将以实际问题为载体,引导学生通过观察、分析、归纳等方法,探索反比例函数的图像与性质。同时,注重培养学生的动手操作能力、逻辑思维能力和数学建模能力,使他们在学习过程中体验到数学的乐趣,提高他们对数学学科的兴趣和自信心。
人教版九年级下册数学26.1《反比例函数》教案
在上完这节关于反比例函数的课程后,我不禁思考起几个关键点。首先,我发现学生们对于反比例函数的定义和图像特征掌握得还算不错,他们能够理解y = k/x这个公式背后的反比关系,并且通过图像直观地看到了函数在不同象限的行为。然而,我也注意到,当涉及到将反比例函数应用到实际问题中时,一部分学生似乎遇到了一些困难。
3.在解决实际问题的过程中,强化学生的数据分析观念和数学应用意识,提升解决问题的能力。
4.引导学生体会数学知识之间的内在联系,培养数学思维和整体观念,提高数学核心素养。
比例函数的定义及其一般形式y = k/x (k ≠ 0),明确k的取值对函数图像的影响。
-掌握反比例函数的图像特征,包括图像的对称性、单调性以及在坐标轴上的表现。
3.重点难点解析:在讲授过程中,我会特别强调反比例函数的定义和图像特征这两个重点。对于难点部分,比如反比例函数在第二、四象限的行为,我会通过图像和实际例子来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与反比例函数相关的实际问题,如速度与时间的关系。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。例如,让学生们测量不同距离下的行走时间,观察速度与时间的关系。
人教版九年级下册数学26.1《反比例函数》教案
一、教学内容
人教版九年级下册数学26.1《反比例函数》教案:
1.理解反比例函数的定义,掌握反比例函数的一般形式:y = k/x (k ≠ 0)。
2.掌握反比例函数的图像特征,了解图像在第一、三象限的单调性。
3.学会求解反比例函数的斜率k,并能够根据给定的点或信息确定反比例函数的解析式。
4.掌握反比例函数在实际问题中的应用,例如:速度与时间的关系,浓度与体积的关系等。
人教版数学九年级下册:(反比例函数)反比例函数(教案)
第二十六章反比例函数26.1 反比例函数26.1.1 反比例函数【知识与技能】1.理解反比例函数的意义.2.能够根据已知条件确定反比例函数的解析式.【过程与方法】经历从实际问题中抽象出反比例函数模型的过程中,体会反比例函数来源于生活实际,并确定其解析式.【情感态度】经历反比例函数的形成过程,体验函数是描述变量关系的重要数学模型,培养学生合作交流意识和探索能力.【教学重点】理解反比例函数的意义,确定反比例函数的解析式【教学难点】反比例函数解析式的确定.一、情境导入,初步认识问题京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该次列车平均速度v(单位:km/h)的变化而变化,速度v和时间t的对应关系可用怎样的函数式表示?【教学说明】教师提出问题,学生思考、交流,予以回答.教师应关注学生能否正确理解路程一定时,运行时间与运行速度两个变量之间的对应关系,能否正确列出函数关系式,对有困难的同学教师应及时予以指导.二、思考探究,获取新知问题1某住宅小区要种植一个面积为1000 m2的长方形草坪,草坪的长为y (单位:m)随宽x(单位:m)的变化而变化,你能确定y与x之间的函数关系式吗?问题2已知北京市的总面积为1. 68 ×104平方千米,人均占有的土地面积S(单位平方千米/人)随全市人口 n(单位:人)的变化而变化,则S与n的关系式如何?说说你的理由.思考观察你列出的三个函数关系式,它们有何特征,不妨说说看看.【教学说明】学生相互交流,探寻三个问题中的三个函数关系式,教师再引导学生分析三个函数的特征,找出其共性,引入新知.反比例函数:形如y =kx(k≠0)的函数称为反比例函数,其中x是自变量,y是x的函数,自变量x的取值范围是不等于0的一切实数.试一试下列问题中,变量间的对应关系,可用怎样的函数解析式表示?(1)一个游泳池的容积为2000m 3,注满游泳池所用的时间t(单位:h)随注水速度v(单位: m 3/h)的变化而变化;(2)某长方体的体积为1000cm 3,长方体的高h(单位:cm)随底面积S (单位:cm 2 )的变化而变化.(3)—个物体重100牛,物体对地面的压强 P 随物体与地面的接触面积S 的变化而变化.【教学说明】学生独立完成(1)、(2)、(3)题,教师巡视,关注学生完成情况,肯定他们的成绩,提出个别同学问题,帮助学生加深对构建反比例函数模型的理解.三、典例精析,掌握新知例1 已知y 是x 的反比例函数,当x =2 时,y = 6.(1) 写出y 与x 之间的函数解析式;(2) 当x =4时,求y 的值.【分析】由于y 是x 的反比例函数,故可说其表达式为y =k x,只须把x =2,y=6代入,求出k 值,即可得y =12x,再把x =4代入可求出 y=3. 【教学说明】本例展示了确定反比例函数表达式的方程,教师在评讲时应予以强调.在评讲前,仍应让学生自主探究,完成解答,锻炼学生分析问题,解决问题的能力.例2 如果y 是z 的反比例函数,z 是x 的 正比例函数,且x ≠0,那么y 与x 是怎样的函数关系?【分析】 因为y 是z 的反比例函数,故可设y =1k z(K 1≠0),又z 是x 的正比例函数,则可设 z = 2k x (2k ≠0) x ≠0,∴ y =12k k x . 11220,k 0,0,k k k ≠≠∴≠ 故y =12k k x是y 关于x 的反比例函数. 【教学说明】本例仍可让学生先独立思考,然后相互交流探索结论.最后教师予以评讲,针对学生可能出现的问题(如设:y =k x,z=kx 时没有区分比例系数)予以强调,并对题中x ≠0的条件的重要性加以解释,帮助学生加深对反比例函数意义的理解.四、运用新知,深化理解1.下列哪个等式中y 是x 的反比例函数? y = 4x, y x= 3, y=6x+1,xy=123. 2.已知y 与x 2成反比例,并且当x= 3时,y=4.(1)写出y 和x 之间的函数关系式,y 是x 的反比例函数吗?(2)求出当x =1.5时y 的值.【教学说明】让学生通过对上述两道题的探究,加深对反比例函数意义的理解,增强确定反比例函数表达式的解题技能,教师巡视,再给出答案并解决易错点.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.只有等式xy=123中,y 是x 的反比例函数.2.解:(1)由题知可设y =2,3k y x x==时y=4,∴ k= 4×9 = 36,即 y = 236x,y 不是 x 的反比例函数. (2)y=236x ,x=1.5 时,y=361.5 1.5⨯ =16. 五、师生互动,课堂小结1.知识回顾.2.谈谈这节课你有哪些收获?【教学说明】教师应与学生一起进行交流,共同回顾本节知识,理清解题思路与方法,对普遍存在的疑虑,可共同探讨解决,对少数同学还面临的问题,可让学生与同伴交流获得结果,也可课后个别辅导,帮助他分析,找出问题原因,及时查漏补缺.1.布置作业:从教材“习题26. 1”中选取.2.完成创优作业中本课时的“课时作业”部分.反比例函数是初中学习阶段的第二种函数类型.因此本课时教学仍然是从实际问题入手,充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相互关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理性认识一旦建立,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,可以利用它通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.此外,教师在例题的处理上,应要求学生将解题步骤写完整.。
反比例函数教案(优秀6篇)
反比例函数教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!反比例函数教案(优秀6篇)作为一无名无私奉献的教育工作者,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。
反比例函数教案(优秀3篇)
反比例函数教案(优秀3篇)反比例函数教案篇一一、直接导入法所谓的直接导入法,就是指教师在开始上课的时候就向学生说明该堂课的学习目的、要求和内容等,将本堂课的学习任务、程序向学生交代,并点明本堂课的课题和重点。
运用直接导入法,开门见山地导入,学习的重点突出,主题也比较鲜明,还能节省时间,不仅能够快速地将学生的思维定向,还易于激起学生的学习兴趣,快速地进入教学。
案例“用单位圆中的线段表示三角函数值”师:之前我们学习了三角函数的定义,你们还记得是怎样定义的吗?生:是用两条线段的比值来定义三角函数的数值的。
师:是的,但是用两条线段的比值来定义有很多不方便的地方,如果我们只用一条线段来表示,就显得方便多了,这就是我们今天这堂课要学习的内容。
通过直接导入法进行课堂教学的导入,不但明确了该堂课的主题,还说明了该堂课的学习背景是在前面学习的基础上来延伸的。
二、复习导入法复习导入法就是指所谓的“温故而知新”,通过挖掘前后知识点之间的联系来导入新课,降低学生对新知识的陌生感和恐惧感,让学生能快速地将新的知识点融入到原有的知识结构当中,降低学生对新知识点的认知难度。
复习导入法的思路是通过对与新课内容有关的旧知识的复习来分析新旧知识的联系,并从该联系和新课内容的主题来进行导入设计,学生去思考,再由教师点题导入新课。
案例“反函数”师:前面我们已经学习了函数的基础知识,具体有哪些知识点呢?那么还记得吗?生:记得,主要有函数的定义、函数的定义域、值域等。
师:对,但是,你们有没有注意到有这样的一种比较特殊的函数呢?若存在这样两个函数f(x)=2x-1,f′(x)=0.5x+0.5,它们之间有什么关系呢?我们先来作图看看(如图),由图可见,这两个函数是关于直线y=x对称的,像这样的两个函数我们就说这两个函数互为反函数。
那么判断一个函数是否存在反函数的条件有哪些呢?我们可以从前面学习过的函数的基础知识来总结。
生:(讨论、总结)函数的定义域和值域是一一映射的,且与反函数在相应的区间单调性是一致的。
最新北师大版初中数学九年级上册《6.0第六章 反比例函数》精品教案 (1)
第六章 反比例函数 教学内容:1.1反比例函数教学目标:1. 理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中的反比例函数.2. 能根据实际问题中的条件确定反比例函数的关系式.3. 能判断一个给定函数是否为反比例函数.通过探索现实生活中数量间的反比例关系,体 会和认识反比例函数是刻画现实世界中特定数量关系的一种数学模型;进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化观点. 教学重点:反比例函数的概念教学难点:例1涉及较多的《科学》学科的知识,学生理解问题时有一定的难度。
教学方法:类比 启发教学辅助:多媒体 投影片 教学过程:一、 创设情景 探究问题(3)速度v 是时间t 的函数吗?为什么?[备注](1)引导学生观察、讨论路程、速度、时间这三个量之间的关系,得出关系式s =vt ,指导学生用这个关系式的变式来完成问题(1).(2)引导学生观察、讨论,并运用(1)中的关系式填表,并观察变化的趋势,引导学生用语言描述.3)结合函数的概念,特别强调唯一性,引导讨论问题(3). 情境3:用函数关系式表示下列问题中两个变量之间的关系:(1)一个面积为6400m 2的长方形的长a (m )随宽b (m )的变化而变化;随着速度的变化,全程所用时间发生怎样的变化? 情境1: 当路程一定时,速度与时间成什么关系?(s =vt ) 当一个长方形面积一定时,长与宽成什么关系? [备注]这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xy =m (m 为一个定值),则x 与y 成反比例。
这一情境为后面学习反比例函数概念作铺垫。
情境2:汽车从南京出发开往上海(全程约300km ),全程所用时间t (h )随速度v (km/h )的变化而变化.问题:(1)你能用含有v 的代数式表示t 吗? (2)利用(1)的关系式完成下表:v/(km/h) 60 80 90 100 120 t/h(2)实数m 与n 的积为-200,m 随n 的变化而变化. 问题:(1)这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同? (2)它们有一些什么特征?(3)你能归纳出反比例函数的概念吗?一般地,形如y =kx (k 为常数,k ≠0)的函数称为反比例函数,其中x 是自变量,y 是x 的函数,k 是比例系数.[备注]这个情境先引导学生审题列出函数关系式,使之与我们以前所学的一次函数、正比例函数的关系式进行类比,找出不同点,进而发现特征为:(1)自变量x 位于分母,且其次数是1.(2)常量k ≠0.(3)自变量x 的取值范围是x ≠0的一切实数.(4)函数值y 的取值范围是非零实数.并引导归纳出反比例函数的概念,紧抓概念中的关键词,使学生对知识认知有系统性、完整性,并在概念揭示后强调反比例函数也可表示为y =kx -1(k 为常数,k ≠0)的形式,并结合旧知验证其正确性.二、例题教学练习:1:下列关系式中的y 是x 的反比例函数吗?如果是,比例系数k 是多少?(1) y =x 15 ;(2)y =2x -1;(3)y =- 3x ; 通过这个例题使学生进一步认识反比例函数概念的本质,提高辨别的能力.练习:2:在函数y =2x -1,y =2x+1 ,y =x -1,y =12x 中,y 是x 的反比例函数的有 个.[备注]这个练习也是引导学生从反比例函数概念入手,着重从形式上进行比较,识别一些反比例函数的变式,如y =kx-1的形式. 还有y =2x -1通分为y =2-x x,y 、x 都是变量,分子不是常量,故不是反比例函数,但变为y +1=2x可说成(y +1)与x 成反比例.练习3:若y 与x 成反比例,且x =-3时,y =7,则y 与x 的函数关系式为 . [说明]这个练习引导学生观察、讨论,并回顾以前求一次函数关系式时所用的方法,初步感知用“待定系数法”来求比例系数,并引导学生归纳求反比例函数关系式的一般方法,即只需已知一组对应值即可求比例系数.例题:第5页例1 三、拓展练习1、写出下列问题中两个变量之间的函数关系式,并判断其是否为反比例函数. 如果是,指出比例系数k 的值.(1)底边为5cm 的三角形的面积y (cm 2)随底边上的高x (cm )的变化而变化;(2)某村有耕地面积200ha ,人均占有耕地面积y (ha )随人口数量x (人)的变化而变化;(3)一个物体重120N ,物体对地面的压强p (N/m 2)随该物体与地面的接触面积S (m 2)的变化而变化.2、已知函数y =(m +1)x22 m 是反比例函数,则m 的值为 .反比例函数的自变量x 的取值范围是不等于0的一切实数. [备注]引导学生分析、讨论,列出函数关系式,并检验是否是反比例函数,指出比例系数.四、课堂小结这节课你学到了什么?还有那些困惑?五、布置作业:作业本(1)板书设计:概念:例1解:练习练习教学反思:本节课学生对有关概念都很好的落实,亮点在于练习设计有梯度,学生认识清楚。
人教版九年级数学下册26.1.2反比例函数比例系数K的几何意义优秀教学案例
一、案例背景
本节课的教学内容为人教版九年级数学下册26.1.2反比例函数比例系数K的几何意义。反比例函数是初中数学中的重要内容,对于培养学生的逻辑思维能力、空间想象能力和抽象概括能力具有重要意义。在本节课中,我们需要让学生掌握反比例函数比例系数K的几何意义,理解反比例函数图象的特征,以及能够运用比例系数K解决实际问题。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,总结学习经验和方法。
2.学生之间进行互评、他评,共同提高学习效果。
3.教师对学生的学习情况进行评价,关注学生的进步和成长。
在教学过程中,我们将注重反思与评价,教师引导学评,共同提高学习效果。最后,教师对学生的学习情况进行评价,关注学生的进步和成长。通过反思与评价,培养学生自我监控、自我反思的能力,提高学生的学习效果。
在案例背景中,我们首先可以通过展示实际生活中的反比例函数现象,如商场打折、人口增长等,引发学生的兴趣和思考。然后,通过引导学生观察反比例函数的图象,让学生发现图象上各点的坐标特点,进而总结出比例系数K的几何意义。接下来,我们可以设计一些具有挑战性的数学问题,让学生在解决过程中深化对反比例函数的理解。最后,通过小组讨论、探究活动等方式,让学生在实践中感受反比例函数的应用价值,提高解决问题的能力。
2.培养学生运用比例系数K解决实际问题的能力,提高学生的数学素养。
3.引导学生掌握反比例函数的基本性质,能够运用反比例函数解决生活中的实际问题。
在教学过程中,我们将通过观察实际生活中的反比例函数现象,引导学生发现反比例函数的比例系数K与图象特征之间的关系。通过设计具有挑战性的数学问题,激发学生的思考,培养学生的解决问题能力。在解决实际问题的过程中,让学生感受数学与生活的紧密联系,体会数学的价值。
九年级数学下册同步精品讲义(人教版):反比例函数(教师版)
,
x
x
x
函数 y 的取值范围是 y 0 .故函数图象与 x 轴、 y 轴无交点.
(2) y k ( x
)可以写成
时应特别注意系数
这一条件.
(3) y k ( x
)也可以写成
反比例函数的解析式.
(
)的形式,自变量 x 的指数是-1,在解决有关自变量指数问题
的形式,用它可以迅速地求出反比例函数的比例系数 k ,从而得到
知识精讲
知识点 01 反比例函数的定义
一般地,形如 y k ( k 为常数, k 0 )的函数称为反比例函数,其中 x 是自变量, y 是函数,自变量 x
x 的取值范围是不等于 0 的一切实数.
要点诠释:
(1)在 y k 中,自变量 x 是分式 k 的分母,当 x 0 时,分式 k 无意义,所以自变量 x 的取值范围是
时满足,缺一不可. 【答案与解析】
解:令
k 2
2
1,
①
由①得,
k
=±1,由②得,
k
≠1.
k 1 0, ②
综上, k =-1,即 k =-1 时, y (k 1)x k2 2 是反比例函数. 【总结升华】反比例函数解析式的三种形式:① y k ;② y kx1 ;③ xy k.(k 0) .
第 1 课 反比例函数
目标导航
课程标准 1. 理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式. 2. 能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质. 3. 会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质. 4. 会解决一次函数和反比例函数有关的问题.
(2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;
初中数学九年级上册第六章 反比例函数反比例函数教案
反比例函数教案教学目标:1.领会反比例函数的意义,理解并掌握反比例函数的概念;(重点)2.会判断一个函数是否是反比例函数;(重点)3.会求反比例函数的表达式.(难点)教学重点:理解反比例函数的概念,会求比例系数教学难点:正确列出实际问题中的反比例函数关系。
教学准备:PPT教学过程一、复习引入1、什么是函数?一般地,在某个变化过程中,有个变量,如果给定一个x值,相应地就确定了一个y值,那么我们称的函数,其中是自变量,是因变量。
2、你学过哪些函数?问题1:若每天背10个单词,那么所掌握的单词总y(个)与时间x(天)之间的关系函数式为。
问题2:小明原来掌握了150个单词,以后每天背10个单词,那么他所掌握单词总量y(个)与时间x(天)之间的关系式为。
正比例函数和一次函数都是一次函数二、讲授新课(一)反比例函数概念新学期伊始,小明想买一些笔记本为以后的学习做准备. 妈妈给了小明30 元钱,小明可以如何选择笔记本的价钱和数量呢?通过填表,你发现 x ,y 之间具有怎样的关系?你还能举出这样的例子吗? 合作探究下列问题中,变量间具有函数关系吗?如果有,请写出它们的解析式.(1) 京沪线铁路全程为1463 km ,某次列车的平均速 度v (单位:km/h) 随此次列车的全程运行时间 t (单位:h) 的变化而变化;(2) 某住宅小区要种植一块面积为 1000 m 2 的矩形草 坪,草坪的长 y (单位:m)随宽 x (单位:m)的 变化而变化;(3) 已知北京市的总面积为×104 km 2 ,人均占 有面积 S (km 2/人) 随全市总人口n (单位:人) 的 变化而变化.观察以上三个解析式,你觉得它们有什么共同特点?一般地,形如 (k 为常数,k ≠ 0) 的函数, 叫做反比例函数,其中 x 是自变量,y 是函数.1463v t =,1000y x =,41.6810.S n⨯=k y x =思考:反比例函数 (k ≠0) 的自变量 x 的取值范围是什么?因为 x 作为分母,不能等于零,因此自变量 x 的取值范围是所有非零实数,但实际问题中,应根据具体情况来确定反比例函数自变量的取值范围.想一想:反比例函数除了可以用(k ≠ 0) 的形式表示,还有没有其他表达方式?反比例函数的三种表达方式:(注意 k ≠ 0)练一练:下列函数是不是反比例函数?若是,请指出 k 的值 方法总结:判断一个函数是否是反比例函数,关键看它能否写成y =k x(k 是常数,k ≠0)或xy =k (k ≠0)或y =kx -1(k ≠0)这样的形式,即两个变量的积是不是一个非零常数.如果两个变量的积是一个不为0的常数,则这两个变量就成反比例关系;否则便不成反比例关系.例1 若函数 是反比例函数,求 k 的值,并写出该反比例函数的解析式.方法总结:已知某个函数为反比例函数,只需要根据反比例函数的定义列出方程(组)求解即可.练一练:1. 已知函数 是反比例函数,则k 必须满足2. 当m= 时, 是反比例函数. (二)确定反比例函数的解析式 k y x =k y x =224k y k x -=+-k y x =,1y kx -=,.xy k =13y x -=3x y =-111y x =-31y x =-21y x =(2)(1)k k y x-+=22m y x -=例2 已知 y 是 x 的反比例函数,并且当 x =2时,y =6.(1) 写出 y 关于 x 的函数解析式;(2) 当 x =4 时,求 y 的值.(三)在实际生活中建立函数模型例3 人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体是动态的,车速增加,视野变窄. 当车速为 50km/h 时,视野为 80 度,如果视野 f (度) 是车速 v (km/h) 的反比例函数,求 f 关于 v 的函数解析式,并计算当车速为100km/h 时视野的度数.三、 巩固练习1. 下列函数中,y 是x 的反比例函数的是 ( )A. B. C. D. 2. 填空(1) 若 是反比例函数,则 m 的取值范围是 .(2)若 是反比例函数,则m 的取值范围是 . (3) 若 是反比例函数,则m 的取值范围 是 .3.已知变量 y 与 x 成反比例,且当 x =3时,y =-4.(1) 写出 y 关于 x 的函数解析式;(2) 当 y =6 时,求 x 的值.4.如图所示,已知菱形 ABCD 的面积为180,设它的两条对角线 AC ,BD 的长分别为x ,y . 写出变量 y 与 x 之间的关系式,并指出它是什么函数. 12y x =-21y x =-12y x =+11y x =-1m y x -=()2m m y x+=212m m m y x ---=5. 已知 y 与 x +1 成反比例,并且当 x = 3 时,y = 4,(1) 写出 y 关于 x 的函数解析式;(2) 当 x = 7 时,求 y 的值.6. 已知 y = y 1+y 2,y 1与 (x -1) 成正比例,y 2 与 (x + 1)成反比例,当x = 0 时,y =-3;当 x =1 时,y = -1,求:(1) y 关于 x 的关系式;(2) 当 x = 时,y 的值.四、 课堂小结1. 反比例函数的定义和三种表达方式2. 求反比例函数表达式3. 在实际生活中建立反比例函数模型解决实际问题五、 板书设计12反比例函数⎩⎪⎪⎨⎪⎪⎧概念:一般地,如果两个变量x ,y 之间 的对应关系可以表示成y =k x (k 为常数,k ≠0)的形式,那么称y是x 的反比例函数,反比例函数 的自变量x 不能为0确定表达式:待定系数法建立反比例函数的模型六、 作业习题 1、2、3练习册七、教学反思 复习以前所学的函数知识,在旧知的基础上学习新知识,让学生认识到反比例函数也是描画两个变量之间的关系,培养学生的函数思维,学生熟记反比例函数的形式及模型,为以后进一步学习打好基础。
反比例函数教案-经典教学教辅文档
小组合作探求学习,教师巡查指点,加强组内互帮。
小组互评,表现好的组进行加分奖励。
环节5:回顾反思,提炼升华
1、反比例函数的概念。
2、反比例函数的三种表达方式及成立的条件。
师生共同畅谈播种.
对于小结得好的小组进行加分奖励。
环节6:布置作业,课堂延伸
课本P151 T3
经过先生的回答引导先生参与到课堂活动中。
教师评价,给予积极回答成绩的先生进行加分奖励。吸引更多的先生参与到学习活动中。
环节3:新课讲授
1、反比例关系。
2、反比例函数的概念。
3、反比例函数的三种表达方式及成立的条件。
先生认真听教师讲解。
教师观察先生听课形状,适时进行鼓励。
环节4:课堂练习,延伸拓展,能力提升
小组合作交流,集体订正。
小组互评
环节2:新课导入
(对应目标1)
自学课本P149页,试着回答以下成绩:
2.长方形的面积为12cm²,设一边为xcm,邻边为ycm,则x与y的函数关系式为:
y=。
3.京沪线铁路全长为1318km,乘坐某次列车所用的工夫t与该次列车平均速度v
的函数关系:为:V=。
4、导学案P164 T4
2.会判断一个函数能否是反比例函数。
教学重难点
学习重点:会判断一个函数能否是反比例函数。
学习难点:领会反比例函数的意义,并掌握反比例函数的概念。
教学过程
环节
教学内容
先生活动
评价活动
环节1:复习发问(对应目标1)
1.同学们还记得我们之前学过的一次函数吗?回想一下它的普通方式:一次函数的普通方式是,其中k,b为;反比例函数的普通方式是,其中k为。
北师大版九年级数学上册第六章《反比例函数》教案
第六章反比例函数1 反比例函数1.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.2.经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识.3.经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生学习数学的兴趣.【教学重点】理解和领会反比例函数的概念.【教学难点】领悟反比例函数的概念.一、情境导入,初步认识我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b (其中k,b为常数且k≠0),正比例函数的表达式为y=kx(k为常数且k≠0),在现实生活中,并不是只有这两种类型的表达式,如从A地到B地的路程为1200km,某人开车从A地到B地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t=1200v中,t和v之间肯定不是正比例函数和一次函数关系,那么它们之间究竟是什么关系呢?这就是本节课我们要揭开的奥秘.【教学说明】通过对一次函数和正比例函数的概念、解析式的复习,引出本节课的内容.二、思考探究,获取新知问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1318km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长y随宽x的变化;(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.解:(1)t=1318v;(2)y=1000x;(3)S=41.6810n,其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,S是n的函数.上面的函数关系式,都具有y=kx的形式,其中k是常数.【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.教师组织学生讨论,提问学生,师生互动.【归纳结论】一般地,如果两个变量x,y之间可以表示成y=kx(k为常数且k≠0)的形式,那么称y是x的反比例函数.三、运用新知,深化理解1.下列问题中,变量间的对应关系可用怎样的函数式表示?(1)一个游泳池的容积为2000m3,注满游泳池所用的时间随注水速度v的变化而变化;(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;(3)一个物体重100牛顿,物体对地面的压强p随物体与地面的接触面积S的变化而变化.解答:(1)t=2000v;(2)h=1000S;(3)p=100S.2.下列哪个等式中的y是x的反比例函数:y=4x,yx=3,y=6x+1,xy=123解答:只有xy=123是反比例函数.3.已知函数y=k x ,当x =1时,y =-3,那么这个函数的解析式是(B). A.y=3x B.y=-3x C.y=13x D.y=-13x4.已知y 与x 成反比例,当x =3时,y =4,那么y =3时,x 的值等于(A).A.4B.-4C.3D.-35.若函数y=11m x -(m 是常数)是反比例函数,则m =2,解析式为y=1x. 6.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别.(1)商场推出分期付款购电脑活动,每台电脑12000元,首付4000元,以后每月付y 元,x 个月全部付清,则y 与x 的关系式为__________,__________是函数.(2)某种灯的使用寿命为1000小时,它的使用天数y 与平均每天使用的小时数x 之间的关系式为__________,__________是函数.(3)设三角形的底边、对应高、面积分别为a 、h 、S .当a =10时,S 与h 的关系式为__________,__________是函数;当S =18时,a 与h 的关系式为__________,__________是函数.(4)某工人承包运输粮食的总数是w 吨,每天运x 吨,共运了y 天,则y 与x 的关系式为,是函数.解答:(1)y=8000x ,反比例; (2)y=1000x,反比例; (3)S =5h ,正比例,a=36h ,反比例; (4)y=w x,反比例.7.已知y是x的反比例函数,当x=2时,y=6.(1)写出y与x的函数关系式;(2)求当x=4时,y的值.分析:因为y是x的反比例函数,所以可设y=kx,再把x=2和y=6代入上式就可求出常数k的值.解:(1)设y=k/x,因为x=2时,y=6,所以有6=k/2,解得k=12,因此y=12/x.(2)把x=4代入y=12/x,得y=12/4=3.【教学说明】学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并及时给予引导.四、师生互动、课堂小结通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题6.1”中第2 、3题.2.完成练习册中相应练习.反比例函数概念形成的过程中,大家要充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相互关系及变化规律,逐步加深理解.在概念的形成过程中,逐步建立从概念的感性认识到理性认识.2 反比例函数的图象与性质第1课时反比例函数的图象与性质(1)1.会用描点法画反比例函数图象;2.理解反比例函数的性质.3.通过观察反比例函数图象,分析和探究反比例函数的性质.4.在动手画图的过程中体会乐趣,养成勤于动手,乐于探索的习惯.【教学重点】画反比例函数的图象,理解反比例函数的性质.【教学难点】理解反比例函数的性质,并能灵活应用.一、情境导入,初步认识1.一次函数y=kx+b(k、b是常数,k≠0)的图象是什么形状?其性质有哪些?2.反比例函数y =6x的图象会是什么形状呢?请大家猜猜看,我们可以采用什么方法画?【教学说明】学生思考、交流并回答问题,教师根据学生活动情况进行补充和完善.由此引入新课.二、思考探究,获取新知1.教师先引导学生思考,示范画出反比例函数y=6x的图象,再让学生尝试画出反比例函数y=-6x的图象.2.在作图过程中,启发学生类比画一次函数的图象的过程;探索反比例函数的图象作图步骤:①列表;②描点;③连线.【教学说明】教师在活动中应重点关注:(1)启发学生反比例函数与一次函数的作图基本步骤是一致的.但是在具体的作图过程中又有它自己的特点,和学生一起体会其中的共性和特性.(2)①列表时,关注学生是否注意到自变量的取值应使函数有意义(即x ≠0),同时,所取的点既要使自变量的取值有一定的代表性,又不至于使自变量或对应的函数值太大或是太小,以便于描点和全面反映图象的特征;②描点时,一般情况下所选的点越多则图象越精细;③连线时,让学生根据已经描好的点先思考:图象有没有可能是直线.学生自主探究发现图象特点后,引导学生用平滑的曲线按照自变量从小到大的顺序连接各点,得到反比例函数的图象.3.比较y=6x与y=-6x的图象,它们有什么共同特征?它们之间有什么关系?【教学说明】引导学生观察思考,回答问题,让学生了解反比例函数的图象是一种双曲线,并且让学生切实认识和理解:反比例函数曲线的两个分支是断开的,延伸部分逐渐靠近坐标轴,但永远不与坐标轴相交.在同一坐标系内两个反比例函数图象的对称关系.4.观察函数y=6x和y=-6x以及y=3x和y=-3x的图象.(1)你能发现它们的共同特征以及不同点吗?(2)每个函数的图象分别位于哪几个象限?(3)在每一个象限内,y随x的变化如何变化?【教学说明】学生小组讨论,观察思考后进行分析、归纳,得到反比例函数的性质.【归纳结论】反比例函数y=kx(k为常数,k不为零)的图象是一种双曲线;当k >0时,双曲线的两支分别位于第一、三象限,当k <0时,双曲线的两支分别位于第二、四象限.三、运用新知,深化理解1.如果函数y=2x k+1的图象是双曲线,那么k=-2.2.如果点(1,-2)在双曲线y=kx上,那么该双曲线在第二、四象限.3.如果反比例函数y=3kx-的图象位于第二、四象限内,那么满足条件的正整数k的值是1,2.4.反比例函数y=-1/x的图象大致是图中的(D)5.下列反比例函数图象一定在第一、三象限的是(C)A.y=mxB.y=1mx+C.y=21mx+D.y=-mx6.已知直线y=kx+b的图象经过第一、二、四象限,则函数y=kbx的图象在第二、四象限.7.已知一次函数y=kx+b与反比例函数y=3b kx-的图象交于点(-1,-1),则此一次函数的解析式为y=2x+1,反比例函数的解析式为1yx =.8.作出反比例函数y=12x的图象,并根据图象解答下列问题:(1)当x=4时,求y的值;(2)当y=-2时,求x的值;(3)当y>2时,求x的范围.解:列表:由图知:(1)y=3;(2)x=-6;(3)0<x<6.9.作出反比例函数y=-4x的图象,结合图象回答:(1)当x=2时,y的值;(2)当1<x≤4时,y的取值范围;(3)当1≤y<4时,x的取值范围.解:列表:由图知:(1)y=-2;(2)-4<y≤-1;(3)-4≤x<-1.【教学说明】为了让学生灵活的运用反比例函数的性质解决问题,在研究题目时,要紧扣性质进行分析,达到理解性质的目的.四、师生互动、课堂小结本节课学习了哪些知识?在知识应用过程中要注意什么?你有什么收获?1.布置作业:教材“习题6.2”中第2、3题.2.完成练习册中相应练习.通过本节课的学习使学生理解了反比例函数的意义和性质,并掌握了用描点法画函数图象的方法,同时也为后面的学习奠定了基础.第2课时反比例函数的图象与性质(2)1.探索反比例函数的主要性质.2.经历观察、归纳、交流的过程,提高学生的观察、分析能力和对图形的感知水平.3.让学生进一步体会用反比例函数刻画现实生活问题的作用.【教学重点】准确掌握并能运用反比例函数图象的性质.【教学难点】准确掌握并能运用反比例函数图象的性质.一、情境导入,初步认识上一节课我们已经学习了反比例函数的定义和图象的画法,及图象所在的象限.今天我们继续来探究反比例函数的图象和它的性质.【教学说明】通过类比正比例函数的学习,提出本节课所要研究的问题及其研究方法,并引导学生的研究思路.二、思考探究,获取新知1.画一画反比例函数y=6x和y=-6x的图象.思考:随着x的增大,y值是怎样变化的?【教学说明】加深学生对作反比例函数图象的认识,并在列表、画图过程中进一步感知反比例函数的性质.【归纳结论】反比例函数y=kx(k≠0)的图象:当k>0时,在每一象限内,y的值随着x值的增大而减小;当k<0时,在每一象限内,y的值随着x值的增大而增大.2.在反比例函数y=6x的图象上取两点P(1,6),Q(6,1),过点P分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为S1=______;过点Q分别作x 轴、y轴的平行线,与坐标轴围成的矩形面积为S2=______;S1与S2有什么关系?为什么?【教学说明】引导学生根据一定的分类标准研究反比例函数的性质,同时鼓励学生用自己的语言进行表述,从而提高学生的表达能力与数学语言的组织能力.【归纳结论】反比例函数y=kx(k≠0)中比例系数k的几何意义:过反比例函数y=kx(k≠0)图象上任意一点引x轴、y轴的平行线,与坐标轴围成的矩形面积为k的绝对值. 三、运用新知,深化理解1.若点A(7,y1),B(5,y2)在双曲线y=-3x上,则y1、y2中较小的是y2.2.若反比例函数y=kx,当x>0时,y随x的增大而增大,则k的取值范围是(A)A.k<0B.k>0C.k≤0D.k≥03.下列函数中,当x>0时,y随x的增大而减小的是(B)A.y=xB.y=1 xC.y=-1xD.y=2x4.反比例函数y=22()21mm x--,当x>0时,y随x的增大而增大,则m的值是(C)A.±1B.小于1/2的实数C.-1D.15.已知点A(x1,y1),B(x2,y2)是反比例函数y=kx(k>0)的图象上的两点,若x1<0<x2,则有(A)A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<06.一次函数y=kx+b与反比例函数y=kx的图象如图所示,则下列说法正确的是(C)A.它们的函数值y随着x的增大而增大B.它们的函数值y随着x的增大而减小C.k<0D.它们的自变量x的取值为全体实数第6题图第8题图7.当k<0时,反比例函数y=kx和一次函数y=kx+2的图象大致是(B)8.如图,A、B是函数y=2x的图象上关于原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积记为S,则(B)A.S=2B.S=4C.2<S<4D.S>49.已知点A(m,2)、B(2,n)都在反比例函数y=3mx的图象上.(1)求m、n的值;(2)若直线y=mx-n与x轴交于点C,求C关于y轴对称点C′的坐标. 解:(1)m=n=3;(2)C′(-1,0).10.已知正比例函数和反比例函数的图象都经过点A(3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;(3)在(2)中的一次函数图象与x轴、y轴分别交于C、D,求四边形OABC的面积.解:(1)y=x,y=9x;(2)m=32;y=x-92;(3)S四边形OABC=1 108.11.如图,反比例函数y=kx的图象与直线y=x-2交于点A,且A点纵坐标为1,求该反比例函数的解析式.解:将y A=1代入y=x-2得x A=3,故A的坐标为(3,1).将A(3,1)代入y=kx得k=3,所以反比例函数的解析式为y=3 x .【教学说明】检测题采取多种形式呈现,增加了灵活性,以基本题为主,也有少量综合问题,可使不同水平的学生均有机会获得成功的体验.四、师生互动、课堂小结通过本节课的学习你有哪些收获,还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题6.3”中第1、2题.2.完成练习册中相应练习.本节课是在学生已学完一次函数,并初步认识、感知反比例函数概念之后,对反比例函数的图象和性质的进一步掌握.在教学过程中通过自主探究、小组研讨、学生设计问题等环节充分激发学生的学习兴趣.3反比例函数的应用1.使学生对反比例函数和反比例函数的图象意义理解加深.2.经历分析实际问题中变量之间的关系、建立反比例函数模型,进而解决问题的过程.3.调动学生参与数学活动的积极性,体验数学活动充满着探索性和创造性.【教学重点】建立反比例函数的模型,进而解决实际问题.【教学难点】经历探索的过程,培养学生学习数学的主动性和解决问题的能力.一、情境导入,初步认识复习回顾:1.什么是反比例函数?2.反比例函数的图象是什么?3.反比例函数图象有哪些性质?4.反比例函数的图象对称性如何?【教学说明】通过提出问题,引发学生思考,培养学生解决问题的能力.二、思考探究,获取新知1.某校科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地,你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600N,那么人和木板对地面的压强p (Pa)将如何变化?(见书P142)(1)用含S的代数式表示p,p是S的反比例函数吗?为什么?(2)当木板面积为0.2m2时,压强是多少?(3)如果要求压强不超过6000Pa,木板面积至少要多大?(4)在直角坐标系中,作出相应的函数图象.(5)请利用图象对(2)和(3)作出直观解释,并与同伴进行交流.解:(1)p=600S(S>0),p 是S 的反比例函数. (2)p=3000Pa (3)至少0.1m2【教学说明】在(4)中,要启发学生思考:为什么只需在第一象限作函数图象?此外,还要注意单位长度所表示的数值.在(5)中,要留有充分时间让学生交流,领会实际问题的数学意义,体会数与形的统一.2.蓄电池的电压为定值,使用此电源时,电流I (A )与电阻R (Ω)之间的函数关系如图所示.(见书P 142)(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?(2)如果以此蓄电池为电源的用电器限制电流不得超过10A ,那么用电器的可变电阻应控制在什么范围内?3.如图,正比例函数y =k 1x 的图象与反比例函数y=2k x的图象相交于A ,B 两点,其中点A 的坐标为(3,23).(1)分别写出这两个函数的表达式; (2)你能求出点B 的坐标吗?你是怎样求的?【教学说明】逐步提高学生从函数图象中获取信息的能力,提高感知水平;此外,在解决实际问题时,要引导学生体会知识之间的联系及知识的综合运用. 三、运用新知,深化理解1.一个水池装水12m3,如果从水管中每小时流出x(m3)的水,经过y(h)可以把水放完,那么y与x的函数关系式是12yx=,自变量x的取值范围是x>0.2.若梯形的下底长为x,上底长为下底长的13,高为y,面积为60,则y与x的函数关系是90yx=(不考虑x的取值范围).3.某一数学课外兴趣小组的同学每人制作一个面积为200 cm2的矩形学具进行展示.设矩形的宽为xcm,长为ycm,那么这些同学所制作的矩形的长ycm 与宽xcm之间的函数关系的图象大致是(A)4.下列各问题中两个变量之间的关系,不是反比例函数的是(D)A.小明完成百米赛跑时,所用时间t(s)与他的平均速度v(m/s)之间的关系B.长方形的面积为24,它的长y与宽x之间的关系C.压力为600N时,压强p(Pa)与受力面积S(m2)之间的关系D.一个容积为25L的容器中,所盛水的质量m(kg)与所盛水的体积V(L)之间的关系5.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:则可以反映y与x之间的关系的式子是(D)A.y=3000xB.y=6000xC.y=3000/xD.y=6000/x6.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若2≤x≤10,则y与x的函数图象是(A)7.一个长方体的体积是100cm3,它的长是ycm,宽是5cm,高是xcm.(1)写出长ycm关于高xcm的函数关系式,以及自变量x的取值范围;(2)画出(1)中函数的图象;(3)当高是3cm时,求长.解:(1)y=20/x(x>0);(2)图象略;(3)长为20/3cm.【教学说明】用函数观点来处理实际问题的应用,加深对函数的认识. 四、师生互动、课堂小结今天这节课学习了什么?你掌握了什么?1.布置作业:教材“习题6.4”中第2题.2.完成练习册中相应练习.本节课我们学习了反比例函数的应用,具体步骤是:认真分析实际问题中变量之间的关系,建立反比例函数模型,进而用反比例函数的有关知识解决实际问题.本章复习1.理解反比例函数及其主要性质,能根据所给信息确定反比例函数表达式,画出反比例函数的图象,并利用它们解决简单的实际问题.2.经历探索反比例函数的概念、性质、图象的过程,了解数学与实际问题相结合.3.初步了解数学在实际生活中的应用,增强应用意识,体会数学的重要性.【教学重点】能根据所给信息确定反比例函数的表达式,画出反比例函数的图象,并利用它们解决简单的实际问题.【教学难点】反比例函数的应用.一、知识结构【教学说明】通过回顾知识点,使学生掌握各知识点之间的联系.二、释疑解惑,加深理解1.反比例函数的概念一般地,如果两个变量x,y之间可以表示成y=kx(k为常数且k≠0)的形式,那么称y是x的反比例函数.2.反比例函数的性质反比例函数y=kx(k为常数,k不为零)的图象是一种双曲线;当k >0时,双曲线的两支分别位于第一、三象限,在每一象限内,y的值随着x值的增大而减小;当k <0时,双曲线的两支分别位于第二、四象限,在每一象限内,y的值随着x 值的增大而增大.过双曲线上任一点作x 轴,y 轴的垂线,所得矩形的面积为|k|.3.画反比例函数图象时要注意以下几点:a.列表时自变量的取值应取绝对值相等而符号相反的一对数值,这样既可以简化计算,又便于描点;b.列表、描点时,要尽量多取一些数值,多描一些点,这样方便连线;c.在连线时要用光滑的曲线,不能用折线. 4.反比例函数的应用【教学说明】让学生通过知识性内容的小结,尽快掌握课堂所学的知识. 三、典例精析,复习新知1.下列函数中,哪些是反比例函数?(1)y=-x/3;(2)y=-8/x ;(3)y=4x -5;(4)y=5x -1;(5)xy=1/8. 分析:判断函数是反比例函数,依据反比例函数定义y=kx(k ≠0),它也可变形为y=kx -1及xy=k 的形式,(4)、(5)就是这两种形式.解:其中反比例函数有(2),(4),(5).2.已知反比例函数y=26(2)a a x --,y 随x 的增大而减小,求a 的值及解析式. 分析:根据反比例函数的定义及性质来解此题.解:因为y=26(2)a a x --是反比例函数,且y 随x 的增大而减小,所以261,20.a a ⎨⎩=>⎧---解得 2.a a ⎧=>⎪⎨⎪⎩所以y=2x. 3.已知y=y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,当x=1时,y=4;当x=3时,y=5,求x=-1时,y 的值.分析:先求出y 与x 之间的关系式,再求x=-1时,y 的值.不可草率地将k 1、k 2都写成k 而导致错误,题中给出了两对数值,决定了k 1、k 2的值.4.已知函数y=24213m m x ⎛⎫+ ⎪⎝⎭-是反比例函数,且其函数图象在每一个象限内,y 随x 的增大而减小,求反比例函数的解析式.分析:此题根据反比例函数的定义与性质来解反比例函数y=kx(k ≠0),当k>0时,y 随x 增大而减小,当k<0时,y 随x 增大而增大.解:因为y 是x 的反比例函数,所以4m 2-2=-1,所以m=12或m=-12.因为此函数图象在每一象限内,y 随x 的增大而减小,所以m+13>0,所以m>-13,所以m=12,所以反比例函数的解析式为y=56x. 5.一个长方体的体积是100立方厘米,它的长是y 厘米,宽是5厘米,高是x 厘米.(1)写出用高表示长的函数关系式; (2)写出自变量x 的取值范围; (3)当x=3厘米时,求y 的值.分析:本题依据长方体的体积公式列出方程,然后变形求出长关于高的函数关系式.解:(1)因为长方体的长为y厘米,宽为5厘米,高为x厘米,所以5xy=100,所以y=20x.(2)因为x是长方体的高,所以x>0,即自变量x的取值范围是x>0.(3)当x=3时,y=203=263(厘米).【教学说明】通过例题讲解可以提高学生的观察、分析、综合应用及推理能力.四、复习训练,巩固提高1.一次函数y=-x+1与反比例函数y=3x在同一坐标系中的图象大致是下图中的(A)解:∵y=-x+1的图象经过第一、二、四象限,故排除B、C;又y=3x的图象两支在第一、三象限,故排除D.∴答案应选A.2.如图,P是反比例函数y=kx上一点,若图中阴影部分的矩形面积是2,求这个反比例函数的解析式.分析:求反比例函数的解析式,就是求k的值.此题可根据矩形的面积公式及坐标与线段长度的转化来解.过反比例函数图象上的一点作两条坐标轴的垂线,可得到一个矩形,这个矩形的面积等于y=kx中的|k|.解:设P 点坐标为(x,y).因为P 点在第二象限,所以x<0,y>0. 所以图中阴影部分矩形的长、宽分别为-x,y . 又-xy=2,所以xy=-2.因为k=xy ,所以k=-2.所以这个反比例函数的解析式为y=2x -.3. 当n 取什么值时,y=()2212nn n n x ++-是反比例函数?它的图象在第几象限内?在每个象限内,y 随x 增大而增大还是减小?分析:根据反比例函数的定义y=kx(k ≠0)可知,要使y=()2212n n n n x ++-是反比例函数,必须n 2+2n ≠0且n 2+n -1=-1.解:y=()2212n n n n x++-是反比例函数,则2220,11,n n n n +⎧≠+⎪⎩=⎪⎨-- ∴02,0 1.n n n n ≠≠=⎨=⎧⎩且-或- 即n=-1.故当n=-1时,y=()2212n n n n x ++-表示反比例函数:y=1x-.∵k=-1<0,∴双曲线两支分别在二、四象限内,并且在每个象限内,y 随x 的增大而增大4.一个圆台形物体的上底面积是下底面积的23.如果放在桌上,对桌面的压强是200Pa ,翻过来放,对桌面的压强是多少?解:设下底面是S 0,则由上底面积是23S 0,由p=FS,且S=S 0时,p=200,有F=pS=200×S 0=200S 0.因为是同一物体,所以F=200S 0是定值.所以当S=23S0时,p=FS=020023SS=300(Pa).五、师生互动,课堂小结通过本节课的学习,你有哪些收获?布置作业:教材“复习题”中第1~6题.本节课的学习是学生对函数的概念、图象与性质一个整合的过程,可以帮助学生形成解决问题的一些基本策略,提高分析问题,解决问题的能力,培养学生的创新精神.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§17.4 反比例函数
【教学目标】
一、知识目标
1.了解反比例函数的意义。
2.了解反比例函数图象的特征。
3.掌握反反比例函数的性质。
二、能力目标
通过观察反比例函数图象的特征,能够正确地归纳出反比例函数的性质,进一步培养学生从运动中概括抽象出事物本质属性的能力,进一步拓宽数形结合的思路和方法。
三、情感态度目标
通过利用反比例函数解决简单问题,体验反比例函数与人类生活的密切联系,增强对反比例函数学习的求知欲,发展学生的探索与创新精神。
【重点难点】
重点:由反比例函数图象探索反比例函数的性质。
难点:反比例函数性质的灵活运用.
【教学设想】
课型:新授课
教学思路:情境质疑-观察操作-概括归纳-解决问题。
【媒体平台】
1、教具学具准备:教具:多媒体一台;学具:三角板一副、彩笔若干支、橡皮
一块多媒体课件准备:
2、多媒体课件准备:
(1)课件资讯利用Powerpoint制作幻灯片:问题、例题、达标反馈等;华东师范大学出版社教学光盘中课件:“你能建围栏吗?”、“反比例函数,”;利用FLASH制作“反比例函数图象上的点与两条坐标轴上对应点做同步运动”的课件.
(2)素材储备幻灯片:问题1,2;例题;达标反馈1,2;课件:“建围栏”、“反比例函数”、FLASH动画等.
【课时安排】2课时
第1页共1页。