液体表面张力系数的测定报告模板

合集下载

液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告液体表面张力系数的测定实验报告引言:液体表面张力是液体分子间相互作用力在液体表面产生的结果,是液体表面分子间的一种特殊力。

液体表面张力的大小对于液体的性质和应用有着重要的影响,因此准确测定液体表面张力系数具有重要的科学意义和实际应用价值。

实验目的:本实验旨在通过测定液体表面张力系数,了解液体的性质和分子间相互作用力,掌握测定液体表面张力的方法和技巧。

实验原理:液体表面张力系数的测定常用的方法有测量液体表面降低高度法和测量液滴形状法。

本实验采用测量液滴形状法。

实验仪器和药品:1. 精密天平2. 滴定管3. 滴定管架4. 滴定瓶5. 蒸馏水6. 乙醇溶液实验步骤:1. 将实验室温度调至恒定,避免温度对实验结果的影响。

2. 用精密天平称取一定质量的滴定瓶。

3. 在滴定管架上放置一只干净的滴定管。

4. 将滴定瓶倒置并将液体滴入滴定管中,直到滴定管口外溢。

5. 记录液滴的质量和滴定管口外溢的时间。

6. 重复以上步骤3-5,每次使用不同的液体进行实验。

实验数据处理:根据实验数据,可以计算液体表面张力系数。

液体表面张力系数的计算公式为:γ =(4Mg) / (πd^2t)其中,γ为液体表面张力系数,M为液滴的质量,g为重力加速度,d为液滴的直径,t为滴定管口外溢的时间。

实验结果与分析:通过实验测量和计算,得到了不同液体的表面张力系数。

结果显示,乙醇溶液的表面张力系数较大,说明乙醇溶液的分子间相互作用力较强;而蒸馏水的表面张力系数较小,说明蒸馏水的分子间相互作用力较弱。

结论:通过本实验的测定,我们成功地测量了不同液体的表面张力系数,并得出了相应的结论。

液体表面张力系数的测定对于了解液体的性质和分子间相互作用力具有重要意义,对于液体的应用和研究也具有实际价值。

实验中可能存在的误差:1. 实验过程中,滴定管口外溢的时间可能受到人为操作的影响,导致实验结果的误差。

2. 液滴的直径的测量可能存在一定的误差,影响了液体表面张力系数的计算结果。

(完整版)液体表面张力系数的测定实验报告.docx

(完整版)液体表面张力系数的测定实验报告.docx

液体表面张力系数的测定一实验目的1学习用界面张力仪测微小力的原理和方法。

2深入了解液体表面张力的概念,并测定液体的表面张力系数二实验原理1液体表面张力由于液体分子之间存在作用力,使每个位于表面层内的分子都受到一个指向液体内部的力,这就使每个分子都有从液体表面进入液体内部的倾向,所以液体表面积有收缩的趋势,在没有外力的情况下,液滴总是呈球形,致使其表面积缩到最小,这种使液体表面收缩的力叫做液体的表面张力。

2液体表面张力系数的测量原理图 1如图 1,将一表面洁净的矩形金属薄片浸入水中,使其底边保持水平,然后将其轻轻提起,则其附近液面呈现如图示的形状,则0时,f方向趋向垂直向下。

在金属片脱离液体前,受力平衡条件为F f mg (1)而f 2 (l d ) (2)则F mg(3)2(l d )若用金属环替代金属片,则(3)式变为F mg( 4)( d1 d 2 )式中 d1, d2 为圆环的内外直径。

若用补偿法消除mg 的影响,即f F mg则( 4)式可写为f( 5)(d1d2 )即为液体表面张力系数。

三实验仪器液体界面张力仪、标准砝码、环形测件、玻璃杯、镊子、纯净水、小纸片四实验内容及步骤1仪器调整。

调整仪器水平,刻度盘归零。

2调零。

将小纸片放在金属环上,调整调零旋扭,通过放大镜观察,指针、指针的像及红线三线重合。

3绘制质量标准曲线分别在小纸片上放100mg、 300 mg 、 500 mg 、 700 mg、 1000 mg 的砝码,记下对应的刻度盘的示数。

以所加砝码的质量作为横坐标,刻度盘的示数作为纵坐标,绘制质量标准曲线。

4测量纯净水的表面张力系数调零。

用玻璃杯盛大约2/3 的水,放在样品座上,调节样品座的高度,使金属环刚好浸过水面。

左手调节样品座下面的螺丝,使样品座缓慢的下降,右手调节蜗轮旋扭。

两手调节的同时,眼睛观察三线始终重合,直到环把水膜拉破为止。

记下刻度盘示数M ’。

为了消除随机误差,共测五次。

液体表面张力系数测定实验报告

液体表面张力系数测定实验报告

液体表面张力系数测定实验报告一、实验目的。

本实验旨在通过测定液体表面张力系数的实验,掌握测定液体表面张力系数的方法和技巧,了解液体表面张力系数与温度、液体种类等因素的关系,加深对液体表面张力的理解。

二、实验原理。

液体的表面张力是指在液体表面上的一层分子受到的合力,使得表面上的液体分子呈现出对内聚力的表现。

液体的表面张力系数可以用下式表示:γ = F / L。

其中,γ为液体的表面张力系数,F为液体表面张力的大小,L为液体表面的长度。

实验中,我们将通过测定液体表面张力系数的实验来求得液体的表面张力系数。

三、实验仪器与试剂。

1. 二号烧瓶。

2. 纯水。

3. 毛细管。

4. 电子天平。

5. 温度计。

6. 实验台。

四、实验步骤。

1. 将烧瓶内装满纯水,并在水面上插入毛细管。

2. 用电子天平测定毛细管上升的质量m。

3. 用温度计测定水的温度T。

4. 根据实验数据,计算出液体表面张力系数γ。

五、实验数据记录与处理。

实验数据如下:水的质量m = 0.05g。

水的温度T = 25℃。

根据实验数据,我们可以计算出水的表面张力系数γ如下:γ = (2 m g) / (π d h)。

其中,g为重力加速度,取9.8m/s²;d为毛细管的直径,取0.5mm;h为毛细管上升的高度。

经过计算,我们得到水的表面张力系数γ约为0.072N/m。

六、实验结果与分析。

通过实验测定,我们得到水的表面张力系数γ约为0.072N/m。

根据实验结果,我们可以得出结论,水的表面张力系数与温度成反比,温度越高,水的表面张力系数越小;水的表面张力系数与液体种类有关,不同液体的表面张力系数不同。

七、实验总结。

本次实验通过测定液体表面张力系数的实验,我们掌握了测定液体表面张力系数的方法和技巧,了解了液体表面张力系数与温度、液体种类等因素的关系。

通过实验,我们加深了对液体表面张力的理解,为今后的学习和科研工作打下了坚实的基础。

八、参考文献。

1. 《物理化学实验指导》,XXX,XXX出版社,200X年。

(完整版)液体表面张力系数的测定实验报告.docx

(完整版)液体表面张力系数的测定实验报告.docx

(完整版)液体表面张力系数的测定实验报告.docx液体表面张力系数的测定一实验目的1学习用界面张力仪测微小力的原理和方法。

2深入了解液体表面张力的概念,并测定液体的表面张力系数二实验原理1液体表面张力由于液体分子之间存在作用力,使每个位于表面层内的分子都受到一个指向液体内部的力,这就使每个分子都有从液体表面进入液体内部的倾向,所以液体表面积有收缩的趋势,在没有外力的情况下,液滴总是呈球形,致使其表面积缩到最小,这种使液体表面收缩的力叫做液体的表面张力。

2液体表面张力系数的测量原理图 1如图1,将一表面洁净的矩形金属薄片浸入水中,使其底边保持水平,然后将其轻轻提起,则其附近液面呈现如图示的形状,则0时,f方向趋向垂直向下。

在金属片脱离液体前,受力平衡条件为F f mg (1)而f 2 (l d ) (2)则F mg(3)2(l d )若用金属环替代金属片,则(3)式变为F mg( 4)( d1 d 2 )式中 d1, d2 为圆环的内外直径。

若用补偿法消除mg 的影响,即f F mg则( 4)式可写为f( 5)(d1d2 )即为液体表面张力系数。

三实验仪器液体界面张力仪、标准砝码、环形测件、玻璃杯、镊子、纯净水、小纸片四实验内容及步骤1仪器调整。

调整仪器水平,刻度盘归零。

2调零。

将小纸片放在金属环上,调整调零旋扭,通过放大镜观察,指针、指针的像及红线三线重合。

3绘制质量标准曲线分别在小纸片上放100mg、 300 mg 、 500 mg 、 700 mg、1000 mg 的砝码,记下对应的刻度盘的示数。

以所加砝码的质量作为横坐标,刻度盘的示数作为纵坐标,绘制质量标准曲线。

4测量纯净水的表面张力系数调零。

用玻璃杯盛大约2/3 的水,放在样品座上,调节样品座的高度,使金属环刚好浸过水面。

左手调节样品座下面的螺丝,使样品座缓慢的下降,右手调节蜗轮旋扭。

两手调节的同时,眼睛观察三线始终重合,直到环把水膜拉破为止。

测量液体表面张力系数实验报告

测量液体表面张力系数实验报告

测量液体表面张力系数实验报告液体表面张力是液体分子之间的吸引力导致液体表面上发生的现象。

在液体表面,靠近空气的分子受到的吸引力是其他分子所没有的,因此它们会被吸引向液体内部,形成一层相对稳定的表面。

表面张力系数是量化液体表面张力大小的常数。

一、实验目的本实验的主要目的是通过测量液体表面张力来了解液体分子之间的相互作用和物理性质。

具体的实验目标有:1. 掌握测量液体表面张力的方法和技巧;2. 了解不同条件对液体表面张力的影响;3. 理解液体表面张力与液体分子性质的关系。

二、实验原理1. 测量液体表面张力的方法:本实验使用的是悬铂铁环法。

液体样品放置在一个玻璃片上,然后将铂铁环轻轻悬挂在液体表面上,通过调节悬挂的长度,使铂铁环在液体表面平衡,此时液体表面张力F为mg,其中m为铂铁环质量,g为重力加速度。

通过测量悬挂铂铁环的长度,可以计算出液体表面张力系数。

2. 影响液体表面张力的因素:液体表面张力受到温度、溶质浓度和杂质含量等因素的影响。

一般情况下,随着温度升高,液体表面张力降低;溶质浓度的增加会导致液体表面张力增加;杂质的存在也会降低液体表面张力。

三、实验步骤1. 准备工作:清洗实验仪器和玻璃片,确保其表面没有杂质。

2. 精密称量:使用天平和电子天平分别测量铂铁环的质量和液体样品的质量。

3. 处理液体样品:将液体样品倒入一个干净的容器中,并待其静止片刻,让其温度稳定。

4. 实验操作:将磁力搅拌器调至适当速度,加热样品并保持液体温度稳定。

然后将玻璃片浸入液体中,等待液体温度均匀。

5. 开始测量:取出玻璃片,用吹气球将其吹干,再将其置于铂铁环上。

然后通过调节铂铁环长度,在液体表面平衡,记录铂铁环长度。

6. 实验重复:根据实验需要,重复测量多组数据,确保结果的准确性。

7. 数据处理:根据实验原理的公式,计算液体表面张力系数。

如果有多组数据,则计算平均值。

四、实验注意事项1. 实验时应小心操作,避免液体样品溅出或对仪器造成损害。

液体表面张力系数测定实验报告

液体表面张力系数测定实验报告
检查设备
检查表面张力计是否完好无损,电极是否干净、无损坏,确保设备能够正常工作。
操作步骤:安装仪器、加液、测量
安装仪器
按照实验要求正确安装表面张力计,调整水平,确保 测量准确。
加液
使用滴管向测量筒中加入待测液体,注意控制液面高 度和加液速度,避免产生气泡和波动。
测量
启动表面张力计,按照设备操作说明进行测量,记录 测量数据。
数据筛选
去除了明显偏离正常范围的异常数据,确保数据可靠性。
平均值计算
对剩余的有效数据进行了平均值计算,以减小随机误差的影响。
结果展示:绘制图表、呈现结果,直观地展示了实验结果。
结果分析
通过观察图表,可以发现液体表面张力系数在一定范围 内波动,且整体趋势相对稳定。
THANKS FOR WATCHING
感谢您的观看
设备名称
01
表面张力计(常用的是最大泡法表面张力计或悬液滴法表面张
力计)
规格
02
不同型号的表面张力计有不同的测量范围和精度,需根据实验
需求选择合适的规格。
使用方法
03
使用前需对表面张力计进行校准,然后按照实验步骤进行操作,
注意保持实验环境的稳定和避免外界干扰。
注意事项与安全防护措施
注意事项
实验过程中需保持仪器清洁干燥,避免油污 和杂质对实验结果的影响;同时要注意控制 实验温度,避免温度变化对实验结果的影响 。
02 实验原理及设备介绍
表面张力产生原因及影响因素
产生原因
液体表面分子间距离大于液体内部分子 间距离,表面分子间存在相互吸引力, 使得液体表面有收缩到最小的趋势,这 种力称为表面张力。
VS
影响因素
表面张力大小与液体种类、温度、压力和 液体中溶质的种类及浓度等因素有关。

实验报告-液体表面张力系数的测量【范本模板】

实验报告-液体表面张力系数的测量【范本模板】

1. 实验名称液体表面张力系数的测量 2. 实验目的(1)用砝码对硅压阻力敏传感器进行定标,计算该传感器的灵敏度,学习传感器的定标方法。

(2)观察拉脱法测液体表面张力的物理过程和物理现象,并用物理学基本概念和定律进行分析和研究,加深对物理规律的认识。

(3)测量纯水和其它液体的表面张力系数.(4)测量液体的浓度与表面张力系数的关系(如酒精不同浓度时的表面张力系数) 3. 实验原理:主要原理公式及简要说明、原理图(1) 液体表面张力f表面张力f 是存在于液体表面上任何一条分界线两侧间的液体的相互作用拉力,其方向沿液体表面,且恒与分界线垂直,大小与分界线的长度成正比,即L f α= (1)式中α称为液体的表面张力系数,单位为NM -1。

实验证明,表面张力系数的大小与液体的温度、纯度、种类和它上方的气体成分有关。

温度越高,液体中所含杂质越多,则表面张力系数越小。

(2) 液膜拉破前瞬间受力分析将内径为D 1,外径为D 2的金属环悬挂在测力计上,然后把它浸入盛水的玻璃器皿中.当缓慢地向上金属环时,金属环就会拉起一个与液体相连的水柱.由于表面张力的作用,测力计的拉力逐渐达到最大值F (超过此值,水柱即破裂),则F 应当是金属环重力mg 与水柱拉引金属环的表面张力f 之和,如图1 所示。

即图1液膜拉破前瞬间受力分析图f mg F +=(2)由于水柱有两个液面,且两液面的直径与金属环的内外径相同,则有)(21D D f +=απ (3)表面张力系数的值一般很小,测量微小力必须用特殊的仪器。

本实验用FD —NST-I 型液体表面张力系数测定仪用到的测力计是硅压阻力敏传感器,该传感器由弹性梁和贴在梁上传感器芯片组成,其中芯片由四个硅扩散电阻集成一个非平衡电桥。

当外界压力作用与金属梁时,在压力作用下,电桥失去平衡,此时将有电压信号输出,输出电压U 大小与所加外力F 成正比,即KF U = (4)式中K 表示力敏传感器的灵敏度,单位V/N 。

液体表面张力系数的测定实验报告数据

液体表面张力系数的测定实验报告数据

液体表面张力系数的测定实验报告数据一、实验目的1、掌握用拉脱法测量液体表面张力系数的原理和方法。

2、学习使用焦利秤测量微小力的原理和方法。

3、加深对液体表面张力现象的理解。

二、实验原理液体表面层内分子相互作用的结果使得液体表面犹如一张拉紧的弹性膜,具有收缩的趋势。

这种沿着液体表面,垂直作用于单位长度上的力称为表面张力。

设想在液面上作一长为$L$ 的线段,那么表面张力的大小$f$ 就与线段长度$L$ 成正比,即:\f =\alpha L\其中,比例系数$\alpha$ 称为液体的表面张力系数,其单位为$N/m$。

在本实验中,我们采用拉脱法测量液体的表面张力系数。

将一洁净的金属圆环水平地浸没于液体中,然后缓慢地拉起圆环,当圆环即将脱离液面时,表面张力垂直向下作用于圆环,且大小为:\F =(m_{1} + m_{2})g + f\其中,$m_{1}$为圆环的质量,$m_{2}$为圆环所沾附液体的质量,$g$ 为重力加速度。

当圆环刚刚脱离液面时,$f$ 达到最大值,此时:\F =(m_{1} + m_{2})g\由于所沾附液体的质量$m_{2}$不易直接测量,可通过测量圆环内外直径$D_{1}$、$D_{2}$,由公式:\m_{2} =\pi (D_{1} + D_{2})\sigma h\计算得出,其中$\sigma$ 为液体的密度,$h$ 为拉起的液膜高度。

三、实验仪器焦利秤、砝码、游标卡尺、金属圆环、纯净水、温度计等。

四、实验步骤1、安装好焦利秤,调节底座水平,使秤框能上下自由移动。

2、测量金属圆环的内外直径$D_{1}$、$D_{2}$,各测量六次,取平均值。

3、挂上砝码盘,调节焦利秤的零点。

4、将金属圆环洗净,用纯净水冲洗后,挂在焦利秤的小钩上。

5、调节升降旋钮,使圆环缓慢下降,浸没于水中,注意保持水平。

6、然后缓慢上升,观察圆环即将脱离液面时的示数,记录此时的拉力$F$。

7、测量水温,记录温度值。

液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告液体表面张力系数的测定实验报告引言:液体表面张力是液体分子间相互作用力在液体表面上的表现,是液体分子间结合力的一种表现形式。

表面张力的大小与液体的性质、温度、压力等因素有关,因此测定液体表面张力系数对于研究液体性质和应用具有重要意义。

本实验通过测定不同液体的表面张力系数,探究液体性质的差异和影响因素。

实验目的:1. 了解液体表面张力的概念和测定方法。

2. 测定不同液体的表面张力系数,比较液体性质的差异。

3. 探究温度对液体表面张力的影响。

实验原理:实验中采用的测定液体表面张力系数的方法是测量液滴的形状,根据杨氏方程计算表面张力系数。

液滴在平衡状态下,液滴的表面张力与重力平衡,液滴的形状与表面张力系数有关。

实验步骤:1. 准备实验器材:玻璃板、毛细管、滴液瓶、温度计等。

2. 将玻璃板清洗干净,用酒精擦拭表面,以确保无杂质。

3. 用滴液瓶将待测液体滴在玻璃板上,注意滴液的大小和均匀性。

4. 用毛细管将待测液体滴在玻璃板上的液滴吸走,注意保持液滴形状稳定。

5. 用显微镜观察液滴的形状,并测量液滴的直径。

6. 测量环境温度,并记录数据。

7. 重复以上步骤,测量不同液体的表面张力系数。

实验结果与分析:通过实验测量得到不同液体的表面张力系数数据,并进行比较分析。

发现不同液体的表面张力系数存在差异,这与液体的性质有关。

例如,水的表面张力系数较大,而酒精的表面张力系数较小。

这可能是由于水分子之间的氢键作用较强,而酒精分子之间的相互作用力较弱所致。

此外,实验还发现温度对液体表面张力的影响较大。

随着温度的升高,液体分子的热运动增强,分子间相互作用力减弱,导致表面张力系数减小。

这与热力学原理中分子热运动与分子间距离的关系相符。

实验结论:1. 不同液体的表面张力系数存在差异,这与液体的性质有关。

2. 温度升高会导致液体表面张力系数减小。

实验误差与改进:1. 实验中可能存在测量液滴直径的误差,可以使用更精确的测量仪器进行测量。

测液体表面张力系数实验报告

测液体表面张力系数实验报告

测液体表面张力系数实验报告
1.实验内容
本实验旨在测定液体表面张力系数(CST),通过应用DuNoRiTz-Weber系统技术,根据凝胶原理计算表面张力系数,并评估实验中所采用的不同液体对表面张力系数的影响。

2.实验原理
表面张力是一种描述液体表面特征的量,它表示两种介质(气体与液体)在表面上吸引力的大小。

它由层与层之间的力组成,受到凝胶原理和液体分子的性质等多种因素的影响。

因此,表面张力的测量是对液体表面特性的客观评价的重要手段。

DuNoRiTz-Weber系统是一种用于测量表面张力系数的装置,采用改进的“锥形空心圆柱”(Capillary Cylinder)技术,利用弹力理论,将球形接触角的测量结果,转换为表面张力系数(CST)的结果,测量表面张力主要依靠的是气液界面的张力梯度,即表面张力的变化率。

CST可以用来评估液体的表面特征,如分子结构、气体和液体的相互作用能力等。

3.实验仪器
DuNoRiTz-Weber系统,液体样品(清水、乙醇、醋酸和氢氧化钠),计算机,滴定管等。

4.实验步骤
(1)准备DuNoRiTz-Weber系统:把液体样品放入滴定管中,将滴定管放入系统内,并用塑料密封好。

(2)连接计算机:将电脑与DuNoRiTz-Weber系统连接,运行软件,准备测量。

(3)测量:在软件上,设置参数,使系统进行测量,测量过程中注意检查系统状态,并及时用棉签清除油污或水滴,以确保测量精度。

(4)数据记录:测量完毕后,根据测量结果记录下每种液体的表面张力系数(CST),以及批次号等信息。

《液体表面张力系数》物理实验报告(有数据)

《液体表面张力系数》物理实验报告(有数据)

液体表面张力系数的测定一、实验目的1. 理解液体表面张力系数及其测定方法;2. 用拉脱法测定室温下液体的表面张力系数;3. 了解力敏传感器的特性,学会传感器标定的方法。

二、实验原理液体分子之间存在相互作用力,称为分子力。

液体内部每一个分子周围都被同类的其他分子包围,它所受到的周围分子的作用,合力为零。

而液体的表面层(其厚度等于分子的作用半径,约cm 810-左右)内的分子所处的环境跟液体内部的分子缺少了一半和它吸引的分子。

由于液体上的气相层的分子数很少,表面层内每一个分子受到向外的引力比向内的引力小得多,合力不为零,出现一个指向液体内部的吸引力,所以液面具有收缩的趋势,类似于吹胀的气球。

这种液体表面的张力作用,被称为表面张力。

表面张力f 是存在于液体表面上任何一条分界线两侧间的液体的相互作用拉力,其方向沿液体表面,且恒与分界线垂直,大小与分界线的长度成正比,即L f α=(1)式中α称为液体的表面张力系数,单位为N/m ,在数值上等于单位长度上的表面张力。

试验证明,表面张力系数的大小与液体的温度、纯度、种类和它上方的气体成分有关。

温度越高,液体中所含杂质越多,则表面张力系数越小。

将内径为D 1、外径为D 2的金属环水平吊起悬挂在测力计上,然后把它部分浸入待测液体中。

当缓慢地向上拉起金属环时,金属环就会带起一个与液体相连的液环。

由于表面张力的作用,测力计的拉力逐渐达到最大值F (超过此值,液环即破裂),则F 应当是金属环重力G 与液环拉引金属环的表面张力f 之和,即f G F +=(2)由于液环有内外两个液面,且两液面的直径与金属环的内外径相同,则有 )(21D D f +=απ(3)则表面张力系数为)(21D D f+=πα(4)表面张力系数的值一般很小,测量微小力必须用特殊的仪器。

本实验用到的测力计是硅压阻式力敏传感器,该传感器灵敏度高,线性和稳定性好,以数字式电压表输出显示。

若力敏传感器拉力为F 时,数字式电压表的示数为U ,则有BUF =(5)式中B 表示力敏传感器的灵敏度,单位V/N 。

液体表面张力系数测定实验报告-液体表面系数实验报告

液体表面张力系数测定实验报告-液体表面系数实验报告

液体表面张力系数的测量【实验目的】1、 掌握用砝码对硅压阻式力敏传感器定标的方法,并计算该传感器的灵敏度2、 了解拉脱法测液体表面张力系数测定仪的结构、测量原理和使用方法,并用它测量纯水表面张力系数。

3、 观察拉脱法测量液体表面张力系数的物理过程和物理现象,并用物理学概念和定律进行分析研究,加深对物理规律的认识 4、 掌握读数显微镜的结构、原理及使用方法,学会用毛细管测定液体的表面张力系数。

5、 利用现有的仪器,综合应用物理知识,自行设计新的实验内容。

【实验原理】一、拉脱法测量液体的表面张力系数把金属片弯成如图 1(a )所示的圆环状,并将该圆环吊挂在灵敏的测力计上,如图 1(b )所示,然后把它浸到待测液体中。

当缓缓提起测力计(或降低盛液体的器皿)时,金属圆环就会拉出一层与液体相连的液膜,由于表面张力的作用,测力计的读数逐渐达到一个最大值 F (当超过此值时,液膜即破裂),则 F 应是金属圆环重力 mg 与液膜拉引金属圆环的表面张力之和。

由于液膜有两个表面,若每个表面的力为fL (L 为圆形液膜的周长),则有2F mg L (2)所以2FmgL(3)圆形液膜的周长L 与金属圆环的平均周长,L 相当,若圆环的内、外直径分别为1,2D D 。

则圆形液膜的周长L ≈L ’=(D 1+D 2)/2 (4)将(4)式代入(3)式得12F mgD D (5)硅压阻式力敏传感器由弹性梁和贴在梁上的传感器芯片组成,其中芯片由四个硅扩散电阻集成一个非平衡电桥。

当外界压力作用于金属梁时,在压力作用下,电桥失去平衡,此时将有电压信号输出,输出电压大小与所加外力成正比。

即U K F (6)式中,ΔF 为外力的大小;K 为硅压阻式力敏传感器的灵敏度,单位为 V/N ;ΔU 为传感器输出电压的大小。

二、毛细管升高法测液体的表面张力系数1一只两端开口的均匀细管(称为毛细管)插入液体,当液体与该管润湿且接触角小于90°时,液体会在管内上升一定高度。

液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告一、实验目的1、掌握用拉脱法测量液体表面张力系数的原理和方法。

2、学习使用焦利秤测量微小力的原理和方法。

3、加深对液体表面现象的理解。

二、实验原理液体表面层内分子相互作用的结果使得液体表面具有一种收缩的趋势,犹如紧张的弹性薄膜。

这种沿着液体表面,垂直作用于单位长度上的力称为表面张力。

设想在液面上作一长为$L$ 的线段,在$F$ 的作用下,线段两侧液面都将沿液面方向产生一个拉力$F$ ,则表面张力$σ$ 的大小与线段长$L$ 成正比,即:$σ =\frac{F}{L}$若将一金属框(金属丝)浸入液体中,然后缓慢拉出液面,此时在金属框(金属丝)下面将带出一层液膜。

当金属框(金属丝)刚好脱离液面时,所需要的向上的拉力$F$ 等于液膜的重力$mg$ 与表面张力的合力。

若忽略金属框(金属丝)的重力和浮力,且液膜很薄,则有:$F = mg +2σL$式中,$m$ 为所拉出液膜的质量,$g$ 为重力加速度。

设金属框(金属丝)的长度为$L$ ,宽度为$d$ ,所拉出液膜的高度为$h$ ,液体的密度为$ρ$ ,则液膜的质量为:$m =ρLdh$将上式代入$F = mg +2σL$ 中,可得:$σ =\frac{F mg}{2L} =\frac{F ρLdgh}{2L}$若已知金属框(金属丝)的长度$L$ 、宽度$d$ 、液体的密度$ρ$ 和重力加速度$g$ ,只要测出拉力$F$ 和液膜高度$h$ ,即可求出液体的表面张力系数$σ$ 。

三、实验仪器焦利秤、砝码、游标卡尺、镊子、玻璃杯、纯净水、温度计等。

四、实验步骤1、安装和调节焦利秤(1)将焦利秤挂在铁架台上,调节底座的水平螺丝,使立柱垂直。

(2)在秤框内挂上砝码盘,旋转调节旋钮,使秤框上的指针与平面镜中的像重合,此时焦利秤达到平衡。

(3)测量砝码盘的质量$m_0$ 。

2、测量金属丝的长度$L$ 和宽度$d$用游标卡尺测量金属丝的长度和宽度,分别测量多次,取平均值。

液体表面张力系数实验报告

液体表面张力系数实验报告

液体表面张力系数实验报告液体表面张力系数实验报告引言液体表面张力系数是描述液体分子间相互作用力的重要物理量。

它对于理解液体的性质和应用具有重要意义。

本实验旨在通过测量液体表面张力系数,探究不同因素对其影响,并对实验结果进行分析和讨论。

实验目的1. 测量不同液体的表面张力系数;2. 探究温度、溶质浓度等因素对表面张力系数的影响;3. 分析实验结果,深入理解液体表面张力的性质。

实验原理液体表面张力系数是指液体表面上单位长度的液体膜所受到的拉力。

常用的测量方法有测量附着在一根细丝上的液滴的重量、测量液体在玻璃片上的接触角等。

本实验采用测量液滴重量的方法进行测量。

实验步骤1. 准备实验设备和材料:天平、毛细管、玻璃板等;2. 清洗玻璃板和毛细管,确保表面干净;3. 使用天平称量一定质量的液滴,记录质量;4. 将液滴悬挂在毛细管上,并调整液滴的形状;5. 将毛细管放置在天平上,记录液滴的质量;6. 根据液滴的质量差异,计算液体的表面张力系数。

实验结果与分析通过实验测量,我们得到了不同液体的表面张力系数。

在实验中,我们发现液体的表面张力系数与温度、溶质浓度等因素有关。

温度对表面张力系数的影响我们分别在不同温度下测量了水的表面张力系数。

结果显示,随着温度的升高,水的表面张力系数逐渐减小。

这是因为温度升高会增加液体分子的热运动,使分子间的相互作用力减弱,从而降低表面张力系数。

溶质浓度对表面张力系数的影响我们选择了不同浓度的盐水进行实验,测量了其表面张力系数。

实验结果显示,随着盐水浓度的增加,表面张力系数逐渐减小。

这是因为溶质的存在会破坏液体分子间的相互作用力,使表面张力减小。

实验误差与改进在实验过程中,我们注意到可能存在一些误差。

首先,液滴的形状调整可能不够理想,导致测量结果的不准确。

其次,实验过程中的环境因素,如空气湿度等,也可能对测量结果产生影响。

为了减小误差,我们可以进一步改进实验方法,提高液滴形状的稳定性,并在恒温环境下进行测量。

液体表面张力系数的测定实验报告数据

液体表面张力系数的测定实验报告数据

液体表面张力系数的测定实验报告数据一、实验目的测定液体的表面张力系数,了解表面张力的性质和影响因素,掌握用拉脱法测量表面张力系数的原理和方法。

二、实验原理液体表面层内分子受到指向液体内部的拉力,使得液体表面具有收缩的趋势。

这种沿着液体表面,垂直作用于单位长度上的力称为表面张力。

当一金属框(如矩形框)在液面上缓慢拉起时,液膜将在金属框上形成。

若要使液膜破裂,拉力需克服表面张力的作用。

根据胡克定律,在弹性限度内,弹簧的伸长量与所受拉力成正比。

在本实验中,我们将一个洁净的金属圆环水平地悬挂在力敏传感器上,然后将圆环浸没在待测液体中,缓慢拉起圆环,当液膜即将破裂时,拉力达到最大值。

此时,拉力 F 等于表面张力系数σ 与圆环内外周长之和 l 的乘积,即 F =σl 。

通过力敏传感器测量拉力 F ,并测量圆环的内外直径,计算出周长l ,就可以求得液体的表面张力系数σ 。

三、实验仪器力敏传感器、数字电压表、铁架台、升降台、镊子、游标卡尺、纯净水、待测液体(如酒精)、玻璃皿、金属圆环。

四、实验步骤1、仪器调整将力敏传感器固定在铁架台上,调整其高度,使其与升降台的上表面平行。

将数字电压表与力敏传感器连接好,打开电源,预热 15 分钟。

对数字电压表进行调零。

2、测量金属圆环的内外直径用游标卡尺分别测量金属圆环的内外直径,各测量 5 次,取平均值。

3、测量纯净水的表面张力系数将玻璃皿中装入适量的纯净水,放在升降台上。

用镊子将金属圆环挂在力敏传感器的挂钩上,并使其完全浸没在纯净水中。

缓慢升起升降台,使金属圆环逐渐脱离水面,观察数字电压表的示数变化,当液膜即将破裂时,记录下拉力的最大值 F1 。

重复测量 5 次,取平均值。

4、测量待测液体的表面张力系数倒掉玻璃皿中的纯净水,用待测液体(如酒精)清洗玻璃皿和金属圆环。

重新在玻璃皿中装入适量的待测液体,按照测量纯净水表面张力系数的方法,测量待测液体的拉力最大值 F2 ,重复测量 5 次,取平均值。

液体表面张力系数的测定实验报告范文

液体表面张力系数的测定实验报告范文

液体表面张力系数的测定实验报告范文大学物理实验报告。

包含实验目的,实验仪器,实验原理,步骤,实验数据等。

一、实验目的测量室温下水的表面张力系数二、实验器材三、实验原理由于液面表面张力的存在,液面表面犹如张紧的弹性膜,具有收缩的趋势;在液体表面上作一条曲线,则曲线受两侧平衡的、并与液面表面相切的表面张力的作用。

在线性近似下,表面张力的大小与曲线的长度成正比,表面张力的大小与曲线长度的比值即为液体的表面张力系数。

根据这一规律,我们用液体表面张力系数测定仪测定液体的表面张力。

在实验中,将一个金属圆环固定在传感器上,该环浸没于液体中,当把圆环渐渐从液体中拉起时,金属圆环会受到液体表面膜的拉力作用。

表面膜拉力的大小为fl(2r12r2)(D1D2)式中D1、D2分别为圆环外径和内径,为液体表面张力系数。

在液体拉脱的瞬间,这个表面膜的拉力消失。

因此,金属圆环拉脱瞬间前后传感器受到的拉力差为f(D1D2)(1)并以数字式电压表输出显示为f(U1U2)/B(2)式中U1为吊环即将拉断液柱前一瞬间数字电压表读数值,U2为拉断时瞬间数字大学物理实验报告。

包含实验目的,实验仪器,实验原理,步骤,实验数据等。

电压表读数,B为力敏传感器的灵敏度。

由式(1)和式(2),我们可以得到液体的表面张力系数为(U1U2)/[B(D1D2)](3)因此,只要测出(U1U2),B,D1和D2,就能得到液体的表面张力系数实验步骤(1)开机预热15min,并清洗玻璃器皿和吊环。

(2)将砝码盘挂在力敏传感器的钩上,然后旋转仪器的调零旋钮对仪器调零。

在砝码盘上一次加入0.5g、1.0g、2.0g、2.5g、3.0g和3.5g的砝码,从电压表读出相应的电压输出值,将相应的数据填入表1中。

用最小二乘法做直线拟合,求出传感器的灵敏度B。

(3)测定吊环的内外直径,将外径D1和内径D2数据填入表2中。

(4)取下砝码盘和砝码,将吊环挂在力敏传感器的钩上。

测量液体表面张力系数实验报告

测量液体表面张力系数实验报告

测量液体表面张力系数实验报告
实验目的:
本实验旨在通过测量液体表面张力系数,掌握测量液体表面张力系数的方法,并深入理解表面张力的概念及其与液体性质的关系。

实验原理:
液体表面张力是指液体表面上单位长度的表面自由能,通常用$\gamma$表示。

表面张力的大小与液体分子间相互作用力有关,表面张力越大,液体分子间的相互作用力越强。

测量液体表面张力的方法有很多种,本实验采用的是测量液滴下落时间法。

设液滴下落高度为h,下落时间为t,则液滴表面张力系数为:
$\gamma$ = $\frac{2\pi r^2 m g}{t}$
其中,r为液滴半径,m为液滴质量,g为重力加速度。

实验步骤:
1.将测量装置清洗干净,并用吹风机将其吹干。

2.将液体注入测量装置中,液体表面与盖子上的孔平齐。

3.将装置架在支架上,调整仪器高度使液滴能够自由下落。

4.用手控制磁铁的开关,使液滴在磁铁的作用下自由下落,记录下落时间t。

5.重复上述步骤,分别测量不同高度下液滴的下落时间,并记录数据。

6.根据测量结果计算液体表面张力系数。

实验结果:
本次实验测得的液体表面张力系数为X,其误差为X%。

实验分析:
通过本次实验,我们掌握了一种测量液体表面张力系数的方法,深入理解了表面张力的概念及其与液体性质的关系。

同时,我们还发现液体表面张力系数与液体种类、温度等因素相关。

实验结论:
本实验通过测量液滴下落时间,计算液体表面张力系数,得出液体表面张力系数与液体性质相关,并且液体表面张力系数与液体种类、温度等因素有关。

液体表面张力系数的测定报告模板

液体表面张力系数的测定报告模板

式中 F 为把金属圆环拉出液面时所用的力; mg 为金属圆环和 带起的水膜的总重;f 为张力 故有

F - mg π (d1 d2)
d1 d2 为圆环的内外直径。
【实验步骤】 1.安装好仪器,挂好弹簧,调节底板的 3 个水平调节螺丝, 使焦利称立柱竖直。然后调节微调螺丝,使指针与镜子框边 的刻线重合, 当镜子边框上刻线、 指针和指针的像重合时 (即 称为“三线对齐”),读出游标零线对应的刻度数值。 2.测量弹簧的劲度系数 k,依次增加一个砝码,即将质量为 一克、两克、三克……九克的砝码加在盘中。调节小游标的 高度,每次重新使三线对齐。分别记下游标零线对应的刻度 数值,再依次减少一个砝码,调节小游标的高度重新使三线 对齐。分别记下游标零线对应的刻度数值。取二者平均值用 逐差法算出弹簧劲度系数。 3.测出 的值。将洁净的金属圆环挂在弹簧下端的勾子 (F - mg) 上。把装有蒸馏水的烧杯至于焦利平台上。调节平台高度。 使金属圆环恰好停在液面为止。调节小游标的高度使三线对 齐。记下此时游标零线指示读数。调节平台位置时金属圆环 浸入水中。转动平台旋钮使平台缓缓下降。下降的过程中金 属圆环底部会拉成水膜在水膜没有破裂时需要调节三线对 齐。然后再使平台下降一点重复刚才的调节。记下此时游标 零线所指示的读数。算出ΔS=Si-S0。即为在表面张力作用下
液体表面张力系数的测定实验报告模板 【实验目的】 1.了解水的表面性质,用拉脱法测定室温下水的表面张 力系数。 2.学会使用焦利氏秤测量微小力的原理和方法。 【实验仪器】 焦利秤,砝码,烧杯,温度计,镊子,水,游标卡尺等。 【实验原理】 液体表面层,内分子相互作用的结果使得液体表面自然收缩 犹如紧张的弹性薄膜。 由液体搜索产生的沿着 方向力称为表面张力, 设想, 在液体上作长为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液体表面张力系数的测定实验报告模板
【实验目的】
1.了解水的表面性质,用拉脱法测定室温下水的表面张力系数。

2.学会使用焦利氏秤测量微小力的原理和方法。

【实验仪器】
焦利秤,砝码,烧杯,温度计,镊子,水,游标卡尺等。

【实验原理】液体具有尽量缩小其表面的趋势,好像液体表面是一张拉紧了的橡皮膜一样。

这种沿着表面的、收缩液面的力称之为表面张力。

测量表面张力系数的常用方法:拉脱法、毛细管升高法和液滴测重法等。

此试验中采用了拉脱法。

拉脱法是直接测定法,通常采用物体的弹性形变(伸长或扭转)来量度力的大小。

液体表面层内的分子所处的环境跟液体内部的分子不同。

液体内部的每一个分子四周都被同类的其他分子所包围,他所受到的周围分子合力为零。

由于液体上方的气象层的分子很少,表层内每一个分子受到的向上的引力比向下的引力小,合力不为零。

这个力垂直于液面并指向液体内部。

所以分子有从液面挤入液体内部的倾向,并使得液体表面自然收缩,直到处于动态平衡。

表面张力 f 与线段长度 L 成正比。

即有:
f = αL (1)
比例系数α称为液体表面张力系数,其单位为Nm-1。

将一表面洁净的长为 L、宽为 d 的矩形金属片(或金属丝)竖直浸入水中,然后慢慢提起一张水膜,当金属片将要脱离液面,即拉起的水膜刚好要破裂时,则有
F = mg + f (2)
式中 F 为把金属片拉出液面时所用的力;mg 为金属片和带起的水膜的总重量;
f 为表面张力。

此时, f 与接触面的周围边界 2(L+ d ),代入(2)式中可得α = F − mg2( L + d )
本实验用金属圆环代替金属片,则有
α= F − mg π (d1 + d2 )
式中 d1、d2 分别为圆环的内外直径。

【实验步骤】1.调“三线对齐”
2.测量弹簧的倔强系数K
3.测(F-mg)值。

F − mg = f = K ∆S 代入得
K α =∆S
π (d+ d)
12
4.用卡尺测出d1、d2值,将数据即可算出水的α值。

5. 再记录室温,可查出此温度下蒸馏水的标准值α,并做比较。

四、强调注意事项:
1.由于杂质和油污可使水的表面张力显著减小,所以务必使蒸馏水、烧杯、金属片保持洁净。

2.清洁后的用具,切勿用手触摸,应有镊子取出或存放。

3.测量S 时要避免水膜提前破裂,否则实验误差较大,其中引起水膜提前破裂的因素有:桌面的震动,空气的流动,金属圆环底部不水平等。

【数据处理】
1.用逐差法计算弹簧的倔强系数K(实验温度:180C)
==∆+=∑)-(5154
i i i L L L
50.16
()=-∆-∆=
∑∆)15/(L L 2L i
σ0.485
==
∆∆L 95
.0σn
t A 0.584 05
.1仪
∆=
∆B =0.02mm 22B A L ∆+∆=∆∆=0.560
2.计算液体表面张力f
()=-∆-∆=
∑∆)15/(S S 2
S i
σ0.188
==
∆∆S 95
.0σn
t A 0.226 =∆=
∆05
.1仪
B 0.02mm 22S B A ∆+∆=∆∆=0.226
3. 金属环外、内直径的测量(本实验直接给学生结果)
=+∆=
)
(21d d S
K πα0.009
3.计算表面张力系数α及不确定度
=⎪⎪⎭⎫ ⎝⎛∆++⎪⎪⎭⎫ ⎝⎛∆+∆=∆∆2
S 212K 21)
(K )(d d d d S ππα0.462
4.表面张力系数的理论值:0.0728
【误差分析】
1. 定标时砝码盘摇晃,会使传感器受到大于砝码盘(含砝码)重力的力的作用,这会导致测得的电压值偏大,致使定标获得的k 过大,导致最后求得的结果偏小
2. 如果吊环不水平,则会导致水面在下降过程中,水膜并不是同时破裂,实际作用于吊环 的水膜长度只是吊环周长的一小部分,这会会导致最后求得的结果偏小
3. 测定仪测量电压值并不是连续的,需要一定的时间来进行反应,若在水膜即将破裂时水面下降过快,传感器尚未显示出实际的最大电压值, 吊环就已经脱离水面。

这样会导致所测得的张力过小,从而导致求得的系数过小; 【思考题】
1. 用焦利称测量微小力的依据是什么?
答:如果我们在砝码托盘上加X 克砝码,弹簧伸长了某一长度,细金属杆上镜中的标线即向下移动,此时三线不再重合.转动旋钮使管向上移动,因而细金属杆也随之向上移动.当三线又重合时,在管及管的游标上可读出第二个读数,该读数与第一个读数这差就是弹簧在增加X 克重量时所伸长的长度.
2.金属圆环浸入水中,然后轻轻提起到底面与水面相平时,试分析金属圆环在竖直方向的受力。

答:竖直向下的重力,液体表面张力沿竖直方向向下的分力,弹簧拉力 3. 分析(2)式成立的条件,实验中应如何保证这些条件实现?
答:(2)式在欲脱离水膜而又恰未脱离的极限状态时成立,应该保证金属圆环水平拉 出水面
4.本实验中为何安排测(F—mg),而不是分别测F和mg?
答:因为直接测F比较麻烦,而且F改变得较小,可能需要力传感器,实现起来不方便也不简单。

5. 本实验影响测量的主要因素有哪些?这些因素使 偏大还是偏小?
答:实验表明,与液体种类、纯度、温度和液面上方的气体成分有关,液体温度越高值越小,液体含杂质越多,值越小,只要上述条件保持一定,则是一个常数
原始数据:。

相关文档
最新文档