最新五大模型——三角形等积变形、共角模型教学文案

合集下载

小学奥数之几何五大模型

小学奥数之几何五大模型

一、等积变换模型⑴等底等高的两个三角形面积相等;其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。

如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。

⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;五大模型1S 2S二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

梯形中比例关系(“梯形蝴蝶定理”)①2213::S S a b =②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2a b +。

四、相似模型相似三角形性质:金字塔模型 沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22::ADE ABC S S AF AG =△△。

所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方。

几何的五大模型学习资料

几何的五大模型学习资料

2)翅膀面积之和:尾巴面积=翅骨:尾骨 (SΔABG+ SΔACG): SΔBGC=AG:GE
3) BECFAD1 CE AF BD
例题:等积变换
例题1:一个长方形分成4个不同的三角形,绿色三角形面积占长方形 面积的15%,黄色三角形面积是21cm2。问:长方形的面积是 多少平方厘米?
分析:SΔ黄+SΔ绿=S长方形÷2(=宽×长÷2)
O
S2 S4
S1:S3:S2:S4=S3=a2:b2:ab:ab
S3
3、蝴蝶定理模型,把梯形肢解模块化,我们
D
EbF
C
可以假设最小的三角形面积为1份。想想?其它各部分所占的份数
4、 ∵ a:b=3:1,∴S2=S4=3份,S1=9份
5、 想想?正方形ABCD中,还有哪些没有包块进去,及与份数之间的关系
5
1G
2
E
43
B
C
F
想想?ΔHBE与ΔHAB、 ΔHBF与ΔHBC、 ΔHDG与ΔHCD之间的比例关系
都存在1:3的关系
所以:S阴影是S正的三分之一,即S阴影=12×12÷3=48
例题:鸟头(共角)模型
例题4:如图,已知三角形ABC面积为1,延长至D,使BD=AB,延长BC 至E,使CE=2BC,延长至F,使AF=3AC,求三角形DEF的面积
C
A
O
E
B
Dቤተ መጻሕፍቲ ባይዱ
例题:等积变换模型
例题4:图中的E、F、G分别是正方形ABCD三条边的三等分点,如果正 方形的边长是12,那么阴影部分的面积是多少?
分析: 正方形的各条边边长相等,都为12,E、F、G为
三等分点,想想?可采用什么模型

最新五大模型——三角形等积变形、共角模型说课讲解

最新五大模型——三角形等积变形、共角模型说课讲解

(★★★)已知三角形DEF的面积为18,AD∶BD=2∶3,AE∶CE=1∶2,BF∶CF=3∶2,则三角形ABC的面积为?小升初几何重点考查内容(★★★)如图,已知三角形ABC面积为1,延长AB至D,使BD=AB;延长BC至E,使CE=2BC;延长CA至F,使AF=3AC,求三角形DEF的面积。

(★★★★)如图将四边形ABCD四条边AB、CB、CD、AD分别延长两倍至点E、F、G、H,若四边形ABCD的面积为5cm2,则四边形EFGH的面积是多少?(★★★)图中三角形ABC的面积是180平方厘米,D是BC的中点,AD的长是AE长的3倍,EF的长是BF长的3倍。

那么三角形AEF的面积是多少平方厘米(★★★★)如图,大长方形由面积是12平方厘米、24平方厘米、36平方厘米、48平方厘米的四个小长方形组合而成。

求阴影部分的面积。

(★★★★★)(2009年“学而思杯”六年级)如图BC=45,AC=21,△ABC被分成9个面积相等的小三角形,那么DI+FK=_____。

在线测试题温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。

1.★★★★设111,,,345AD AB BE BC FC AC===如果三角形DEF的面积为19平方厘米,那么三角形ABC的面积是多少平方厘米?A.46.7 B.45.3 C.45.6 D.46.5FEDCBA2.★★★如下图,将三角形ABC 的BA 边延长1倍到D ,CB 的边延长2倍到E ,AC 边延长1倍到F 。

如果三角形ABC 的面积等于1,那么三角形DEF 的面积是多少? A .10 B .8 C .9 D .11EFDCBA3.★★★★★如图,把四边形ABCD 的各边都延长3倍,得到一个新四边形EFGH ,如果ABCD 的面积是6,则EFGH 的面积是( )? A .130 B .145 C .160 D .1504.★★★★如图, D 是BC 的中点,AD 的长是AE 长的3倍,EF 的长是BF 长的3倍.三角形AEF 的面积是18平方厘米,三角形ABC 的面积是( )平方厘米? A .144 B .168 C .72 D .1005.★★图中的E 、F 、G 分别是正方形ABCD 三条边的三等分点,如果正方形的边长是12,那么阴影部分的面积是( ) A .50 B .48 C .56 D .45EGC B6.★★★如图,1ABC S =△,5BC BD =,4AC EC =,DG GS SE ==,AF FG =。

第23讲 五大模型——共边模型、鸟头模型

第23讲 五大模型——共边模型、鸟头模型

【例2】 (★★★) 如图,由面积分别为2、3、5、7的四个三角形拼成一个大 三角形,已知: S△ADE 2, S△AEC 5, S△BDF 7, S△BCF 3, 那么三角形BEF的面积为___________。
【例3】 (★★★★) 如图,在角MON的两边上分别有A、C、E及B、D、F六个点,并且 △OAB 、△ABC 、 △ BCD、 △CDE、 △DEF 的面积都等于1,则 △DCF的面积等于 。
【例4】 (★★★★) 等腰 △ABC中,AB=AC=12cm,BD、DE、EF、FG把它的面积5等分, 求AF、FD、DC、AG、GE、EB的长。
【例5】(★★★) 已知四边形ABCD、BEFG、CHIJ为正方形,正方形ABCD边长为10, 正方形BEFG边长为6,求阴影部分的面积。
【例6】(★★★★) E、M分别为直角梯形ABCD两边上的点,且DQ、CP、ME彼此平行, 若 AD=5, BC=7,AE=5 , EB=3。求阴影部分的面积。
大海点睛 一、本讲重点知识回顾
等积变形 边比=面积比 共角模型(鸟头模型)
如图, S△ABC : S△ADE ( AB AC ) : ( AD AE )
大海点睛 二、本讲经典例题
例2,例3,例5,例7,例8
第23讲 五大模型——共边模型、鸟头模型
大海传功
等积变形 1. 两个三角形,如果底边相等,高也相等,那么它们的
面积相等。 拓展:夹在一组平行线间的同底三角形面积相等。 2. 两个三角形,如果底相等,一个的高是另一个的n倍, 那么它的面积也是另一个的n倍; 两个三角形,如果高相等,一个的底是另一个的n倍, 那么它的面积也是另一个的n倍。
共角模型(鸟头模型) 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

小学奥数几何篇 五大模型——等积变换和共角定理(附答案)

小学奥数几何篇 五大模型——等积变换和共角定理(附答案)

等积变换与共角定理我们的目标:掌握三角形等积变换与共角定理的基本模型;学会构造出模型进行解题三角形等积变换模型(1)等底等高的两个三角形面积相等;(2)两个三角形高相等,面积比等于底之比;如左图1 2 : :S S a b(3)两个三角形底相等,面积比等于高之比;在一组平行线之间的等积变形,如右图;S△ACD=S△BCD;共角定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如下两图例1. 如图三角形ABC的面积为1,其中AE=3AB,BD=2BC,三角形BDE的面积是多少?例2. 如图,三角形ABC的面积是24,D、E分别是BC、AC和AD的中点,求三角形DEF的面积。

例3.如图,在角MON的两边上分别有A、C、E及B、D、F六个点,并且△OAB、△ABC、△BCD、△CDE 、△DEF 的面积都等于1,则△DCF的面积等于例4.E、M分别为直角梯形ABCD两边的点,且DQ、CP、ME彼此平行,若AD=5,BC=7,AE=5,EB=3.求阴影部分的面积例5.如图,已知CD=5,DE=7,EF=15,FG=6,线段AB将图形分成两部分,左边部分面积是38,右边部分是65,那么三角形ADG的面积是例6. 如图,正方形的边长为10,四边形EFGH的面积为5,那么阴影部分的面积是例7. 已知正方形的边长为10,EC=3,BF=2,则S=四边形ABCD例8.如图,平行四边形ABCD,BE=AB,CF=2BC,DG=3DC,HA=4AD,平行四边形ABCD的面积是2,求平行四边形ABCD与四边形EFGH的面积比。

例9. 已知△DEF的面积为7平方厘米,BE=CE,AD=2BD,CF=3AF,求△ABC的面积等积变换与共角定理习题1. 如图,在长方形ABCD中,Y是BD的中点,Z是DY的中点,如果AB=24厘米,BC=8厘米,求三角形ZCY的面积2. 如图,点D、E、F在线段CG上,已知CD=2厘米,DE=8厘米,EF=20厘米,FG=4厘米,AB将整个图形分成上下两部分,下边部分面积是67平方厘米,上边部分是166平方厘米,则三角形ADG的面积是多少平方厘米?3. 如图,阴影部分四边形的外界图形是边长为12厘米的正方形,则阴影部分四边形的面积是多少平方厘米?4. 如图,四边形EFGH的面积是66平方米,EA=AB,CB=BF,DC=CG,HD=DA,求四边形ABCD 的面积。

小学数学知识图形五大模型

小学数学知识图形五大模型

一、等积变换模型⑴等底等高的两个三角形面积相等;其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。

如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。

⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;五大模型二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或在的延长线上,在上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

梯形中比例关系(“梯形蝴蝶定理”)①2213::S S a b =②221324::::::S S S S a b ab ab =; ③梯形的对应份数为()2a b +。

四、相似模型相似三角形性质:金字塔模型 沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22::ADE ABC S S AF AG =△△。

所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方。

几何五大模型

几何五大模型

一、等积变换模型⑴等底等高的两个三角形面积相等;其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。

如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。

⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△五大模型1S 2S图1 图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

梯形中比例关系(“梯形蝴蝶定理”)①2213::S S a b =②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2a b +。

四、相似模型相似三角形性质:金字塔模型 沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22::ADE ABC S S AF AG =△△。

所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方。

小升初平面几何常考五大模型

小升初平面几何常考五大模型

一、等积变换模型1、等底等高的两个三角形面积相等。

2、两个三角形高相等,面积比等于它们的底之比。

3、两个三角形底相等,面积比等于它的的高之比。

二、共角定理模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。

三、蝴蝶定理模型(说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的。

)四、相似三角形模型相似三角形:是形状相同,但大小不同的三角形叫相似三角形。

相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。

相似三角形的面积比等于它们相似比的平方。

五、燕尾定理模型正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为由题知DC/GP=GC/PK,即DC/(DC-4)=(4+PK)/PK,令DC=a,PK=c,则a=4+c,则S△DEK=a^2+16+c*(4-c)/2+c^2-ac-a(4+a)/2=a^2/2+c^2/2-ac-2a+2c+16=(c+4)^2/2+c^2/2-c( c+4)-2(c+4)+2c+16=16。

1、图17是一个正方形地板砖示意图,在大正方形ABCD中AA1=AA2=BB1=BB2=CC1=CC2=DD1=D D2,中间小正方形 EFGH的面积是16平方厘米,四块蓝色的三角形的面积总和是72平方厘米,那么大正方形ABCD的面积是多少平方厘米?分析与解连AC和BD两条大正方形的对角线,它们相交于O,然后将三角形AOB放在D PC处(如图18和图19)。

已知小正方形EFGH的面积是16平方厘米,所以小正方形EFGH的边长是4厘米。

又知道四个蓝色的三角形的面积总和是72平方厘米,所以两个蓝色三角形的面积是72÷2=36平方厘米,即图19的正方形OCPD中的小正方形的面积是36平方厘米,那么这个正方形的边长就是6厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初几何重点考查内容
(★★★)
已知三角形DEF的面积为18,AD∶BD=2∶3,AE∶CE=1∶2,BF∶CF=3∶2,则三角形ABC的面积为?
(★★★)
如图,已知三角形ABC面积为1,延长AB至D,使BD=AB;延长BC至E,使CE=2BC;延长CA至F,使AF=3AC,求三角形DEF的面积。

(★★★★)
如图将四边形ABCD四条边AB、CB、CD、AD分别延长两倍至点E、F、G、H,若四边形ABCD的面积为5cm2,则四边形EFGH的面积是多少?
(★★★)
图中三角形ABC的面积是180平方厘米,D是BC的中点,AD的长是AE长的3倍,EF的长是BF长的3倍。

那么三角形AEF的面积是多少平方厘米
(★★★★)
如图,大长方形由面积是12平方厘米、24平方厘米、36平方厘米、48平方厘米的四个小长方形组合而成。

求阴影部分的面积。

(★★★★★)
(2009年“学而思杯”六年级)
如图BC=45,AC=21,△ABC被分成9个面积相等的小三角形,那么DI+FK=_____。

在线测试题
温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。

1.★★★★设
111
,,,
345
AD AB BE BC FC AC
===如果三角形DEF的面积为19平方厘米,
那么三角形ABC的面积是多少平方厘米?
A.46.7 B.45.3 C.45.6 D.46.5
F
E
D
C
B
A
2.★★★如下图,将三角形ABC 的BA 边延长1倍到D ,CB 的边延长2倍到E ,AC 边延长1倍到F 。

如果三角形ABC 的面积等于1,那么三角形DEF 的面积是多少? A .10 B .8 C .9 D .11
E
F
D
C
B
A
3.★★★★★如图,把四边形ABCD 的各边都延长3倍,得到一个新四边形EFGH ,如果ABCD 的面积是6,则EFGH 的面积是( )? A .130 B .145 C .160 D .150
4.★★★★如图, D 是BC
的中点,AD 的长是AE 长的3倍,EF 的长是BF 长的3倍.三角形AEF 的面积是18平方厘米,三角形ABC 的面积是( )平方厘米? A .144 B .168 C .72 D .100
5.★★图中的E 、F 、G 分别是正方形ABCD 三条边的三等分点,如果正方形的边长是12,那么阴影部分的面积是( ) A .50 B .48 C .56 D .45
E
G
C B
6.★★★如图,1ABC S =△,5BC BD =,4AC EC =,DG GS SE ==,AF FG =。

三角形FGS 的面积是( )。

A .413
B .25
C .23
D .
1
10 S
G
F E D
C B
A。

相关文档
最新文档