蔗糖酶的提取纯化及蛋白质含量测定研究

蔗糖酶的提取纯化及蛋白质含量测定研究
蔗糖酶的提取纯化及蛋白质含量测定研究

论文

论文题目:蔗糖酶的提取纯化及蛋白质含量测定研究

作者姓名周柱林

指导教师钟莉

学科专业食品科学与工程1102

所在学院生物与环境工程学院

提交日期 2013年12月

蔗糖酶的提取纯化及蛋白质含量测定研究

周柱林

生物与环境工程学院食品科学与工程1102班

摘要:对啤酒酵母蔗糖酶的相关性质进行研究讨论,实验采用酵母自溶法初步得到粗蔗糖酶,离心除杂质法得到初提取液A,接着制备热提取液B,接着制备乙醇沉淀提取液C,接着采用Q Sepharose-柱层析法得到纯度较高的D液,然后用DNS法、标准曲线法和分光光度法测定蔗糖酶的活力,用Folin-酚法测定蔗糖酶蛋白质含量及计算比活力,用微量凯氏定氮法测定总蛋白含量,最后用SDS-PAGE法测定蛋白质的相对分子质量,并对其基本性质进行了研究。实验测定结果A、B、C提取液的酶回收率(%)分别为100、128.5、56.6,蛋白回收率(%)分别为100、98.15、4.29,比活力分别为17.4、22.8、230.1,纯化倍数分别为1、1.31、13.22,SDS-PAGE测定酵母蔗糖酶相对分子质量为A:99150、45000;B:10140;C:92200、65660.

关键词:蔗糖酶、提取、纯化、酶活力、蛋白质含量、比活力、相对分子质量

1.前言(文献综述):

啤酒酵母也叫营养酵母,可以从其中提取蔗糖酶,蔗糖酶又称为转化酶,属于水解酶类,蔗糖在蔗糖酶的催化下,水解为两种还原糖D一葡萄糖和D一果糖。蔗糖酶在植物的运输贮藏、碳水化合物代谢中发挥主要作用,并在渗透调节、抗逆性生长繁殖、以及信号传导方面也发挥着重要的作用。按水解蔗糖的方式,蔗糖酶可分为从果糖末端切开蔗糖的β-D-呋喃果糖苷酶(β

-D-frutofuranosidases,EC 3.2.1.26)和从葡萄糖末端切开蔗糖的α-D-葡萄糖苷酶(α-D-glucosidases,EC 3.2.1.20)。前者存在于酵母中,后者存在于霉菌中。工业上多从酵母中提取。

目前关于酵母中蔗糖酶提取纯化方面的研究较多 , 有SDS抽提法,正交法等等,其中以甲苯自溶法最为常见。本实验采用此自溶法从啤酒酵母中提取蔗糖酶,利用有机溶剂将胞内蔗糖酶释放,经过初提取的离心去杂和等电位沉淀,制得的粗酶经醇沉后,采用Q Sepharose-柱层析法纯化,利用DNS法测定其酶活力,利用Folin-酚法测定蛋白质的含量及比活力,利用微量凯氏定氮法测总蛋白氮,以及用SDS-PAGE测定蛋白质的相对分子质量,并对其基本性质进行了研究,也为酵母蔗糖酶在食品工业中的应用和蔗糖酶基因工程产品的技术开发提供了实验依据。

本实验目的在于用自溶法提取酵母蔗糖酶的过程中,测定各步的总蛋白、总活力,并据此计算比活、回收率和纯化倍数。

2.材料与方法

2.1 材料:啤酒酵母

2.2 试剂与仪器

2.2.1 试剂:醋酸钠;甲苯;95%乙醇;0.5mol/L Tris-HCl pH7.3缓冲液;4mol/L 醋酸;0.05mol/L Tris-HCl pH7.3缓冲液;1mol/L NaCl 的0.05mol/L Tris-HCl pH7.3缓冲液;0.5mol/L NaOH; Q-Sepharose;DNS;葡萄糖标准溶液;0.2mol/L pH4.6 醋酸缓冲液;2mol/L NaOH; 5% 蔗糖;试剂A(碱性铜试剂);试剂B(酚试剂);标准浓度牛血清白蛋白溶液;浓硫酸;硫酸钾3份与硫酸铜1份(质量分数)混合粉末;30%NaOH; 2%硼酸溶液;混合指示剂; 0.01mol/L HCl标准溶液;30%丙烯酰胺贮液;10%过硫酸铵溶液;分离胶缓冲液贮液;浓缩胶缓冲液贮液; 2*SDS-样品缓冲液;SDS-电极缓冲液贮存液;染色液;脱色液。

2.2.2 仪器:恒温水浴锅,恒温培养箱,高速冷冻离心机、磁力搅拌器或梯度混合器,搅拌子层析柱、梯度发生器及搅拌子、紫外分光光度计、点滴板,电炉,恒温水浴锅,分光光度计721分光光度计,刻度吸管0.5ml(*1),2ml*2, 5ml*1,试管1.5cm*15cm( *8),恒温水浴槽,改良式凯氏定氮仪,DYY-60型电泳仪。

2.3实验过程及方法

2.3.1 蔗糖酶提取及初提纯

a.酵母的自溶在250ml锥形瓶中加入鲜酵母20g、醋酸钠1.6g,加入1.5ml 甲苯用滤布加牛皮纸将瓶口塞住,摇匀10min,放入37℃培养箱保温60h,使酵母自溶。

b.制备初提液A 在培养箱中取出装有已自通酵母的锥形瓶,加入10ml蒸馏水,摇匀,倒入塑料离心管中,平衡后用高速冷冻离心机4℃、15000r/min离心10min。小心取出离心后中间层的液体,重新倒入离心管中,4℃、15000r/min

,取出3ml保存。

离心10min。仔细倒出上层清液,测出体积为V

A

c.制备热提取液B 预先将水浴加热到50℃,将初提液A倒入50ml的锥形瓶中,加4mol/L醋酸3.2ml左右,摇匀,水浴保温20min,在保温过程中不断摇动锥形瓶,取出后迅速在冰浴中冷却,冷却液于4℃、15000r/min离心10min。测出上层清液,取出3ml保存。

的体积记为V

B

d. 制备乙醇沉淀提取液C将热提取液B倒入100ml烧杯中,把烧杯放入冰浴中,轻轻搅拌并慢慢加入95%乙醇溶液,体积与热提取液B 相同。整个过程不少于20min,再继续搅拌5min,将烧杯内的液体全部移入离心管中,杯底白色固体保留待用,4℃、15000r/min离心10min。仔细地倒掉上层清液,用5ml0.05mol/L

Tris-HClpH7.3缓冲液把烧杯中的白色固体溶解,倒入离心管搅拌使离心管内的

白色固体溶解,4℃、15000r/min离心10min。测量上层清液体积V

,全部保存。

C

2.3.2 蔗糖酶的纯化 Q Sepharose -柱层析法

A 离子交换柱的填充

B 缓冲液盐度梯度发生器的安装

C 柱的平衡:交换剂

成为相应的交换型①在小烧杯中加入15毫升Tris HCl②恒流泵进口插入烧杯液

面下③恒流泵出水管一端连接柱子④放松夹子⑤打开恒流泵⑥用Tris HCl冲洗

⑦直到缓冲液面与交换剂相切 D 加样及洗穿透峰①夹紧下端夹子, 在烧杯加

入15毫升Tris HCl②从上部缓慢加入0.5ml提取液C,放松夹子③样品全部刚好进

入交换剂内,相切,夹紧夹子⑤先打开恒流泵,再放开夹子,⑥用量筒收集全部

流出液体,每管收集3ml⑦直到液面相切

E 洗脱①将梯度发生器出口与恒流泵相连②恒流泵与柱相连③打开搅拌器,打开

连通器旋钮,打开恒流泵④用20 毫升Tris HCl 缓冲液配制的1摩尔/升 NaCl20

毫升溶液开始梯度洗脱打开夹子⑤用量筒收集3 毫升/管,直到全部缓冲液流出

F 离子交换剂的再生烧杯加入15 毫升 NaCl洗脱→不用收集→凝胶冲到小

烧杯→全部凝胶回收

G 测吸光度,酶活力测试,取酶活力最高的2管为柱分离液D。

2.3.3 蔗糖酶活力的测定

2.3.3.1葡萄糖标准曲线制作:烧水,不要太多,进行DNS反应:注意振荡

混匀,移液管对应,要及时清洗

试管号012345

葡萄糖/ml00.8 1.0 1.2 1.4 1.6

蒸馏水/ml 3.0 2.2 2.0 1.8 1.6 1.4 DNS/ml 1.5 1.5 1.5 1.5 1.5 1.5

总体积/ml 4.5 4.5 4.5 4.5 4.5 4.5 A540nm0.000.1010.2610.3590.4790.574沸腾后计时。在沸水浴中加热5min。取出后立即用冷水冷却到室温。

2.3.3.2 酶活力测定

A,稀释样品,浓度从低到高,即C→B→A,防止污染。

提取液A B C D

比例1:2001:2001:2001:20

移液管原液0.25ml0.25ml0.25ml0.5ml

定容50ml容量瓶50ml容量瓶50ml容量瓶10ml移液管

B 水解反应

试管

A0A1B0B1C0C1D0D1项目

酶液A稀释液各取4种稀释液2.00 ml,加入8支试管,按项目名称编号

NaOH ml变性0.5---0.5---0.5---0.5---预热5%蔗糖试剂瓶,8支试管(放在试管架上),于35℃预热10min

蔗糖ml各试管加入5%蔗糖 2 ml加入后立即摇匀开始计时,35℃准确反应3min

NaOH 终止反

---0.5---0.5---0.5---0.5应

总体积/ml 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50全部反应后,取出试管架

C 进行DNS反应,测吸光值

A0A1B0B1C0C1D0D1

/ml

反应液V 测0.10.10.10.10.150.150.30.3从上次水解反应液中分别取出V测,用ABCD移液管,先取对照

2.9 2.9 2.9 2.9 2.85 2.85 2.7 2.7 DNS 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50

4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

A

540nm

0.00 0.1730.00 0.2570.00 0.6980.00 0.662 2.3.4 蔗糖酶蛋白质含量测定及比活力计算

2.3.4.1蛋白质含量标准曲线绘制 :Folin-酚反应

试管号0 1 2 3 4 5

标准牛血清蛋白液

/ml

0 0.2 0.4 0.6 0.8 1.0

蒸馏水/ml 4.5 4.3 4.1 3.9 3.7 3.5

试剂A/ml 1.0 1.0 1.0 1.0 1.0 1.0

试剂B/ml 第一

0.3 0.3 0.3 0.3 0.3 0.3

第二

0.2 0.2 0.2 0.2 0.2 0.2

总体积/ml 6.0 6.0 6.0 6.0 6.0 6.0

A660 0 0.181 0.323 0.457 0.576 0.70

3

2.3.4.2 未知蛋白质浓度测定

A 样品稀释

A B C D

稀释比例1:100

1:100

1:201:1

稀释方法0.5ml原

液:50 ml

容量瓶

0.5ml

原液:

50 ml

容量瓶

0.5ml原

液 +9.5

ml 移液管

量取

不稀释

B 测样品蛋白含量

试剂量/ml所加试剂管号

A0A1B1C0C1D0D1

样品稀释液/ml移液管:酶液00.50.51/20 Tris

0.5 ml

0.5Tris

3ml

3

水 / ml 4.5 4.0 4.0 4.0 4.0 1.5 1.5

试剂A 1.0 1.0 1.0 1.0 1.0 1.0 1.0

试剂B第一次0.30.30.30.30.30.30.3第二次0.20.20.20.20.20.20.2

总体积/ml 6.0 6.0 6.0 6.0 6.0 6.0 6.0 OD660nm/A O O.625 0.355 0 0.508 0 0.193

2.3.5 微量凯氏定氮法测总蛋白氮

将0.04ml B样液与3ml浓硫酸、20mg硫酸钾-硫酸铜混合物加热消化。洗涤微

量凯氏定氮仪时,用装有10ml 2%硼酸溶液和4滴混合指示剂的锥形瓶检测,变

绿则重新洗涤。将消化液定容至50ml,取5ml于反应室,同时加入10ml30% NaOH,用少量水洗涤漏斗后水封。等到颜色变绿后计时3min,再蒸馏1min,滴定。六

次滴定消耗HCl的体积(ml)分别为:0.48、0.55、0.52、0.45、0.50、0.50 。

2.3.6 SDS-聚丙烯酰胺凝胶电泳测定蛋白质的相对分子质量

2.3.6.1 分离胶制备

①配分离胶成分:12%分离胶②各成分加入小烧杯,加入每一种应立即用塑料吸管抽吸慢慢混匀,不要有过多气泡③TEMED最后加入,马上灌胶④用塑料吸管从一边加入玻璃板之间,防止气泡,不要全部挤入(2/3高度,梳子下端距分离胶上边缘 1.5cm ⑤加水覆盖,加满水,出现界面,再次出现界面聚合完成,⑥倒出水,用滤纸条吸出表面的水⑦聚合30~60 min

2.3.6.2 浓缩胶制备

①用滤纸吸干水层②配制5%浓缩胶:5% ③各成分加入小烧杯,加入每一种应立即用塑料吸管抽吸慢慢混匀,不要有过多气泡④ TEMED最后加入,马上灌胶⑤用塑料吸管从一边加入玻璃板之间,混匀加入在分离胶上层⑥插入梳子,不要插反⑦聚合⑧取出梳子(注意用力平衡,不要左右摇摆)⑨用滤纸条除去样品槽内的水分。⑩撕去胶条,玻璃板方向:凹槽向内,不要用力压

2.3.6.3 加样品:加入样品和marker,进行电泳。电泳结束后,染色4h,然后用脱色液脱色三次。以maker中标准蛋白质相对分子量的对数(lgMW)为纵坐标,相对迁移距离为横坐标作图,得到标准曲线。然后根据样品蛋白质分子的相对迁移距离,从标准曲线上查出其相对分子质量。

3.结果与分析

3.1 蔗糖酶的提取及初提纯,蔗糖酶的纯化——Q Sepharose-柱层析法

3.1.1 实验结果

V A=18.8ml V B=18.5ml V c=5.8ml V D=5.8ml

V A总= V A =18.8ml

V B总=V B·[V A/(V A-3)]= 18.5·[18.8/(18.8-3)]=22.01ml

V c总=V c·[V A/(V A-3)]·[V B/(V B-3)]=V C·[V B总/(V B-3)] = 5.8·[22.01/(18.5-3)]=8.34ml

V D总=V D·V C总/V样=5.8*8.8/0.5=96.75ml

3.1.2 结果分析

A. VB较大是因为在离心前平衡时加入了较多的蒸馏水是V B增大。

B、在同一温度下,溶液中各物质的量不同,所以溶解度不同,对蔗糖酶进行纯化。

C、Q sepharose 为在PH 7左右为强阴离子交换剂且带正电,可与蔗糖酶很好结合,使之洗脱下来。采用Q sepharose-柱层析法提高了实验效率,是蔗糖酶与杂志蛋白得到了很好的分离,提高了纯度,体现了离子交换蛋白纯化的优越性。

3.2 蔗糖酶活力测定

项目 A B C D

葡萄糖/mg 0.178 0.202 0.357 0.345

V总/ml 18.80 22.00 8.34 96.74

V测/ml 0.2 0.3 0.1 0.3 酶总活力单位数10039.2 8197.2 7256.9 5066.3

酶回收率/%100 81.65 72.28 49.86

A、本实验采用3,5-二硝基水杨酸与还原糖共热被还原成棕红色的氨基化合物,在一定条件范围内还原糖与反应液的颜色深度成正比,因此利用分光光度计进行测定,计算样品中含糖量,操作简便、迅速,杂志感染小。

B、葡萄糖标准曲线制作时加样一定要非常准确,因为分光光度后,测定酶活力时要根据标准曲线来计算葡萄糖的毫克数。本实验结果较好,因为所有点都落在一条直线上且R^2较高接近0.999。

C、由结果发现酶活力逐渐下降,C的酶活力总数较高,可能是由于在加入蔗糖后摇匀时不是很均匀,使一些酶的反应不充分。

3.3 蔗糖酶蛋白质含量的测定及比活力计算

项目V总/ml 总酶活

/U

总蛋白

/mg

比活力

U/mg

蛋白回

率/%

蛋白质

质量/mg

纯化倍

数/倍

A 18.8 10039.2 666.35 15.07 100 0.177 1

B 22 8197.2 407.14 20.13 61.1 0.0925 1.34

C 8.34 7256.9 46.82 154.99 7.03 0.1403 10.29

D 96.74 5066.3 1.62 3124.71 0.243 0.0419

207.35 A、本实验采用Folin-酚法测定蛋白质含量,反应产物的颜色随着蛋白质浓度的

增高而加深,本法极为灵敏,课测定范围非常精确,且蛋白质经过纯化后对本法的影响较小。

B、本实验的蛋白质标准曲线制作的比较准确,所有点都落在直线上,且

R^2=0.9989,非常接近1,所以对后面的蛋白质含量计算比较准确。

C、从结果可以看出A、B、C、D的总蛋白一次减少,说明在每部的纯化过程中蛋白质损失越来越多,蛋白质回收率越来越小,尤其是D非常小。而比活力却随着纯化次数的增加越来越大,纯化倍数也增加,比活力越大说明酶的纯化程度越高。

3.4 微量凯氏定氮法测总蛋白氮计算与分析

样品含氮量(mg/ml)=17.51mg/ml

蛋白质含量(mg/ml)=17.51*6.25=109.344mg/ml

样品B蛋白质含量(mg)=109.344*22=2407.625mg

A、本实验采用微量凯氏定氮法测定蛋白质含量,方法简单、适用范围广,较准确且成本低。

B ,实验用Folin-酚法测定B的蛋白质含量为407.14mg,而本次实验测得的蛋白质含量为2407.625mg,是前次实验的6倍,因为本实验测得的样品中含氮量默认为样品中所有蛋白质的含量,而且蒸馏水中也含有少量氮,试验中对颜色的判别也存在误差,使两次实验结果相差较大。

3.5 SDS-GAPE测定蛋白质的相对分子质量

3.5.1 蛋白质迁移距离

项目迁移距离

/cm

相对迁移率

相对分子量

染料迁移距离/cm

标准蛋白质0.49 0.1284 97400

3.66

0.75 0.2213 66200

1.2 0.3579 4300

1.78 0.4699 3100

A 0.4 0.1120 99151

3.57 1.25 0.3501 45009

B 0.38 0.1053 101391 3.61

C 0.51 0.1339 92215

3.81 0.92 0.2415 65659

3.5.2结果与分析

标准蛋白质中本来有6种蛋白质,胶体上应该有6条电泳区带,但实验中只有4条,原因可能有如下几点:①另外两种蛋白质分子质量较小,迁移距离较大跑到胶外去了,所以看不到;②可能那两种蛋白质浓度太低,电泳区带太窄以致无法看清;③可能是最后几条重合在一起形成一条电泳区带。

4.结论

通过实验,从提取酵母中的酶到柱层析及测定蛋白质的一些性质这些实验过程中,熟悉了高速离心机、紫外分光光度计,恒温水浴槽,改良式凯氏定氮仪,DYY-60型电泳仪等仪器的使用方法,掌握了酵母自溶法,离心除杂质法、热提取法、乙醇沉淀提取法,Q-Sepharose柱层析法、DNS法、Folin-酚法、SDS 聚丙烯酰胺凝胶电泳法等操作方法,并得到了蔗糖酶的一系列数据。通过查阅资料了解了很多课本以外的实验方法,学会了一些简单的数据处理,在实践中有一定的指导意义。

参考文献:

[1] 许培雅, 邱乐泉. 离子交换层析纯化蔗糖酶实验方法改进研究[ J] . 实验室研究与探索, 2002.

[2]孙培龙,吴石金.生物化学技术实验指导.化学工业出版社,2008.

[3] 陈冰, 林轩. 蔗糖酶水解蔗糖的研究[J] . 湛江师范学院学报, 1997.

[4] 孙国志,冯惠勇,徐亲民.蔗糖酶提取方法的研究[J].食品工业科学,2002年04期.

蛋白质的提取与检测

蛋白质的提取与检测

蛋白质的提取与检测 第一节细胞总蛋白的提取及含量测定 【基本原理】 蛋白质含量测定法是生物化学研究中最常用、最基本的分析方法之一。目前常用的有四种经典的方法,即定氮法、双缩脲法(Biuret法)、Folin-酚试剂法(Lowry法)和紫外吸收法。另外还有两种近年普遍使用起来的测定法,即考马斯亮蓝法(Bradford法)与二辛可宁酸法(BCA法)。值得注意的是,上述方法并不能在任何条件下适用于任何形式的蛋白质,因为一种蛋白质溶液用这几种方法测定有可能得出不同的结果。每种测定法都不是完美无缺的,都有其优缺点。在选择方法时应考虑:①实验对测定所要求的灵敏度和精确度;②蛋白质的性质;③溶液中存在的干扰物质;④测定所要花费的时间。 Lowry法:蛋白质与碱性铜溶液中的二价铜离子络和使得肽键伸展,从而使暴露出的酪氨酸和色氨酸在碱性铜条件下与磷钼钨酸反应并产生深蓝色,在750nm有最大光吸收值。在一定浓度范围内,反应液颜色的深浅与蛋白质中的酪氨酸和色氨酸的含量成正比,由于各种蛋白质中的酪氨酸和色氨酸的含量各不相同,因此在测定时需使用同种蛋白质作标准。 Bradford法:蛋白质与染料考马斯亮蓝G-250结合,使得染料最大吸收峰从465nm变为595nm,溶液的颜色由棕黑色变为蓝色。在一定的线性范围内,反应液595nm处吸光度的变化量与反应蛋白量成正比,测定595nm处吸光度的增加即可进行蛋白定量。

BCA (Bicinchoninic acid)法:二价 铜离子在碱性 的条件下,可以 被蛋白质还原 成一价铜离子 (Biuret reaction)并与 BCA相互作用 产生敏感的颜 色反应。两分子 的BCA螯合一 个铜离子,形成 紫色的反应复 合物。该水溶性 的复合物在 562nm处显示 强烈的吸光性, 吸光度和蛋白 浓度在广泛范 围内有良好的 线性关 0.118 0.05 0.154 0.1 0.213 0.2 0.283 0.3 0.329 0.4 0.404 0.5 第二节SDS-PAGE电泳 【基本原理】

牛奶中酪蛋白的提取与分析

实验题目:牛奶中酪蛋白的提取与分析实验材料:牛奶 小组成员: 实验时间:

一:实验题目:牛奶中酪蛋白的提取与分析 二:报告撰写者 三、小组成员 实验仪器 温度计、布氏漏斗(*)、pH试纸(*)、抽滤瓶(*)水浴锅、烧杯、量筒、表面皿(*)、电子天平(*)、2个1000ml的容量瓶(*)、2张醋酸纤维薄膜(2cm×8cm 厚度120nm)成品(*)、培养皿9—10cm(*)、毛细管(*)、尺子、铅笔、单面刀片(*)、镊子、普通滤纸(*)、电泳槽、玻璃板8cm ×12cm(*)、752型分光光度计(*)、细布(*)、、、的移液管、试管、试管架、 四、实验材料 牛奶(蒙牛特仑苏和伊利金典) 五、实验试剂 特仑苏400ml、金典200ml、巴比妥(*)、巴比妥钠(*)、氨基黑10B(*)、50ml甲醇AR(*)、100ml冰醋酸AR(*)、95%的乙醇250ml(*)、95%的乙醚100ml(*)、L的乙酸100ml(*)、L的乙酸钠100ml(*)、25g氢氧化钠固体(*)标准酪蛋白、15mg五水硫酸铜(*)、60mg酒石酸钾钠(*)所需试剂配制方法: 乙醇乙醚混合液的配制: 10ml95%的乙醇 10ml95%的乙醚 乙醇钠缓冲液的配制: 配制乙醇乙醚1:1的混

L 的乙酸51ml L 的乙酸钠49ml 巴比妥钠缓冲液的配制: 巴比妥 巴比妥钠 染色液的配制: 氨基黑10B 50ml 甲醇AR 10ml 冰醋酸AR 漂洗液的配制: 45ml95%乙醇AR 5ml 冰醋酸AR 蒸馏水 透明液的配制: 25ml 的冰醋酸AR 75ml 的无水乙醇AR L 氢氧化钠溶液的配制: 16g 的氢氧化钠固体定容至1000ml 10%氢氧化钠溶液的配制: 5g 的氢氧化钠固体定容至50ml 双缩脲试剂的配制: 15mg 五水硫酸铜 配制巴比妥钠缓冲液(,./L ), 将上 +40ml 蒸馏水, 混匀既得染 配制的乙酸钠缓冲液(l ) 混匀得染色液 混匀得透明液 溶于5ml 蒸馏水,在搅拌情况下,加入10%氢氧化钠溶液3ml ,用

蛋白质提取及纯化

蛋白质提取及纯化 提取蛋白质的当天早晨去后把高速离心机和超高速离心机都打开冷却 1、前一天晚上用Resuspension Buffer重悬4L菌体,然后离心于4C保存,第 二天使用。 2、用少量预冷的Resuspension Buffer重悬细菌,1 protease inhibitor tablets(EDTA Free),1mM PMSF, 然后用玻璃Homogenizer做均一化处理,将总体积调至80ml; 3、High Pressure Homogenizer破壁,特别注意样品一定要在不加压力的情况 下运行一个循环(2min);然后1200bar,6min三个循环,整个过程冰水冷却; 4、DNaseI处理:加入2.5mg DNaseI,10mM MgCl2, 室温处理30min; 5、 11.000rpm,4℃,15min; then 11.000rpm,4℃,15min; 6、 1mM PMSF, 45.000rpm,4℃,90min; 7、用Resuspension Buffer洗两次以除去可溶性的蛋白质,然后预热分光光度 计; 8、用3-4ml Binding Buffer重悬Membrane pellets,动作一定要轻缓,重悬 后的总体积不超过8ml,取出300ul测定OD800和OD850(以OD850为准),测定时候是逐步稀释,每次吸光值小于1; 9、调整OD850≤30-50,在缓慢搅拌(速度一定要慢)的情况下逐滴加入30%的 LDAO使其终浓度达到0.5%,1mM PMSF,26℃黑暗条件下重悬1h,期间注意观察颜色变化; 10、45.000rpm, 4℃, 30min,注意观察颜色的变化以及沉淀是否发生明显的变化。 Charge and Equilibrate Resin (1)用蒸馏水冲洗柱子以除去20%酒精,注意不要用buffer,1ml/min,至紫外 吸收和电导稳定; (2)用0.1M NiSO4 Charge Resin,1ml/min,10倍柱体积,尽量使得紫外吸收 和电导稳定; (3)用蒸馏水冲洗,1ml/min,至紫外吸收和电导稳定;

土壤蔗糖酶、纤维素酶的测定方法

土壤蔗糖酶活性测定(3,5- 二硝基水杨酸比色法) 一、原理 蔗糖酶与土壤许多因子有相关性,如与土壤有机质、氮、磷含量,微生物数量及 土壤呼吸强度有关,一般情况下,土壤肥力越高,蔗糖酶活性越高。蔗糖酶酶解所生 成的还原糖与 3,5- 二硝基水杨酸反应而生成橙色的3-氨基-5-硝基水杨酸。颜色深度 与还原糖量相关,因而可用测定还原糖量来表示蔗糖酶的活性。 二、试剂 1)酶促反应试剂:基质8%蔗糖,pH5.5磷酸缓冲液:1/15M磷酸氢二钠 (11.876g Na2HPO4·2H2O溶于1L蒸馏水中)0.5ml加1/15M磷酸二氢钾(9.078g KH2PO4溶于1L蒸馏水中)9.5ml即成,甲苯 2)葡萄糖标准液(1mg/mL) 预先将分析纯葡萄糖置80℃烘箱内约12小时。准确称取50mg葡萄糖于烧杯中,用蒸馏水溶解后,移至50mL容量瓶中,定容,摇匀(冰箱中4℃保存期约一星期)。若该溶液发生混浊和出现絮状物现象,则应弃之,重新配制。 3) 3,5- 二硝基水杨酸试剂(DNS试剂) 称0.5g二硝基水杨酸,溶于20ml 2mol/LNaOH和50ml水中,再加30g酒石酸钾钠,用水稀释定容至100ml(保存期不过7天)。 三、操作步骤 (1)标准曲线绘制 分别吸1 mg/mL的标准葡糖糖溶液0、0.1、0.2、0.3、0.4、0.5mL于试管中,再补加蒸馏水至1mL,加DNS试剂3mL混匀,于沸水浴中准确反应5min(从试管放入重新 沸腾时算起),取出立即泠水浴中冷却至室温,以空白管调零在波长540nm处比色, 以OD值为纵坐标,以葡萄糖浓度为横坐标绘制标准曲线。 (2)土壤蔗糖酶测定

蛋白质提取综合性实验

生物化学综合性实验 蛋白质的提取(沉淀法)和定量分析之 鸡蛋中卵清蛋白的提取和定量测定 一、实验目的 研究盐析沉淀和等电点沉淀法的基本原理和技术。 一、二、实验原理 1、沉淀法粗分离蛋白质[1][2] 沉淀法是分离纯化生物大分子物质常用的一种经典方法,可分盐析法、等电点沉淀法和有机溶剂沉淀法等。 蛋白质分子表面含有带电荷的基团,这些基团与水分子有较大的亲和力,故蛋白质在水溶液中能形成水化膜,增加了蛋白质水溶液和稳定性。如果在蛋白质溶液中加入大量中性盐,导致蛋白质分子表面电荷被中和,水化膜被破坏,最终引起蛋白质分子间相互聚集并从溶液中析出,这就是盐析作用。 由于各种蛋白质分子表面的极性基团所带电荷数目不同,它们在蛋白质表面上的分布情况也不一样,因此,将不同蛋白质盐析出来所需要的盐浓度也各异,盐析法就是通过控制盐的浓度,使蛋白质混合液中的各个成分分步盐析出来,达到粗分离蛋白质的目的。 盐析法是1878年Hammarster首次使用的,可用作盐析的中性盐有过硫酸钠、氯化钠、磷酸钠、硫酸铵等,其中应用最广的是硫酸铵,硫酸铵在水中溶解度大,25℃可达4.1mol/L的浓度,化学性质稳定,溶解度的温度系数变化较小,价廉易得;分段效果较其他盐好,性质温和,即使浓度很高时也不会影响蛋白质的生物学活性。 鸡蛋清的主要成分是球蛋白和白蛋白(卵清蛋白),球蛋白可在半饱和硫酸铵溶液中析出,而清蛋白则在饱和硫酸铵溶液中才能析出。 蛋白质的盐析作用是可逆过程,由盐析获得的蛋白质沉淀,当降低其盐类浓度时,又能再溶解,因而可初步纯化蛋白质。 等电点沉淀法是利用蛋白质在其等电点时溶解度最小来分离具有不同等电点蛋白质的方法。蛋白质是两性电解质,蛋白质分子的电荷性质和数量因PH不同而变化,蛋白质处于等电点时,其净电荷为零,由于相邻蛋白质分子之间没有静电斥力而趋于聚集沉淀,因此,在其他条件相同时,它的溶解度达到最低点。 卵清蛋白的等电点为4.6-4.8,而球蛋的等电点是5.1。 2、蛋白质的测定 根据蛋白质的物理化学性质,测定蛋白质的方法有凯氏定氮法、紫外吸收法、Folin-酚法、考马斯亮蓝G-250染色法等。 由于蛋白质分子中酪氨酸和色氨酸残基的苯环含有共轭双键,因此蛋白质具有吸收紫外线的性质,吸收高峰在280nm波长处。在此波长范围内,蛋白质溶液的光吸收值(A280)与其含量呈正比关系,可用作定量测定。 由于核酸在280波长处也有光吸收,对蛋白质的测定有干扰作用,但核酸的最大吸收峰在260nm处,如同时测定260nm的光吸收,通过计算可能消除其对蛋白质测定的影响,因此溶液中存在核酸时必须同时测定280nm及260nm之光密度,方可通过计算测得

蛋白质提取与制备的原理和方法

蛋白质提取与制备的原理和方法 蛋白质提取与制备蛋白质种类很多,性质上的差异很大,既或是同类蛋白质,因选用材料不同,使用方法差别也很大,且又处于不同的体系中,因此不可能有一个固定的程序适用各类蛋白质的分离。但多数分离工作中的关键部分基本手段还是共同的,大部分蛋白质均可溶于水、稀盐、稀酸或稀碱溶液中,少数与脂类结合的蛋白质溶于乙醇、丙酮及丁醇等有机溶剂中。因此可采用不同溶剂提取、分离及纯化蛋白质和酶。 蛋白质与酶在不同溶剂中溶解度的差异,主要取决于蛋白分子中非极性疏水基团与极性亲水基团的比例,其次取决于这些基团的排列和偶极矩。故分子结构性质是不同蛋白质溶解差异的内因。温度、pH、离子强度等是影响蛋白质溶解度的外界条件。提取蛋白质时常根据这些内外因素综合加以利用。将细胞内蛋白质提取出来。并与其它不需要的物质分开。但动物材料中的蛋白质有些可溶性的形式存在于体液(如血浆、消化硫等)中,可以不必经过提取直接进行分离。蛋白质中的角蛋白、胶原及丝蛋白等不溶性蛋白质,只需要适当的溶剂洗去可溶性的伴随物,如脂类、糖类以及其他可溶性蛋白质,最后剩下的就是不溶性蛋白质。这些蛋白质经细胞破碎后,用水、稀盐酸及缓冲液等适当溶剂,将蛋白质溶解出来,再用离心法除去不溶物,即得粗提取液。水适用于白蛋白类蛋白质的抽提。如果抽提物的pH用适当缓冲液控制时,共稳定性及溶解度均能增加。如球蛋白 类能溶于稀盐溶液中,脂蛋白可用 稀的去垢剂溶液如十二烷基硫酸钠、洋地黄皂苷(Digitonin)溶液或有机溶剂来抽提。其它不溶于水的蛋白质通常用稀碱溶液抽提。 蛋白质类别和溶解性质 白蛋白和球蛋白: 溶于水及稀盐、稀酸、稀碱溶液,可被50%饱和度硫酸铵析出。 真球蛋白: 一般在等电点时不溶于水,但加入少量的盐、酸、碱则可溶解。 拟球蛋白: 溶于水,可为50%饱和度硫酸铵析出 醇溶蛋白: 溶于70~80%乙醇中,不溶于水及无水乙醇 壳蛋白: 在等电点不溶于水,也不溶于稀盐酸,易溶于稀酸、稀碱溶液 精蛋白: 溶于水和稀酸,易在稀氨水中沉淀 组蛋白: 溶于水和稀酸,易在稀氨水中沉淀 硬蛋白质: 不溶于水、盐、稀酸及稀碱 缀合蛋白(包括磷蛋白、粘蛋白、糖蛋白、核蛋白、脂蛋白、血红蛋白、金属蛋白、黄素蛋白和氮苯蛋白等) : 此类蛋白质溶解性质随蛋白质与非蛋白质结合部分的不同而异,除脂蛋白外,一般可溶于稀酸、稀碱及盐溶液中,脂蛋白如

酪蛋白的提取

一、实验目的 1、掌握一种提取蛋白的方法。 2、掌握一种检测牛乳质量的方法。 二、实验原理 酪蛋白是乳蛋白质中最丰富的一类蛋白质,约占乳蛋白的80~82%,酪蛋白不是单一的蛋白质,是一类含磷的复合蛋白质混合物,以一磷酸酯键与苏氨酸及丝氨酸的羟基相结合。它还含有胱氨酸和蛋氨酸这两种含硫氨基酸,但不含半胱氨酸。它在牛乳中的含量约为35g/L,比较稳定,利用这一性质,可以检测牛乳中是否掺假。 酪蛋白在其等电点时由于静电荷为零,同种电荷间的排斥作用消失,溶解度很低,利用这一性质,经牛乳调到pH4.6,酪蛋白就从牛乳中分离出来。酪蛋白不溶于乙醇,这个性质被利用来从酪蛋白粗制剂中将脂类杂质除去。 三、仪器和试剂 仪器:温度计、布氏漏斗、pH 试纸、抽滤瓶、电炉、烧杯、量筒、表面皿、天平等。 试剂: 1. 95%乙醇、乙醚 2. pH4.6乙酸钠缓冲液0.2mol/L 3. 乙醇、乙醚混合液:乙醇∶乙醚=1∶1(体积比) 4. 市售牛乳 四、实验步骤 1.酪蛋白等电点沉淀 将100ml牛乳放到500ml烧杯中,加热至40℃左右的乙酸钠缓冲液,直到pH达4.6左右,用pH试纸或酸度计调试。将上述悬浮液冷却至室温,然后放置5min,用细布过滤,收集沉淀。 2.除脂类杂质 将上述沉淀用少量水洗数次,然后悬浮于30ml95%的乙醇中。将此悬浮液倾于布氏漏斗中,抽滤除去乙醇溶液,再倒入乙醇—乙醚混合液洗涤沉淀两次,最后再用一米洗涤沉淀两次,抽干。将沉淀从布氏漏斗中移去,在表面皿上摊开以除去乙醚,干燥后得到的是酪蛋白纯品。准确称重后,计算出每100ml牛乳所制备出的酪蛋白数量(g%),并与理论产量(3.5g%)相比较,求出实际获得百分率。 一、实验目的 酶是植物体内具有催化作用的蛋白质,植物体内的生化反应,一般都是在酶的作用下进行的,没有酶的催化反应,植物的生命也就停止了,因此对酶的研究是阐明生命现象本质中十分重要的部分。为要研究酶首先要将酶从组织中提取出来,加以分离、纯化,不同的研究目的对酶制剂的纯度要求也不相同,有些工作只需要粗的酶制剂即可,而有些工作则要求较纯的酶制剂,需根据不同情况区别对待。在酶的提取和纯化过程中,自始至终都需要测定酶的活性,通过酶活性的测定以监测酶的去向。 二、实验原理 (一)酶的提取 1.酶的存在位置? 存在于动植物以及微生物的细胞的各个部位。 2.如何将酶从细胞中分离? 从高等植物中提取酶常遇到一些实际问题,首先是细胞中含有许多种酶,每种酶的浓度又很低,只占细胞总蛋白质中的极小部分(叶中的双磷酸核酮糖羧化酶除外),而许多植物组织中蛋白质的含量又很低。此外,各种酶的存在状态不同,有在细胞外的外酶,在细胞内的内酶,内酶中又有与细胞器一定结构相结合的结合酶,也有的存在于细胞质中,提取时都应区别对待,作不

蛋白质的提取与纯化

蛋白质的提取与纯化 一,蛋白质的提取 大部分蛋白质都可溶于水、稀盐、稀酸或碱溶液,少数与脂类结合的蛋白质则溶于乙醇、丙酮、丁醇等有机溶剂中,因些,可采用不同溶剂提取分离和纯化蛋白质及酶。 (一)水溶液提取法 稀盐和缓冲系统的水溶液对蛋白质稳定性好、溶解度大、是提取蛋白质最常用的溶剂,通常用量是原材料体积的1-5倍,提取时需要均匀的搅拌,以利于蛋白质的溶解。提取的温度要视有效成份性质而定。一方面,多数蛋白质的溶解度随着温度的升高而增大,因此,温度高利于溶解,缩短提取时间。但另一方面,温度升高会使蛋白质变性失活,因此,基于这一点考虑提取蛋白质和酶时一般采用低温(5度以下)操作。为了避免蛋白质提以过程中的降解,可加入蛋白水解酶抑制剂(如二异丙基氟磷酸,碘乙酸等)。 下面着重讨论提取液的pH值和盐浓度的选择。 1、pH值 蛋白质,酶是具有等电点的两性电解质,提取液的pH值应选择在偏离等电点两侧的pH 范围内。用稀酸或稀碱提取时,应防止过酸或过碱而引起蛋白质可解离基团发生变化,从而导致蛋白质构象的不可逆变化,一般来说,碱性蛋白质用偏酸性的提取液提取,而酸性蛋白质用偏碱性的提取液。 2、盐浓度 稀浓度可促进蛋白质的溶,称为盐溶作用。同时稀盐溶液因盐离子与蛋白质部分结合,具有保护蛋白质不易变性的优点,因此在提取液中加入少量NaCl等

中性盐,一般以0.15摩尔。升浓度为宜。缓冲液常采用0.02-0.05M磷酸盐和碳酸盐等渗盐溶液。 (二)有机溶剂提取法 一些和脂质结合比较牢固或分子中非极性侧链较多的蛋白质和酶,不溶于水、稀盐溶液、稀酸或稀碱中,可用乙醇、丙酮和丁醇等有机溶剂,它们具的一定的亲水性,还有较强的亲脂性、是理想的提脂蛋白的提取液。但必须在低温下操作。丁醇提取法对提取一些与脂质结合紧密的蛋白质和酶特别优越,一是因为丁醇亲脂性强,特别是溶解磷脂的能力强;二是丁醇兼具亲水性,在溶解度范围内(度为10%,40度为6.6%)不会引起酶的变性失活。另外,丁醇提取法的pH及温度选择范围较广,也适用于动植物及微生物材料。 二、蛋白质的分离纯化 蛋白质的分离纯化方法很多,主要有: (一)根据蛋白质溶解度不同的分离方法 1、蛋白质的盐析 中性盐对蛋白质的溶解度有显著影响,一般在低盐浓度下随着盐浓度升高,蛋白质的溶解度增加,此称盐溶;当盐浓度继续升高时,蛋白质的溶解度不同程度下降并先后析出,这种现象称盐析,将大量盐加到蛋白质溶液中,高浓度的盐离子(如硫酸铵的SO4和NH4)有很强的水化力,可夺取蛋白质分子的水化层,使之“失水”,于是蛋白质胶粒凝结并沉淀析出。盐析时若溶液pH在蛋白质等电点则效果更好。由于各种蛋白质分子颗粒大小、亲水程度不同,故盐析所需的盐浓度也不一样,因此调节混合蛋白质溶液中的中性盐浓度可使各种蛋白质分段沉淀。

酪蛋白的提取与测定

牛乳中酪蛋白得制备与浓度测定 一、实验目得 1、学习从牛乳中分离酪蛋白得原理与方法 2、掌握等电点沉淀法提取蛋白质得方法 3、了解紫外吸收法测定蛋白质浓度得原理,熟悉紫外分光光度计得使用 4、学会用考马斯亮蓝结合法测定蛋白质浓度 二、实验原理 1、准备酪蛋白原理:牛乳中主要含有酪蛋白与乳清蛋白两种蛋白质,其中酪蛋白占了牛乳蛋白质得80%、牛乳在PH4。7时酪蛋白等电聚沉后剩余得蛋白质统称为乳清蛋白、酪蛋白就是白色、无味得物质,不溶于水、乙醇等有机溶剂,但溶于碱溶液。乳清蛋白不同于酪蛋白,其粒子得水与能力很强,分散性高,在乳中呈高分子状态。本法利用等电点时溶解度最低得原理,将牛乳得PH调至4。7时,酪蛋白就沉淀出来。用乙醇洗涤沉淀物,除去脂类杂质后便可得到纯得酪蛋白。 2、紫外吸收法测定蛋白质浓度得原理:大多数蛋白质由于有酷氨酸与色氨酸得存在,在紫外光280nm有吸收高峰,可以进行蛋白质含量得测定。但就是核酸在280nm也有吸收,干扰测定,不过核酸得最大吸收峰在260nm,通过测定在280nm与260nm时A得比值,然后通过计算消除核酸存在得影响,可以求得有核酸存在时蛋白质得浓度。 3、考马斯亮蓝结合法测定蛋白质浓度原理:考马斯亮蓝能与蛋白质得疏水微区相结合,这种结合具有高敏感性。考马斯亮蓝G250得磷酸溶液呈棕红色,最大吸收峰在465nm、当它与蛋白质结合形成复合物时呈蓝色,其最大吸收峰改变为595nm,考马斯亮蓝G250—蛋白质复合物得高消光效应导致了蛋白质定量测定得高敏感度。 在一定范围内,考马斯亮蓝G250—蛋白质复合物呈色后,在595nm下,吸光度与蛋白质含量呈线性关系,故可以用于蛋白质浓度得测定。 三、实验器材与试剂 1、制备酪蛋白: 烧杯、玻璃棒、量筒、精密PH试纸、离心机、布氏漏斗、表面皿、恒温水浴锅 牛奶、醋酸缓冲液、冰醋酸、95%乙醇、无水乙醚 2、紫外光吸收法: 紫外可见光分光光度计、容量瓶50ml(×1)、石英比色皿 0.9%NaCl、1mol/LNaOH溶液、1mol/L乙酸溶液 3、考马斯亮蓝法: 紫外可见光分光光度计、试管1.5cm×15cm(×9)、玻璃比色皿 牛血清白蛋白(0.1mg/ml)、考马斯亮蓝、0。9%NaCl 四、实验步骤 制备酪蛋白 1、将20mL pH4。7得醋酸-醋酸钠缓冲液预热至40℃ 2、将20mL牛奶加热至40℃,在搅拌下缓慢地加入20mL预热得pH4。7得醋酸—醋酸钠缓冲液 3、用精密pH试纸调pH至4.7,可见溶液变为乳白色悬浮液 4、待悬浮液冷却至室温,4000rpm离心5min,弃上清,得酪蛋白粗制品 5、用蒸馏水洗沉淀3次,3000rpm离心5min,弃上清

蔗糖酶测定方法

蔗糖酶测定(比色法): 蔗糖酶是一种可以把土壤中高分子量蔗糖分子分解成能够被植物和土壤微生物吸收利用的葡萄糖和果糖的水解酶,为土壤生物体提供充分能源,其活性反映了土壤有机碳累积与分解转化的规律。 蔗糖酶能酶促蔗糖水解生成葡萄糖和果糖。因此,蔗糖酶的活性可以根据水解生成物与某些物质(3,5-二硝基水杨酸或磷酸铜)生成有色化合物含量来确定。现介绍3,5-二硝基水杨酸比色法,该方法以蔗糖为基质,根据葡萄糖与3,5-二硝基水杨酸反应生成黄色产物,来确定土壤蔗糖酶活性。 试剂 1)3,5-二硝基水杨酸溶液:称取0.5克二硝基水杨酸,溶于20mL 2mol/L氢氧化钠和50毫升水中,再加入30克酒石酸钾钠,用水稀释至100mL(不超过一周)。 2)pH值为5.5的磷酸缓冲液:1/15mol/L磷酸氢二钠(11.867g Na2HPO4·2H2O溶于1升蒸馏水中)0.5毫升加1/15mol/L 磷酸二氢钾(9.078gKH2PO4溶于1升蒸馏水中)9.5毫升配成。 3)8%蔗糖溶液。 4)甲苯 5) 标准葡萄糖溶液:将葡萄糖先在50-58℃条件下,真空干燥至恒重。然后取500mg 溶于100ml蒸馏水中,即成葡萄糖标准溶液(5mg/ml)。再将此液稀释10倍制成葡萄糖工作液(0.5mg/ml)。 操作步骤 称取5g土,置于50mL三角瓶中,加入5滴甲苯,15min后注入15mL 8%蔗糖溶液和5mL pH 5.5磷酸缓冲液,摇匀混合物后,放入恒温箱,在37℃下培养24h。 到时取出,迅速过滤。从中吸取滤液1mL,注入50mL容量瓶中,加3mL3,5-二硝基水杨酸,并在沸腾的水浴锅中加热5min,随即将容量瓶移至自来水流下冷却3min。溶液因生成3-氨基-5-硝基水杨酸而呈橙黄色,最后用蒸馏水稀释至50mL,并在分光光度计上于波长508nm处比色。 每一土壤需做无基质对照,整个试验需做无土壤对照。 在分析样品的同时,取0、1、2、3、4、5、6、7mL葡萄糖工作液,分别注入50mL容量瓶中,并按与测定蔗糖酶活性同样的方法进行显色,比色后以吸光度为纵坐标,葡萄糖浓度为横坐标绘制标准曲线。

【1】生物样本中蛋白质的提取及测定(分子医学实验)

《分子生物学实验》 实验报告 实验名称:生物样本中蛋白质的提取及测定 姓名:杰 学号:3140104666 组别: 同组同学:唐曦

带教教师:伟俞萍 实验日期:2015年9月15日 目录 1.原理: (3) 1.1生物样本中蛋白质的提取 (3) 1.2生物样本中蛋白质的测定 (3) 1.2.1 Lowry法 (3) 1.2.2 考马斯亮蓝法 (4) 1.2.3 紫外吸收法 (4) 2.操作步骤 (4) 2.1生物样本中蛋白质的提取 (4) 2.2生物样本中蛋白质的测定 (5) 2.2.1 Lowry法 (5) 2.2.2 考马斯亮蓝法 (5) 2.2.3紫外吸收法 (5) 3、实验结果 (6) 3.1 原始数据 (6) 3.1.1 Lowry法 (6) 3.1.2 考马斯亮蓝法 (7) 3.1.3 紫外吸收法 (7)

3.2 数据处理 (8) 3.2.1 Lowry法 (8) 3.2.2 考马斯亮蓝法 (9) 3.2.3 紫外吸收法 (10) 4.讨论: (11) 1.原理: 1.1生物样本中蛋白质的提取 离体不久的组织,在适宜的温度及pH等条件下,可以进行一定程度的物质代谢。因此,在生物化学实验中,常利用离体组织来研究各种物质代谢的途径与酶系作用,也可以从组织中提取各种代谢物质或酶进行研究。但生物组织离体过久,其所含物质的含量和生物活性都将发生变化。例如,组织中的某些酶在久置后会发生变性而失活;有些组织成分如糖原、ATP等,甚至在动物死亡数分钟至十几分钟,其含量即有明显的降低。因此,利用离体组织作代谢研究或作为提取材料时,都必须迅速将它取出,并尽快地进行提取或测定。一般采用断头法处死动物,放出血液,立即取出实验所需的脏器或组织,除去外层的脂肪及结缔组织后,用冰冷的生理盐水洗去血液(必要时可用冰冷的生理盐水灌注脏器以洗去血液),再用滤纸吸干,即可用于实验。取出的脏器或组织,可根据不同的方法制成不同的组织样品。包括组织糜、组织匀浆、组织浸出液。由于动物肝脏细胞比较脆弱,易于破碎,故本实验选用小鼠肝脏细胞作为实验材料,采用匀浆法法将其破碎,然后加入样品提取液使蛋白质溶解,用高速离心法弃去细胞碎片。收集上清液后可进行蛋白质定量分析。 1.2生物样本中蛋白质的测定 1.2.1 Lowry法 1921年,Folin发明了Folin-酚试剂法测定蛋白质的浓度,反应原理是利用蛋白质分子中的酪氨酸和色氨酸残基还原酚试剂(磷钨酸-磷泪酸)生成蓝色

分离纯化蛋白质的方法及原理

(二)利用溶解度差别 影响蛋白质溶解度的外部因素有:1、溶液的pH;2、离子强度;3、介电常数;4、温度。但在同一的特定外部条件下,不同蛋白质具有不同的溶解度。 1、等电点沉淀:原理:蛋白质处于等电点时,其净电荷为零,由于相邻蛋白质分子之间没有静电斥力而趋于聚集沉淀。因此在其他条件相同时,他的溶解度达到最低点。在等电点之上或者之下时,蛋白质分子携带同种符号的净电荷而互相排斥,阻止了单个分子聚集成沉淀,因此溶解度较大。不同蛋白质具有不同的等电点,利用蛋白质在等电点时的溶解度最低的原理,可以把蛋白质混合物分开。当pH被调到蛋白质混合物中其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来,那些等电点高于或低于该pH的蛋白质则仍留在溶液中。这样沉淀出来的蛋白质保持着天然的构象,能重新溶解于适当的pH和一定浓度的盐溶液中。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.盐溶作用主要是由于蛋白质分子吸附某种盐类离子后,带电层使蛋白质分子彼此排斥,而蛋白质与水分子之间的相互作用却加强,因而溶解度增高。球蛋白溶液在透析过程中往往沉淀析出,这就是因为透析除去了盐类离子,使蛋白质分子之间的相互吸引增加,引起蛋白质分子的凝集并沉淀。当溶液的离子强度增加到一定程度时,蛋白质溶解程度开始下降。当离子强度增加到足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析。盐析作用主要是由于大量中性盐的加入使水的活度降低,原来溶液中的大部分甚至全部的自由水转变为盐离子的水化水。此时那些被迫与蛋白质表面的疏水集团接触并掩盖他们的水分子成为下一步最自由的可利用的水分子,因此被移去以溶剂化盐离子,留下暴露出来的疏水基团。蛋白质疏水表面进一步暴露,由于疏水作用蛋白质聚集而沉淀。 盐析沉淀的蛋白质保持着他的天然构象,能再溶解。盐析的中性盐以硫酸铵为最佳,在水中的溶解度很高,而溶解度的温度系数较低。 3、有机溶剂分级分离法:与水互溶的有机溶剂(甲醇、乙醇和丙酮等)能使蛋白质在水中的溶解度显著降低。在室温下有机溶剂会引起蛋白质变性,如果预先将有机溶剂冷却到-40°C以下,然后在不断搅拌下逐滴加入有机溶剂,以防局部浓度过高,那么变性可以得到很大程度缓解。蛋白质在有机溶剂中的溶解度也随温度、pH和离子强度而变化。在一定温度、pH和离子强度条件下,引起蛋白质沉淀的有机溶剂的浓度不同,因此控制有机溶剂浓度也可以分

蔗糖酶的提取及活力

蔗糖酶的提取及活力、含量和相对分子质量测定 摘要:本学期共做了六次生化实验。.第一次是提取及纯化蔗糖酶,以为后续实验提供样品。实验主要目的是要求学生掌握高速离心机的使用。实验共得到不同纯化度的三种提取液,标记为A、B、C。将三种提取液分别放入冰箱保存,做为后续实验样品。也因此做此实验时必须保证各个操作无误,及准确,以免影响后续实验的结果。 第二次是有关蔗糖酶的柱层析法,主要目的是要求同学掌握离子交换层析的原理及柱层析的操作技术及紫外吸收的分析方法。此次实验通过柱层析及紫外吸收法得到2~3管的活力最大的分离液合并为分离液D,放入冰箱作为后续实验样品。第三次实验为蔗糖酶的活力测定,目的为掌握酶的活力测定方法,了解各个酶的纯化情况。利用分光度计测出各个样品的OD值,再对照葡萄糖的标准曲线来得出剩余葡萄糖的含量,从而获得各个酶的活力大小,了解各个酶的纯化情况。并得出结论酶的纯化度越高,活力越小。 第四次实验为蔗糖酶蛋白质的含量测定,目的为掌握学习Folin-酚测定蛋白质含量的原理及方法,制备标准曲线测定未知样品中蛋白质含量。同样利用与标准曲线对照来得到试样的蛋白质含量,并测出酶的比活力。测量蛋白质的方法有多种,我们必须根据所做实验的具体选择合适的方法来测定蛋白质。 第五次的实验是微量凯氏定氮测总蛋白。目的是要求同学掌握凯氏定氮法测定蛋白质含量的原理及方法。本实验除利用了凯氏定氮法外还加上了酸式滴定法最后得出了毫克级别的总蛋白含量。其结果与上一实验所测得的总蛋白质含量有所不同,正证明了不同的方法测量蛋白质造成的误差不同,致所得结果不同。 最后一次实验为SDS-PAGE测定蛋白质分子质量,目的为掌握SDS-聚丙烯酰胺凝胶电泳和测定蛋白质分子量技术。此实验操作复杂,需先制作凝胶再结果染色脱色,最后还要制作标准蛋白分子质量曲线图来进行试样对照。最后得到蔗糖酶的分子量在5万左右及9万左右。 关键字:实验;提取液;比活;蛋白质;SDS-PAGE;OD 正文: 1,蔗糖酶的提取及提纯 1.1,文献综述:蔗糖酶的分离利用的是细胞破壁法。细胞破壁:就酶在生物体 内的分布,可分为胞内酶和胞外酶,蔗糖酶系胞内酶。提取胞内酶时,要 破碎组织和细胞,然后用一定的溶液提取,得到的材料称为无细胞抽提液。 材料不同,破壁也方法不同。我们用的菌体(微生物)细胞破壁方法是:自溶法,即将菌体放在适当的pH值和温度下,利用组织细胞自身的酶系 将细胞破坏,是细胞内物质释放出来。自溶时需加少量防腐剂,以防外界

蛋白含量测定及western步骤

蛋白的提取和定量 肺组织用预冷1×TBS洗净后,加入含PMSF的RIPA buffer(冰上操作,310ul,决定未来的蛋白浓度和蛋白液体积),50-60mg肺组织砸碎放入1.5ml离心管,冰上孵育1h,10000转4℃离心10min,转上清至新管。裂解液分装后保存于-70℃ 蛋白质定量:BCA蛋白测定法 ①根据样品数量,按50体积BCA试剂A加1体积BCA试剂B(50:1)配制适量BCA工作液,充分混匀。BCA工作液室温24小时内稳定。 ②完全溶解蛋白标准品(BCA试剂盒中,BSA原浓度2mg/mL),稀释到1mg/mL。 ③将标准品按0,2,5,10,15,20,25 ul标准品孔中,加蒸馏水稀释标准品的 ④加样品2uL加到96孔板的样品孔中,加蒸馏水23微升。 ⑤各孔加入200微升BCA工作液,37o C放置30分钟。同时打开酶标仪预热。 注:也可以室温放置2小时,或60o C放置30分钟。BCA法测定蛋白浓度时,吸光度会随着时间的延长不断加深。并且显色反应会因温度升高而加快。如果浓度较低,适量在较高温度孵育,或延长孵育时间。 ⑥测定A570的波长,根据标准曲线计算出蛋白浓度。 ⑦计算调蛋白时所需TBS和RSB的体积(调所有样品浓度至3-5ug/ul): 总体积=蛋白体积*蛋白浓度/3(ul) RSB=1/5*总体积(ul) TBS=总体积-RSB-蛋白体积(ul) 先加RSB(对蛋白有保护作用),后加TBS。最后放于-70℃保存。 Western Blot SDS-PAGE 1. 玻璃板:注意对齐、夹紧,防止漏出,短板朝前。 灌至距绿线1cm左右,用dd水封顶,放置30-40min。状况好时往往能观察到

实验六-从淡奶粉中分离、鉴定酪蛋白和乳糖

实验六从淡奶粉中分离、鉴定酪蛋白和乳糖 教学要求: 1 掌握通过等电点分离蛋白质的原理和方法; 2 掌握蛋白质鉴定的特征反应; 3 掌握还原性糖的鉴定方法。 教学重点:掌握通过调节溶液体系的pH值利用等电点分离蛋白质。 教学难点:蛋白质和还原性糖鉴定反应的操作及其现象观察 教学时数:4 学时 一、实验目的 1、掌握分离蛋白质和糖的原理和操作方法; 2、掌握蛋白质的定性鉴定方法; 3、了解乳糖的一些性质。 二、实验原理 牛奶的主要成分是水、蛋白质、脂肪、糖和矿物质,其中,蛋白质主要是酪蛋白,而糖主要是乳糖。 蛋白质在等电点时溶解度最小,当把牛奶的PH值调到4.8时(酪蛋白的等电点),酪蛋白便沉淀出来。酪蛋白不溶于乙醇和乙醚,可用乙醇和乙醚来洗去其中的脂肪。 乳糖不溶于乙醇在滤去酪蛋白的清液中加入乙醇时,乳糖会结晶出来。 三、实验步骤 1、酪蛋白与乳糖的提取 4g奶粉与80 mL 40℃温水调配均匀,以10%乙酸调节pH=4.7(用精密pH试纸测试),

静置冷却,抽滤。 滤饼用6mL水洗涤,滤液合并到前一滤液中。滤饼依次用6mL95%乙醇,6mL乙醚洗涤,滤液弃去。滤饼即为酪蛋白,晾干称重。 在水溶液中加入2.5g碳酸钙粉,搅拌均匀后加热至沸,过滤除去沉淀,在滤液中加入1~2粒沸石,加热浓缩至8ml左右,加入10ml 95%乙醇(注意离开火焰)和少量活性炭,搅拌均匀后在水浴上加热至沸腾,趁热过滤,滤液必须澄清,加塞放置过夜,乳糖结晶析出,抽滤,用95%乙醇洗涤产品,晾干称重。 2、酪蛋白的性质 缩二脲反应取10ml酪蛋白溶液,加入10% NaOH溶液2ml后,滴入1%CuSO4溶液1ml。振荡试管,观察现象(溶液呈蓝紫色)。 蛋黄颜色反应取10ml酪蛋白溶液,加入浓硝酸2ml后加热,观察现象(有黄色沉淀生成)。再加入10%NaOH溶液2ml,有何变化?(沉淀为橘黄色) 3、乳糖的性质 Fehling反应Fehling试剂A和B各3mL,混匀,加热至沸后加入0.5mL5%乳糖溶液,观察现象。 Tollen反应在2mLTollen试剂中加入0.5mL5%乳糖溶液,在80℃中加热,观察现象(有银镜生成)。 四、实验结果 品名性状产量收率

可溶性蛋白质含量的测定

植物体内可溶性蛋白质含量的测定 植物体内的可溶性蛋白质含量是一个重要的生理生化指标,如在研究每一种酶的作用时常以比活(酶活力单位/毫克蛋白质,unIT/Mg ProTeIn)表示酶活力大小及酶制剂纯度,这就需要测定蛋白质含量。常用的测定方法有LoWry法和考马斯亮蓝G-250染色法,本实验将分别介绍这两种方法。 方法一:LoWry法(劳里法) 【原理】 LoWry法是双缩脲法(BIureT)和福林酚法(FolIn-酚)的结合与发展。其原理是蛋白质溶液用碱性铜溶液处理后,碱性铜试剂与蛋白质中的肽键作用产生双缩脲反应,形成铜—蛋白质的络合盐。再加入酚试剂后,在碱性条件下,这种被作用的蛋白质上的酚类基团极不稳定,很容易还原酚试剂中的磷钨酸和磷钼酸(PHosPHoMolyBdATe &PHosPHoTungsTATe),使之生成磷钨蓝和磷钼蓝的混合物。这种溶液蓝色的深浅与蛋白的含量成正相关,所以可以用于蛋白质含量的测定。LoWry法除使肽链中酪氨酸、色氨酸和半胱氨酸等显色外,还使双缩脲法中肽键的显色效果更强烈,其显色效果比单独使用酚试剂强3~15倍,约是双缩脲法的100倍。由于肽键显色效果增强,从而减少了因蛋白质种类不同引起的偏差。LoWry法适于微量蛋白的测定,对多个样品同时测定较为方便。但对不溶性蛋白和膜结合蛋白必须进行预处理(如加入少量的SDS)。

1.双缩脲法的原理双缩脲(NH2-CO-NH-CO-NH2)在碱性溶液中可与铜离子产生紫红色的络合物,这一反应称为双缩脲反应。因为蛋白质中有多个肽键,也能与铜离子发生双缩脲反应,且颜色深浅与蛋白质的含量的关系在一定范围内符合比尔定律,而与蛋白质的氨基酸组成及分子量无关,所以可用双缩脲法测定蛋白质的含量。 双缩脲反应主要涉及肽键,因此受蛋白质特异性影响较小。且使用试剂价廉易得,操作简便,可测定的范围为1~10Mg蛋白质,适于精度要求不太高的蛋白质含量的测定,能测出的蛋白质含量须在约05Mg以上。双缩脲法的缺点是灵敏度差、所需样品量大。干扰此测定的物质包括在性质上是氨基酸或肽的缓冲液,如TrIs缓冲液,因为它们产生阳性呈色反应,铜离子也容易被还原,有时出现红色沉淀。 2.福林-酚法的原理该方法是双缩脲法的发展,包括两步反应: (1)在碱性条件下,蛋白质与铜作用生成蛋白质—铜络合物。 (2)此络合物将试剂磷钼酸—磷钨酸(FolIn试剂)还原,混合物深蓝色(磷钼蓝和磷钨蓝混合物),颜色深浅与蛋白质含量成正比。此方法操作简便,灵敏度比双缩脲法高100倍,定量范围为5~100μg蛋白质。FolIn试剂显色反应由酪氨酸、色氨酸、半胱氨酸引起,因此样品中若含有酚类、柠檬酸和巯基化合物,均有干扰作用。此方法的缺点是有蛋白质的特异性影响,即不同蛋白质因络氨酸、色氨酸含量的不同而使显色强度稍有不同,标准曲线也不是严格的直线形式。

分离纯化蛋白质的方法及原理

分离纯化蛋白质的方法及原理 (一)利用分子大小 1、透析:原理:利用蛋白质分子不能透过半透膜的性质,使蛋白质和其他小分子物质如无机盐、单糖、水等分开。 方法:将待提纯蛋白质放在透析袋中放在蒸馏水中进行 涉及的问题: 如何加快透析过程 (1)加大浓度差,及时更换透析液 (2)利用磁力搅拌器 常用的半透膜:玻璃纸、火棉和其他材料合成 2、超过滤:原理:利用压力和离心力,强行使其他小分子和水通过半透膜,而蛋白质留在膜上 3、凝胶过滤层析:原理:当不同分子大小的蛋白质混合物流进凝胶层析柱时,比凝胶网孔大的分子不能进入珠内网状结构,排阻在凝胶珠以外,在凝胶珠缝隙间隙中向下移动。而比孔小的分子不同程度地进入凝胶珠内,这样由于不同大小分子所经历的路径不同而到分离。 结果:大分子先被洗脱下来,小分子后被洗脱下来 (二)利用溶解度差别 4、等电点沉淀:原理:不同蛋白质具有不同的等电点,当蛋白质混合物调到其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来.。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.当离子强度增加,足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析

(三)根据电荷不同 6、SDS-PAGE 全称十二烷基硫酸钠—聚丙烯酰胺凝胶电泳 原理:通过加热和SDS可以使蛋白质变性,多亚基的蛋白质也解离为单亚基,处理后的样品中肽链是处于无二硫键连接的,分离的状态。电泳时SDS-蛋白质复合物在凝胶中的迁移率不再受蛋白质原有电荷和形状的影响,而主要取决于蛋白质分子量。所以SDS-PAGE常用来分析蛋白质的纯度和大致测定蛋白质的分子量。 7、离子交换层析:原理:氨基酸分离常用阳离子交换树脂,树脂被处理成钠型,将混合氨基酸上柱,氨基酸主要以阳离子形式存在,在树脂上与钠离子发生交换,而被挂在树脂上。 氨基酸在树脂上结合的牢固程度取决于氨基酸与树脂之间的亲和力,决定亲和力的因素有:(1)主要是静电吸引力(2)氨基酸侧链同树脂之间的疏水作用氨基酸与阳离子交换树脂间的静电引力大小次序依次是: 碱性氨基酸R2+>中性氨基酸R+>酸性氨基酸R0。 因此洗脱顺序应该是: 酸性氨基酸中性氨基酸碱性氨基酸 为使氨基酸从树脂上洗脱下来采用逐步提高pH和盐浓度的方法

酪蛋白的提取与测定(参考资料)

牛乳中酪蛋白的制备与浓度测定 一、实验目的 1、学习从牛乳中分离酪蛋白的原理和方法 2、掌握等电点沉淀法提取蛋白质的方法 3、了解紫外吸收法测定蛋白质浓度的原理,熟悉紫外分光光度计的使用 4、学会用考马斯亮蓝结合法测定蛋白质浓度 二、实验原理 1、准备酪蛋白原理:牛乳中主要含有酪蛋白和乳清蛋白两种蛋白质,其中酪蛋白占了牛乳蛋白质的80%。牛乳在PH4.7时酪蛋白等电聚沉后剩余的蛋白质统称为乳清蛋白。酪蛋白是白色、无味的物质,不溶于水、乙醇等有机溶剂,但溶于碱溶液。乳清蛋白不同于酪蛋白,其粒子的水和能力很强,分散性高,在乳中呈高分子状态。本法利用等电点时溶解度最低的原理,将牛乳的PH调至4.7时,酪蛋白就沉淀出来。用乙醇洗涤沉淀物,除去脂类杂质后便可得到纯的酪蛋白。 2、紫外吸收法测定蛋白质浓度的原理:大多数蛋白质由于有酷氨酸和色氨酸的存在,在紫外光280nm有吸收高峰,可以进行蛋白质含量的测定。但是核酸在280nm也有吸收,干扰测定,不过核酸的最大吸收峰在260nm,通过测定在280nm和260nm时A的比值,然后通过计算消除核酸存在的影响,可以求得有核酸存在时蛋白质的浓度。 3、考马斯亮蓝结合法测定蛋白质浓度原理:考马斯亮蓝能与蛋白质的疏水微区相结合,这种结合具有高敏感性。考马斯亮蓝G250的磷酸溶液呈棕红色,最大吸收峰在465nm。当它与蛋白质结合形成复合物时呈蓝色,其最大吸收峰改变为595nm,考马斯亮蓝G250—蛋白质复合物的高消光效应导致了蛋白质定量测定的高敏感度。 在一定范围内,考马斯亮蓝G250—蛋白质复合物呈色后,在595nm下,吸光度与蛋白质含量呈线性关系,故可以用于蛋白质浓度的测定。 三、实验器材与试剂 1、制备酪蛋白: 烧杯、玻璃棒、量筒、精密PH试纸、离心机、布氏漏斗、表面皿、恒温水浴锅 牛奶、醋酸缓冲液、冰醋酸、95%乙醇、无水乙醚 2、紫外光吸收法: 紫外可见光分光光度计、容量瓶50ml(×1)、石英比色皿 0.9%NaCl、1mol/LNaOH溶液、1mol/L乙酸溶液 3、考马斯亮蓝法: 紫外可见光分光光度计、试管1.5cm×15cm(×9)、玻璃比色皿 牛血清白蛋白(0.1mg/ml)、考马斯亮蓝、0.9%NaCl 四、实验步骤

关于蔗糖酶活性的研究 生物化学实验

对啤酒酵母的蔗糖酶的相关测试与研究 兰德新(同组:李建鑫) 浙江工业大学海洋学院食工1201 摘要: 目的学习测试与研究蔗糖酶的相关技术,以20克新鲜啤酒酵母菌为原料进行一系列实验。方法蔗糖酶的提取及初步提纯,蔗糖酶的纯化——Q Sepharose-柱层析法,蔗糖酶活力的测定,Folin-酚法测定蔗糖酶蛋白质含量测定及比活力计算,微量凯氏定氮法测蔗糖酶中总蛋白氮,SDS-PAGE测定蔗糖酶中蛋白质的相对分子质量。结果通过这一阶段性的综合实验,学会了提取及初步提纯酶及胞内酶的提纯,酶活力的测定方法,蛋白质的测定方法和蛋白质相对分子质量的测定方法。为我们将来的实验奠定了技术上的基础。 关键词:蔗糖酶,Q Sepharose-柱层析法,酶活力,Folin-酚法,微量凯氏定氮法,SDS-PAGE 文献综述: 蔗糖酶能催化水解蔗糖生成果糖和葡萄糖,果糖的甜度较高,约为蔗糖的1.36~1.60倍,在工业上具有较高的经济价值,葡萄糖也是我们的主要碳源,并且在植物中蔗糖酶分解的果糖和葡萄糖能为植物的生长和发育提供碳源和能源。因此人们对蔗糖酶的研究越来越多,做了很多的实验来研究蔗糖酶的性质[2] , 其中在“蔗糖酶水解蔗糖的研究”这篇文章中,作者通过一系列对比实验,得出蔗糖酶的几个性质如下:蔗糖酶的活性达1.575×105u/ml;其表观Km(米氏常数)值约为0.015mol/1;初速度反应时间为0~10min;最适酶量为3.152×103~7.88×103 u/mmol;最适底物浓度为0.5mol/l;最适pH在NaAc-HAc体系中为4.4;最适反应温度为50℃。 而在植物体中,蔗糖酶也起到不可代替的作用。在“蔗糖酶在植物中的生理作用”这篇文章中,作者主要介绍了蔗糖酶在植物体中的5个作用,分别是:1.参与叶片的光合作用 2. 参与贮藏器官碳水化合物组成中的作用 3. 参与细胞对胁迫的响应 4. 参与植物的生长发育 5. 在信号传导中的作用目前,对蔗糖酶的研究已取得了很大的进展,不仅分离、纯化了各种蔗糖酶,建立了活性

相关文档
最新文档