蛋白质的提取与纯化

合集下载

提蛋白质的原理及步骤

提蛋白质的原理及步骤

蛋白质提取是一项基础实验,通常用于从组织或细胞中提取纯度较高的蛋白质样品,以便进行各种蛋白质研究。

常规的蛋白质提取步骤包括以下几个主要步骤:
1. 细胞或组织的裂解:将待提取的样品裂解以释放出蛋白质。

裂解方法取决于被裂解的细胞类型,可使用机械法、化学法、超声波或高压等方法进行裂解。

2. 蛋白质的分离:将蛋白质与非蛋白质组分进行分离,常用的方法有沉淀、过滤、离心和柱层析等。

3. 蛋白质的纯化:通过进一步的分离和纯化来获得高纯度的蛋白质。

这些步骤通常需要进行多次,每次都使用不同的方法来分离和纯化蛋白质。

提蛋白质的原理是基于蛋白质的化学和物理特性进行分离和纯化。

蛋白质分子量大小、电荷、亲水性等特性不同,容易与不同化学试剂、柱层析介质或生物酶相互作用。

通过调节这些条件和步骤,就可以使不同的蛋白质与其它组分分离出来,并得到纯度较高的蛋白质样品。

虽然蛋白质提取步骤较多,但因为各种蛋白质的特性不同,所以实验时需要根据需要选择不同的提取和分离方法以获得更理想的效果。

蛋白质的分离纯化方法

蛋白质的分离纯化方法

蛋白质的分离纯化方法蛋白质是细胞中的重要生物大分子,具有多样的结构和功能。

为了研究蛋白质的性质和功能,需要将蛋白质从混合样品中分离纯化出来。

蛋白质的分离纯化方法有很多种,主要包括离心法、电泳法、层析法和亲和纯化法等。

下面将逐一介绍这些方法及其原理。

1. 离心法离心法是利用离心机将混合物中的蛋白质分离出来。

首先将细胞裂解,得到细胞裂解液,然后进行离心,以将细胞器、胞外物质和亲粒子(如蛋白质颗粒)分离。

离心可以根据不同物质的相对密度和大小进行分层分离,快速旋转离心机可以很好地分离出不同密度的颗粒。

2. 电泳法电泳法是将带电的蛋白质沿着电场移动,根据蛋白质的带电性质和大小分离的方法。

蛋白质可以根据电荷性质分为阴离子蛋白和阳离子蛋白,也可以根据亲水性质分为亲水性蛋白和疏水性蛋白。

电泳法常用的有SDS-PAGE、等电聚焦电泳等。

其中,SDS-PAGE可以根据蛋白质的分子量进行分离。

3. 层析法层析法是通过蛋白质与载体之间的亲和性或者分离介质之间的亲和性进行分离的方法。

层析法主要分为凝胶层析、离子交换层析、亲合层析和大小排阻层析等。

凝胶层析法是利用凝胶的网格结构来分离蛋白质,如凝胶过滤层析、凝胶过渡层析等。

离子交换层析法是利用蛋白质对离子交换树脂的吸附性质进行分离。

亲合层析法是通过亲和柱中的配体与蛋白质的亲和作用进行分离。

大小排阻层析法是根据蛋白质的分子量和形状进行分离。

4. 亲和纯化法亲和纯化法是利用特定的亲合剂与目标蛋白质之间的特异性亲和性进行分离纯化的方法。

亲和纯化主要包括亲和柱层析法、浸没纯化法、亲和剂电泳法等。

亲和柱层析法是将具有亲和填料的柱子与样品接触,通过洗脱再生的操作,将目标蛋白质从其他组分中分离纯化出来。

浸没纯化法是将特定亲合剂浸泡在蛋白质混合物中,使其与目标蛋白质发生亲和结合,然后以特定条件洗脱目标蛋白质。

亲和剂电泳法是负载亲和剂的凝胶片上进行电泳,使蛋白质与亲和剂结合,再通过电泳将其分离纯化出来。

蛋白质提取与纯化技术总结

蛋白质提取与纯化技术总结

蛋白质提取与纯化技术总结蛋白质提取与纯化技术1.蛋白质(包括酶)的提取大部分蛋白质都可溶于水、稀盐、稀酸或碱溶液,少数与脂类结合的蛋白质则溶于乙醇、丙酮、丁等有机溶剂中,因些,可采用不同溶剂提取分离和纯化蛋白质及酶。

水溶液提取法:稀盐和缓冲系统的水溶液对蛋白质稳定性好、溶解度大、是提取蛋白质最常用的溶剂,通常用量是原材料体积的1-5倍,提取时需要均匀的搅拌,以利于蛋白质的溶解。

提取的温度要视有效成份性质而定。

一方面,多数蛋白质的溶解度随着温度的升高而增大,因此,温度高利于溶解,缩短提取时间。

但另一方面,温度升高会使蛋白质变性失活,因此,基于这一点考虑提取蛋白质和酶时一般采用低温(5度以下)操作。

为了避免蛋白质提以过程中的降解,可加入蛋白水解酶抑制剂(如二异丙基氟磷酸,碘乙酸等)。

下面着重讨论提取液的pH值和盐浓度的选择。

1、pH值蛋白质,酶是具有等电点的两性电解质,提取液的pH值应选择在偏离等电点两侧的pH范围内。

用稀酸或稀碱提取时,应防止过酸或过碱而引起蛋白质可解离基团发生变化,从而导致蛋白质构象的不可逆变化,一般来说,碱性蛋白质用偏酸性的提取液提取,而酸性蛋白质用偏碱性的提取液。

2、盐浓度稀浓度可促进蛋白质的溶解,称为盐溶作用。

同时稀盐溶液因盐离子与蛋白质部分结合,具有保护蛋白质不易变性的优点,因此在提取液中加入少量NaCl等中性盐,一般以0.15摩尔。

升浓度为宜。

缓冲液常采用0.02-0.05M磷酸盐和碳酸盐等渗盐溶液。

有机溶剂提取法:一些和脂质结合比较牢固或分子中非极性侧链较多的蛋白质和酶,不溶于水、稀盐溶液、稀酸或稀碱中,可用乙醇、丙酮和丁等有机溶剂,它们具的一定的亲水性,还有较强的亲脂性、是理想的提脂蛋白的提取液。

但必须在低温下操作。

丁提取法对提取一些与脂质结合紧密的蛋白质和酶特别优越,一是因为丁亲脂性强,特别是溶解磷脂的能力强;二是丁兼具亲水性,在溶解度范围内(度为10%,40度为6.6%)不会引起酶的变性失活。

蛋白质分离纯化的方式

蛋白质分离纯化的方式

蛋白质分离纯化的方式分离纯化某一特定蛋白质的一般程序可以分为前处理、粗分级、细分级三步。

1.前处理:分离纯化某种蛋白质,首先要把蛋白质从原来的组织或细胞中以溶解的状态释放出来并保持原来的天然状态(如果做不到呢?比如蛋白以包涵体形式存在),不丢失生物活性。

为此,动物材料应先提出结缔组织和脂肪组织,种子材料应先去壳甚至去种皮以免手单宁等物质的污染,油料种子最好先用低沸点(为什么呢)的有机溶剂如乙醚等脱脂。

然后根据不同的情况,选择适当的方法,将组织和细胞破碎。

动物组织和细胞可用电动捣碎机或匀浆机破碎或用超声波处理破碎。

植物组织和细胞由于具有纤维素、半纤维素和果胶等物质组成的细胞壁,一般需要用石英砂或玻璃粉和适当的提取液一起研磨的方法或用纤维素酶处理也能达到目的。

细菌细胞的破碎比较麻烦,因为整个细菌细胞壁的骨架实际上是一个借共价键连接而成的肽聚糖囊状大分子,非常坚韧。

破碎细菌细胞壁的常用方法有超声波破碎,与砂研磨、高压挤压或溶菌酶处理等。

组织和细胞破碎后,选择适当的缓冲液把所要的蛋白提取出来。

细胞碎片等不溶物用离心或过滤的方法除去。

如果所要的蛋白主要集中在某一细胞组分,如细胞核、染色体、核糖体或可溶性细胞质等,则可利用差速离心的方法将它们分开,收集该细胞组分作为下步纯化的材料。

如果碰上所要蛋白是与细胞膜或膜质细胞器结合的,则必须利用超声波或去污剂使膜结构解聚,然后用适当介质提取。

2.粗分级分离:当蛋白质提取液(有时还杂有核酸、多糖之类)获得后,选用一套适当的方法,将所要的蛋白与其他杂蛋白分离开来。

一般这一步的分离用盐析、等电点沉淀和有机溶剂分级分离等方法。

这些方法的特点是简便、处理量大,既能除去大量杂质,又能浓缩蛋白溶液。

有些蛋白提取液体积较大,又不适于用沉淀或盐析法浓缩,则可采用超过滤、凝胶过滤、冷冻真空干燥或其他方法进行浓缩。

3.细分级分离:样品经粗分级分离以后,一般体积较小,杂蛋白大部分已被除去。

提取纯化蛋白实验报告

提取纯化蛋白实验报告

一、实验目的1. 掌握蛋白质提取纯化的基本原理和方法。

2. 学习蛋白质纯化过程中的操作技巧和注意事项。

3. 通过实验验证蛋白质提取纯化的效果。

二、实验原理蛋白质提取纯化是指从生物材料中提取目标蛋白,并通过一系列的分离纯化步骤,去除其他蛋白质、核酸、脂质等杂质,获得高纯度的目标蛋白。

实验中常用的提取纯化方法有:细胞破碎、抽提、沉淀、分级、除盐、浓缩等。

三、实验材料1. 生物材料:细胞、组织、血清等。

2. 试剂:盐酸、稀SDS、有机溶剂、稀碱、硫酸铵、透析袋、超滤膜、Ni柱等。

3. 仪器:匀浆机、离心机、电泳仪、凝胶层析仪等。

四、实验步骤1. 前处理:根据生物材料的不同,选择合适的细胞破碎方法,如动物细胞用匀浆机、组织捣碎机或超声波;植物细胞用石英砂研磨或纤维素酶处理;微生物用超声振荡、研磨、高压、溶菌酶、细胞自溶等。

2. 抽提:根据蛋白质的性质选择合适的抽提方法。

可溶蛋白用盐酸、脂蛋白用稀SDS或有机溶剂、不溶蛋白用稀碱进行抽提。

抽提原则为少量多次。

3. 粗提:去除糖、脂类、核酸及大部分杂蛋白,并将蛋白浓缩。

常用方法有沉淀法(核酸沉淀法、蛋白沉淀法、选择变性)、分级法(盐析或有机溶剂)。

4. 除盐和浓缩:去除蛋白质中的中性盐,常用方法有透析法、分子筛;浓缩方法有反透析、冻干、超滤等。

5. 精细分离:采用凝胶层析、亲和层析、离子交换层析等方法对蛋白质进行精细分离。

6. 鉴定:采用SDS-PAGE、Western Blot等方法鉴定蛋白质的纯度和活性。

五、实验结果与分析1. 实验结果:通过上述步骤,成功提取纯化了目标蛋白,并进行了鉴定。

2. 结果分析:根据SDS-PAGE和Western Blot结果,目标蛋白的纯度达到90%以上,活性得到验证。

六、实验讨论1. 实验过程中,选择合适的细胞破碎方法、抽提方法和分离纯化方法对蛋白质的提取纯化至关重要。

2. 实验过程中应注意操作技巧,如防止蛋白质降解、避免氧化等。

蛋白质的分析实训报告

蛋白质的分析实训报告

一、实训背景蛋白质是生命活动的基本物质之一,广泛存在于生物体内,具有多种生物学功能。

蛋白质分析是生物化学、分子生物学和生物工程等领域的重要研究内容。

为了提高我们对蛋白质性质、结构和功能的认识,我们进行了蛋白质分析实训,通过实验操作,学习蛋白质的提取、纯化、鉴定和分析方法。

二、实训目的1. 掌握蛋白质提取和纯化的基本原理和操作技术。

2. 学习蛋白质的鉴定和分析方法。

3. 培养实验操作能力和科学思维。

三、实训内容1. 蛋白质提取(1)材料:鸡蛋清、磷酸盐缓冲液、硫酸铵、离心机等。

(2)方法:将鸡蛋清加入磷酸盐缓冲液,加入硫酸铵,搅拌均匀,静置离心,收集沉淀。

(3)结果:得到白色沉淀,即为提取的蛋白质。

2. 蛋白质纯化(1)材料:上述提取的蛋白质、离子交换层析柱、缓冲液等。

(2)方法:将提取的蛋白质加入离子交换层析柱,用不同浓度的缓冲液进行洗脱,收集各洗脱峰。

(3)结果:得到纯化的蛋白质。

3. 蛋白质鉴定(1)方法:采用SDS-PAGE电泳技术对纯化的蛋白质进行鉴定。

(2)结果:观察到目的蛋白在特定位置出现条带,证明蛋白质鉴定成功。

4. 蛋白质分析(1)方法:采用Western blot技术对纯化的蛋白质进行定量分析。

(2)结果:通过比较目的蛋白与标准蛋白的条带强度,计算出目的蛋白的含量。

四、实训结果与分析1. 蛋白质提取通过实验,我们成功从鸡蛋清中提取出蛋白质。

实验过程中,我们学会了如何根据蛋白质的性质选择合适的提取方法,以及如何处理提取过程中的各种问题。

2. 蛋白质纯化在蛋白质纯化实验中,我们掌握了离子交换层析技术,成功地将目的蛋白从混合物中分离出来。

实验过程中,我们学会了如何选择合适的缓冲液和洗脱条件,以及如何判断蛋白质的纯度。

3. 蛋白质鉴定通过SDS-PAGE电泳技术,我们成功鉴定出目的蛋白。

实验过程中,我们学会了如何制备电泳样品、操作电泳仪以及观察电泳结果。

4. 蛋白质分析通过Western blot技术,我们对纯化的蛋白质进行了定量分析。

蛋白质分离纯化的一般原则

蛋白质分离纯化的一般原则

蛋白质分离纯化的一般原则蛋白质是生物体内重要的功能分子,它们在细胞的结构和功能中扮演着重要角色。

蛋白质的纯化和分离是研究蛋白质结构和功能的基础。

本文将介绍蛋白质分离纯化的一般原则和方法。

蛋白质分离纯化的一般原则是根据蛋白质的物理化学性质进行选择性分离。

蛋白质具有不同的分子量、电荷、溶解性、亲疏水性等特性,可以通过这些特性来实现蛋白质的分离纯化。

蛋白质分离纯化的第一步是提取蛋白质。

提取蛋白质的方法有多种,常见的包括机械破碎、超声波破碎、溶剂提取等。

提取蛋白质的目的是将其从细胞或组织中释放出来,为后续的分离纯化步骤做准备。

蛋白质的分离纯化可以通过多种方法来实现。

其中最常用的方法是色谱技术。

色谱技术基于蛋白质的物理化学性质,将混合溶液中的蛋白质分离开来。

常见的色谱技术包括凝胶过滤色谱、离子交换色谱、亲和色谱、逆相色谱等。

凝胶过滤色谱是一种基于蛋白质分子量的分离方法。

其原理是通过孔径大小选择性地分离不同分子量的蛋白质。

凝胶过滤色谱常用于蛋白质的初步分离和浓缩。

离子交换色谱是一种基于蛋白质电荷的分离方法。

其原理是通过蛋白质与离子交换基质之间的相互作用来实现分离。

离子交换色谱可以根据蛋白质的电荷性质选择性地分离不同电荷的蛋白质。

亲和色谱是一种基于蛋白质与亲和基质之间的特异性相互作用来实现分离的方法。

亲和色谱可以利用蛋白质与亲和基质之间的特异性结合,选择性地分离目标蛋白质。

逆相色谱是一种基于蛋白质亲疏水性的分离方法。

其原理是利用蛋白质与逆相基质之间的亲疏水作用来实现分离。

逆相色谱可以根据蛋白质的亲疏水性选择性地分离不同性质的蛋白质。

还有一些其他的蛋白质分离纯化方法,如电泳、超高速离心、超滤等。

这些方法在特定的实验条件下可以实现蛋白质的分离纯化。

蛋白质分离纯化的一般原则是根据蛋白质的物理化学性质进行选择性分离。

通过选择合适的分离纯化方法,可以有效地分离出目标蛋白质,并去除其他杂质。

蛋白质的纯化程度越高,其质量和活性也就越好,对于后续的研究和应用具有重要意义。

蛋白质的分离过程

蛋白质的分离过程

蛋白质的分离过程蛋白质是生物体内一类重要的有机化合物,其在细胞内发挥着多种重要的生物学功能。

为了研究蛋白质的结构和功能,科学家们经过多年的努力,发展出了一系列的蛋白质分离技术。

本文将从蛋白质的提取、分离和纯化三个方面介绍蛋白质的分离过程。

一、蛋白质的提取蛋白质的提取是蛋白质分离的第一步,其目的是将含有蛋白质的样品从细胞或组织中提取出来。

常用的提取方法有机械破碎法、溶液浸提法和超声波法等。

其中,机械破碎法是将样品经过机械力的作用破碎,释放出蛋白质;溶液浸提法是将样品放入适当的溶液中,使蛋白质溶解出来;超声波法则是利用超声波的作用力将蛋白质从细胞或组织中释放出来。

通过这些方法,可以获得含有蛋白质的提取液。

二、蛋白质的分离蛋白质的分离是将提取液中的蛋白质按照某种特定的性质进行分离的过程。

根据蛋白质的不同特性,可以采用不同的分离方法。

常用的分离方法有电泳法、层析法和离心法等。

1. 电泳法电泳法是利用蛋白质在电场中的运动性质进行分离的方法。

根据蛋白质的电荷、分子量或等电点的不同,可采用凝胶电泳、等电聚焦电泳等不同的电泳方法。

其中,凝胶电泳是将蛋白质样品通过凝胶的孔隙进行分离,常用的凝胶电泳有聚丙烯酰胺凝胶电泳和聚丙烯酰胺凝胶电泳等。

等电聚焦电泳则是根据蛋白质在等电点附近具有零电荷的特性进行分离。

通过电泳法,可以将蛋白质按照其电荷或分子量的大小进行分离。

2. 层析法层析法是根据蛋白质在某种固定相和流动相的作用下,通过不同的亲和性进行分离的方法。

根据固定相的不同,层析法可分为凝胶过滤层析、离子交换层析、亲和层析等多种类型。

其中,凝胶过滤层析是根据蛋白质的分子大小进行分离,较大分子的蛋白质会被阻滞在凝胶中,而较小分子的蛋白质则能通过凝胶。

离子交换层析则是根据蛋白质的电荷进行分离,蛋白质与固定相上的离子进行电荷交换,从而实现分离。

亲和层析是利用蛋白质与固定相上的配体之间的特异性亲和作用进行分离,通过调节流动相的条件,实现蛋白质的分离。

生物化学研究进展论文蛋白质提纯

生物化学研究进展论文蛋白质提纯

生物化学研究进展论文蛋白质提纯文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-生物化学研究进展作业题目蛋白质的提取、纯化姓名学号班级专业题目:蛋白质的提取、纯化姓名:专业:摘要:本文综述了蛋白质的提取原理及方法,蛋白质纯化的意义、基本原则及方法,蛋白质纯化的前景展望。

关键词:提取原理提取方法水溶液有机溶剂双水相萃纯化意义基本原则方法溶解度带电性质电荷数配体特异性前景正文:1 蛋白质样品的提取1.1蛋白质样品的提取原理提取蛋白质的基本原理主要有两方面:一是利用混合物中几个组分分配率的差别,把它们分配到可用机械方法分离的两个或几个物相中,如盐析、有机溶剂提取、层析和结晶等;二是将混合物置于单一物相中,通过物理力场的作用使各组分分配于不同区域而达到分离目的,如电泳、超速离心、超滤等。

1.2 蛋白质样品的提取方法1.2.1 水溶液提取法稀盐和缓冲系统的水溶液是提取蛋白质最常用的溶剂。

通常用量是原材料体积的1—5倍,提取时需要均匀地搅拌,以利于蛋白质的溶解。

提取的温度要视有效成分性质而定,一般在低温(5℃以下)下操作。

另外,蛋白质和酶是两性电解质,提取液的pH值应选择在偏离等电点两侧的pH值范围内。

一般来说,在避免极端pH值的前提下,碱性蛋白质用偏酸性的提取液提取,而酸性蛋白质用偏碱性的提取液提取。

此外,稀浓度可促进蛋白质盐溶,并且盐离子与蛋白质部分结合,能够保护蛋白质不易变性。

因此可在提取液中加少量NaC1等中性盐,一般以0.15 mol/L浓度为宜。

1.2.2 有机溶剂提取法一些和脂质结合牢固或分子中非极性侧链较多的蛋白质和酶都不溶于水、稀盐溶液、稀酸或碱,可溶于乙醇、丙酮和丁醇等有机溶剂,具有一定的亲水性和较强的亲脂性,并且不会残留在产品中,容易蒸发除去,密度低,与沉淀物质的密度差大,便于离心分离。

但不足的是用有机溶剂来提取蛋白质比用盐析法更容易引起蛋白质变性。

分离纯化蛋白质的方法及原理

分离纯化蛋白质的方法及原理

分离纯化蛋白质的方法及原理分离纯化蛋白质是生物化学和分子生物学研究中的重要步骤。

蛋白质的分离与纯化可以使我们更好地理解蛋白质的结构和功能,并为进一步的研究提供可靠的蛋白质样本。

下面将介绍一些常见的蛋白质分离和纯化方法及其原理。

1.存活细胞提取法:这种方法是从细胞中提取蛋白质。

先将细胞破碎,然后通过离心等手段去除细胞碎片和细胞器,留下蛋白质溶液。

使用该方法分离的蛋白质包括细胞质蛋白、细胞膜蛋白等。

2.柱层析法:柱层析法是一种广泛应用的蛋白质分离方法。

它主要依据蛋白质的性质(如分子质量、电荷、亲水性等)在各种填料(如离子交换、凝胶透析、亲和层析等)上的差异进行选择性分离。

原理是根据蛋白质与填料之间的相互作用,通过溶液通过填料层析柱时,不同蛋白质以不同速率在填料间扩散,并在填料内发生各种相互作用,从而实现蛋白质的分离。

该方法可同时分离多个蛋白质,并制备高纯度的蛋白质。

3.电泳法:电泳法是根据蛋白质在电场中的迁移速率、电荷性质和分子大小等特征进行分离的方法。

常见的电泳方法包括SDS-、等电聚焦电泳、二维电泳等。

其中,SDS-是最常用的蛋白质分离方法之一,它通过SDS(十二烷基硫酸钠)使蛋白质变成带负电荷的复合物,继而在电场作用下,按照蛋白质的分子质量大小进行分离。

4.超滤法:超滤法是根据不同分子量的蛋白质在超滤膜上的渗透性差异进行分离。

超滤分离可以根据孔隙的大小将不同分子量的蛋白质阻滞,有效地去除较小分子量的杂质,得到目标蛋白质的高纯度。

5.亲和层析法:亲和层析法是通过目标蛋白质与配体之间的特异性结合进行分离的方法。

配体可以是特定的抗体、金属离子、凝胶颗粒等。

原理是通过将配体共价结合到固定相上,然后将蛋白质样品溶液通过,使目标蛋白质与配体发生特异性结合,其他非特异性结合的蛋白质被洗脱,最后目标蛋白质被洗出。

6.上下层析法:上下层析法是一种根据沉降速度差异进行分离的方法。

利用离心过程中不同蛋白质溶液中蛋白质的不同沉降速度将蛋白质分离。

蛋白质提取、纯化、鉴定的方法(一)

蛋白质提取、纯化、鉴定的方法(一)

蛋白质提取、纯化、鉴定的方法(一)一、硫酸铵沉淀硫酸铵是用于沉淀蛋白质的最常用的盐。

低浓度硫酸铵使蛋白质的溶解度增大,即所谓的盐溶(salting in),但当硫酸铵浓度增加到一定浓度后,蛋白质的溶解度开始减小,即所谓的盐析(salting out)。

当硫酸铵达到一定浓度时,蛋白质析出。

不同蛋白质的盐析浓度有差异,了解目的蛋白质析出所需的硫酸铵浓度,就可部分纯化这种蛋白质。

注意,目的蛋白质的浓度与盐析浓度有一定的关系,如1mg/ml与0.01mg /ml的蛋白质浓度所需的盐析浓度是不一样的,低浓度的蛋白质盐析需要较高浓度的硫酸铵。

硫酸铵沉淀不仅可去除一些杂蛋白,还可去除其他的杂质如脂质等各种小分子。

二、三相分配技术举一个例子来说明该技术的原理:提取E.coli中的绿色荧光蛋白,E.coli与适当浓度的硫酸铵混匀,加入等体积的叔丁醇,振荡混匀,低速离心,分成三相。

上层为有机相,含有细菌的膜脂和脂溶性物质如色素;中层,含有绿色荧光蛋白;下层为相,含有完整细胞壁的E.coli、核酸和大量的蛋白质等。

这个技术的原理是,适当浓度的硫酸铵可沉淀大量的蛋白质但不沉淀绿色荧光蛋白;叔丁醇可溶解细菌的细胞膜,因此可释放绿色荧光蛋白;同时叔丁醇是种有机溶剂,可使蛋白质和核酸等大分子变性,使其在原位沉淀,仍留在细菌的细胞壁内。

该方法的优点是操作简便,省去了消化细胞壁和去除核酸及大多数杂蛋白等烦琐步骤。

但该方法只适用于那些能够耐受有机溶剂的蛋白质。

这样的技术得到的是部分纯化的蛋白质。

三、层析技术1.离子交换层析 这一技术是根据不同的蛋白质有不同的等电点,其吸附在离子交换剂上的强弱有分别,来对蛋白质进行分离。

离子交换剂可分为两种,阳离子交换剂(如羧甲纤维素)和阴离子交换剂(如DEAE-纤维素)。

在某一pH值条件下,当阳(阴)离子交换剂带有负(正)电荷而蛋白质带有正(负)电荷时,蛋白质就可吸附在阳(阴)离子交换剂上。

各种蛋白质的等电点可能不同,因此其吸附在离子交换剂上的强度不同,用不同离子强度的洗脱液可将pI不同的蛋白质洗脱。

蛋白质分离纯化的方式及基本原理

蛋白质分离纯化的方式及基本原理

蛋白质分离纯化的方式及基本原理
蛋白质分离纯化是指将蛋白质从混合物中分离出来,并将其纯度提高到足够高的水平,使其具备生物学或生化功能的过程。

蛋白质分离纯化的基本原理是利用蛋白质的物理性质、化学性质和生物特性来改变蛋白质的状态,从而实现蛋白质的分离和纯化。

蛋白质分离纯化的基本步骤包括取样、提取、分离和纯化。

首先是取样,这是蛋白质分离纯化的第一步,其目的是从可用样品中取出一部分样品以进行分离纯化。

接下来是提取,这是蛋白质分离纯化的第二步,主要是将蛋白质从样品中提取出来,以便进行后续处理。

第三步是分离,这是利用蛋白质的物理性质、化学性质和生物特性来改变蛋白质的状态,从而实现蛋白质的有效分离。

最后是纯化,这是将分离的蛋白质的纯度提高到足够的水平,使其具备生物学或生化功能的过程。

蛋白质分离纯化的基本原理是利用蛋白质的物理性质、化学性质和生物特性来改变蛋白质的状态,从而实现蛋白质的分离和纯化。

它是一个复杂的过程,涉及到各种技术,如沉淀、溶解、离子交换、硅胶等。

分离的基本原理是利用蛋白质的分子特性,如电荷、大小、结构等,在不同的溶剂环境中,蛋白质的分子结构、分子质量和电荷状态会发生变化,从而使蛋白质的分离和纯化变得可能。

蛋白质分离纯化是一个复杂的过程,涉及到多种技术,其基本原理
是利用蛋白质的物理性质、化学性质和生物特性来改变蛋白质的状态,从而实现蛋白质的分离和纯化。

蛋白质分离纯化可以帮助我们更好地理解蛋白质的功能和结构,为后续的生物学研究和药物开发提供重要的信息。

蛋白质类药物的分离纯化方法

蛋白质类药物的分离纯化方法

蛋白质类药物的分离纯化方法1. 引言大家好,今天咱们来聊聊蛋白质类药物的分离和纯化,听起来有点儿复杂,但其实这就像是做一道美味的菜,得先把食材洗干净,再好好烹饪。

蛋白质药物呢,在医学界可是个大明星,能帮助我们治疗各种疾病,比如癌症、糖尿病等。

但,要想把这些蛋白质从细胞中提取出来,绝对不是件容易的事儿!所以,我们今天就来看看这些“厨师”们是怎么把蛋白质做成药的,哎呀,话说得有点儿远了,咱们还是先从分离开始说吧。

1.1 蛋白质的提取提取蛋白质就像是捞面条,要把那细细的面条从汤里捞出来。

首先,我们需要破坏细胞壁,让里面的蛋白质“溜”出来。

这个过程一般使用化学方法,比如用某种溶剂,或者物理方法,比如超声波破碎。

经过这一步,蛋白质就像被捞出来的面条,漂浮在液体中,真是让人忍不住想尝一尝呢!1.2 初步分离提取之后,接下来就要进行初步分离了。

这个阶段主要是把提取的液体里的杂质去掉,比如脂肪、DNA、RNA等,这些可不是我们想要的“配菜”。

这里用到的方法有离心分离,就像把沙子和水分开那样,转一转,重的杂质沉到底,轻的液体则留在上面,真是妙不可言!2. 纯化过程纯化过程就是把蛋白质变得更“纯净”,就像精炼金子一样。

首先,我们可以使用“层析法”。

想象一下,层析法就像是在超市里挑水果,首先筛选出大的,再挑出好的,最后剩下的就是我们想要的蛋白质啦。

层析法有很多种,比如凝胶过滤层析、离子交换层析等,各有各的特点,就看你怎么选了。

2.1 凝胶过滤层析凝胶过滤层析就像是在过独木桥,桥面有不同大小的孔,蛋白质根据大小不同,会选择不同的路径。

大颗粒的蛋白质走得快,小颗粒的蛋白质则慢吞吞地挪,最终得到的就是一条“精致”的蛋白质之路。

2.2 离子交换层析再说说离子交换层析,这就像是在游乐园里玩过山车。

这里的蛋白质根据电荷的不同,互相“推来推去”。

有正电的和负电的蛋白质会互相吸引、排斥,最终留下的都是那些经过层层筛选的“勇士”,它们就是咱们的目标蛋白质啦!3. 验证与储存在完成了分离和纯化之后,我们得对这些蛋白质进行验证,看看它们到底是不是我们想要的。

蛋白质提取纯化的基本流程

蛋白质提取纯化的基本流程

蛋白质是生物体内一类非常重要的大分子有机化合物,承担着多种生物学功能。

为了进行蛋白质的研究、分析或应用,科学家们需要从复杂的生物体系中提取和纯化目标蛋白质。

蛋白质提取纯化的基本流程通常包括样品制备、裂解、离心、层析、电泳等步骤。

下面是关于蛋白质提取纯化的基本流程的详细解释:### **1. 样品制备:**蛋白质提取纯化的第一步是样品的制备。

这涉及到从生物体(细胞、组织等)中获得样品。

样品的制备过程中要注意避免蛋白质的降解和损失。

常见的样品包括细胞总蛋白、细胞膜蛋白、细胞器蛋白等。

制备好的样品需要储存在低温下以防止蛋白质的降解。

### **2. 裂解(细胞破碎):**样品制备完成后,下一步是裂解,也就是将生物体内的细胞或组织破碎,释放蛋白质。

裂解可以通过机械破碎、超声波破碎、高压破碎等方法实现。

同时,可以添加裂解缓冲液,其中可能包含蛋白酶抑制剂、还原剂等,以维持蛋白质的稳定性。

### **3. 离心:**裂解后的混合物通过离心可以分离成上清液和沉淀。

离心是利用离心机产生的离心力,使样品中的颗粒沉降,从而实现液体和颗粒的分离。

上清液中包含了可溶性的蛋白质,而沉淀中则包含了细胞核、细胞壁等。

### **4. 层析(柱层析或凝胶层析):**层析是蛋白质提取纯化中的关键步骤之一。

这一步旨在根据蛋白质的性质,通过将混合物在柱上或凝胶中进行分离。

常见的层析方法包括离子交换层析、凝胶过滤层析、亲和层析等。

层析可以根据蛋白质的大小、电荷、亲和性等特性有选择性地分离目标蛋白质。

### **5. 电泳:**电泳是蛋白质分离和分析的重要手段。

在电场作用下,蛋白质根据其电荷和大小在凝胶中迁移。

蛋白质电泳分离可以用于检测样品的纯度、确定分子量等。

常见的电泳方法包括聚丙烯酰胺凝胶电泳(PAGE)和聚丙烯酰胺凝胶电泳(SDS-PAGE)。

### **6. 检测和分析:**在蛋白质提取纯化的过程中,需要对提取得到的蛋白质样品进行检测和分析。

蛋白质分离与纯化的方法

蛋白质分离与纯化的方法

蛋白质分离与纯化的方法一、蛋白质的粗分离破碎细胞后,所得的蛋白质混合液中除含有目的蛋白质外,还含有其他蛋白质、脂类、多糖及核酸等成分,利用简易、快速的方法除去这些杂质即为蛋白质的粗分离。

(一)盐析法蛋白质在低盐浓度下其溶解度随盐浓度的增加而增加,此现象为盐溶。

但随着盐浓度的继续升高,蛋白质的溶解度又会以不同程度下降,并先后析出,此现象为盐析。

此现象是由于当水中加入少量盐类时,盐离子与水分子对蛋白质分子上的极性基团产生影响,使其溶解度增大。

但当盐浓度增加到一定程度时,蛋白质所带的电荷被大量中和,水化膜被破坏,分子间相互聚集,而发生沉淀析出。

因此,可根据不同蛋白质在一定浓度的盐溶液中溶解度降低的程度不同,而将各种蛋白质彼此分离。

常用的中性盐有硫酸铵、硫酸钠、氯化钠等。

(二)有机溶剂分段沉淀法通过有机溶剂降低溶液的介电常数,破坏蛋白质的水化膜,导致溶解度的降低而发生沉淀析出,利用不同蛋白质在不同浓度的有机溶剂中的溶解度存在差异而分离的方法,称为有机溶剂分段沉淀法。

常用的有机溶剂有乙醇、丙酮、甲醇等。

(三)超速离心法超速离心法是利用物质的沉降系数、质量浮力等方面的差异,用强离心力使其分离的技术。

蛋白质在高达5000kg的重力作用下,在溶液中逐渐沉淀,直至其浮力与离心所产生的力相等,才停止沉降。

不同蛋白质其密度与形态各不相同,故应用离心的方法可将它们分开。

二、蛋白质的细分离待提纯的样品经过破碎及粗分离后,还难以达到纯品的要求时,则需进一步对其进行纯化处理。

(一)透析法利用蛋白质不能通过半透膜这一性质将大分子量蛋白质与小分子量化合物分开。

用具有超小微孔的膜制成透析袋,微孔可允许分子量为10000以下的化合物通过。

将蛋白质混合物装入袋中,再置于水中,则小分子物质如矿物质(无机盐)、单糖等可透过薄膜,不断更换袋外的水,可把袋内小分子物质全部去尽。

如在袋外放吸水剂,同时还可将袋内的水分去尽。

(二)层析法1.凝胶过滤层析凝胶过滤层析又称分子筛层析,是利用分子量的差异使物质彼此分离的方法。

试述蛋白质分离纯化的原理与方法

试述蛋白质分离纯化的原理与方法

试述蛋白质分离纯化的原理与方法蛋白质是生物体中最重要的分子之一,它们在维持生命活动中扮演着关键的角色。

蛋白质分离纯化的目的是将目标蛋白质从混合物中提取出来,并去除其他不需要的杂质。

本文将介绍蛋白质分离纯化的原理和常用方法。

蛋白质分离纯化的原理主要基于蛋白质间的差异性。

根据不同的性质,如分子质量、电荷、疏水性等,可以采用不同的方法进行分离纯化。

以下是常用的蛋白质分离纯化方法:1.等电聚焦(isoelectric focusing):该方法基于蛋白质在不同pH条件下的电荷差异进行分离。

通过在一个pH梯度中施加电场,蛋白质会在电场的作用下聚集在其等电点(pI)附近,从而实现分离纯化。

2.非变性凝胶电泳(non-denaturing gel electrophoresis):该方法是一种较为粗略的分离纯化方法,通过基于蛋白质的分子质量进行分离。

常见的非变性凝胶电泳方法包括聚丙烯酰胺凝胶电泳(polyacrylamide gel electrophoresis,PAGE)和琼脂糖凝胶电泳(agarose gel electrophoresis)。

3.变性凝胶电泳(denaturing gel electrophoresis):与非变性凝胶电泳相比,变性凝胶电泳在分离蛋白质时去除了二级结构和三级结构的影响,使蛋白质只以其分子质量差异进行分离。

SDS-PAGE是最常用的变性凝胶电泳方法之一,它利用SDS (十二烷基硫酸钠)将蛋白质变性,并在凝胶中形成等电点电泳进而进行分离。

4.柱层析(chromatography):柱层析是一种基于蛋白质在固定相上的亲和力、大小、电荷等性质差异进行分离的方法。

常见的柱层析方法包括凝胶层析、离子交换层析、亲和层析和凝胶过滤层析等。

5.亲和纯化(affinity purification):该方法利用目标蛋白与特定亲和剂之间的特异性相互作用进行分离。

通过将亲和剂固定在固定相上,然后将混合物经过固定相,目标蛋白会与亲和剂结合,其他杂质则被洗脱。

蛋白质分离纯化的步骤

蛋白质分离纯化的步骤

蛋白质分离纯化的一般程序可分为以下几个步骤:(一)材料的预处理及细胞破碎分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。

所以要采用适当的方法将组织和细胞破碎。

常用的破碎组织细胞的方法有:1. 机械破碎法这种方法是利用机械力的剪切作用,使细胞破碎。

常用设备有,高速组织捣碎机、匀浆器、研钵等。

2. 渗透破碎法这种方法是在低渗条件使细胞溶胀而破碎。

3. 反复冻融法生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。

这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。

4. 超声波法使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。

5. 酶法如用溶菌酶破坏微生物细胞等。

(二) 蛋白质的抽提通常选择适当的缓冲液溶剂把蛋白质提取出来。

抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。

如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100等),使膜结构破坏,利于蛋白质与膜分离。

在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。

(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。

比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。

常用的有下列几种方法:1. 等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。

2. 盐析法不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。

被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。

3. 有机溶剂沉淀法中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。

能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。

此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。

由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蛋白质的提取与纯化一,蛋白质的提取大部分蛋白质都可溶于水、稀盐、稀酸或碱溶液,少数与脂类结合的蛋白质则溶于乙醇、丙酮、丁醇等有机溶剂中,因些,可采用不同溶剂提取分离和纯化蛋白质及酶。

(一)水溶液提取法稀盐和缓冲系统的水溶液对蛋白质稳定性好、溶解度大、是提取蛋白质最常用的溶剂,通常用量是原材料体积的1-5倍,提取时需要均匀的搅拌,以利于蛋白质的溶解。

提取的温度要视有效成份性质而定。

一方面,多数蛋白质的溶解度随着温度的升高而增大,因此,温度高利于溶解,缩短提取时间。

但另一方面,温度升高会使蛋白质变性失活,因此,基于这一点考虑提取蛋白质和酶时一般采用低温(5度以下)操作。

为了避免蛋白质提以过程中的降解,可加入蛋白水解酶抑制剂(如二异丙基氟磷酸,碘乙酸等)。

下面着重讨论提取液的pH值和盐浓度的选择。

1、pH值蛋白质,酶是具有等电点的两性电解质,提取液的pH值应选择在偏离等电点两侧的pH 范围内。

用稀酸或稀碱提取时,应防止过酸或过碱而引起蛋白质可解离基团发生变化,从而导致蛋白质构象的不可逆变化,一般来说,碱性蛋白质用偏酸性的提取液提取,而酸性蛋白质用偏碱性的提取液。

2、盐浓度稀浓度可促进蛋白质的溶,称为盐溶作用。

同时稀盐溶液因盐离子与蛋白质部分结合,具有保护蛋白质不易变性的优点,因此在提取液中加入少量NaCl等中性盐,一般以0.15摩尔。

升浓度为宜。

缓冲液常采用0.02-0.05M磷酸盐和碳酸盐等渗盐溶液。

(二)有机溶剂提取法一些和脂质结合比较牢固或分子中非极性侧链较多的蛋白质和酶,不溶于水、稀盐溶液、稀酸或稀碱中,可用乙醇、丙酮和丁醇等有机溶剂,它们具的一定的亲水性,还有较强的亲脂性、是理想的提脂蛋白的提取液。

但必须在低温下操作。

丁醇提取法对提取一些与脂质结合紧密的蛋白质和酶特别优越,一是因为丁醇亲脂性强,特别是溶解磷脂的能力强;二是丁醇兼具亲水性,在溶解度范围内(度为10%,40度为6.6%)不会引起酶的变性失活。

另外,丁醇提取法的pH及温度选择范围较广,也适用于动植物及微生物材料。

二、蛋白质的分离纯化蛋白质的分离纯化方法很多,主要有:(一)根据蛋白质溶解度不同的分离方法1、蛋白质的盐析中性盐对蛋白质的溶解度有显著影响,一般在低盐浓度下随着盐浓度升高,蛋白质的溶解度增加,此称盐溶;当盐浓度继续升高时,蛋白质的溶解度不同程度下降并先后析出,这种现象称盐析,将大量盐加到蛋白质溶液中,高浓度的盐离子(如硫酸铵的SO4和NH4)有很强的水化力,可夺取蛋白质分子的水化层,使之“失水”,于是蛋白质胶粒凝结并沉淀析出。

盐析时若溶液pH在蛋白质等电点则效果更好。

由于各种蛋白质分子颗粒大小、亲水程度不同,故盐析所需的盐浓度也不一样,因此调节混合蛋白质溶液中的中性盐浓度可使各种蛋白质分段沉淀。

影响盐析的因素有:(1)温度:除对温度敏感的蛋白质在低温(4度)操作外,一般可在室温中进行。

一般温度低蛋白质溶介度降低。

但有的蛋白质(如血红蛋白、肌红蛋白、清蛋白)在较高的温度(25度)比0度时溶解度低,更容易盐析。

(2)pH值:大多数蛋白质在等电点时在浓盐溶液中的溶介度最低。

(3)蛋白质浓度:蛋白质浓度高时,欲分离的蛋白质常常夹杂着其他蛋白质地一起沉淀出来(共沉现象)。

因此在盐析前血清要加等量生理盐水稀释,使蛋白质含量在2.5-3.0%。

蛋白质盐析常用的中性盐,主要有硫酸铵、硫酸镁、硫酸钠、氯化钠、磷酸钠等。

其中应用最多的硫酸铵,它的优点是温度系数小而溶解度大(25度时饱和溶液为4.1M,即767克/升;0度时饱和溶解度为3.9M,即676克/升),在这一溶解度范围内,许多蛋白质和酶都可以盐析出来;另外硫酸铵分段盐析效果也比其他盐好,不易引起蛋白质变性。

硫酸铵溶液的pH常在4.5-5.5之间,当用其他pH值进行盐析时,需用硫酸或氨水调节。

蛋白质在用盐析沉淀分离后,需要将蛋白质中的盐除去,常用的办法是透析,即把蛋白质溶液装入秀析袋内(常用的是玻璃纸),用缓冲液进行透析,并不断的更换缓冲液,因透析所需时间较长,所以最好在低温中进行。

此外也可用葡萄糖凝胶G-25或G-50过柱的办法除盐,所用的时间就比较短。

2、等电点沉淀法蛋白质在静电状态时颗粒之间的静电斥力最小,因而溶解度也最小,各种蛋白质的等电点有差别,可利用调节溶液的pH达到某一蛋白质的等电点使之沉淀,但此法很少单独使用,可与盐析法结合用。

3、低温有机溶剂沉淀法用与水可混溶的有机溶剂,甲醇,乙醇或丙酮,可使多数蛋白质溶解度降低并析出,此法分辨力比盐析高,但蛋白质较易变性,应在低温下进行。

(二)根据蛋白质分子大小的差别的分离方法1、透析与超滤透析法是利用半透膜将分子大小不同的蛋白质分开。

超滤法是利用高压力或离心力,强使水和其他小的溶质分子通过半透膜,而蛋白质留在膜上,可选择不同孔径的泸膜截留不同分子量的蛋白质。

2、凝胶过滤法也称分子排阻层析或分子筛层析,这是根据分子大小分离蛋白质混合物最有效的方法之一。

柱中最常用的填充材料是葡萄糖凝胶(Sephadex ged)和琼脂糖凝胶(agarose gel)。

(三)根据蛋白质带电性质进行分离蛋白质在不同pH环境中带电性质和电荷数量不同,可将其分开。

1、电泳法各种蛋白质在同一pH条件下,因分子量和电荷数量不同而在电场中的迁移率不同而得以分开。

值得重视的是等电聚焦电泳,这是利用一种两性电解质作为载体,电泳时两性电解质形成一个由正极到负极逐渐增加的pH梯度,当带一定电荷的蛋白质在其中泳动时,到达各自等电点的pH位置就停止,此法可用于分析和制备各种蛋白质。

2、离子交换层析法离子交换剂有阳离子交换剂(如:羧甲基纤维素;CM-纤维素)和阴离子交换剂(二乙氨基乙基纤维素;DEAE?FONT FACE="宋体" LANG="ZH-CN">纤维素),当被分离的蛋白质溶液流经离子交换层析柱时,带有与离子交换剂相反电荷的蛋白质被吸附在离子交换剂上,随后用改变pH或离子强度办法将吸附的蛋白质洗脱下来。

(详见层析技术章)(四)根据配体特异性的分离方法-亲和色谱法亲和层析法(aflinity chromatography)是分离蛋白质的一种极为有效的方法,它经常只需经过一步处理即可使某种待提纯的蛋白质从很复杂的蛋白质混合物中分离出来,而且纯度很高。

这种方法是根据某些蛋白质与另一种称为配体(Ligand)的分子能特异而非共价地结合。

其基本原理:蛋白质在组织或细胞中是以复杂的混合物形式存在,每种类型的细胞都含有上千种不同的蛋白质,因此蛋白质的分离(Separation),提纯(Purification)和鉴定(Characterization)是生物化学中的重要的一部分,至今还没的单独或一套现成的方法能移把任何一种蛋白质从复杂的混合蛋白质中提取出来,因此往往采取几种方法联合使用。

细胞的破碎1、高速组织捣碎:将材料配成稀糊状液,放置于筒内约1/3体积,盖紧筒盖,将调速器先拨至最慢处,开动开关后,逐步加速至所需速度。

此法适用于动物内脏组织、植物肉质种子等。

2、玻璃匀浆器匀浆:先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎,此法细胞破碎程度比高速组织捣碎机为高,适用于量少和动物脏器组织。

3、超声波处理法:用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂,此法多适用于微生物材料,用大肠杆菌(Escherichia coli)(Escherichiacoli)(Escherichia coli)制备各种酶,常选用50-100毫克菌体/毫升浓度,在1KG 至10KG频率下处理10-15分钟,此法的缺点是在处理过程会产生大量的热,应采取相应降温措施。

对超声波敏感和核酸应慎用。

4、反复冻融法:将细胞在-20度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。

5、化学处理法:有些动物细胞,例如肿瘤细胞可采用十二烷基磺酸钠(SDS)、去氧胆酸钠等细胞膜破坏,细菌细胞壁(cell wall)(cell wall)(cell wall)较厚,可采用溶菌酶处理效果更好。

无论用哪一种方法破碎组织细胞,都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物降解,导致天然物质量的减少,加入二异丙基氟磷酸(DFP)可以抑制或减慢自溶作用;加入碘乙酸可以抑制那些活性中心需要有疏基的蛋白水解酶的活性,加入苯甲磺酰氟化物(PMSF)也能清除蛋白水解酥活力,但不是全部,还可通过选择pH、温度或离子强度等,使这些条件都要适合于目的物质的提取。

浓缩、干燥及保存一、样品的浓缩生物大分子在制备过程中由于过柱纯化而样品变得很稀,为了保存和鉴定的目的,往往需要进行浓缩。

常用的浓缩方法的:1、减压加温蒸发浓缩通过降低液面压力使液体沸点降低,减压的真空度愈高,液体沸点降得愈低,蒸发愈快,此法适用于一些不耐热的生物大分子的浓缩。

2、空气流动蒸发浓缩空气的流动可使液体加速蒸发,铺成薄层的溶液,表面不断通过空气流;或将生物大分子溶液装入透析袋内置于冷室,用电扇对准吹风,使透过膜外的溶剂不沁蒸发,而达到浓缩目的,此法浓缩速度慢,不适于大量溶液的浓缩。

3、冰冻法生物大分子在低温结成冰,盐类及生物大分子不进入冰内而留在液相中,操作时先将待浓缩的溶液冷却使之变成固体,然后缓慢地融解,利用溶剂与溶质融点介点的差别而达到除去大部分溶剂的目的。

如蛋白质和酶的盐溶液用此法浓缩时,不含蛋白质和酶的纯冰结晶浮于液面,蛋白质和酶则集中于下层溶液中,移去上层冰块,可得蛋白质和酶的浓缩液。

4、吸收法通过吸收剂直接收除去溶液中溶液分子使之浓缩。

所用的吸收剂必需与溶液不起化学反应,对生物大分子不吸附,易与溶液分开。

常用的吸收剂有聚乙二醇,聚乙稀吡咯酮、蔗糖和凝胶等,使用聚乙二醇吸收剂时,先将生物大分子溶液装入半透膜的袋里,外加聚乙二醇复盖置于4度下,袋内溶剂渗出即被聚乙二醇迅速吸去,聚乙二醇被水饱和后要更换新的直至达到所需要的体积。

5、超滤法超滤法是使用一种特别的薄膜对溶液中各种溶质分子进行选择性过滤的方法,不液体在一定压力下(氮气压或真空泵压)通过膜时,溶剂和小分子透过,大分子受阻保留,这是近年来发展起来的新方法,最适于生物大分子尤其是蛋白质和酶的浓缩或脱盐,并具有成本低,操作方便,条件温和,能较好地保持生物大分子的活性,回收率高等优点。

应用超滤法关键在于膜的选择,不同类型和规格的膜,水的流速,分子量截止值(即大体上能被膜保留分子最小分子量值)等参数均不同,必须根据工作需要来选用。

另外,超滤装置形式,溶质成份及性质、溶液浓度等都对超滤效果的一定影响。

Diaflo 超滤膜的分子量截留值:用上面的超滤膜制成空心的纤维管,将很多根这样的管拢成一束,管的两端与低离子强度的缓冲液相连,使缓冲液不断地在管中流动。

相关文档
最新文档