中职数学基础知识汇总归纳
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中职数学基础知识汇总
预备知识:
1.完全平方和(差)公式: (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2
2.平方差公式: a 2-b 2=(a+b)(a-b)
3.立方和(差)公式: a 3+b 3=(a+b)(a 2-ab+b 2) a 3-b 3=(a-b)(a 2+ab+b 2)
第一章 集合
1. 构成集合的元素必须满足三要素:确定性、互异性、无序性。
2. 集合的三种表示方法:列举法、描述法、图像法。
3. 常用数集:N (自然数集)、Z (整数集)、Q (有理数集)、R (实数集)、N +(正整数集)
4. 元素与集合、集合与集合之间的关系:
(1) 元素与集合是“∈”与“∉”的关系。
(2) 集合与集合是“⊆” “”“”“≠”的关系。
注:(1)空集是任何集合的子集,任何非空集合的真子集。(做题时多考虑Ф是否满足题意)
(2)一个集合含有n 个元素,则它的子集有2n 个,真子集有2n -1个,非空真子集有2n -2个。
5. 集合的基本运算(用描述法表示的集合的运算尽量用画数轴的方法)
(1)A ∩B :A 与B 的公共元素组成的集合
(2)A UB :A 与B 的所有元素组成的集合(相同元素只写一次)。
(3)A C U :U 中元素去掉A 中元素剩下的元素组成的集合。
注:=()U U U C A B C A C B ()U U U C A B C A C B
6. 会用文氏图表示相应的集合,会将相应的集合画在文氏图上。
7. 充分必要条件:p 是q 的……条件 p 是条件,q 是结论
如果p ⇒q ,那么p 是q 的充分条件;q 是p 的必要条件.
如果p ⇔q ,那么p 是q 的充要条件
第二章 不等式
1. 不等式的基本性质:(略)
注:(1)比较两个实数的大小一般用比较差的方法;另外还可以用平方法、倒数法。
(2)不等式两边同时乘以负数要变号!!
(3)同向的不等式可以相加(不能相减),同正的同向不等式可以相乘。
2. 重要的不等式:
(1)ab b a 22
2≥+,当且仅当b a =时,等号成立。
(2)),(2+∈≥+R b a ab b a ,当且仅当b a =时,等号成立。(3) 注:2
b a +(算术平均数)≥ab (几何平均数) 3. 一元一次不等式的解法(略)
4. 一元二次不等式的解法
(1) 保证二次项系数为正
(2) 分解因式(十字相乘法、提取公因式、求根公式法),目的是求根:
(3) 定解:(口诀)大于取两边,小于取中间。
5. 绝对值不等式的解法