奥数几何 三角形五大模型带解析
小学奥数必学几何五大模型及例题解析
小学奥数必学几何五大模型及例题解析一、等积变换模型一一很重要,小学常考⑴等底等高的两个三角形面积相等;⑵两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比。
如下图右图S i : = a :b⑶夹在一组平行线之间的等积变形,如下图S^ ACD = S^ BCD 反之,如果S A ACD =S A BCD,则可知直线AB平行于CD⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;经典例题:(第四届”迎春杯欄试题)如图‘三角形A眈的面积为1 ,其中AE = 3AB ,,三角形册肉的面积是多少?解析:连接CE,如图。
AE=3AB,所以S A AEC =3S △ABC=3所以S A BCE =2又因为:BD=2BC,所以S A BDE=2S A BCE=4点评:此题就是三角形等积变换模型的直接应用二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图,在△ ABC中,D,E分别是AB,AC上的点(如图1)或D在BA的延长线上,E 在AC 上( 女口图2) ,则S A ABC:ADE二(AB AC): (AD AE)此模型的结论可以用将来初中学到的正弦定理进行证明!因为S^ABC=AB >ACsinA,S^ADE=AD >AEsinA所以:S A ABC: S A ADE= (AB/CsSA): (AD >AEsinA) = (AB 0C):(AD >AE)经典例题:已知MEF的面积为7平方厘米,BE = CE、AD = 2BD*CF=3AF,求心眈的面积・三、蝴蝶定理模型任意四边形中的比例关系(蝴蝶定理”:① S i: S 2 = S 4 : S3 或者S S^ = S2 S 4②AO:OC 二 $ S 2 : S 4 S 3蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径•通过构造模型,一方面可以使不规则四边形的面积关系 与四边形内的三角形相联系;另一方面,也可以得到与面积对应 的对角线的比例关系。
奥数几何-三角形五大模型带解析
三角形五大模型【专题知识点概述】本讲复习以前所学过的有关平面几何方面的知识,旨在提高学生对该部分知识的综合运用能力。
重点模型重温一、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;如右图12::S S a b =③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、等分点结论(“鸟头定理”)如图,三角形AED 占三角形ABC 面积的23×14=16三、任意四边形中的比例关系 (“蝴蝶定理”) ① S 1︰S 2=S 4︰S 3 或者S 1×S 3=S 2×S 4 ② ②AO ︰OC=(S 1+S 2)︰(S 4+S 3) 梯形中比例关系(“梯形蝴蝶定理”) ① S 1︰S 3=a 2︰b 2②S 1︰S 3︰S 2︰S 4= a 2︰b 2︰ab ︰ab ;DC BAbas 2s 1③S 的对应份数为(a+b )2 模型四:相似三角形性质如何判断相似(1)相似的基本概念:两个三角形对应边城比例,对应角相等。
(2)判断相似的方法:①两个三角形若有两个角对应相等则这两个三角形相似;②两个三角形若有两条边对应成比例,且这两组对应边所夹的角相等则两个三角形相似。
①a b c hA B C H=== ; ② S 1︰S 2=a 2︰A 2 模型五:燕尾定理S △ABG :S △AGC =S △BGE :S △GEC =BE :EC ; S △BGA :S △BGC =S △AGF :S △GFC =AF :FC ; S △AGC :S △BCG =S △ADG :S △DGB =AD :DB ;【重点难点解析】1. 模型一与其他知识混杂的各种复杂变形2. 在纷繁复杂的图形中如何辨识“鸟头”【竞赛考点挖掘】1. 三角形面积等高成比2. “鸟头定理”3. “蝴蝶定理”【习题精讲】【例1】(难度等级 ※)如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积.【例2】(难度等级 ※)F ED CBA如右图,ABFE 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米,那么图中阴影部分的面积是____平方厘米.【例3】(难度等级 ※)如图,在三角形ABC 中,BC=8 厘米,AD=6厘米,E 、F 分别为AB 和AC 的中点,那么三角形EBF 的面积是多少平方厘米?【例4】(难度等级 ※※※)如图,在面积为1的三角形ABC 中,DC=3BD,F 是AD 的中点,延长CF 交AB 边于E,求三角形AEF 和三角形CDF的面积之和。
奥数几何三角形五大模型带解析
如图,一个长方形被切成8块,其中三块的面积分别为12,23,32,则图中阴影部分的面积为?
【例12】(难度等级 ※※※)
如图,平行四边形ABCD周长为75厘米,以BC为底时高是14厘米;以CD为底时高是16厘米。求平行四边形ABCD的面积。
【例13】(难度等级 ※※※)
如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积.
如右图BE= BC,CD= AC,那么三角形AED的面积是三角形ABC面积的几分之几?
【分析与解】
上图中,三角形AEC与三角形ABC的高相等,而BE= BC,于是EC= BC,
又由于三角形AED与三角形AEC的高相等,而CD= AC,于是AD= AC,
所以,三角形AED的面积= ×三角形AEC的面积= × ×三角形ABC的面积 = ×三角形ABC的面积
3.右图是由大、小两个正方形组成的,小正方形的边长是4厘米, 求三角形ABC的面积。
4.如图,平行四边形ABCD,BE=AB,CF=2CB,GD=3DC,HA=4AD,平行四边形ABCD的面积是2, 求平行四边形ABCD与四边形EFGH的面积比.
5.如图,在△ABC中,延长BD=AB,CE= BC,F是AC的中点,若△ABC的面积是2,则△DEF的面积是多少?
某公园的外轮廓是四边形ABCD,被对角线AC、BD分成四个部分,△AOB面积为1平方千米,△BOC面积为2平方千米,△COD的面积为3平方千米,公园陆地的面积是6.92平方千米,求人工湖的面积是多少平方千米?
【分析与解】
由任意四边形的蝴蝶定理有
所以 平方千米,故公园总面积为
平方千米,人工湖面积为 平方千米
小学奥数几何篇 五大模型——等积变换和共角定理(附答案)
等积变换与共角定理我们的目标:掌握三角形等积变换与共角定理的基本模型;学会构造出模型进行解题三角形等积变换模型(1)等底等高的两个三角形面积相等;(2)两个三角形高相等,面积比等于底之比;如左图1 2 : :S S a b(3)两个三角形底相等,面积比等于高之比;在一组平行线之间的等积变形,如右图;S△ACD=S△BCD;共角定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如下两图例1. 如图三角形ABC的面积为1,其中AE=3AB,BD=2BC,三角形BDE的面积是多少?例2. 如图,三角形ABC的面积是24,D、E分别是BC、AC和AD的中点,求三角形DEF的面积。
例3.如图,在角MON的两边上分别有A、C、E及B、D、F六个点,并且△OAB、△ABC、△BCD、△CDE 、△DEF 的面积都等于1,则△DCF的面积等于例4.E、M分别为直角梯形ABCD两边的点,且DQ、CP、ME彼此平行,若AD=5,BC=7,AE=5,EB=3.求阴影部分的面积例5.如图,已知CD=5,DE=7,EF=15,FG=6,线段AB将图形分成两部分,左边部分面积是38,右边部分是65,那么三角形ADG的面积是例6. 如图,正方形的边长为10,四边形EFGH的面积为5,那么阴影部分的面积是例7. 已知正方形的边长为10,EC=3,BF=2,则S=四边形ABCD例8.如图,平行四边形ABCD,BE=AB,CF=2BC,DG=3DC,HA=4AD,平行四边形ABCD的面积是2,求平行四边形ABCD与四边形EFGH的面积比。
例9. 已知△DEF的面积为7平方厘米,BE=CE,AD=2BD,CF=3AF,求△ABC的面积等积变换与共角定理习题1. 如图,在长方形ABCD中,Y是BD的中点,Z是DY的中点,如果AB=24厘米,BC=8厘米,求三角形ZCY的面积2. 如图,点D、E、F在线段CG上,已知CD=2厘米,DE=8厘米,EF=20厘米,FG=4厘米,AB将整个图形分成上下两部分,下边部分面积是67平方厘米,上边部分是166平方厘米,则三角形ADG的面积是多少平方厘米?3. 如图,阴影部分四边形的外界图形是边长为12厘米的正方形,则阴影部分四边形的面积是多少平方厘米?4. 如图,四边形EFGH的面积是66平方米,EA=AB,CB=BF,DC=CG,HD=DA,求四边形ABCD 的面积。
小学奥数-几何五大模型(等高模型)知识分享
小学奥数-几何五大模型(等高模型)模型一 三角形等高模型已经知道三角形面积的计算公式:三角形面积=底⨯高2÷从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的13,则三角形面积与原来的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.在实际问题的研究中,我们还会常常用到以下结论:①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;如图 12::S S a b =baS 2S 1 DC BA③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;三角形等高模型与鸟头模型两个平行四边形底相等,面积比等于它们的高之比.【例 1】 你有多少种方法将任意一个三角形分成:⑴ 3个面积相等的三角形;⑵ 4个面积相等的三角形;⑶6个面积相等的三角形。
【解析】 ⑴ 如下图,D 、E 是BC 的三等分点,F 、G 分别是对应线段的中点,答案不唯一:CEDBAFC DB A G D CB A⑵ 如下图,答案不唯一,以下仅供参考:⑸⑷⑶⑵⑴⑶如下图,答案不唯一,以下仅供参考:【例 2】 如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线上。
小学奥数必学几何五大模型及例题解析
小学奥数必学几何五大模型及例题解析一、等积变换模型——很重要,小学常考⑴等底等高的两个三角形面积相等;⑵两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比。
如下图右图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACDBCD S S =△△;反之,如果ACDBCD S S =△△,则可知直线AB 平行于CD 。
⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;经典例题:1S 2S 解析:连接CE ,如图。
AE=3AB,所以S △AEC =3S △ABC=3 所以 S △BCE =2又因为:BD=2BC,所以S △BDE =2 S △BCE =4点评:此题就是三角形等积变换模型的直接应用二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2此模型的结论可以用将来初中学到的正弦定理进行证明!因为S △ABC =AB ×ACsinA ,S △ADE =AD ×AEsinA所以:S △ABC :S △ADE= (AB ×ACsinA ):(AD ×AEsinA )=(AB ×AC ):(AD ×AE )经典例题:S △ADF :S △ABC=(AD ×AF ):(AB ×AC )=(2BD ×AF ):(3BD ×4AF )=1:6 S △BDE :S △ABC=(BD ×BE ):(AB ×BC )=(BD ×BE ):(3BD ×2BE )=1:6 S △CEF :S △ABC=(CE ×CF ):(CB ×CA )=(CE ×3AF ):(2CE ×4AF )=3:8 1-1/6-1/6-3/8=7/24 S △ABC =7÷7/24=24(平方厘米).点评:本题直接用到鸟头模型,先分别求出三个角上的三个三角形占S △ABC 的比例,再求出S △DEF 占S △ABC 的比例,就能直接求出S △ABC 的面积。
小学奥数-几何五大模型(等高模型)
模型一三角形等高模型已经知道三角形面积的计算公式:三角形面积底高2从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小);如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化•但是,当三角形的底和高同时1发生变化时,三角形的面积不一定变化•比如当高变为原来的3倍,底变为原来的1,则三角形面积与原来3的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化. 同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.在实际问题的研究中,我们还会常常用到以下结论:①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;如图S i :S2 a:b③夹在一组平行线之间的等积变形,如右上图S A ACD S A BCD ;反之,如果S A ACD S A BCD,则可知直线AB平行于CD •④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.你有多少种方法将任意一个三角形分成: ⑴3个面积相等的三角形; ⑵4个面积相等的三角形; ⑶ 6个面积相等的三角形。
⑴ 如下图,D 、E 是BC 的三等分点,F 、G 分别是对应线段的中点,答案不唯一:⑵ 如下图,答案不唯一,以下仅供参考:如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线上。
⑴ 求三角形ABC 的面积是三角形 ABD 面积的多少倍?⑵求三角形ABD 的面积是三角形 ADC 面积的多少倍?因为三角形 ABD 、三角形 ABC 和三角形ADC 在分别以BD 、BC 和DC 为底时,它们的高都是从 A 点向BC边上所作的垂线,也就是说三个三角形的高相等。
人教版六年级下册数学小升初奥数:几何五大模型模型(课件)
02 三角形:燕尾模型
A
O
B
D
A
F
E O
B D
S△ABD:S△ACD=BD:CD S△OBD:S△OC?B:D?:CD
C
S△ABO:S△CBO=AE:CE S△ACO:S△BCO=AF:BF S△ABO:S△ACO=BD:CD
C
02 三角形:燕尾模型
(1)
例、如图,已知 BD=DC,EC=2AE,三角形 是 30,求阴影部分面积?
01 长方形:一半模型(犬齿模型)
(1)
1 S阴影 2 S长方形
例 、(长郡系)如图,ABFE 和 CDEF 都是矩形,AB 的长是 4 厘米, BC 的长是 3 厘米,那么图中阴影部分的面积是多少平方厘米。
解题思路: 将大长方形分成若干个小长方形;
每个阴影面积都=对应长方形的一半; 全部阴影面积=长方形ABCD的一半; S阴影=3×4÷2=6cm2;
几何五大模型
二、鸟头(共角)定理模型
1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形; 2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。
如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点
则有:S△ABC:S△ADE=(AB×AC):(AD×AE)
ABC
的面积
1 G①
③ ②
③ ⑥③
解题思路: 构建完整燕尾模型,利用份数思维;
AE:CE=1:2
BD:CD=1:1
2
AE:CE=1:2
设S△AEF为1份,则S△CEF为2份 S△ABF:S△ACF=1:1,S△ABF为3份 S△ABF:S△CBF=1:2,S△CBF为6份
小学奥数-几何五大模型(相似模型)分解
模型四 相似三角形模型(一)金字塔模型① AD AE DE AF .AB — AC — BC — AG ;②ADE :ABC=AF : AG。
所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线。
三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半。
相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具。
在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形。
【例1】如图,已知在平行四边形 ABCD 中,AB=16,AD =10, BE =4,那么FC 的长 度是多少?但我们用沙漏就能解决问题,因为AB 平行于CD ,4= 1:4,所以 FC =10^^^ =8 .1+4二)沙漏模型【解析】图中有一个沙漏,也有金字塔,进而有S四边形DEGF=3份 ,S 四边形FGCB =5份,所以ADE: S 四边形DEGF : S 四边形 FGCB =1: 3: 5如图,测量小玻璃管口径的量具 ABC , AB 的长为15厘米,AC 被分为60等份。
如果小玻璃管口 DE 正好对着量具上20等份处(DE 平行AB ),那么小玻璃管口径 DE 是多大?有一个金字塔模型, 所以DE:AB=DC:AC , DE :15 =40:60,所以DE=10厘米。
如图,DE 平行 BC ,若 AD: DB =2:3,那么 S AADE : S AECB =【解析】根据金 字塔 模 型 AD : AB = AE : AC = DE :BC =2: (2+3) =2:5,S A ADE: SA ABC =22 :52=4: 25 ,设SA ADE —4份则SA ABC=25 份,SABEC= 25 X 5 = 3份,所以& A D :SA毛 C 4【例4】如图,A ABC 中,DE , 贝U S A ADE : &边形DEGF :S四边形FGCB【解析】设S AADE =1份,根据面积比等于相似比的平方,所以SA ADE : SA AFG =AD: AF —1: 4,SA ADE : SA ABC =AD: AB =1: 9 ,因此S A AFG =4 份,S A ABC =9 份,【例2】 【解析】 【例3】FG ,BC 互相平行, AD = DF = FB ,2已知△ ABC 中,DE 平行 BC ,若 AD : DB =2:3,且 S 弟形DBCE 比 $△ ADE 大 8.5 cm2求 SA ABC 。
小学奥数几何五大模型
小学奥数几何五大模型一、五大模型简介(1) 等积变换模型1、等底等高的两个三角形面积相等;2、两个三角形高相等,面积之比等于底之比, 如图 1 所示, S △ABD : S △ACD = BD : CD ;3、两个三角形底相等,面积之比等于高之比, 如图 2 所示, S △ACD : S △BCD = AE : BF ;4、在一组平行线之间的等积变形,如图 3 所示, S △ACD = S △BCD ;反之,如果S △ACD = S △BCD ,则直线 AB ∥CD 。
图1图2图3例、如图, △ABC 的面积是 24, D 、E 、F 分别是 BC 、AC 、AD 的中点,求 △DEF 的面积。
解析:根据等积变换知, S = 1 S = 1 ⨯ 24 = 12 , S = 1S △ADC= 1 ⨯12 = 6 , S 2 △ABC = 1 S 2= 1 ⨯ 6 = 3 。
△ADE2 △ADC2 △DEF2 △ADE 2(2)鸟头模型(共角定理)1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;2、共角三角形的面积之比等于对应角(相等或互补)两夹边的乘积之比。
如下图△ABC 中,D、E 分别是AB、AC 上或AB、AC 延长线上的点。
则有:S△ADES△ABC=AD ⨯AE。
AB ⨯AC我们现在以互补为例来简单证明一下共角定理!证明:如图,连接BE ,根据等积变换模型知,S△ADE: S△ABE=AD : AB 、S△ABE: S△CBE=AE : CE ,所以S△ABE:S△ABC=S△ABE:(S△ABE+S△CBE)=AE:AC。
因此S△ADE =S△ADE ⨯S△ABE =AD⨯AE=AD ⨯AE。
S△ABCS△ABES△ABCAB AC AB ⨯AC例、如图,在△ABC 中,点D 在BA 的延长线上,点E 在AC 上,且AB : AD = 5 : 2,AE : EC = 3: 2 ,△ADE 的面积为 12 平方厘米,求△ABC 的面积。
小学奥数-几何五大模型(相似模型)讲解学习
模型四 相似三角形模型(一)金字塔模型 (二) 沙漏模型GF E ABCDAB CDEF G①AD AE DE AF AB AC BC AG===; ②22:ADE ABC S S AF AG =△△:。
所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线。
三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半。
相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具。
在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形。
【例 1】如图,已知在平行四边形ABCD 中,16AB =,10AD =,4BE =,那么FC 的长度是多少?FEDCBA【解析】 图中有一个沙漏,也有金字塔,但我们用沙漏就能解决问题,因为AB 平行于CD ,任意四边形、梯形与相似模型所以::4:161:4BF FC BE CD ===,所以410814FC =⨯=+.【例 2】 如图,测量小玻璃管口径的量具ABC ,AB 的长为15厘米,AC 被分为60等份。
如果小玻璃管口DE 正好对着量具上20等份处(DE 平行AB ),那么小玻璃管口径DE 是多大?605040302010EA D C B【解析】 有一个金字塔模型,所以::DE AB DC AC =,:1540:60DE =,所以10DE =厘米。
【例 3】如图,DE 平行BC ,若:2:3AD DB =,那么:ADE ECB S S =△△________。
A ED CB【解析】 根据金字塔模型:::2:(23)2:5AD AB AE AC DE BC ===+=,22:2:54:25ADE ABC S S ==△△,设4ADE S =△份,则25ABC S =△份,255315BEC S =÷⨯=△份,所以:4:15ADE ECB S S =△△。
小学奥数-几何五大模型(等高模型)
模型一三角形等高模型已经知道三角形面积的计算公式:三角形面积底高2从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小);如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化•但是,当三角形的底和高同时1发生变化时,三角形的面积不一定变化•比如当高变为原来的3倍,底变为原来的1,则三角形面积与原来3的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化. 同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.在实际问题的研究中,我们还会常常用到以下结论:①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;如图S i :S2 a:b③夹在一组平行线之间的等积变形,如右上图S A ACD S A BCD ;反之,如果S A ACD S A BCD,则可知直线AB平行于CD •④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.【例1】你有多少种方法将任意一个三角形分成:⑴3个面积相等的三角形;⑵4个面积相等的三角形;⑶6个面积相等的三角形。
【解析】⑴ 如下图,D、E是BC的三等分点,F、G分别是对应线段的中点,答案不唯一:⑵ 如下图,答案不唯一,以下仅供参考:【例2】如图,BD长12厘米,DC长4厘米,B、C和D在同一条直线上。
⑴ 求三角形ABC的面积是三角形ABD面积的多少倍?⑵求三角形ABD的面积是三角形ADC面积的多少倍?【解析】因为三角形ABD、三角形ABC和三角形ADC在分别以BD、BC和DC为底时,它们的高都是从 A 点向BC边上所作的垂线,也就是说三个三角形的高相等。
小学奥数必学几何五大模型及例题解析
小学奥数必学几何五大模型及例题解析一、等积变换模型——很重要,小学常考⑴等底等高的两个三角形面积相等;⑵两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比。
如下图右图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACDBCD S S =△△;反之,如果ACDBCD S S =△△,则可知直线AB 平行于CD 。
⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;经典例题:1S 2S 解析:连接CE ,如图。
AE=3AB,所以S △AEC =3S △ABC=3 所以 S △BCE =2又因为:BD=2BC,所以S △BDE =2 S △BCE =4点评:此题就是三角形等积变换模型的直接应用二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2此模型的结论可以用将来初中学到的正弦定理进行证明!因为S △ABC =AB ×ACsinA ,S △ADE =AD ×AEsinA所以:S △ABC :S △ADE= (AB ×ACsinA ):(AD ×AEsinA )=(AB ×AC ):(AD ×AE )经典例题:S △ADF :S △ABC=(AD ×AF ):(AB ×AC )=(2BD ×AF ):(3BD ×4AF )=1:6 S △BDE :S △ABC=(BD ×BE ):(AB ×BC )=(BD ×BE ):(3BD ×2BE )=1:6 S △CEF :S △ABC=(CE ×CF ):(CB ×CA )=(CE ×3AF ):(2CE ×4AF )=3:8 1-1/6-1/6-3/8=7/24 S △ABC =7÷7/24=24(平方厘米).点评:本题直接用到鸟头模型,先分别求出三个角上的三个三角形占S △ABC 的比例,再求出S △DEF 占S △ABC 的比例,就能直接求出S △ABC 的面积。
小学奥数-几何五大模型(相似模型)
...任意四边形、梯形与相似模型模型四相似三角形模型( 一 ) 金字塔模型( 二) 沙漏模型A E F DAD F EB GC B G C ①AD AE DE AF ;AB AC BC AG② S△ADE: S△ABC AF 2 : AG 2。
所谓的相似三角形,就是形状相同,大小不同的三角形( 只要其形状不改变,不论大小怎样改变它们都相似 ) ,与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线。
三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半。
相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具。
在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形。
【例1】如图,已知在平行四边形 ABCD 中, AB 16 , AD 10 , BE 4 ,那么 FC 的长度是多少?D CFAB E【解析】图中有一个沙漏,也有金字塔,但我们用沙漏就能解决问题,因为 AB 平行于CD ,所以 BF : FC BE : CD 4:16 1: 4 ,所以 FC 1048 .41.....【例 2】如图,测量小玻璃管口径的量具 ABC , AB 的长为 15 厘米, AC 被分为 60等份。
如果小玻璃管口 DE 正好对着量具上 20 等份处 ( DE 平行 AB ) ,那么小玻璃管口径 DE 是多大?BEA D C 0 10 20 30 40 50 60【解析】 有一个金字塔模型, 所以 DE : AB DC : AC ,DE :15 40:60 ,所以 DE 10 厘米。
【例 3】如图, DE 平行 BC ,若 AD : DB 2:3 ,那么 S △ ADE : S △ ECB________ 。
AD EB C【解析】 根 据 金 字 塔 模 型 AD:AB AE:ACDE :BC 2: (23)2:5 ,S△ ADE : S△ ABC 22 :52 4 : 25,设 S △ ADE 4 份 , 则 S △ABC25 份 , S △BEC 2 5 5 3 份,所以S: S 4 。
小高奥数几何三角形五大模型及例题解析(供参考)
三角形五大模型【专题知识点概述】本讲复习以前所学过的有关平面几何方面的知识,旨在提高学生对该部分知识的综合运用能力。
重点模型重温一、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;如右图12::S S a b =③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△;反之,如果ACD BCD S S =△△CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.DC BAb二、等分点结论(“鸟头定理”)如图,三角形AED 占三角形ABC 面积的23×14=16三、任意四边形中的比例关系 (“蝴蝶定理”)① S 1︰S 2=S 4︰S 3 或者S 1×S 3=S 2×S 4 ② ②AO ︰OC=(S 1+S 2)︰(S 4+S 3)梯形中比例关系(“梯形蝴蝶定理”)① S 1︰S 3=a 2︰b 2②S 1︰S 3︰S 2︰S 4= a 2︰b 2︰ab ︰ab ; ③S 的对应份数为(a+b )2模型四:相似三角形性质如何判断相似(1)相似的基本概念:两个三角形对应边城比例,对应角相等。
(2)判断相似的方法:①两个三角形若有两个角对应相等则这两个三角形相似;S 4S 3s 2s 1O DCBA S 4S 3s 2s 1ba②两个三角形若有两条边对应成比例,且这两组对应边所夹的角相等则两个三角形相似。
hh H cb a CB Aac b HC BA①a b c hA B C H=== ; ② S 1︰S 2=a 2︰A 2模型五:燕尾定理S △ABG :S △AGC =S △BGE :S △GEC =BE :EC ;S △BGA :S △BGC =S △AGF :S △GFC =AF :FC ; S △AGC :S △BCG =S △ADG :S △DGB =AD :DB ;【重点难点解析】1. 模型一与其他知识混杂的各种复杂变形2. 在纷繁复杂的图形中如何辨识“鸟头”【竞赛考点挖掘】1. 三角形面积等高成比2. “鸟头定理”3. “蝴蝶定理”【习题精讲】【例1】(难度等级 ※)如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积.【例2】(难度等级 ※)如右图,ABFE 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米,那么图中阴影部分的面积是____平方厘米.【例3】(难度等级 ※)如图,在三角形ABC 中,BC=8 厘米,AD=6厘米,E 、F 分别为AB 和AC 的中点,那么三角形EBF 的面积是多少平方厘米?【例4】(难度等级 ※※※)如图,在面积为1的三角形ABC 中,DC=3BD,F 是AD 的中点,延长CF 交AB 边于E,求三角形AEF 和三角形CDF 的面积之和。
奥数几何-三角形五大模型带解析
奥数几何-三角形五大模型带解析三角形是几何学中的基本图形之一,具有丰富的性质和应用。
在奥数竞赛中,常常会涉及到三角形的题目。
为了更好地应对这类题目,我们需要掌握三角形的五大模型,即:全等模型、相似模型、正弦定理模型、余弦定理模型和面积模型。
下面将对这五大模型进行详细解析。
一、全等模型全等模型是指两个三角形的对应边长和对应角度都相等。
利用全等模型,我们可以简化一些繁杂的计算,直接得到结论。
例如,已知三角形ABC和三角形DEF的对应边长和对应角度分别相等,我们就可以得出它们全等的结论,即△ABC≌△DEF。
利用全等模型,我们可以将问题简化为求解另一个已知三角形的性质,从而得到答案。
二、相似模型相似模型是指两个三角形的对应角度相等,但对应边长不一定相等。
相似模型在解决一些比例问题时非常有用。
例如,已知△ABC和△DEF的对应角度分别相等,我们可以推出它们相似的结论,即△ABC∽△DEF。
利用相似模型,我们可以通过已知比例关系,求解未知的边长或角度。
三、正弦定理模型正弦定理是指在一个三角形中,三个角的正弦值与对应边的长度之间存在着一定的比例关系。
正弦定理模型在求解三角形的边长和角度时非常有用。
正弦定理的公式为:sinA/a = sinB/b = sinC/c,其中A、B、C为三角形的角度,a、b、c为对应边的长度。
利用正弦定理模型,我们可以通过已知的角度和边长,求解未知的边长或角度。
四、余弦定理模型余弦定理是指在一个三角形中,三个角的余弦值与对应边的长度之间存在着一定的比例关系。
余弦定理模型在求解三角形的边长和角度时非常有用。
余弦定理的公式为:c² = a² + b² - 2abcosC,其中a、b、c为三角形的边长,C为对应的角度。
利用余弦定理模型,我们可以通过已知的边长和角度,求解未知的边长或角度。
五、面积模型面积模型是指通过三角形的面积关系求解三角形的边长或角度。
在面积模型中,我们常常使用海伦公式或高度公式来求解三角形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形五大模型【专题知识点概述】本讲复习以前所学过的有关平面几何方面的知识,旨在提高学生对该部分知识的综合运用能力。
重点模型重温一、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;如右图12::S S a b =③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、等分点结论(“鸟头定理”)DC BAbas 2s 1如图,三角形AED 占三角形ABC 面积的23×14=16三、任意四边形中的比例关系 (“蝴蝶定理”)① S 1︰S 2=S 4︰S 3 或者S 1×S 3=S 2×S 4 ② ②AO ︰OC=(S 1+S 2)︰(S 4+S 3)梯形中比例关系(“梯形蝴蝶定理”) ①S 1︰S 3=a 2︰b 2②S 1︰S 3︰S 2︰S 4= a 2︰b 2︰ab ︰ab ; ③S 的对应份数为(a+b )2模型四:相似三角形性质如何判断相似(1)相似的基本概念:两个三角形对应边城比例,对应角相等。
(2)判断相似的方法:①两个三角形若有两个角对应相等则这两个三角形相似;②两个三角形若有两条边对应成比例,且这两组对应边所夹的角相等则两个S 4S 3s 2s 1O DCBA S 4S 3s 2s 1ba三角形相似。
hhHcbaC BAacbHCBA①a b c hA B C H===;②S1︰S2=a2︰A2模型五:燕尾定理S△ABG:S△AGC=S△BGE:S△GEC=BE:EC;S△BGA:S△BGC=S△AGF:S△GFC=AF:FC;S△AGC:S△BCG=S△ADG:S△DGB=AD:DB;【重点难点解析】1.模型一与其他知识混杂的各种复杂变形2.在纷繁复杂的图形中如何辨识“鸟头”【竞赛考点挖掘】1.三角形面积等高成比2.“鸟头定理”3.“蝴蝶定理”FEDCBA【习题精讲】【例1】(难度等级 ※)如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积.【例2】(难度等级 ※)如右图,ABFE 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米,那么图中阴影部分的面积是____平方厘米.【例3】(难度等级 ※)如图,在三角形ABC 中,BC=8 厘米,AD=6厘米,E 、F 分别为AB 和AC 的中点,那么三角形EBF 的面积是多少平方厘米?【例4】(难度等级 ※※※)如图,在面积为1的三角形ABC 中,DC=3BD,F 是AD 的中点,延长CF 交AB 边于E,求三角GHFED CBA FE DCB AFABCDE形AEF 和三角形CDF 的面积之和。
【例5】(难度等级 ※※)如右图BE=BC ,CD=AC ,那么三角形AED 的面积是三角形ABC 面积的几分之几?【例6】(难度等级 ※)如图所示,四边形ABCD 与AEGF 都是平行四边形,请你证明它们的面积相等.【例7】(难度等级 ※)如图,在长方形ABCD 中,Y 是BD 的中点,Z 是DY 的中点,如果AB=24厘米,BC=8厘米,D ECBAGFE DCB A ZDC求三角形ZCY 的面积.【例8】(难度等级 ※※)如图,正方形ABCD 的边长为4厘米,EF 和BC 平行, ECH 的面积是7平方厘米,求EG 的长。
【例10】(难度等级 ※※)如图已知四边形ABCD 和CEFG 都是正方形,且正方形ABCD 的边长为10厘米,那么图中阴影三角形BFD 的面积为多少平方厘米?【例11】(难度等级 ※※)如图,一个长方形被切成8块,其中三块的面积分别为12,23,32,则图中阴影部分的面HGFE D CBA123223dc b ax积为?【例12】(难度等级※※※)如图,平行四边形ABCD周长为75厘米,以BC为底时高是14厘米;以CD为底时高是16厘米。
求平行四边形ABCD的面积。
【例13】(难度等级※※※)如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积.【例14】(难度等级※※※)如图,三角形ABC被分成了甲(阴影部分)、乙两部分,BD=DC=4,BE=3,AE=6,甲部分面积是乙部分面积的几分之几?【例15】(难度等级※)AB C DEFFEDC BA某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园陆地的面积是6.92平方千米,求人工湖的面积是多少平方千米?【例16】(难度等级 ※※)图中是一个正方形,其中所标数值的单位是厘米.问:阴影部分的面积是多少平方厘米?【作业】1. 如图,三角形ABC 中,2DC BD =,3CE AE =,三角形ADE 的面积是20平方厘米,三角形ABC 的面积是多少?2. 如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是13,35,49.那么图中阴影部分的面积是多少?EDCBA3. 右图是由大、小两个正方形组成的,小正方形的边长是4厘米, 求三角形ABC 的面积。
4. 如图,平行四边形ABCD ,BE=AB ,CF=2CB ,GD=3DC ,HA=4AD ,平行四边形ABCD 的面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比.5. 如图,在△ABC 中,延长BD=AB ,CE=12BC ,F 是AC 的中点,若△ABC 的面积是2,则△DEF 的面积是多少?【例1】(难度等级 ※)如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积. 【分析与解】如右图,连接BH 、HC ,由E 、F 、G 分别为AB 、BC 、CD 三边的中点有AE =EB 、BF =FC 、CG =CD .因此S 1=S 2,S 3=S 4,S 5=S 6,而阴影部分面积=S 2+S 3+S 6,空白部分面积=S 1+S 4+S 5.所以阴影部分面积与空白部分面积相等,均为长方形的一半,即阴影部分面积为28.HGFED CBAF EDCBA【例2】(难度等级 ※)如右图,ABFE 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米,那么图中阴影部分的面积是____平方厘米. 【分析与解】上排4个阴影三角形的高都等于BF ,底边之和恰好为AB ,他们的面积之和为12BF AB ⨯;下排4个三角形的高都等于CF ,底边之和恰好为CD ,他们的面积 之和为1122CF CD CF AB ⨯=⨯.所以阴影部分面积为: 11113462222BF AB CF AB BC AB ⨯+⨯=⨯=⨯⨯=(平方厘米).【例3】(难度等级 ※)如图,在三角形ABC 中,BC=8 厘米,AD=6厘米,E 、F 分别为AB 和AC 的中点,那么三角形EBF 的面积是多少平方厘米? 【分析与解】首先,1242ABC S BC AD ∆=⨯=平方厘米,而F 是AC 中点,所以12ABF ABC S S ∆∆=.又E 是AB 中点,所以11624EBF ABF ABC S S S ∆∆∆===平方厘米.【例4】(难度等级 ※※※)如图,在面积为1的三角形ABC 中,DC=3BD,F 是AD 的中点,延长CF 交AB 边于E,求三角形AEF 和三角形CDF 的面积之和。
【分析与解】连接DE,于是三角形AEF 的面积=三角形EFD 的面积,所求被转化为三角形EDC 的面积。
因为F 是AD 中点,所以三角形AEC 的面积和三角形EDC 的面积相等,设S ∆BDE 为1份,则S ∆AEC=S ∆EDC 为3份 因此S ∆ABC 一共7份, 每份面积为17 所以S ∆EDC 占3份为37。
FE DCB AFABCDE【例5】(难度等级 ※※)如右图BE=BC ,CD=AC ,那么三角形AED 的面积是三角形ABC 面积的几分之几?【分析与解】上图中,三角形AEC 与三角形ABC 的高相等,而BE=BC ,于是EC=BC ,23AEC ABC S S = 又由于三角形AED 与三角形AEC 的高相等,而CD=41AC,于是AD=43AC,34AED AEC S S =所以,三角形AED 的面积=43×三角形AEC 的面积=43×23×三角形ABC 的面积 =12×三角形ABC 的面积【例6】(难度等级 ※)如图所示,四边形ABCD 与AEGF 都是平行四边形,请你证明它们的面积相等. 【分析与解】 连接BE 显然有12ABE ABCD S S ∆=,12ABE AEGF S S ∆= 所以ABCD AEGF S S =【例7】(难度等级 ※)如图,在长方形ABCD 中,Y 是BD 的中点,Z 是DY 的中点,如果AB=24厘米,BC=8厘米,求三角形ZCY 的面积. 【分析与解】192ABCD S AB BC =⨯=平方厘米因为Y 是BD 中点,Z 是DY 中点,所以111111()[()]24222228ZCY CDB ABCD ABCD S S S S ∆∆====D ECBADECBAABCE DYZ DCB A【例8】(难度等级 ※※)如图,正方形ABCD 的边长为4厘米,EF 和BC 平行, ECH 的面积是7平方厘米,求EG 的长。
【分析与解】12×EG ×AE +12×EG ×EB = 7平方厘米 即12×EG ×AB=7平方厘米;EG=3.5厘米【例10】(难度等级 ※※)如图已知四边形ABCD 和CEFG 都是正方形,且正方形ABCD 的边长为10厘米,那么图中阴影三角形BFD 的面积为多少平方厘米? 【分析与解】 连接CF由ABCD 和CEFG 都是正方形有45BDC DCF ∠=∠=︒ 所以BD CF P .由平行线间距离相等知三角形BDF 和三角形BDC 同底等高所以1502BFD BCD ABCD S S S ∆∆===【例11】(难度等级 ※※)如图,一个长方形被切成8块,其中三块的面积分别为12,23,32,则图中阴影部分的面积为?【分析与解】HGFED CBA 123223dc b a x如右图,已知a+b+x=23+a+32+12+b 所以 x=23+32+12x=67.【例12】(难度等级 ※※※)如图,平行四边形ABCD 周长为75厘米,以BC 为底时高是14厘米;以CD 为底时高是16厘米。