八年级上册数学第一单元测试题

合集下载

苏科新版八年级上册数学《第1章 全等三角形》单元测试卷(含解析)

苏科新版八年级上册数学《第1章 全等三角形》单元测试卷(含解析)

苏科新版八年级上册数学《第1章全等三角形》单元测试卷一.选择题1.全等图形是指两个图形()A.大小相同B.形状相同C.能够完全重合D.相等2.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC ≌△DEF的是()A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E 3.下列条件中,不能判定两个直角三角形全等的是()A.两个锐角对应相等B.一条边和一个锐角对应相等C.两条直角边对应相等D.一条直角边和一条斜边对应相等4.如图,△ABC≌△DEF,下列结论正确的是()A.AB=DF B.BE=CF C.∠B=∠F D.∠ACB=∠DEF 5.如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A.AB=CD B.AC=BD C.AO=BO D.∠A=∠B 6.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形7.下列条件中,不能判定两个直角三角形全等的是()A.两直角边对应相等B.斜边和一条直角边对应相等C.两锐角对应相等D.一个锐角和斜边对应相等8.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为4,则BE=()A.1B.2C.3D.49.在一次小制作活动中,艳艳剪了一个燕尾图案(如图所示),她用刻度尺量得AB=AC,BO=CO,为了保证图案的美观,她准备再用量角器量一下∠B和∠C是否相等,小麦走过来说:“不用量了,肯定相等”,小麦的说法利用了判定三角形全等的方法是()A.ASA B.SAS C.AAS D.SSS10.如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥FD二.填空题11.能够的两个图形叫做全等图形.12.已知△ABC≌△DEF,∠A=30°,∠E=50°,则∠C=.13.如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是(只写一个即可,不添加辅助线).14.在如图所示的2×2方格中,连接AB、AC,则∠1+∠2=度.15.已知:△ABC≌△FED,若∠B=45°,∠C=40°,则∠F=度.16.如图,BC=EF,AC∥DF,请你添加一个适当的条件,使得△ABC≌△DEF,.(只需填一个答案即可)17.如图,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q从A点出发,分别在线段AC和射线AX上运动,且AB=PQ,当点P运动到AP=,△ABC与△APQ全等.18.如图,AC⊥BC,AD⊥DB,要使△ABC≌△BAD,还需添加条件.(只需写出符合条件一种情况)19.如图,在△ABC和△ADC中,AB=AD,BC=DC,∠B=130°,则∠D=°.20.如图,点D,E,F,B在同一条直线上,AB∥CD,AE∥CF且AE=CF,若BD=10,BF=3.5,则EF=.三.解答题21.如图所示,△ABC≌△ADE,BC的延长线交DA于F点,交DE于G点,∠ACB=105°,∠CAD=15°,∠B=30°,则∠1的度数为多少度.22.如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.23.如图所示,△ABC≌△AEC,B和E是对应顶点,∠B=30°,∠ACB=85°,求△AEC各内角的度数.24.如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.25.如图:AC∥EF,AC=EF,AE=BD.求证:△ABC≌△EDF.26.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.27.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′(1)其中,符合要求的条件是.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD≌四边形A′B′C′D′.参考答案与试题解析一.选择题1.解:全等图形是指两个图形的形状和大小都相等,故选:C.2.解:A、根据SAS即可推出△ABC≌△DEF,故本选项错误;B、不能推出△ABC≌△DEF,故本选项正确;C、根据AAS即可推出△ABC≌△DEF,故本选项错误;D、根据ASA即可推出△ABC≌△DEF,故本选项错误;故选:B.3.解:A、全等三角形的判定必须有边的参与,故本选项符合题意;B、符合判定ASA或AAS,故本选项正确,不符合题意;C、符合判定SAS,故本选项不符合题意;D、符合判定HL,故本选项不符合题意.故选:A.4.解:∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∠B=∠DEF,∠ACB=∠F,∠A=∠D,∴BE=CF,故选:B.5.解:∵△AOC≌△BOD,∴∠A=∠B,AO=BO,AC=BD,∴B、C、D均正确,而AB、CD不是不是对应边,且CO≠AO,∴AB≠CD,故选:A.6.解:A、所有的等边三角形都是全等三角形,错误;B、全等三角形是指面积相等的三角形,错误;C、周长相等的三角形是全等三角形,错误;D、全等三角形是指形状相同大小相等的三角形,正确.故选:D.7.解:A、正确.根据SAS即可判断.B、正确.根据HL即可判断.C、错误.两锐角对应相等不能判断两个三角形全等.D.正确.根据AAS即可判断.8.解:如图,过B点作BF⊥CD,与DC的延长线交于F点,∵∠ABC=∠CDA=90°,BE⊥AD,∴四边形EDFB是矩形,∠EBF=90°,∴∠ABE=∠CBF,∵在△BCF和△BAE中,∴△BCF≌△BAE(ASA),∴BE=BF,∴四边形EDFB是正方形,∴S四边形ABCD =S正方形BEDF=4,∴BE==2.故选:B.9.解:在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),∴∠B=∠C,故选:D.10.解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,又∵∠B=∠E,∴当添加条件AB=DE时,△ABC≌△DEF(SAS),故选项A不符合题意;当添加条件∠A=∠D时,△ABC≌△DEF(AAS),故选项B不符合题意;当添加条件AC=DF时,无法判断△ABC≌△DEF,故选项C符合题意;当添加条件AC∥FD时,则∠ACB=∠DFE,故△ABC≌△DEF(ASA),故选项D不符合题意;故选:C.二.填空题11.解:能够完全重合的两个图形叫做全等图形.故答案为完全重合.12.解:∵△ABC≌△DEF,∴∠B=∠E=50°,∴∠C=180°﹣∠A﹣∠B=100°,故答案为:100°.13.解:∠APO=∠BPO等.理由:∵点P在∠AOB的平分线上,∴∠AOP=∠BOP,在△AOP和△BOP中∵,∴△AOP≌△BOP(ASA),故答案为:∠APO=∠BPO(答案不唯一).14.解:在△ACM和△BAN中,,∴△ACM≌△BAN,∴∠2=∠CAM,即可得∠1+∠2=90°.故答案为:90.15.解:∵△ABC≌△FED,∴∠F=∠A,∵∠B=45°,∠C=40°,∴∠A=95°,∴∠F=95°,故答案为:95°.16.解:∵AC∥DF,∴∠ACB=∠F,∵BC=EF,∴添加AC=DF或∠A=∠D或∠B=∠DEF即可证明△ABC≌△DEF,故答案为AC=DF或∠A=∠D或∠B=∠DEF.17.解:∵AX⊥AC,∴∠PAQ=90°,∴∠C=∠PAQ=90°,分两种情况:①当AP=BC=5时,在Rt△ABC和Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL);②当AP=CA=10时,在△ABC和△PQA中,,∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=5或10时,△ABC与△APQ全等;故答案为:5或10.18.解:∵AC⊥BC,AD⊥DB,∴∠C=∠D=90°∵AB为公共边,要使△ABC≌△BAD∴添加AC=BD或BC=AD或∠DAB=∠CBA或∠CAB=∠DBA后可分别根据HL、HL、AAS、AAS判定△ABC≌△BAD.19.解:在△ADC和△ABC中,,∴△ABC≌△ADC(SSS),∴∠D=∠B,∵∠B=130°,∴∠D=130°,故答案为:130.20.解:∵AB∥CD,∴∠B=∠D,∵AE∥CF,∴∠AEB=∠CFD,在△ABE和△CFD中,,∴△ABE≌△CFD,∴BE=DF,∵BD=10,BF=3.5,∴DF=BD﹣BD=6.5,∴BE=6.5,∴EF=BE﹣BF=6.5﹣3.5=3.故答案为3三.解答题21.解:∵△ABC≌△ADE,∴∠D=∠B=30°,∵∠ACB=∠CAD+∠AFC,∴∠AFC=∠ACB﹣∠CAD=90°,∴∠DFG=90°,∴∠AFC=90°,∴∠1=180°﹣∠D﹣∠DFG=180°﹣90°﹣30°=60°.22.证明:∵AC∥DF,∴∠ACB=∠DFE,∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).23.解:∵△ABC≌△AEC,∴∠B=∠E,∠BAC=∠EAC,∠ACB=∠ACE.∵∠B=30°,∠ACB=85°,∴∠E=30°,∠ACE=85°,∠ACB=180°﹣∠B﹣∠ACB=65°,∴∠EAC=65°.故∠E=30°,∠ACE=85°,∠EAC=65°.24.解:∵∠A=30°,∠B=50°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣30°﹣50°=100°,∵△ABC≌△DEF,∴∠DFE=∠ACB=100°,EF=BC,∴EF﹣CF=BC﹣CF,即EC=BF,∵BF=2,∴EC=2.25.证明:∵AC∥EF,∴∠CAB=∠FED,∵AE=BD,∴AE+EB=BD+EB,即AB=ED,又∵AC=EF,∴△ABC≌△EDF.26.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD和Rt△ACE中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠EAC.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.27.解:(1)符合要求的条件是①②④,故答案为:①②④;(2)选④,证明:连接AC、A′C′,在△ABC与△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),∴AC=A′C′,∠ACB=∠A′C′B′,∵∠BCD=∠B′C′D′,∴∠BCD﹣∠ACB=∠B′C′D′﹣∠A′C′B′,∴∠ACD=∠A′C′D′,在△ACD和△A′C′D中,,∴△ACD≌△A′C′D′(SAS),∴∠D=∠D,∠DAC=∠D′A′C′,DA=D′A′,∴∠BAC+∠DAC=∠B′A′C′+∠D′A′C′,即∠BAD=∠B′A′D′,∴四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,AD=A′D′,DC=D′C′,∠B=∠B′,∠BCD=∠B′C′D′,∠D=∠D′,∠BAD=∠B′A′D′,∴四边形ABCD≌四边形A′B′C′D′.。

人教版数学八年级上册第一年级测试试卷(含答案)

人教版数学八年级上册第一年级测试试卷(含答案)

人教版数学8年级上册第1单元·时间:120分钟满分:120分班级__________姓名__________得分__________一、选择题(共10小题,满分30分,每小题3分)1.(3分)若一个多边形的一个内角为144°,则这个图形为正( )边形.A.十一B.十C.九D.八2.(3分)下列长度的三条线段中,能组成三角形的是( )A.1cm,2cm,3cm B.2cm,3cm,4cmC.4cm,6cm,10cm D.5cm,8cm,14cm3.(3分)某三角形的三边长分别为3,6,x,则x可能是( )A.3B.9C.6D.104.(3分)有下列两种图示均表示三角形分类,则正确的是( )A.①对,②不对B.②对,①不对C.①、②都不对D.①、②都对5.(3分)一个正六边形的内角和的度数为( )A.1080°B.720°C.540°D.360°6.(3分)如图,为估计池塘岸边A、B两点的距离,小明在池塘的一侧选取一点O,测得OA=10米,OB=8米,A、B间的距离不可能是( )A.12米B.10米C.20米D.8米7.(3分)如图,窗户打开后,用窗钩AB可将其固定,其所运用的几何原理是( )A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.三角形具有稳定性8.(3分)在△ABC中,且满足∠A+∠B=90°,则△ABC一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定9.(3分)若一个正多边形的每一个外角都等于36°,则它是( )A.正九边形B.正十边形C.正十一边形D.正十二边形10.(3分)如图,∠1=40°,则∠C的度数为( )A.30°B.40°C.50°D.60°二、填空题(共5小题,满分15分,每小题3分)11.(3分)如图,BD是△ABC的中线,AB=8,BC=5,△ABD和△BCD的周长的差是 .12.(3分)在△ABC中,AC=3,BC=4,若∠C是锐角,那么AB长的取值范围是 .13.(3分)在一个各内角都相等的多边形中,每一个内角都比相邻外角的3倍还大20°,则这个多边形的内角和为 .14.(3分)如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC 沿直线AD折叠后,点C落到点E处,若∠BAE=50°,则∠DAC的度数为 °.15.(3分)如图所示,在△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是 .三、解答题(共10小题,满分75分)16.(7分)已知a,b,c是△ABC的三边,a=4,b=6,若三角形的周长是小于18的偶数.(1)求c边的长;(2)判断△ABC的形状.17.(7分)若a、b、c是△ABC的三边,化简:|a﹣b+c|﹣|c﹣a﹣b|+|a+b+c|.18.(7分)如图,五边形ABCDE的每个内角都相等,已知EF⊥BC,求证:EF平分∠AED.19.(7分)如图,四边形ABCD中,AB⊥AC.(1)若AB∥CD,且∠D=60°,求∠1的度数;(2)若∠1+∠B=90°,求证:AD∥BC.20.(7分)如图,∠ABE是四边形ABCD的外角,已知∠ABE=∠D.求证:∠A+∠C=180°.21.(7分)如图,在四边形ABCD中,BE平分∠ABC,交AD于点G,交CD的延长线于点E,F为DC延长线上一点,∠ADE+∠BCF=180°.(1)求证:AD∥BC;(2)若∠DGE=30°,求∠A的度数.22.(7分)如图,在△ABC中,∠B=30°,∠C=65°,AE⊥BC于E,AD平分∠BAC,(1)求∠DAE的度数;(2)如图②,若把“AE⊥BC”变成“点F在DA的延长线上,FE⊥BC”,其它条件不变,求∠DFE的度数.23.(8分)已知:如图,点D、E、F、G都在△ABC的边上,EF∥AC,且∠1+∠2=180°.(1)求证:AE∥DG;(2)若EF平分∠AEB,∠C=35°,求∠BDG的度数.24.(9分)如图,在△ABC中,∠CAE=18°,∠C=42°,∠CBD=27°.(1)求∠AFB的度数;(2)若∠BAF=2∠ABF,求∠BAF的度数.25.(9分)如图,在△ABC中,CD平分∠ACB,AE⊥CD,垂足为F,交BC于点E,若∠BAE=33°,∠B=37°,求∠EAC的度数.参考答案一、选择题(共10小题,满分30分,每小题3分)1.B;2.B;3.C;4.B;5.B;6.C;7.D;8.B;9.B;10.C;二、填空题(共5小题,满分15分,每小题3分)11.3;12.1<AB<5;13.1260°;14.30;15.80°;三、解答题(共10小题,满分75分)16.解:(1)∵a,b,c是△ABC的三边,a=4,b=6,∴2<c<10,∵三角形的周长是小于18的偶数,∴2<c<8,∴c=4或6;(2)当c=4或6时,△ABC的形状都是等腰三角形.17.解:∵a、b、c是△ABC的三边,∴a﹣b+c>0,c﹣a﹣b<0,a+b+c>0,∴原式=a﹣b+c+c﹣a﹣b+a+b+c=a﹣b+3c.18.证明:∵五边形内角和为(5﹣2)×180°=540°且五边形ABCDE的5个内角都相等,∴∠A=∠B=∠AED=540°5=108°.∵EF⊥BC,∴∠3=90°.又∵四边形的内角和为360°,∴在四边形ABFE中,∠1=360°﹣(108°+108°+90°)=54°,又∵∠AED=108°,∴∠1=∠2=54°,∴EF平分∠AED.19.(1)解:∵AB⊥AC,∴∠BAC=90°,∵AB∥CD,∴∠BAC=∠ACD=90°,∵∠D=60°,∴∠1=30°;(2)证明:∵∠B+∠BCA=90°,∠1+∠B=90°,∴∠1=∠BCA,∴AD∥BC.20.证明:∵∠ABE=∠D,∠ABE+∠ABC=180°,∴∠ABC+∠D=180°,又∵四边形内角和等于360°,∴∠A+∠C=180°.21.(1)证明:∵∠ADE+∠BCF=180°,∠BCE+∠BCF=180°,∴∠ADE=∠BCE,∴AD∥BC;(2)解:由(1)得,AD∥BC,∴∠AGB=∠EBC,∵∠AGB=∠DGE,∴∠AGB=∠EBC=∠DGE=30°,∵BE平分∠ABC,∴∠AGB=∠EBC,∴∠A=180°﹣30°﹣30°=120°.22.解:(1)∵∠B=30°,∠C=65°,∴∠BAC=85°,∵AD平分∠BAC,∴∠CAD=42.5°,∵AE⊥BC,∴∠CAE=25°,∴∠DAE=∠CAD﹣∠CAE=17.5°;(2)如图,∵∠B=30°,∠C=65°,∴∠BAC=85°,∵AD平分∠BAC,∴∠CAD=42.5°,∴∠FAG=180°﹣∠CAD=137.5°,∵EF⊥BC,∴∠CGE=25°,∴∠AGF=25°,∴∠DFE=180°﹣∠AGF﹣∠FAG=17.5°.23.(1)证明:∵EF∥AC,∴∠1=∠CAE.∵∠1+∠2=180°,∴∠2+∠CAE=180°.∴AE∥DG.(2)解:∵EF∥AC,∠C=35°,∴∠BEF=∠C=35°.∵EF平分∠AEB,∴∠1=∠BEF=35°.∴∠AEB=70°.由(1)知AE∥DG,∴∠BDG=∠AEB=70°.24.解:(1)∵∠AEB=∠C+∠CAE,∠C=42°,∠CAE=18°,∴∠AEB=60°,∵∠CBD=27°,∴∠BFE=180°﹣27°﹣60°=93°,∴∠AFB=180°﹣∠BFE=87°;(2)∵∠BAF=2∠ABF,∠BFE=93°,∴3∠ABF=93°,∴∠ABF=31°,∴∠BAF=62°.25.解:∵AE⊥CD交CD于点F,∴∠AFC=∠EFC=90°,∵CD平分∠ACB,∴∠ACF=∠ECF,∵∠AFC+∠EAC+∠ACF=180°,∠EFC+∠CEA+∠ECF=180°,∴∠EAC=∠CEA,∵∠CEA=∠B+∠BAE,∠B=37°,∠BAE=33°,∴∠CEA=70°,∴∠EAC=70°.。

初二数学上册第一单元测试题【三篇】

初二数学上册第一单元测试题【三篇】

导语:检验数学学得好不好的标准就是会不会解题。

听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独⽴解题、解对题才是学好数学的标志。

以下是⽆忧考整理的初⼆数学上册第⼀单元测试题【三篇】,希望对⼤家有帮助。

初⼆数学上册第⼀单元测试题(⼀)⼀、选择(共30分)1、如图,在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的⾯积为().A.16πB.12πC.10πD.8π2、三个正⽅形的⾯积如图(4),正⽅形A的⾯积为()A.6B.36C.64D.83、14.在△ABC中,AB=13,AC=15,⾼AD=12,则BC的长为()A.14B.14或4C.8D.4和84、将⼀根24cm的筷⼦,置于底⾯直径为15cm,⾼8cm的圆柱形⽔杯中,如图所⽰,设筷⼦露在杯⼦外⾯的长度为hcm,则h的取值范围是().A.h≤17cmB.h≥8cmC.15cm≤h≤16cmD.7cm≤h≤16cm5、若直⾓三⾓形的两条直⾓边长分别为3cm、4cm,则斜边上的⾼为()A、cmB、cmC、5cmD、cm6、以下列线段的长为三边的三⾓形中,不是直⾓三⾓形的是()A、B、C、D、7、已知三⾓形的三边长为a、b、c,如果,则△ABC是()A.以a为斜边的直⾓三⾓形B.以b为斜边的直⾓三⾓形C.以c为斜边的直⾓三⾓形D.不是直⾓三⾓形8、如果把直⾓三⾓形的两条直⾓边同时扩⼤到原来的2倍,那么斜边扩⼤到原来的().A.1倍B.2倍C.3倍D.4倍9、2002年8⽉在北京召开的国际数学家⼤会会徽取材于我国古代数学家赵爽的《勾股圆⽅图》,它是由四个全等的直⾓三⾓形与中间的⼀个⼩正⽅形拼成的⼀个⼤正⽅形,如图所⽰,如果⼤正⽅形的⾯积是13,⼩正⽅形的⾯积是1,直⾓三⾓形的短直⾓边为a,较长直⾓边为b,那么(a+b)2的值为()A.13B.19C.25D.16910、如图,长⽅体的长为15,宽为10,⾼为20,点离点的距离为5,⼀只蚂蚁如果要沿着长⽅体的表⾯从点爬到点,需要爬⾏的最短距离是()A.B.25C.D.⼆、填空(共24分)11、⼀个三⾓形三个内⾓之⽐为1:2:3,则此三⾓形是__________三⾓形;若此三⾓形的三边为a、b、c,则此三⾓形的三边的关系是__________。

人教版八年级上册数学第一单元测试卷

人教版八年级上册数学第一单元测试卷

人教版八年级上册数学第一单元测试卷人教版八年级上册数学第一单元测试卷一、选择题(每题3分,共24分)1、下列说法中正确的是()A、两个直角三角形全等B、两个等腰三角形全等C、两个等边三角形全等D、两条直角边对应相等的直角三角形全等2、如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CDBB.∠BAC=∠DACC.∠XXX∠DCADD.∠B=∠D=90º3.如图所示,将两根钢条AA’、BB’的中点O连在一起,使AA’、BB’可以绕着点O自由旋转,就做成了一个测量工件,则A’B’的长等于内槽宽AB,那么判定△OAB≌△OA’B’的理由是()A.边角边B.角边角C.边边边D.角角边4、如图,△ABC中,∠C=90º,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且CD=6cm,则DE的长为()A、4cmB、6cmC、8cmD、10cm5、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有(。

)A、3个B、2个C、1个D、0个6、如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带()去配。

A.①B.②C.③D.①和②7.下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是()A.①和②B.②和③C.①和③D.①②③8、如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PBB.PO平分∠APBXXX垂直平分OP二、填空题(每题3分,共24分)9、如图,若△ABC≌△A1B1C1,且∠A=110º,∠B=40º,则∠C1=30º。

人教版八年级数学上册单元测试题附答案全套

人教版八年级数学上册单元测试题附答案全套

人教版八年级数学上册单元测试题附答案全套第一单元:有理数单项选择题1.下列数中,哪个是负有理数?a.0b. 5c. -3d. 22.哪组数中,有一个正有理数和一个负有理数?a.{-2, -3}b. {0, 1}c. {5, 7}d. {-4, 4}3.下列数中,哪些是无理数?a.√2b. -7c. 0.5d. 3/74.若 a、b 均为正有理数,且 a > b,那么 a < 0 的可能性是多少?a.0b. 1c. 无穷大d. 无法确定5.若 a 和 b 是互为倒数的数,且 a 是正有理数,则 b 是:a.正有理数b. 负有理数c. 正无理数d. 负无理数解答题1.请用画数轴的方法表示 -2.5 这个有理数。

数轴2.判断下列数中哪些是有理数,哪些是无理数:√3、0.75、-5.5、0、5/4–有理数:0.75、-5.5、0、5/4–无理数:√3答案单项选择题答案:1. c 2. b 3. a 4. a 5. d解答题答案: 1.2. 有理数:0.75、-5.5、0、5/4,无理数:√3第二单元:整式的加减单项选择题1.下列算式中,不是整式的是:a.3x + y + 5b. 2x² - 3x + 4c. 4√2 + 7d. 6x - 5y - 42.下列算式中,能简化为整式的是:a.3x - √2b. 6x - 2/xc. 5x + 1/2d. 4x - √33.若 a = 2x + 3y,b = 4x - 6y,则 a - b 的结果是:a.2x + 3yb. -2x - 9yc. 6x - 3yd. -6x + 9y解答题1.将算式 3xy + 7y² - 4yx - 5x²的项按 x 的次数从高到低写出来。

-5x² + (3xy - 4yx) + 7y²2.将算式 a = 2x + 3y 和 b = 4x - 6y 相加,并合并同类项。

苏科版八年级数学上册试题 第1章 全等三角形 单元测试卷(含详解)

苏科版八年级数学上册试题 第1章 全等三角形 单元测试卷(含详解)

第1章《 全等三角形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是( )A .两个等边三角形一定全等B .腰对应相等的两个等腰三角形全等C .形状相同的两个三角形全等D .全等三角形的面积一定相等2.已知与全等,A 、B 、C 的对应点分别为D 、E 、F ,且E 点在AE 上,B 、F 、C 、D 四点共线,如图所示若,,则下列叙述何者正确?( )A .,B .,C .,D .,3.如图,在△ABC 中,AB =BC ,点D 为AC 上的点,连接BD ,点E 在△ABC 外,连接AE ,BE ,使得CD =BE ,∠ABE =∠C ,过点B 作BF ⊥AC 交AC 点F ,若∠BAE =21°,∠C =28°,则∠FBD =( )A .49°B .59°C .41°D .51°4.如图,有一块边长为4的正方形塑料模板,将一块足够大的直角三角板的直角顶点落在点,两条直角边分别与交于点F ,与延长线交于点E .则四边形的面积是( )ABC V DEF V .=40A ∠︒=35CED ∠︒=EF EC =AE FC=EF EC AE FC ≠EF EC ≠=AE FC EF EC ≠AE FC≠ABCD A CD CB AECFA .4B .6C .10D .165.如图,在的网格中,每一个小正方形的边长都是1,点,,,都在格点上,连接,相交于,那么的大小是( )A .B .C .D .6.△ABC 中,AB =AC ,∠ABC =72°,以B 为圆心,以任意长为半径画弧,分别交BA 、BC 于M 、N ,再分别以M 、N为圆心,以大于MN 为半径画弧,两弧交于点P ,射线BP 交AC 于点D ,则图中与BC 相等的线段有( )A .BD B .CD C .BD 和AD D .CD 和AD7.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,射线AP 交边BC 于点D .下列说法错误的是( )33⨯A B C D AC BD P APB ∠80︒60︒45︒30︒1212A .B .若,则点D 到AB 的距离为2C .若,则D .8.如图,长方形中,点为上一点,连接,将长方形沿着直线折叠,点恰好落在的中点上,点为的中点,点为线段上的动点,连接、,若、、,则的最小值是( )A .B .C .D .9.如图,点在线段上,于,于.,且,,点以的速度沿向终点运动,同时点以的速度从开始,在线段上往返运动(即沿运动),当点到达终点时,,同时停止运动.过,分别作的垂线,垂足为,.设运动时间为,当以,,为顶点的三角形与全等时,的值为( )A .1或3B .1或C .1或或 D .1或或510.如图,在中,,和的平分线、相交于点,交于点,交于点,若已知周长为,,,则长为( )CAD BAD ∠=∠2CD =30B ∠=CDA CAB ∠=∠2ABD ACDS S =V V ABCD E AD CE ABCD CE D AB F G CF P CE PF PG AE a =ED b =AF c =PF PG +a c b +-2b c +2a b c ++a b+C BD AB BD ⊥B ED BD ⊥D 90ACE ∠=︒5cm AC =6cm CE =P 2cm/s A C E →→E Q 3cm/s E EC E C E C →→→→⋅⋅⋅P P Q P Q BD M N s t P C M QCN △t 115115235115ABC V 60A ∠=︒ABC ∠ACB ∠BD CE O BD AC D CE AB E ABC V 207BC =:4:3AE AD =AEA. B . C . D .4二、填空题(本大题共8小题,每小题4分,共32分)11.如图,已知正方形中阴影部分的面积为3,则正方形的面积为 .12.数学课上,老师出示如下题目:“已知:.求作:.”如图是小宇用直尺和圆规的作法,其中的道理是作出△,根据全等三角形的性质,得到.△的依据是 .13.如图,已知,,,直线与,分别交于点,,且,,则的度数为 .14.如图,在△ABC 中,点D 是AC 的中点,分别以AB ,BC 为直角边向△ABC 外作等腰直角三角形ABM 和等腰直角三角形BCN ,其中∠ABM =NBC =∠90°,连接MN ,已知MN =4,则BD = .187247267AOB ∠A O B AOB '''∠=∠ΔC O D COD ''≅'A O B AOB '''∠=∠ΔC O D COD ''≅'AB AD =AC AE =BC DE =BC AD DE F G 65DGB ∠=︒120EAB ∠=︒CAD ∠15.如图,为的平分线,为上一点,且于点,,给出下列结论:①;②;③;④;⑤四边形的面积是面积的2倍,其中结论正确的个数有 .16.如图,把两块大小相同的含45°的三角板ACF 和三角板CFB 如图所示摆放,点D 在边AC 上,点E 在边BC 上,且∠CFE =13°,∠CFD =32°,则∠DEC 的度数为 .17.如图,在中,,,,有下列结论:①;②;③连接,;④过点作交于点,连接,则.其中正确的结论有 .18.如图,在Rt △ABC 中,∠C =90°,两锐角的角平分线交于点P ,点E 、F 分别在边BC 、AC 上,且都不与点C 重合,若∠EPF =45°,连接EF ,当AC =6,BC =8,AB =10时,则△CEF的BN MBC ∠P BN PD BC ⊥D 180APC ABC ∠+∠=︒MAP ACB ∠=∠PA PC =2BC AB CD -=BP AC =BAPC PBD △ABC V AD BC ⊥AD BD =BF AC =ADC BDF △≌△BE AC ⊥DE 135AED ∠=︒D DM AB ∥AC M FM BF AM MD =+周长为 .三、解答题(本大题共6小题,共58分)19.(8分)如图,,点E 在BC 上,且,.(1) 求证:;(2) 判断AC 和BD的位置关系,并说明理由.BD BC =BE AC =DE AB =ABC EDB V V ≌20.(8分)如图,在五边形中,,.(1) 请你添加一个条件,使得,并说明理由;(2) 在(1)的条件下,若,,求的度数.21.(10分)在复习课上,老师布置了一道思考题:如图所示,点M ,N 分别在等边的边上,且,,交于点Q .求证:.同学们利用有关知识完成了解答后,老师又提出了下列问题:(1) 若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由.ABCDE AB DE =AC AD =ABC DEA △△≌66CAD ∠=︒110B ∠=︒BAE ∠ABC V ,BC CA BM CN =AM BN 60BQM ∠=︒BM CN =60BQM ∠=︒(2) 若将题中的点M ,N 分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由.22.(10分)如图1,点P 、Q 分别是边长为4cm 的等边三角形ABC 的边AB 、BC 上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s .(1)连接AQ 、CP 交于点M ,则在P ,Q 运动的过程中,证明≌;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P 、Q 运动几秒时,是直角三角形?,BC CA 60BQM ∠=︒ABQ ∆CAP ∆CMQ ∠PBQ ∆(4)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 交点为M ,则变化吗?若变化说明理由,若不变,则求出它的度数。

初二上册数学第一单元测试题

初二上册数学第一单元测试题

初二上册第一单元测试题一、填空题1.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有对全等三角形.2.如图,△ABC≌△ADE,则,AB= ,∠E=∠.若∠BAE=120°,∠BAD=40°,则∠BAC= °.3.把两根钢条AA?、BB?的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5厘米,则槽宽为米.4.如图,∠A=∠D,AB=CD,则△≌△,根据是.5.如图,在△ABC和△ABD中,∠C=∠D=90,若利用“AAS”证明△ABC ≌△ABD,则需要加条件或;若利用“HL”证明△ABC≌△ABD,则需要加条件,或.6.△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC= .7.工人师傅砌门时,如图所示,常用木条EF固定矩形木框ABCD,使其不变形,这是利用,用菱形做活动铁门是利用四边形的。

8.如图5,在ΔAOC与ΔBOC中,若AO=OB,∠1=∠2,加上条件,则有ΔAOC≌ΔBOC。

9.如图6,AE=BF,AD‖BC,AD=BC,则有ΔADF≌,且DF= 。

10.如图7,在ΔABC与ΔDEF中,如果AB=DE,BE=CF,只要加上∠=∠或‖,就可证明ΔABC≌ΔDEF。

二、选择题11.如图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DFE ()(A)BC=EF (B)∠A=∠D (C)AC‖DF (D)AC=DF12.已知,如图,AC=BC,AD=BD,下列结论,不正确的是()(A)CO=DO(B)AO=BO (C)AB⊥BD (D)△ACO≌△BCO 13.在△ABC内部取一点P使得点P到△ABC的三边距离相等,则点P 应是△ABC的哪三条线交点.()(A)高(B)角平分线(C)中线(D)垂直平分线已知14.下列结论正确的是()(A)有两个锐角相等的两个直角三角形全等;(B)一条斜边对应相等的两个直角三角形全等;(C)顶角和底边对应相等的两个等腰三角形全等;(D)两个等边三角形全等.15.下列条件能判定△ABC≌△DEF的一组是()(A)∠A=∠D,∠C=∠F,AC=DF (B)AB=DE,BC=EF,∠A=∠D(C)∠A=∠D,∠B=∠E,∠C=∠F (D)AB=DE,△ABC的周长等于△DEF的周长16.已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法正确的有几个()(1)AD平分∠EDF;(2)△EBD≌△FCD;(3)BD=CD;(4)AD ⊥BC.(A)1个(B)2个(C)3个(D)4个三、解答题:1.如图,AB=DF,AC=DE,BE=FC,问:ΔABC与ΔDEF全等吗?AB与DF平行吗?请说明你的理由。

人教版八年级数学上册第1单元测试卷

人教版八年级数学上册第1单元测试卷

人教版八年级数学上册第1单元测试卷学习八年级数学第一单元知识不在于力量多少,而在能坚持多久。

下面由店铺为你整理的人教版八年级数学上册第1单元测试卷附答案,希望对大家有帮助!人教版八年级数学上册第1单元测试卷第1章分式类型之一分式的概念1.若分式2a+1有意义,则a的取值范围是 ( )A.a=0B.a=1C.a≠-1D.a≠02.当a ________时,分式1a+2有意义.3. 若式子2x-1-1的值为零,则x=________.4.求出使分式|x|-3(x+2)(x-3)的值为0的x的值.类型之二分式的基本性质5.a,b为有理数,且ab=1,设P=aa+1+bb+1,Q=1a+1+1b+1,则P____Q(填“>”、“<”或“=”).类型之三分式的计算与化简6.化简1x-3-x+1x2-1(x-3)的结果是 ( )A.2B.2x-1C.2x-3D.x-4x-17.化简x(x-1)2-1(x-1)2的结果是______________.8.化简:1+1x÷2x-1+x2x.9.先化简:1-a-1a÷a2-1a2+2a,再选取一个合适的值代入计算.10.先化简,后求值:x-1x+2•x2-4x2-2x+1÷1x2-1,其中x2-x=0.类型之四整数指数幂11.计算:(1)(-1)2 013-|-7|+9×(7-π)0+15-1;(2)(m3n)-2•(2m-2n-3)-2÷(m-1n)3.类型之五科学记数法12.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.000 096 3贝克/立方米.数据“0.000 096 3”用科学记数法可表示为__________________ .类型之六解分式方程13.分式方程12x2-9-2x-3=1x+3的解为 ( )A.x=3B.x=-3C.无解D.x=3或-314.解方程:2x-1=1x-2.15.解方程:23x-1-1=36x-2.类型之七分式方程的应用16.李明到离家2.1千米的学校参加九年级联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即步行匀速回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校,已知李明骑自行车的速度是步行速度的3倍,且李明骑自行车到学校比他从学校步行到家少用了20分钟.(1)李明步行的速度是多少米/分?(2)李明能否在联欢会开始前赶到学校?17.为了提高产品的附加值,某公司计划将研发生产的1 200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求:甲、乙两个工厂每天分别能加工多少件新产品.人教版八年级数学上册第1单元测试卷答案1.C2.≠-23.34.【解析】要使分式的值为0,必须使分式的分子为0,且分母不为0,即|x|-3=0且(x+2)(x-3)≠0.解:要使已知的分式的值为0,x应满足|x|-3=0且(x+2)•(x-3)≠0.由|x|-3=0,得x=3或x=-3,检验知:当x=3时,(x+2)(x-3)=0,当x=-3 时,(x+2)(x-3)≠0,所以满足条件的x的值是x=-3.5.=6.B 【解析】原式=1x-3-1x-1(x-3)=1-x-3x-1=x-1x-1-x-3x-1=2x-1.7.1x-18.解:原式=x+1x÷x2-1x=x+1x×x(x+1)(x-1)=1x-1.9.解:原式=1-a-1a×a(a+2)(a+1)(a-1)=1-a+2a+1=-1a+1.当a=3时,原式=-13+1=-14.(a的取值为0,±1,-2外的任意值)10.【解析】本题是一道含有分式乘除混合运算的分式运算,先化简,然后把化简后的最简结果与已知条件相结合,不难发现计算方法.解:原式=x-1x+2•(x+2)(x-2)(x-1)2•(x+1)(x-1)1=(x-2)•(x+1)=x2-x-2.当x2-x=0时,原式=0-2=-2.11.【解析】先算乘方,再算乘除.解:(1)原式=-1-7+3+5=0;(2)原式=m-6n-2•2-2m4n6÷m-3n3=14m-6+4-(-3)n-2+6-3=14mn.12.9.63×10-513.C 【解析】方程的两边同乘(x+3)(x-3),得12-2(x+3)=x-3,解得x=3.检验:当x=3时,(x+3)(x-3)=0,即x=3不是原分式方程的解,故原方程无解.14.解:方程两边都乘(x-1)(x-2),得2( x-2)=x-1,去括号,得2x-4=x-1,移项,得x=3.经检验,x=3是原方程的解,所以原分式方程的解是x=3.15.解:方程两边同时乘6x-2,得4-(6x-2)=3,化简,得-6x=-3,解得x=12.检验:当x=12时,6x-2≠0,所以x=12是原方程的解.16.【解析】(1)相等关系:从学校步行回家所用的时间-从家赶往学校所用的时间=20分钟;(2)比较回家取道具所用总时间与42分的大小.解:(1)设李明步行的速度是x米/分,则他骑自行车的速度是3x 米/分,根据题意,得2 100x-2 1003x=20,解得x=70,经检验,x=70是原方程的解,所以李明步行的速度是70米/分.(2)因为2 10070+2 1003×70+1=41(分)<42(分),所以李明能在联欢会开始前赶到学校.17.【解析】本题的等量关系为:甲工厂单独加工完成这批产品所用天数-乙工厂单独加工完成这批产品所用天数=10;乙工厂每天加工的数量=甲工厂每天加工的数量×1.5,则若设甲工厂每天加工x件产品,那么乙工厂每天加工1.5x件产品,根据题意可分别表示出两个工厂单独加工完成这批产品所用天数,进而列出方程求解.解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,依题意,得1 200x-1 2001.5x=10,解得x=40,经检验x=40是原方程的根,所以1.5x=60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.。

八年级数学上册第一单元测试题(含答案)

八年级数学上册第一单元测试题(含答案)

八年级数学上册第一单元测试题(含答案)满分120分, 考试时间120分钟一、单选题(30分)1. 现有3cm、4cm、5cm、7cm长的四根木棒, 任选其中三根组成一个三角形, 那么可以组成三角形的个数是()A. 4B. 3C. 2D. 12. 如图, 工人师傅在安装木制门框时, 为防止变形常常钉上两根木条, 这样做的依据是()A.三角形具有稳定性B.两点之间, 线段最短C. 直角三角形的两个锐角互为余角D. 垂线段最短第2题图第3题图第4题图3. 如图, 在△ABC中, ∠1=∠2, G为AD的中点, BG的延长线交AC于点E, F为AB上的一点, CF与AD垂直, 交AD于点H, 则下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH是△ACD的边AD上的高;④AH是△ACF的角平分线和高A. 2个B. 3个C. 4个D. 1个4.如图, 若△ABC≌△DEF, 且BE=5, CF=2, 则BF的长为()A. 5B. 3C. 2D. 1.55.将一副常规的三角尺按如图方式放置, 则图中的度数为()A. B. C. D.第5题图第6题图第7题图6. 如图所示, △ABC≌△BAD, 点A与点B, 点C与点D是对应顶点, 如果∠DAB=50°, ∠DBA=40°, 那么∠DAC的度数为()A. 5°B. 10°C. 40°D. 50°7.如图, 若, 则添加下列一个条件后, 仍无法判定的是()A. B. C. D.8.如图, 、、分别是、、的中点, 若△BFD的面积是3, 则的面积是( )A. 6B. 18C. 24D. 12第8题图 第9题图 第10题图9. 如图, 点B.C.D 在同一直线上, AB CE, 若∠A =55°, ∠ACB =65°, 则∠1的值为( ) A. 80° B. 65° C. 55° D. 60° 10.如图, 在平面直角坐标系中, 点A(2, 0), B(0,4), 若以B, O, C 为顶点的三角形与△ABO 全等, 则点C 的坐标不能为( )A.(-2,0)B.(0,-4)C.(2,4)D.(-2,4) 二、填空题(24分)11. 如图, 七边形ABCDEFG 的对角线共有 ________条.第11题图 第13题图 第14题图 12. 已知BD 是 的中线, , , 且 的周长为16, 则 的周长为________. 13. 如图, 是直角三角形, , 是 的高, , , , 则AD 的长为_______.14. 如图, 在△ABC 中, D, E 分别是边AB, AC 上一点, 将△ABC 沿DE 折叠, 使点A 落在边BC 上, 若∠A =60°, 则∠1+∠2+∠3+∠4=______.15.如图, 点F 是△ABC 的边BC 延长线上一点, DF ⊥AB 于点D, ∠A =30°, ∠F =50°, ∠ACF 的度数是_____.第15题图 第16题图16. 如图, 一种测量工具, 点O 是两根钢条AC.BD 中点, 并能绕点O 转动.由三角形全等可得内槽宽AB 与CD 相等, 其中△OAB ≌△OCD 的依据是 (写出全等的简写)17.如图, ∠1, ∠2, ∠3是五边形ABCDE 的3个外角, 若 , 则 ________.第17题图 第18题图18. 如图, 方格纸中△ABC 的3个顶点分别在小正方形的顶点(格点)上, 这样的三角形叫格点三角形, 图中与△ABC 全等的格点三角形共有__________个(不含△ABC). 三、解答题(66分)19. (8分)如图, 已知: AD 是△ABC 的角平分线, CE 是△ABC 的高, ∠BAC =60°, ∠BCE =40°, 求∠GABCD EFB C DAADB 的度数.20.(8分)如图, D 是AC 上一点, AB=DA,DE ∥AB, ∠B=∠DAE,求证: BC=AE21. (8分)如图所示, AC=AE, ∠1=∠2, AB=AD. 求证: BC=DE.22.(8分)如图所示, 是 的角平分线, 是 的外角平分线, 、 交于点 , 若 , 求的度数.23. (8分)如图, 四边形ABCD 中, BC=CD, CB ⊥AB 于B, CD ⊥AD 于D, 求证: AB=AD.24. (8分)某建筑测量队为了测量一栋居民楼ED 的高度, 在大树AB 与居民楼ED 之间的地面上选了一点C, 使B, C, D 在一直线上, 测得大树顶端A 的视线AC 与居民楼顶端E 的视线EC 的夹角为90°, 若AB=CD=24米, BD=64米, 请计算出该居民楼ED 的高度.DE A B C25. (9分)将一个凸边形剪去一个角得到一个新的多边形, 其内角和为1620°, 求的值.26.(9分)如图, 在四边形ABCD 中, AD∥BC, ∠ABC=90°, AD=12, BC=24, 动点 P 从点 A 出发以每秒1个单位的速度沿 AD 向点 D运动, 动点 Q 从点 C 出发以每秒 2 个单位的速度沿 CB 向点 B 运动, P, Q 同时出发, 当点 P 停止运动时, 点 Q 也随之停止, 连接PQ, DQ.设点 P 运动时间为 t 秒, 问当 t 为何值时, △PDQ ≌△CQD , 并证明△PDQ ≌△CQD答案一、单选题1. 现有3cm、4cm、5cm、7cm长的四根木棒, 任选其中三根组成一个三角形, 那么可以组成三角形的个数是()A. 4B. 3C. 2D. 1答案: B2.如图, 工人师傅在安装木制门框时, 为防止变形常常钉上两根木条, 这样做的依据是()A. 三角形具有稳定性B. 两点之间, 线段最短C. 直角三角形的两个锐角互为余角D. 垂线段最短答案: A第2题图第3题图第4题图3. 如图, 在△ABC中, ∠1=∠2, G为AD的中点, BG的延长线交AC于点E, F为AB上的一点, CF与AD垂直, 交AD于点H, 则下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH是△ACD的边AD上的高;④AH是△ACF的角平分线和高A. 2个B. 3个C. 4个D. 1个答案: A4.如图, 若△ABC≌△DEF, 且BE=5, CF=2, 则BF的长为()A. 5B. 3C. 2D. 1.5答案: D5.将一副常规的三角尺按如图方式放置, 则图中的度数为()A. B. C. D.答案: D第5题图第6题图第7题图6. 如图所示, △ABC≌△BAD, 点A与点B, 点C与点D是对应顶点, 如果∠DAB=50°, ∠DBA=40°, 那么∠DAC的度数为()A. 5°B. 10°C. 40°D. 50°答案: B7.如图, 若, 则添加下列一个条件后, 仍无法判定的是()A. B. C. D.答案: C8.如图, 、、分别是、、的中点, 若△BFD的面积是3, 则的面积是( )A. 6B. 18C. 24D. 12答案: C第8题图第9题图第10题图9. 如图, 点B.C.D在同一直线上, AB CE, 若∠A=55°, ∠ACB=65°, 则∠1的值为()A. 80°B. 65°C. 55°D. 60°答案: D10.如图, 在平面直角坐标系中, 点A(2, 0), B(0,4), 若以B, O, C为顶点的三角形与△ABO全等, 则点C的坐标不能为( )A.(-2,0)B.(0,-4)C.(2,4)D.(-2,4)答案: B二、填空题11. 如图, 七边形ABCDEFG的对角线共有________条.答案: 14第11题图第13题图第14题图12. 已知BD是的中线, , , 且的周长为16, 则的周长为________.答案: 1313.如图, 是直角三角形, , 是的高, , , , 则AD的长为_______.答案: 4.814.如图, 在△ABC中, D, E分别是边AB, AC上一点, 将△ABC沿DE折叠, 使点A 落在边BC上, 若∠A =60°, 则∠1+∠2+∠3+∠4=______.答案: 240°15.如图, 点F是△ABC的边BC延长线上一点, DF⊥AB于点D, ∠A=30°, ∠F=50°, ∠ACF的度数是_____.答案: 70°第15题图第16题图16. 如图, 一种测量工具, 点O是两根钢条AC.BD中点, 并能绕点O转动.由三角形全等可得内槽宽AB 与CD相等, 其中△OAB≌△OCD的依据是(写出全等的简写)答案: SAS17.如图, ∠1, ∠2, ∠3是五边形ABCDE的3个外角, 若, 则________.答案: 210°第17题图第18题图18. 如图, 方格纸中△ABC的3个顶点分别在小正方形的顶点(格点)上, 这样的三角形叫格点三角形, 图中与△ABC全等的格点三角形共有__________个(不含△ABC).答案: 7三、解答题19. 如图, 已知: AD是△ABC的角平分线, CE是△ABC的高, ∠BAC=60°, ∠BCE=40°, 求∠ADB的度数.【解析】∵CE是△ABC的高∴∠BEC=90°△BEC为直角三角形∵∠BCE=40°∴∠B=90°-∠BCE=90°-40°=50°∵∠BAC=60°, AD是△ABC的角平分线∴1302BAD BAC∠=∠=︒在△ADB 中, ∠ADB=180°-∠B-∠BAD=180°-50°-30°=100°20.如图,D 是AC 上一点,AB=DA,DE ∥AB, ∠B=∠DAE,求证:BC=AE 【解析】 ∵DE ∥AB∴∠EDA=∠CAB在△ADE 和△BAC 中EDA CAB DA AB DAE B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△BAC(ASA) ∴AE=BC21. 如图所示, AC=AE, ∠1=∠2, AB=AD. 求证: BC=DE. 【解析】 ∵∠1=∠2∴∠1+∠EAB=∠2+∠EAB 即∠CAB=∠EAD 在△CAB 和△EAD 中AC AE CAB EAD AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CAB ≌△EAD(SAS) ∴BC=DE22.如图所示, 是 的角平分线, 是 的外角平分线, 、 交于点 , 若 , 求 .【解析】∵ACE A ABC ∠=∠+∠∵ ,∴12DCE A DBC ∠=∠+∠∵DCE D DBC ∠=∠+∠ ∴ , 即 . 【答案】35︒23. 如图, 四边形ABCD 中, BC=CD, CB ⊥AB 于B, CD ⊥AD 于D, 求证: AB=AD. 【解析】连接AC ∵CB ⊥AB, CD ⊥AD∴△CBA 和△CDA 为直角三角形 在Rt △CBA 和Rt △CDA 中AC AC BC DC =⎧⎨=⎩∴Rt △CBA ≌Rt △CDA (HL) ∴AB=AD24. 某建筑测量队为了测量一栋居民楼ED 的高度, 在大树AB 与居民楼ED 之间的地面上选了一点C, 使B, C, D 在一直线上, 测得大树顶端A 的视线AC 与居民楼顶端E 的视线EC 的夹角为90°, 若AB=CD=24米, BD=64米, 请计算出该居民楼ED 的高度.【解析】根据题意∠ABC=∠CDE=∠ACE=90°DEABC∴∠ACB+∠ECD=90°在Rt △ABC 中, ∠ACB+∠CAB=90° ∴∠CAB=∠ECD 在△ABC 和△CDE 中CAB ECD AB CDABC CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△CDE(ASA) ∴BC=DE∵BC=BD-CD=64-24=40 ∴DE=4025. 将一个凸 边形剪去一个角得到一个新的多边形, 其内角和为1620°, 求 的值. 【解析】分三张情况,(1)剪去一个角后得到的新多边形边数少1, 如图所示:(3)1801620n -⋅︒=︒解得n=12(2)剪去一个角后得到的新多边形边数不变, 如图所示:(2)1801620n -⋅︒=︒解得n=11(3)剪去一个角后得到的新多边形边数多1, 如图所示:(21)1801620n -+⋅︒=︒解得n=10所以n 的值为12, 11或1026.如图, 在四边形ABCD 中, AD ∥BC, ∠ABC=90°, AD=12, BC=24, 动点 P 从点 A 出发以每秒1个单位的速度沿 AD 向点 D 运动, 动点 Q 从点 C 出发以每秒 2 个单位的速度沿 CB 向点 B 运动, P, Q 同时出发, 当点 P 停止运动时, 点 Q 也随之停止, 连接PQ, DQ 。

8年级上册数学第一单元测试题

8年级上册数学第一单元测试题

8年级上册数学第一单元测试题一、选择题(每题3分,共30分)1. 下列长度的三条线段能组成三角形的是()A. 1,2,3.B. 3,4,8.C. 5,6,10.D. 5,6,11.解析:根据三角形三边关系“任意两边之和大于第三边,任意两边之差小于第三边”。

选项A:1 + 2 = 3,不满足两边之和大于第三边,不能组成三角形。

选项B:3+4<8,不满足两边之和大于第三边,不能组成三角形。

选项C:5 + 6>10,10 5<6,10 6<5,满足三边关系,可以组成三角形。

选项D:5+6 = 11,不满足两边之和大于第三边,不能组成三角形。

答案:C。

2. 在△ABC中,∠A = 50°,∠B = 60°,则∠C的度数为()A. 50°.B. 60°.C. 70°.D. 80°.解析:因为三角形内角和为180°,在△ABC中,已知∠A = 50°,∠B = 60°,所以∠C=180°∠A ∠B = 180°-50° 60° = 70°。

答案:C。

3. 一个三角形的两边长分别为3和7,第三边长为偶数,则第三边长为()A. 4,6.B. 4,6,8.C. 6,8.D. 8.解析:设第三边为x,根据三边关系可得7 3<x<7+3,即4<x<10,又因为第三边长为偶数,所以x = 6或8。

答案:C。

4. 三角形按边分类可分为()A. 不等边三角形、等边三角形。

B. 等腰三角形、等边三角形。

C. 不等边三角形、等腰三角形。

D. 等腰三角形、直角三角形。

解析:三角形按边分类为不等边三角形和等腰三角形(等边三角形是特殊的等腰三角形)。

答案:C。

5. 如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,若∠B = 70°,∠C = 30°,则∠DAE的度数为()A. 20°.B. 30°.C. 40°.D. 50°.解析:根据三角形内角和,∠BAC=180°∠B ∠C = 180° 70°-30° = 80°。

初中数学北师大版八年级上册 第一章 勾股定理单元测试(含答案)

初中数学北师大版八年级上册 第一章 勾股定理单元测试(含答案)

第一章勾股定理一、选择题1. 若a,b,c为△ABC的三边长,则下列条件中不能判定△ABC是直角三角形的是( )A.a=1.5,b=2,c=2.5B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:52. 在Rt△ABC中,若∠C=90∘,AC=3,BC=4,则点C到直线AB的距离为( )A.3B.4C.5D.2.43. 如图,四边形ABCD中,∠B=90∘,且AB=BC=2,CD=3,DA=1,则∠DAB的度数为( )A.90∘B.120∘C.135∘D.150∘4. 如图,在高为5 m,坡面长为13 m的楼梯表面铺地毯,地毯的长度至少需要( )A.17 m B.18 m C.25 m D.26 m5. 如图是一株美丽的勾股树,其中所有四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的面积分别为3,5,2,3,则最大正方形E的面积是( )A.47B.13C.11D.86. 如图,将一根长度为8 cm,自然伸直的弹性皮筋AB两端固定在水平的桌面上,然后把皮筋中点C竖直向上拉升3 cm到点D,则此时该弹性皮筋被拉长了( )A.6 cm B.5 cm C.4 cm D.2 cm7. 如图,为了测得湖两岸A点和B点之间的距离,一个观测者在C点设桩,使∠ABC=90∘,并测得BC长为16 m,若已知AC比AB长8 m,则A点和B点之间的距离为( )A.25 m B.12 m C.13 m D.43 m8. 如图,在三角形纸片ABC中,∠ACB=90∘,AC=4,BC=3,点D,E分别在AB,AC上,连接DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上.若FD平分∠EFB,则AD的长为( )A.259B.258C.157D.207二、填空题9. 在△ABC中,∠C=90∘.(1)已知a=10,b=24,那么c=.(2)已知b:c=4:5,a=9,那么b=,c=.10. 如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AH=6,EF=2,那么AB等于.11. 《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为.12. 如图,一个长方体长4 cm,宽3 cm,高12 cm,则它上下两底面的对角线MN的长为cm.13. 已知a,b,c为△ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,则可以判断△ABC的形状为.14. 如图所示的网格是正方形网格,则∠PAB+∠PBA=∘(点A,B,P是网格线的交点).15. 对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC,BD交于点O.若AD=2,BC=4,则AB2+CD2=.三、解答题16. 在Rt△ABC中,∠C=90∘.(1) 已知a=8,c=17,求b.(2) 已知b=40,c=41,求a.17. 如图,在四边形ABCD中,∠DBC=90∘,AB=9,AD=12,BC=8,DC=17,求四边形ABCD的面积.18. 如图,滑竿在机械槽内运动,∠C=90∘,AB=2.5 m,BC=1.5 m,当底端B向右移动0.5 m时,顶端A下滑了多少米?19. 假期中,王强和同学到某海岛上去旅游.他们按照如图所示路线.在点A登陆后租借了自行车,骑车往东走8千米,又往北走2千米;遇到障碍后往西走3千米,再折向北走到6千米处往东拐,走了1千米到达景点B.登陆点A到景点B的直线距离是多少千米?20. 若正整数a,b,c(a<b<c)满足a2+b2=c2,则称(a,b,c)为一组“勾股数”.观察下列两类“勾股数”:第一类(a是奇数):(3,4,5),(5,12,13),(7,24,25),⋯⋯第二类(a是偶数):(6,8,10),(8,15,17),(10,24,26),⋯⋯(1) 请再写出两组勾股数,每类各写一组;(2) 分别就a为奇数、偶数两种情形,用a表示b和c,并选择其中一种情形证明(a,b,c)是“勾股数”.答案一、选择题1. D2. D3. C4. A5. B6. D7. B8. D二、填空题9. 26;12;1510. 1011. x2+62=(10−x)212. 1313. 直角三角形14. 4515. 20三、解答题16.(1) 15.(2) 9.17. ∵∠DBC=90∘,DC=17,BC=8,∴BD2=CD2−BC2=172−82=225=152,∴BD=15.∵AD2+AB2=122+92=144+81=225,BD 2=225, ∴AD 2+AB 2=BD 2,∴△ABD 是直角三角形,且 ∠A =90∘,∴ 四边形 ABCD 的面积 =△ABD 的面积 +∠CBD 的面积 =12×9×12+12×15×8=54+60=114.18. 依题意得 AB =DE =2.5 m ,BC =1.5 m ,∠C =90∘,∴AC 2+BC 2=AB 2,即 AC 2+1.52=2.52,解得 AC =2 m . ∵BD =0.5 m , ∴CD =2 m .在 Rt △ECD 中,CE 2+CD 2=DE 2, ∴CE =1.5 m , ∴AE =0.5 m .答:顶端 A 下滑了 0.5 m .19. 10 千米.20.(1) 第一组(a 是奇数):9,40,41(答案不唯一);第二组(a 是偶数):12,35,37(答案不唯一).(2) 当 a 为奇数时,b =a 2−12,c =a 2+12;当 a 为偶数时,b =a 24−1,c =a 24+1.证明:当 a 为奇数时,a 2+b 2=a 2+(a 2−12)2=(a 2+12)2=c 2,∴(a,b,c ) 是“勾股数”.当 a 为偶数时,a 2+b 2=a 2+(a 24−1)2=(a 24+1)2=c 2,∴(a,b,c ) 是“勾股数”.。

初二数学上册第一单元测试题【三篇】

初二数学上册第一单元测试题【三篇】

初二数学上册第一单元测试题【三篇】导语:检验数学学得好不好的标准就是会不会解题。

听懂并记忆相关的定义、法则、公式、定理,仅仅学好数学的必要条件,能独立解题、解对题才是学好数学的标志。

以下是###整理的初二数学上册第一单元测试题【三篇】,希望对大家有协助。

初二数学上册第一单元测试题(一)一、选择(共30分)1、如图,在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为().A.16πB.12πC.10πD.8π2、三个正方形的面积如图(4),正方形A的面积为()A.6B.36C.64D.83、14.在△ABC中,AB=13,AC=15,高AD=12,则BC的长为()A.14B.14或4C.8D.4和84、将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是().A.h≤17cmB.h≥8cmC.15cm≤h≤16cmD.7cm≤h≤16cm5、若直角三角形的两条直角边长分别为3cm、4cm,则斜边上的高为()A、cmB、cmC、5cmD、cm6、以下列线段的长为三边的三角形中,不是直角三角形的是()A、B、C、D、7、已知三角形的三边长为a、b、c,如果,则△ABC是()A.以a为斜边的直角三角形B.以b为斜边的直角三角形C.以c为斜边的直角三角形D.不是直角三角形8、如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的().A.1倍B.2倍C.3倍D.4倍9、2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13B.19C.25D.16910、如图,长方体的长为15,宽为10,高为20,点离点的距离为5,一只蚂蚁如果要沿着长方体的表面从点爬到点,需要爬行的最短距离是()A.B.25C.D.二、填空(共24分)11、一个三角形三个内角之比为1:2:3,则此三角形是__________三角形;若此三角形的三边为a、b、c,则此三角形的三边的关系是__________。

八年级上册数学试卷第一单元

八年级上册数学试卷第一单元

八年级上册数学试卷第一单元一、选择题(共15题,每题2分,共30分)1.下列哪个数是有理数?A. √2 B. π C. 0.35 D. e2.下列哪个数是无理数? A. 0.75 B. -4/5 C. 3/4 D. √33.已知实数x的平方加上x=0,则x的值为: A. 0 B. 1 C. -1 D. 1/24.若a, b都是有理数,则下列哪个数一定是无理数? A. a + b B. a - b C.a ×b D. a / b…二、填空题(共10题,每题2分,共20分)1.假设数a的平方是4,那么a等于_________。

2.已知实数p的平方加上它自身等于0,那么p的值是_________。

3.如果一个无理数乘以有理数,结果是_________。

4.如果一个无理数加上一个有理数,结果是_________。

5.若a是有理数,而b是无理数,则a + b是_________。

6.若a是有理数,而b是无理数,则a × b一定是_________。

7.若a是有理数,而b是无理数,则a - b一定是_________。

8.若a是有理数,而b是无理数,则a / b一定是_________。

9.若a是无理数,而b是有理数,则a × b一定是_________。

10.若a是无理数,而b是有理数,则a + b一定是_________。

…三、计算题(共5题,每题10分,共50分)1.计算:(2 + √3) × (2 - √3)。

2.计算:(√5 - 2) × (√5 + 2)。

3.计算:(√7 + √5) × (√7 - √5)。

4.计算:(3 + √2) × (3 - √2)。

5.计算:(√6 + √10) × (√6 - √10)。

…四、解答题(共2题,每题20分,共40分)1.将下列有理数按从小到大排列:-5, 0, 3, -3, 2。

最新人教版初二(八年级)数学上册各单元及期末测试题(含答案)

最新人教版初二(八年级)数学上册各单元及期末测试题(含答案)

最新人教版初二(八年级)数学上册各单元及期末测试题(含答案)八年级数学上册第一单元测试一、选择题(24分)1.用尺规作已知角的平分线的理论依据是()A.SASB.AASC.SSSD.ASA2.三角形中到三边距离相等的点是()A.三条边的垂直平分线的交点B.三条高的交点C.三条中线的交点D.三条角平分线的交点3.已知△ABC≌△A′B′C′,且△ABC的周长为20,AB=8,BC=5,则A′C′等于()A.5B.6C.7D.84.如图所示,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°AEMCADFENBCBDF4题图5题图6题图5.如图,在Rt△AEB和Rt△AFC中,BE与AC相交于点M,与CF相交于点D,AB与CF相交于点N,∠E=∠F=90°,∠EAC=∠FAB,AE=AF.给出下列结论:①∠B=∠C;②CD=DN;③BE=CF;④△CAN≌△ABM.其中正确的结论是()A.①③④B.②③④C.①②③D.①②④6.如图,△ABC中,AB=AC,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,有下面四个结论:①DA平分∠EDF;②AE=AF;③AD上的点到B,C两点的距离相等;④到AE,AF的距离相等的点到DE,DF的距离也相等.其中正确的结论有()A.1个B.2个C.3个D.4个7.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm,则点D到AC的距离是()A.2cmB.3cmC.4cmD.6cm8.下列说法:①角的内部任意一点到角的两边的距离相等;②到角的两边距离相等的点在这个角的平分线上;③角的平分线上任意一点到角的两边的距离相等;④△ABC中∠BAC的平分线上任意一点到三角形的三边的距离相等,其中正确的()A.1个B.2个C.3个D.4个二、填空题(30分)29.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是28cm,AB=20cm,AC=8cm,则DE的长为_________cm.10.已知△ABC≌△DEF,AB=DE,BC=EF,则AC的对应边是__________,∠ACB的对应角是__________.11.如图所示,把△ABC沿直线BC翻折180°到△DBC,那么△ABC和△DBC______全等图形(填“是”或“不是”);若△ABC的面积为2,那么△BDC的面积为__________.12.如图所示,△ABE≌△ACD,∠B=70°,∠AEB=75°,则∠CAE=__________°.AEFCBD9题图11题图12题图13.如图所示,△AOB≌△COD,∠AOB=∠COD,∠A=∠C,则∠D的对应角是__________,图中相等的线段有__________.13题图14题图15题图14.如图所示,已知△ABC≌△DEF,AB=4cm,BC=6cm,AC=5cm,CF=2cm,∠A=70°,∠B=65°,则∠D=__________,∠F=__________,DE=__________,BE=__________.15.如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是__________(只要求写一个条件).16.已知:△ABC中,∠B=90°,∠A、∠C的平分线交于点O,则∠AOC的度数为.17.如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,则∠DOC=_________.18.如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,且DE=3cm,BD=5cm,则BC=_____cm.17题图18题图三、解答题19.(6分)已知:如图,∠1=∠2,∠C=∠D,求证:AC=AD.2CA12BD20.(8分)如图,四边形ABCD的对角线AC与BD相交于O 点,∠1=∠2,∠3=∠4.求证:(1)△ABC≌△ADC;(2)BO=DO.B31AC2O4D21.(8分)如图,△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,AD=BD.(1)求证:AC=BE;(2)求∠B的度数。

新人教版初中数学八年级数学上册第一单元《三角形》测试(包含答案解析)

新人教版初中数学八年级数学上册第一单元《三角形》测试(包含答案解析)

一、选择题1.若过六边形的一个顶点可以画n 条对角线,则n 的值是( )A .1B .2C .3D .42.内角和为720°的多边形是( ).A .三角形B .四边形C .五边形D .六边形3.已知三角形的两边长分别为1和4,则第三边长可能是( )A .3B .4C .5D .6 4.如果一个三角形的三边长分别为5,8,a .那么a 的值可能是( ) A .2B .9C .13D .15 5.若一个多边形的每个内角都等于160°,则这个多边形的边数是( )A .18B .19C .20D .21 6.如图,在ABC 中,AD 是角平分线,AE 是高,已知2BAC B ∠=∠,2B DAE ∠=∠,那么C ∠的度数为( )A .72°B .75°C .70°D .60° 7.若多边形的边数由3增加到n (n 为大于3的正整数),则其外角和的度数( ) A .不变 B .减少 C .增加 D .不能确定 8.如图,已知,,90,//AD BC FG BC BAC DE AC ⊥⊥∠=︒.则结论①//FG AD ;②DE 平分ADB ;③B ADE ∠=∠;④CFG BDE ∠+∠90=︒.正确的是( )A .①②③B .①②④C .①③④D .②③④ 9.如图,在五边形ABCDE 中,AB ∥CD ,∠A =135°,∠C =60°,∠D =150°,则∠E 的大小为( )A .60°B .65°C .70°D .75°10.下列四个图形中,线段CE 是ABC 的高的是( )A .B .C .D . 11.如图,在ABC ∆中,80,BAC ∠=︒点D 在BC 边上,将ABD △沿AD 折叠,点B 恰好落在AC 边上的点'B 处,若'20B DC ∠=.则C ∠的度数为( )A .20B .25C .35D .4012.如图,在ABC 中,48BAC ∠=︒,点 I 是ABC ∠、ACB ∠的平分线的交点.点D 是ABC ∠、 ACB ∠的两条外角平分线的交点,点E 是内角ABC ∠、外角ACG ∠的平分线的交点,则下列结论 不正确...的是( )A .180BDC BIC ∠+∠=︒B .85ICE ∠=︒C .24E ∠=︒D .90DBE ∠=︒二、填空题13.2016年2月6日凌晨,宝岛高雄发生6.7级地震,得知消息后,中国派出武警部队探测队,探测队探测出某建筑物下面有生命迹象,他们在生命迹象上方建筑物的一侧地面上的,A B 两处,用仪器探测生命迹象C ,已知探测线与地面的夹角分别是30︒和60︒(如图),则C ∠的度数是_________.14.如图,五边形ABCDE 中,//AE BC ,则C D E ∠+∠+∠的度数为__________.15.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果147∠=︒,220∠=︒,那么3∠= __________.16.如图,∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H 的度数为___________.17.如图所示,在ABC 中,80A ∠=︒,延长BC 到D ,ABC ∠与ACD ∠的平分线相交于1A 点,1A BC ∠与1A CD ∠的平分线相交于A 点,依此类推,4A BC ∠与4A CD ∠的平分线相交于5A 点,则5A ∠的度数是_________.18.如图,△ABC 的两条中线AD 、BE 相交于点G ,如果S △ABG =2,那么S △ABC =_____.19.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则A DB '∠=________.20.把一副直角三角板按如图所示的方式摆放在一起,其中90C =∠,90F ∠=,30D ∠=,45A ∠=,则12∠+∠等于___________度.三、解答题21.在ABC ∆中, ,AB AC CG BA =⊥交BA 的延长线于点G ,点D 是线段BC 上的一个动点.特例研究:()1当点D 与点B 重合时,过B 作BF AC ⊥交AC 的延长线于点F ,如图①所示,通过观察﹑测量BF 与CG 的长度,得到BF CC =.请给予证明.猜想证明:()2当点D 由点B 向点C 移动到如图②所示的位置时,过D 作DF AC ⊥交CA 的延长线于点F ,过D 作DE BA ⊥交BA 于点E ,此时请你通过观察,测量DE DF 、与CG 的长度,猜想并写出DE DF 、与CG 之间存在的数量关系,并证明你的猜想.拓展延伸:()3当点D 由点B 向点C 继续移动时(不与C 重合) ,过D 作DF AC ⊥交AC 于点F ,过D 作DF BA ⊥交BA (或BA 的延长线)于点E ,如图③,图④所示,请你判断(2)中的猜想是否仍然成立?(不用证明)22.如图,将△ABC 沿着平行于BC 的直线DE 折叠,点A 落到点A ′,若∠C =125°,∠A =20°,求∠BD A ′的度数.23.如图所示,已知AD ,AE 分别是△ABC 的高和中线,AB =3cm ,AC =4 cm ,BC=5 cm ,∠CAB =90°.(1)求AD 的长.(2)求△ABE 的面积.24.如图,有一块直角三角板XYZ 置在ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .ABC 中,30A ∠=︒.(1)ABC ACB ∠+∠=________.(2)ABX ACX ∠+∠=________.(说明理由)25.阅读材料在平面中,我们把大于180︒且小于360︒的角称为优角.如果两个角相加等于360︒,那么称这两个角互为组角,简称互组.(1)若1∠,2∠互为组角,且1135∠=︒,则2∠=______.习惯上,我们把有一个内角大于180︒的四边形俗称为镖形.(2)如图,在镖形ABCD 中,优角BCD ∠与钝角BCD ∠互为组角,试探索内角A ∠,B ,D ∠与钝角BCD ∠之间的数量关系,并至少用两种以上的方法说明理由. 26.如图,AB ∥CD ,点E 是CD 上一点,连结AE .EB 平分∠AED ,且DB ⊥BE ,AF ⊥AC ,AF 与BE 交于点M .(1)若∠AEC =100°,求∠1的度数;(2)若∠2=∠D ,则∠CAE =∠C 吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据从一个n边形一个顶点出发,可以连的对角线的条数是n-3进行计算即可.【详解】解:6-3=3(条).答:从六边形的一个顶点可引出3条对角线.故选:C.【点睛】本题考查了多边形的对角线,解答此类题目可以直接记忆:一个n边形一个顶点出发,可以连的对角线的条数是n-3.2.D解析:D【分析】根据多边形内角和的计算方法(n-2)•180°,即可求出边数.【详解】解:依题意有(n-2)•180°=720°,解得n=6.该多边形为六边形,故选:D.【点睛】本题考查了多边形的内角和,利用多边形的内角和计算公式正确计算是解题关键.3.B解析:B【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围.【详解】解:根据三角形的三边关系,设第三边的长为x,∵三角形两边的长分别是1和4,∴4-1<x<4+1,即3<x<5.故选:B.【点睛】此题考查了三角形的三边关系,关键是正确确定第三边的取值范围.4.B解析:B【分析】根据三角形三边关系得出a 的取值范围,即可得出答案.【详解】解:8-5<a <8+53<a <13,故a 的值可能是9,故选:B .【点睛】本题考查了三角形三边关系,掌握知识点是解题关键.5.A解析:A【分析】设多边形的边数为n ,然后根据多边形的内角和公式(n−2)•180°列方程求解即可.【详解】设多边形的边数为n ,由题意得,(n−2)•180=160•n ,解得:n =18,故选:A .【点睛】本题考查了多边形内角和公式,熟记多边形的内角和公式是解题的关键.6.A解析:A【分析】利用角平分线的定义和三角形内角和定理,余角即可计算.【详解】由图可知DAE DAC EAC ∠=∠-∠,∵AD 是角平分线. ∴12DAC BAC ∠=∠, ∴12DAE BAC EAC ∠=∠-∠, ∵90EAC C ∠=︒-∠, ∴1(90)2DAE BAC C ∠=∠-︒-∠ ∵2BAC B ∠=∠,2B DAE ∠=∠, ∴14(90)2DAE DAE C ∠=⨯∠-︒-∠, ∴90DAE C ∠=︒-∠∵180C B BAC ∠=︒-∠-∠,∴18024C DAE DAE ∠=︒-∠-∠,∴1802(90)4(90)C C C ∠=︒-︒-∠-︒-∠,∴72C ∠=︒.故选:A .【点睛】本题主要考查了角平分线的定义和三角形的内角和定理以及余角.根据题意找到角之间的数量关系是解答本题的关键.7.A解析:A【分析】利用多边形的外角和特征即可解决问题.【详解】解:因为多边形外角和固定为360°,所以外角和的度数是不变的.故选:A .【点睛】此题考查多边形内角与外角的性质,容易受误导,注意多边形外角和等于360°. 8.C解析:C【分析】根据,,AD BC FG BC ⊥⊥得到FG ∥AD ,判断①正确;根据∠ADE+∠BDE=90°,∠B+∠BDE=90°,得到③正确;根据//DE AC , 证明∠BDE=∠C ,进行角的代换证明∠BDE+∠CFG=90°,得到④正确; 证明∠ADE+∠BDE=90°,判断②不正确.【详解】解:∵,,AD BC FG BC ⊥⊥∴∠FGB=∠ADB=90°,∴FG ∥AD ,∠ADE+∠BDE=90°,故①正确;∵DE ∥AC ,∴∠DEB=∠CAB=90°,∴∠B+∠BDE=90°,∴B ADE ∠=∠,∴③正确;∵//DE AC ,∴∠BDE=∠C ,∵∠FGC=90°,∴∠C+∠CFG=90°,∴∠BDE+∠CFG=90°,∴④正确;∵∠ADB=90°,∴∠ADE+∠BDE=90°,∴②不正确;故选:C .【点睛】本题考查了直角三角形两锐角互余,同角(等角)的余角相等,平行线的判定等知识,熟知相关定理是解题关键.9.D解析:D【分析】先根据多边形的内角和公式求出五边形的内角和,根据AB ∥CD 得到∠B+∠C=180°,即可求出∠E 的大小.【详解】解:由五边形的内角和公式得(5-2)×180°=540°,∵AB ∥CD ,∴∠B+∠C=180°,∴∠E=540°-∠A-∠B-∠C-∠D=540°-135°-180°-150°=75°.故选:D【点睛】本题考查了多边形的内角和公式,平行线的性质,熟练掌握多边形的内角和公式是解题关键.10.B解析:B【分析】利用三角形高的定义逐一判断选项,可得答案.【详解】A .CE 不垂直AB ,故CE 不是ABC 的高,不符合题意,B .CE 是ABC 中AB 边上的高,符合题意,C .CE 不是ABC 的高,不符合题意,D .CE 不是ABC 的高,不符合题意.故选B .【点睛】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.11.D解析:D【分析】由折叠的性质可求得'B AB D ∠=∠,利用三角形内角和及外角的性质列方程求解.【详解】解:由题意可得'B AB D ∠=∠∵80,BAC ∠=︒∴∠B+∠C=100°又∵'='=20B AB D C B DC C ∠=∠+∠+∠∠,∴∠C+20°+∠C=100°解得:∠C=40°故选:D .【点睛】本题考查三角形内角和及外角的性质,找准角之间的等量关系列出方程正确计算是解题关键.12.B解析:B【分析】根据题意,结合三角形内角和定理、角平分线的性质,三角形外角的性质分别求解即可得出结论.【详解】解:由题意可得:在四边形BDCI 中,1180902IBD IBC CBD ∠=∠+∠=⨯︒=︒,90ICD ∠=︒, 可得180BDC BIC ∠+∠=︒,故A 选项不符合题意, 90ICE ∠=︒,故B 选项符合题意,48BAC ∠=︒,在三角形ICE 中, EIC ∠=18048662IBC ICB ︒-︒∠+∠==︒,90ICE ∠=︒, 906624E ∠=︒-︒=∴︒ ,故C 选项不符合题意,90DBE ∠=︒,故D 选项不符合题意,故选:B.【点睛】本题考查了三角形内角和定理、角平分线的性质和三角形外角的性质,结合图形熟练运用定理和性质进行求解是解题的关键.二、填空题13.【分析】先由题意得CAB=30°∠ABD=60°再由三角形的外角性质即可得出答案【详解】解:∵探测线与地面的夹角为30°和60°∴∠CAB=30°∠ABD=60°∵∠ABD=∠CAB+∠C ∴∠C=6解析:30︒【分析】先由题意得CAB=30°,∠ABD=60°,再由三角形的外角性质即可得出答案.【详解】解:∵探测线与地面的夹角为30°和60°,∴∠CAB=30°,∠ABD=60°,∵∠ABD=∠CAB+∠C ,∴∠C=60°-30°=30°,故答案为:30°.【点睛】本题考查了三角形的外角的性质,对顶角,解题的关键是熟练掌握三角形的外角性质,比较简单.14.【分析】根据求出根据多边形内角和公式求出五边形的内角和即可得到答案【详解】∵∴∵五边形内角和=∴==故答案为:【点睛】此题考查两直线平行同旁内角互补多边形内角和公式熟记多边形内角和计算公式是解题的关键 解析:360︒【分析】根据//AE BC 求出180A B ∠+∠=︒,根据多边形内角和公式求出五边形ABCDE 的内角和,即可得到答案.【详解】∵//AE BC ,∴180A B ∠+∠=︒,∵五边形内角和=5218540(0)-⨯︒=︒,∴C D E ∠+∠+∠=540180︒-︒=360︒,故答案为:360︒.【点睛】此题考查两直线平行同旁内角互补,多边形内角和公式,熟记多边形内角和计算公式是解题的关键.15.35°【分析】先求出等边三角形正方形正五边形的内角度数再根据三角形的外角和为360°即可求解【详解】∵等边三角形的内角度数是60°正方形的度数是90°正五边形的度数是∴∠3=360°-60°-90°解析:35°【分析】先求出等边三角形,正方形,正五边形的内角度数,再根据三角形的外角和为360°,即可求解.∵等边三角形的内角度数是60°,正方形的度数是90°,正五边形的度数是(52)1801085-⨯︒=︒, ∴∠3=360°-60°-90°-108°-∠1-∠2=360°-60°-90°-108°-47°-20°=35°,故答案是:35°【点睛】本题主要考查正多边形的内角和以及外角和定理,准确分析图形中角的数量关系,是解题的关键.16.360°【分析】根据三角形的外角等于不相邻的两个内角的和以及多边形的内角和即可求解【详解】解:∵∠1=∠A+∠B ∠2=∠C+∠D ∠3=∠E+∠F ∠4=∠G+∠H ∴∠A+∠B+∠C+∠D+∠E +∠F+解析:360°【分析】根据三角形的外角等于不相邻的两个内角的和,以及多边形的内角和即可求解.【详解】解:∵∠1=∠A+∠B ,∠2=∠C+∠D ,∠3=∠E+∠F ,∠4=∠G+∠H ,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=∠1+∠2+∠3+∠4,又∵∠1+∠2+∠3+∠4=360°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=360°.故选:D ..【点睛】本题考查了三角形的外角的性质以及多边形的外角和定理,正确转化为多边形的外角和是关键.17.5度【分析】由∠A1CD=∠A1+∠A1BC ∠ACD=∠ABC+∠A 而A1BA1C 分别平分∠ABC 和∠ACD 得到∠ACD=2∠A1CD ∠ABC=2∠A1BC 于是有∠A=2∠A1同理可得∠A1=2∠A解析:5度【分析】由∠A 1CD=∠A 1+∠A 1BC ,∠ACD=∠ABC+∠A ,而A 1B 、A 1C 分别平分∠ABC 和∠ACD ,得到∠ACD=2∠A 1CD ,∠ABC=2∠A 1BC ,于是有∠A=2∠A 1,同理可得∠A 1=2∠A 2,即∠A=22∠A 2,因此推出∠A=25∠A 5,而∠A=80°,即可求出∠A 5.解:∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,∵∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1同理可得∠A1=2∠A2,即∠A=22∠A2,…,∴∠A=25∠A5,∵∠A=80°,∴∠A5=80°÷32=2.5°.故答案为:2.5°.【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了三角形的外角性质以及角平分线性质.18.6【分析】根据DE分别是三角形的中点得出G是三角形的重心再利用重心的概念可得:2GD=AG进而得到S△ABG:S△ABD=2:3再根据AD是△ABC 的中线可得S△ABC=2S△ABD进而得到答案【详解析:6【分析】根据D,E分别是三角形的中点,得出G是三角形的重心,再利用重心的概念可得:2GD=AG进而得到S△ABG:S△ABD=2:3,再根据AD是△ABC的中线可得S△ABC=2S△ABD进而得到答案.【详解】解:∵△ABC的两条中线AD、BE相交于点G,∴2GD=AG,∵S△ABG=2,∴S△ABD=3,∵AD是△ABC的中线,∴S△ABC=2S△ABD=6.故答案为:6.【点睛】此题主要考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的两倍.19.10°【分析】由对折可得:∠A=∠CA′D=50°∠ACD=∠A′CD=45°再利用三角形的内角和求解【详解】解:由对折可得:∠A=∠CA′D=50°∠ACD=∠A′CD=×90°=45°∴∠ADC解析:10°【分析】由对折可得:∠A=∠CA′D=50°,∠ACD=∠A′CD=45°,再利用三角形的内角和求解.【详解】解:由对折可得:∠A=∠CA′D=50°,∠ACD=∠A′C D=1×90°=45°,2∴∠ADC=∠A′DC=180°−45°−50°=85°,∴∠A′DB=180°−85°×2=10°.故答案为:10°.【点睛】本题利用对折考查轴对称的性质,三角形的内角和定理,掌握以上知识是解题的关键.20.210【分析】由题意得:∠1=∠D+∠DGA∠2=∠F+∠FHB然后由对顶角相等的性质得∠1=∠D+CGH∠2=∠F+∠CHG最后由直角三角形两锐角互余的性质可以算出∠1+∠2的值【详解】解:如图给解析:210【分析】由题意得:∠1=∠D+∠DGA,∠2=∠F+∠FHB,然后由对顶角相等的性质得∠1=∠D+CGH,∠2=∠F+∠CHG,最后由直角三角形两锐角互余的性质可以算出∠1+∠2的值.【详解】解:如图,给两三角板的两个交点标上G、H符号,则∠1=∠D+∠DGA=∠D+CGH,∠2=∠F+∠FHB=∠F+∠CHG,∴∠1+∠2=∠D+CGH+∠F+∠CHG=∠D+∠F+(CGH+∠CHG)=30°+90°+90°=210°,故答案为210 .【点睛】本题考查直角三角形的应用,灵活运用直角三角形两锐角互余、三角形的外角性质和对顶角相等的定理求解是解题关键.三、解答题=+,证明见解析;(3)结论不变:21.(1)证明见解析;(2)CG DE DFCG DE DF =+【分析】(1)根据12ABC S AC BF =⋅△,12ABC S AB CG =⋅△, 即可解决问题; (2)结论CG DE DF =+,利用面积法证明即可; (3)结论不变,证明方法类似(2).【详解】(1)证明:如图①中,∵90F G ︒∠=∠=,∴12ABC S AC BF =⋅△,12ABC S AB CG =⋅△, ∴1122AC BF AB CG ⋅=⋅, 又∵AB AC =,∴BF AC =;(2)解:结论CG DE DF =+,理由:如图②中,连接AD ,∵ABC ABD ADC SS S =+,DE AB ⊥,DF AC ⊥,CG AB ⊥, ∴111222AB CG AB DE AC DF ⋅⋅=⋅⋅+⋅⋅, ∵AB AC =,∴CG DE DF =+;(3)结论不变:CG DE DF =+,证明如下:如图③,连接AD ,∵ABC ABD ADC SS S =+,DE AB ⊥,DF AC ⊥,CG AB ⊥, ∴111222AB CG AB DE AC DF ⋅⋅=⋅⋅+⋅⋅, ∵AB AC =,∴CG DE DF =+;如图④,连接AD ,∵ABC ABD ADC SS S =+,DE AB ⊥,DF AC ⊥,CG AB ⊥, ∴111222AB CG AB DE AC DF ⋅⋅=⋅⋅+⋅⋅, ∵AB AC =,∴CG DE DF =+.【点睛】本题考查三角形的判定和性质、三角形的面积等知识,解题的关键是利用面积法证明线段之间的关系.22.110°【分析】利用翻折变换的性质以及三角形内角和定理求出∠BDE ,∠A ′DE ,即可解决问题.【详解】∵∠A +∠B +∠C =180°,∠A =20°,∠C =125°,∴∠B =35°,∵DE ∥BC ,∴∠ADE =∠B =35°,∠BDE +∠B =180°,∴∠BDE =180−∠B =180°−35°=145°,∵△ADE 沿DE 折叠成△A′DE ,∴∠A′DE =∠ADE =35°,∴∠BDA′=∠BDE−∠A′DE =145°−35°=110°.【点睛】本题考查三角形内角和定理,翻折变换的性质以及平行线的性质,解题的关键是熟练掌握翻折变换的性质,属于中考常考题型.23.(1)125cm ;(2)3cm 2 【分析】(1)利用“面积法”来求线段AD 的长度;(2)△AEC 与△ABE 是等底同高的两个三角形,它们的面积相等【详解】解:∵∠BAC=90°,AD 是边BC 上的高, ∴12AB•AC=12BC•AD , ∴341255AB AC AD BC ⋅⨯===(cm ),即AD 的长度为125cm ; (2)如图,∵△ABC 是直角三角形,∠BAC=90°,AB=3cm ,AC=4cm , ∴S △ABC =12AB•AC=12×3×4=6(cm 2). 又∵AE 是边BC 的中线,∴BE=EC , ∴12BE•AD=12EC•AD ,即S △ABE =S △AEC , ∴S △ABE=12S △ABC =3(cm 2). ∴△ABE 的面积是3cm 2.【点睛】本题考查了中线的性质.解题的关键是利用三角形面积的两个表达式相等,求出AD . 24.(1)150︒ (2)60︒;理由见解析【分析】(1)根据三角形的内角和定理即可求得答案;(2)先求得XBC XCB ∠+∠=90°,再根据ABX ACX ∠+∠()()ABC ACB XBC XCB =∠+∠-∠+∠即可求得答案.【详解】解:(1)∵180ABC ACB A ∠+∠+∠=︒,30A ∠=︒,∴180ABC ACB A ∠+∠=︒-∠18030=︒-︒150=︒,故答案为:150°;(2)60ABX ACX ∠+∠=︒,理由如下:∵180XBC XCB X ∠+∠+∠=︒,90X ∠=︒,∴180XBC XCB X ∠+∠=︒-∠18090=︒-︒=︒,90∠+∠∴ABX ACXABC XBC ACB XCB=∠-∠+∠-∠()()=∠+∠-∠+∠ABC ACB XBC XCB=︒-︒15090=︒,60故答案为:60°.【点睛】本题考查了三角形的内角和定理,熟练掌握三角形的内角和定理是解决本题的关键.25.(1)225°;(2)钝角∠BCD=∠A+∠B+∠D,理由见解析.【分析】(1)根据互为组角的定义可知∠2=360°-∠1,代入数据计算即可;(2)理由①:根据四边形内角和定理可得∠A+∠B+优角∠BCD+∠D=360°,根据周角的定义可得优角∠BCD+钝角∠BCD=360°´,再利用等式的性质得出钝角∠BCD=∠A+∠B+∠D;理由②:连接AC并延长,根据三角形外角的性质即可得出结论.【详解】解:(1)∵∠1、∠2互为组角,且∠1=135°,∴∠2=360°-∠1=225°,故答案为:225°;(2)钝角∠BCD=∠A+∠B+∠D.理由如下:理由①:∵在四边形ABCD中,∠A+∠B+优角∠BCD+∠D=360°,又∵优角∠BCD+钝角∠BCD=360°´,∴钝角∠BCD=∠A+∠B+∠D;理由②:如下图,连接AC并延长,∵∠BAC+∠B=∠BCE,∠DAC+∠D=∠DCE(三角形外角的性质),∴钝角∠BCD=∠BCE+∠DCE=∠BAC+∠B+∠DAC+∠D=∠A+∠B+∠D.【点睛】本题考查三角形的外角,四边形内角和.能正确作出辅助线,将四边形分成两个三角形是理由②的关键.26.(1)40°;(2)∠CAE=∠C,理由见解析.【分析】(1)根据邻补角的定义可求∠AED,再根据角平分线的定义和平行线的性质可求∠1的度数;(2)根据三角形内角和定理可求∠BED=∠C,根据平行线的判定可知AC∥BE,根据平行线的性质可得∠CAE=∠AEB,根据角平分线的定义和等量关系即可求解.【详解】(1)∵∠AEC=100°,∴∠AED=80°,∵EB平分∠AED,∴∠BED=40°,∵AB∥CD,∴∠1=∠BED=40°;(2)∵DB⊥BE,AF⊥AC,∴∠EBD=∠CAF=90°,∵∠2=∠D,∴∠BED=∠C,∴AC∥BE,∴∠CAE=∠AEB,∵EB平分∠AED,∴∠AEB=∠BED,∴∠CAE=∠C.【点睛】本题考查平行线的判定和性质,邻补角的定义,角平分线的定义,三角形内角和定理.熟悉相应的性质和定义是解答本题的关键.。

八年级数学上册第一单元测试题

八年级数学上册第一单元测试题

北师大版八年数学上册第一章单元测试(时间:45 分钟)班级姓名 得分选择题答案: 题号 1 23456答案一、 选择题(共 30 分)1、三角形的三条边分别为 a 2 + b 2 、 a 2 - b 2 、2ab (a 、b 都为整数),则这个三角形是 ()A 、钝角三角形B 、锐角三角形C 、直角三角形D 、不能确定2、分别有下列几组数据:①6、8、10 ②12、13、5 ③ 17、8 、15 ④4、11、9 其中能构成直角三形的有:()A、4组 B、3组 C、2组 D、1组 3、直角三角形的两直角边分别为5 厘米、12 厘米,则斜边上的高是( )80 60A 、6 厘米B 、8 厘米C 、13厘米 D 、13厘米4. 如图,分别以直角的三边为直径向外作半圆.设直线 左边阴影部分的面积为 ,右边阴影部分的面积和为,则( )A.B .C .D .无法确定5、园丁住宅小区有一块草坪如图所示,已知米, 米, 米,米,且,这块草坪的面积是( )A . 米B . 米C . 米D . 米6、如右图,在直角三角形中,∠C=90 o,AC=3,将其绕B 点顺时针旋转一周,则分别以BA,BC 为半径的圆形成一环,该圆环的面积为()A A、 3 πB、3πC、9πD、6πB C二、填空题(30)1、已知任意三角形的三条边的长度分别为a、b、c,其中c>a>b,如果这个三角形为直角三角形,那么a、b、c 一定满足条件:2、有以下几组数据①3、4、5②17、15、8③10、6、14④12、5、13 ⑤300、160、340,⑥0.3, 0.4,0.5.其中可以构成勾股数有3、如图(一),图中的字母、数代表正方形的面积,则A=。

4、如图(二),9,16表示两个正方形的面积,则阴影部分的面积是。

5、如图(三),根据图中的数据进行计算,AB=。

三、(10 分)在右图中,BC 长为3,AB 长为4,AF 长为12,求正方形的面积。

新人教版初中数学八年级数学上册第一单元《三角形》测试(含答案解析)

新人教版初中数学八年级数学上册第一单元《三角形》测试(含答案解析)

一、选择题1.下列每组数分别是三根小木棒的长度,不能用它们搭成三角形的是( )A .1cm ,2cm ,3cmB .2cm ,3cm ,4cmC .3cm ,4cm ,5cmD .5cm ,6cm ,7cm2.如图,ABC 中,BC 边上的高是( )A .AEB .ADC .CD D .CF 3.已知长度分别为3cm ,4cm ,xcm 的三根小棒可以摆成一个三角形,则x 的值不可能是( )A .2.4B .3C .5D .8.54.如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,点E 在AC 边上,ADE AED ∠=∠,若10CDE ∠=︒,则BAD ∠的度数为( )A .20°B .15°C .10°D .30°5.已知,D 是ABC ∠的边BC 上一点,//DE BA ,CBE ∠和CDE ∠的平分线交于点F ,若F α∠=,则ABE ∠的大小为( )A .αB .52α C .2α D .32α 6.用下列长度的三根木棒首尾相接,能做成三角形框架的是( )A .2,2,4B .3,4,5C .1,2,3D .2,3,6 7.如图,线段BE 是ABC 的高的是( )A .B .C .D .8.在△ABC 中,∠A =x °,∠B =(2x +10)°,∠C 的外角大小(x +40)°,则x 的值等于( ) A .15 B .20 C .30 D .409.如图,已知,,90,//AD BC FG BC BAC DE AC ⊥⊥∠=︒.则结论①//FG AD ;②DE 平分ADB ;③B ADE ∠=∠;④CFG BDE ∠+∠90=︒.正确的是( )A .①②③B .①②④C .①③④D .②③④ 10.如图所示,ABC ∆的边AC 上的高是( )A .线段AEB .线段BAC .线段BD D .线段DA 11.如图,在七边形ABCDEFG 中,AB ,ED 的延长线交于点O .若1,2,3,4∠∠∠∠的外角和于210°,则BOD ∠的度数为( )A .30°B .35°C .40°D .45°12.如图,105DBA ∠=︒,125ECA ∠=︒,则A ∠的度数是( )A .75°B .60°C .55°D .50°二、填空题13.过n 边形的一个顶点有9条对角线,则n 边形的内角和为______.14.如图,若∠CGE=α,则∠A+∠B+∠C+∠D+∠E+∠F=____.15.如图,在ABC 中,CE AB ⊥于点E ,AD BC ⊥于点D ,且3AB =,6BC =,5CE =,则AD =_________.16.AD 为ABC 的中线,AE 为ABC 的高,ABD △的面积为14,7,2AE CE ==则DE 的长为_________.17.ABC 中,,AB AC 边上的高,CE BD 相交于点F ,,ABC ACB ∠∠的角平分线交于点G ,若=125CGB ∠︒,则CFB ∠=______.18.如图,ABC 中,40A ∠=︒,72B ∠=︒,CE 平分ACB ∠,CD AB ⊥于D ,DF CE ⊥交CE 于F ,则CDF ∠=______.19.如图,把ABC 折叠,点B 落在P 点位置,若12120∠+∠=︒,则B ∠=______.20.如图,已知∠A =47°,∠B =38°,∠C =25°,则∠BDC 的度数是______.三、解答题21.如图,ABC 中,AD 平分BAC ∠,P 为AD 延长线上一点,PE BC ⊥于E ,已知80ACB ∠=︒,24B ∠=︒,求P ∠的度数.22.如图,△ABC 中,∠ABC 的角平分线与外角∠ACD 的平分线交于A 1.(1)∵BA 1、CA 1是∠ABC 与∠ACD 的平分线,∴∠A 1BD =12∠ABD ,∠A 1CD =12∠ACD , ∴∠A 1CD ﹣∠A 1BD =12(∠ACD ﹣∠ABD ), ∵∠A 1CD ﹣∠A 1BD = ,∠ACD ﹣∠ABD =∠ ,∴∠A 1= .(2)如图2,四边形ABCD 中,∠F 为∠ABC 的角平分线及外角∠DCE 的平分线所在的直线构成的角,若∠A +∠D =230°,求∠F 的度数.(3)如图3,△ABC 中,∠ABC 的角平分线与外角∠ACD 的平分线交于A 1,若E 为BA 延长线上一动点,连接EC ,∠AEC 与∠ACE 的角平分线交于Q ,当E 滑动时有下面两个结论:①∠Q +∠A 1的值为定值;②∠Q ﹣∠A 1的值为定值,其中有且只有一个是正确的,请写出正确的结论,并求出其值.23.如图,△ABC 中,D 为AC 上一点,且∠ADB=∠ABC=α(0°<α<180°),∠ACB 的角平分线分别交BD 、BA 于点E 、F .(1)若α=90°,判断∠BEF 和∠BFE 的大小关系并说明理由;(2)是否存在α,使∠BEF 大于∠BFE ?如果存在,求出α的范围,如果不存在,请说明理由.24.如图,在ABC 中,A ACB ∠=∠,CD 为ABC 的角平分线,CE 是ABC 的高.(1)若15DCB ∠=︒,求CBD ∠的度数;(2)若36DCE ∠=︒,求ACB ∠的度数.25.如图,ABC 中,AD 是高,,AE BF 是角平分线,它们相交于点,80O CAB ∠=︒,60C ∠=°,求DAE ∠和BOA ∠的度数.26.如图,175,2105,C D ∠=︒∠=︒∠=∠.(1)判断AC 与DF 的位置关系,并说明理由;(2)若C ∠比A ∠大25°,求F ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【详解】解:A 、1+2=3,故以这三根木棒不能构成三角形,符合题意;B 、2+3>4,故以这三根木棒能构成三角形,不符合题意;C 、3+4>5,故以这三根木棒可以构成三角形,不符合题意;D 、5+6>7,故以这三根木棒能构成三角形,不符合题意.故选:A .【点睛】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,判断能否组成三角形的方法是看两个较小的和是否大于第三边.2.B解析:B【分析】根据从三角形顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高,确定出答案即可.【详解】由图可知,过点A 作BC 的垂线段AD ,则ABC 中,BC 边上的高是AD . 故选:B【点睛】本题主要考查了三角形的高的定义,熟记概念是解题的关键.3.D解析:D【分析】先根据三角形的三边之间的关系求解1<x <7,从而可得答案.【详解】 解: 长度分别为3cm ,4cm ,xcm 的三根小棒可以摆成一个三角形,43∴-<x <43+,1∴<x <7,x 的值不可能是8.5.故选:.D【点睛】本题考查的是三角形的三边之间的关系,掌握三角形的三边之间的关系是解题的关键. 4.A解析:A【分析】先根据三角形外角的性质得出∠ADC=∠B+∠BAD ,∠AED=∠C+∠EDC ,再根据∠B=∠C ,∠ADE=∠AED 即可得出结论.【详解】解:∵∠ADC 是△ABD 的外角,∴∠ADC=∠B+∠BAD ,∴∠ADE=∠ADC-∠CDE=∠B+∠BAD-∠CDE∵∠AED 是△CDE 的外角,∴∠AED=∠C+∠EDC ,∵∠ADE=∠AED ,∴∠B+∠BAD-∠CDE=∠C+∠EDC ,∵∠B=∠C ,∴∠BAD=2∠EDC ,∵10CDE ∠=︒∴∠BAD=20°;故选:A【点睛】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.5.C解析:C【分析】先利用角平分线和三角形外角的性质可得2BED α∠=,再根据平行线的性质定理即可得出ABE ∠的大小.解:如下图所示,∵CBE ∠和CDE ∠的平分线交于点F ,∴21,22C CBE DE ∠∠==∠∠,∵12F ∠+∠=∠,F α∠=,∴21α∠-∠=,∵EBD BED EDC ∠+∠=∠,∴22212ED D C BE EBD α∠∠-∠=∠-==∠,∵//DE BA ,∴2ABE BED α∠==∠,故选:C .【点睛】本题考查三角形外角的性质,平行线的性质定理,与角平分线有关的计算.正确理解三角形外角等于与它不相邻的两个内角之和是解题关键.6.B解析:B【分析】根据构成三角形的条件,分别进行判断,即可得到答案.【详解】解:A 、224+=,不能构成三角形,故A 错误;B 、345+>,能构成三角形,故B 正确;C 、123+=,不能构成三角形,故C 错误;D 、236+<,不能构成三角形,故D 错误;故选:B .【点睛】本题考查了构成三角形的条件,解题的关键是掌握构成三角形的条件进行判断. 7.D解析:D【分析】根据高的画法知,过点B 作AC 边上的高,垂足为E ,其中线段BE 是△ABC 的高,再结合图形进行判断.A 选项中,BE ⊥BC ,BE 与AC 不垂直,此选项错误;B 选项中,BE ⊥AB ,BE 与AC 不垂直,此选项错误;C 选项中,BE ⊥AB ,BE 与AC 不垂直,此选项错误;D 选项中,BE ⊥AC ,∴线段BE 是△ABC 的高,此选项正确.故选:D .【点睛】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.8.A解析:A【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,列出方程求解即可.【详解】解:∵∠C 的外角=∠A+∠B ,∴x+40=2x+10+x ,解得x=15.故选:A .【点睛】本题考查了三角形的外角性质,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.9.C解析:C【分析】根据,,AD BC FG BC ⊥⊥得到FG ∥AD ,判断①正确;根据∠ADE+∠BDE=90°,∠B+∠BDE=90°,得到③正确;根据//DE AC , 证明∠BDE=∠C ,进行角的代换证明∠BDE+∠CFG=90°,得到④正确; 证明∠ADE+∠BDE=90°,判断②不正确.【详解】解:∵,,AD BC FG BC ⊥⊥∴∠FGB=∠ADB=90°,∴FG ∥AD ,∠ADE+∠BDE=90°,故①正确;∵DE ∥AC ,∴∠DEB=∠CAB=90°,∴∠B+∠BDE=90°,∴B ADE ∠=∠,∴③正确;∵//DE AC ,∴∠BDE=∠C,∵∠FGC=90°,∴∠C+∠CFG=90°,∴∠BDE+∠CFG=90°,∴④正确;∵∠ADB=90°,∴∠ADE+∠BDE=90°,∴②不正确;故选:C.【点睛】本题考查了直角三角形两锐角互余,同角(等角)的余角相等,平行线的判定等知识,熟知相关定理是解题关键.10.C解析:C【分析】根据三角形的高解答即可,三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.【详解】A.线段AE是△ABC的边BC上的高,故不符合题意;B.线段BA不是任何边上的高,故不符合题意;C.线段BD是△ABC的边AC边上的高,故符合题意;D.线段DA是△ABD的边BD上的高,故不符合题意;故选C.【点睛】本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.11.A解析:A【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE的内角和,即可求得∠BOD.【详解】解:∵∠1、∠2、∠3、∠4的外角的角度和为210°,∴∠1+∠2+∠3+∠4+210°=4×180°,∴∠1+∠2+∠3+∠4=510°,∵五边形OAGFE内角和=(5-2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°-510°=30°.故选:A.【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.12.D解析:D【分析】根据邻补角的定义可求得ABC ∠和ACB ∠,再根据三角形内角和为180°即可求出A ∠.【详解】解:105DBA ∠=︒,125ECA ∠=︒,18010575ABC ∴∠=︒-︒=︒,18012555ACB ∠=︒-︒=︒.180755550A ∴∠=︒-︒-︒=︒.故选D .【点睛】 本题考查了邻补角和三角形内角和定理,识记三角形内角和为180°是解题的关键.二、填空题13.1800°【分析】根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9求出n 的值最后根据多边形内角和公式可得结论【详解】解:由题意得:n-3=9解得n=12则该n 边形的内角和是:(12-2解析:1800°【分析】根据n 边形从一个顶点出发可引出(n-3)条对角线,可得n-3=9,求出n 的值,最后根据多边形内角和公式可得结论.【详解】解:由题意得:n-3=9,解得n=12,则该n 边形的内角和是:(12-2)×180°=1800°,故答案为:1800°.【点睛】本题考查了多边形的对角线和多边形的内角和公式,掌握n 边形从一个顶点出发可引出(n-3)条对角线是解题的关键.14.2【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠A+∠B ∠D+∠E 再根据邻补角表示出∠CGF 然后利用三角形的内角和定理列式整理即可得解【详解】解:如图根据三角形的外角性质∠1=∠A解析:2α【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠A+∠B ,∠D+∠E ,再根据邻补角表示出∠CGF ,然后利用三角形的内角和定理列式整理即可得解.【详解】根据三角形的外角性质,∠1=∠A+∠B,∠2=∠D+∠E,∵∠3=180°-∠CGE=180°-α,∴∠1+∠F+180°-α=180°,∴∠A+∠B+∠F=α,同理:∠2+∠C+180°-α=180°,∴∠D+∠E+∠C=α,∴∠A+∠B+∠C+∠D+∠E+∠F=2α.故答案为:2α【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,准确识图是解题的关键.15.【分析】根据三角形的面积公式列方程即可得到结论【详解】解:根据三角形面积公式可得∵AB=3BC=6CE=5∴解得故答案为:【点睛】本题考查了三角形的高以及三角形的面积熟记三角形的面积公式是解题的关键解析:2.5【分析】根据三角形的面积公式列方程即可得到结论.【详解】解:根据三角形面积公式可得,1122ABCS AB CE BC AD =⨯=⨯,∵AB=3,BC=6,CE=5,∴11356 22AD⨯⨯=⨯⨯,解得 2.5AD=.故答案为:2.5.【点睛】本题考查了三角形的高以及三角形的面积,熟记三角形的面积公式是解题的关键.16.2或6【分析】利用面积法求出BD即可求得CD再分AE在内部和外部求出DE即可【详解】解:为的高△ABD的面积为14AE=7∴∵为的中线∴CD=BD=4当AE在内部时∵CE=2∴DE=CD-CE=2当解析:2或6利用面积法求出BD ,即可求得CD ,再分AE 在ABC 内部和外部,求出DE 即可.【详解】解:AE 为ABC 的高,△ABD 的面积为14,AE=7, 1142∴⋅⋅=BD AE , ∴2828=4,B 7D ==AE ∵AD 为ABC 的中线,∴CD=BD=4, 当AE 在ABC 内部时∵CE=2,∴DE=CD-CE=2,当AE 在ABC 外部时∵CE=2,∴DE=CD+CE=6,故答案为:2或6【点睛】本题考查三角形的高、中线和面积,注意高可在三角形的内部和外部是解题的关键. 17.110°【分析】根据三角形的内角和定理求出∠GBC +∠GCB 根据角平分线的定义求出∠ABC +∠ACB 从而求出∠A 根据三角形高的定义可得∠AEC=∠FDC=90°然后根据三角形的内角和定理求出∠ACE解析:110°【分析】根据三角形的内角和定理求出∠GBC +∠GCB ,根据角平分线的定义求出∠ABC +∠ACB ,从而求出∠A ,根据三角形高的定义可得∠AEC=∠FDC=90°,然后根据三角形的内角和定理求出∠ACE ,最后利用三角形外角的性质即可求出结论.【详解】解:∵=125CGB ∠︒∴∠GBC +∠GCB=180°-∠CGB=55°∵,ABC ACB ∠∠的角平分线交于点G ,∴∠ABC=2∠GBC ,∠ACB=2∠GCB∴∠ABC +∠ACB=2∠GBC +2∠GCB=2(∠GBC +∠GCB )=110°∴∠A=180°-(∠ABC +∠ACB )=70°∵,AB AC 边上的高,CE BD 相交于点F ,∴∠AEC=∠FDC=90°,∴∠ACE=180°-∠AEC -∠A=20°∴CFB ∠=∠FDC +∠ACE=110°故答案为:110°.【点睛】此题考查的是三角形内角和定理、三角形外角的性质、三角形的高和角平分线,掌握三角形内角和定理、三角形外角的性质、三角形的高的定义和角平分线的定义是解题关键. 18.74°【分析】先根据三角形的内角和定理求得∠ACB 的度数再根据CE 平分∠ACB 求得∠ACE 的度数则根据三角形的外角的性质就可求得∠CED =∠A+∠ACE 再结合CD ⊥ABDF ⊥CE 就可求解【详解】解:解析:74°【分析】先根据三角形的内角和定理求得∠ACB 的度数,再根据CE 平分∠ACB 求得∠ACE 的度数,则根据三角形的外角的性质就可求得∠CED =∠A +∠ACE ,再结合CD ⊥AB ,DF ⊥CE 就可求解.【详解】解:∵∠A =40°,∠B =72°,∴∠ACB =180°﹣40°﹣72°=68°,∵CE 平分∠ACB ,∴∠ACE =∠BCE =34°,∴∠CED =∠A +∠ACE =74°,∵CD ⊥AB ,DF ⊥CE ,∴∠CDF +∠ECD =∠ECD +∠CED =90°,∴∠CDF =∠CED =74°,故答案为:74°.【点睛】此题主要考查了三角形的内角和定理、三角形的外角的性质、以及角平分线定义和垂直定义.19.60°【分析】先根据折叠的性质得∠3=∠4∠5=∠6再利用平角的定义得∠3+∠4+∠1=180°∠5+∠6+∠2=180°根据等式的性质得到2∠4+∠1+2∠6=360°把∠1+∠2=120°代入得解析:60°【分析】先根据折叠的性质得∠3=∠4,∠5=∠6,再利用平角的定义得∠3+∠4+∠1=180°,∠5+∠6+∠2=180°,根据等式的性质得到2∠4+∠1+2∠6=360°,把∠1+∠2=120°代入得到∠4+∠6=120°,然后根据三角形内角和定理可计算出∠B的度数.【详解】∵把△ABC的∠B折叠,点B落在P的位置,∴∠3=∠4,∠5=∠6,∵∠3+∠4+∠1=180°,∠5+∠6+∠2=180°,∴2∠4+∠1+∠2+2∠6=360°,而∠1+∠2=120°,∴∠4+∠6=120°,∵∠4+∠6+∠B=180°,∴∠B=180°−120°=60°.故答案为60°.【点睛】本题考查了三角形内角和定理,也考查了折叠的性质,“数形结合”是关键.20.110°【分析】连接AD并延长根据三角殂的外角性质分别表示出∠3和∠4因为∠BDC是∠3和∠4的和从而不难求得∠BDC的度数【详解】解:连接AD 并延长∵∠3=∠1+∠B∠4=∠2+∠C∴∠BDC=∠解析:110°【分析】连接AD,并延长,根据三角殂的外角性质分别表示出∠3和∠4,因为∠BDC是∠3和∠4的和,从而不难求得∠BDC的度数.【详解】解:连接AD,并延长.∵∠3=∠1+∠B ,∠4=∠2+∠C .∴∠BDC=∠3+∠4=(∠1+∠B )+(∠2+∠C )=∠B+∠BAC+∠C .∵∠A =47°,∠B =38°,∠C =25°.∴∠BDC=47°+38°+25°=110°,故答案为 :110°.【点睛】本题考查了三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.三、解答题21.28°【分析】在△ABC 中,利用三角形内角和定理可求出∠BAC 的度数,结合角平分线的定义可得出∠BAD 的度数,在△ABD 中,利用三角形外角性质可求出∠PDE 的度数,再在△PDE 中利用三角形内角和定理可求出∠P 的度数.【详解】解:在ABC 中,80ACB ∠=︒,24B ∠=︒,18076BAC ACB B ∴∠=︒-∠-∠=︒. AD 平分BAC ∠,1382BAD BAC ∴∠=∠=︒. PDE ∠是ABD △的外角,243862PDE B BAD ∴∠=∠+∠=︒+︒=︒,PE BC ⊥于E ,90PED ∴∠=︒,906228P ∴∠=︒-︒=︒.【点睛】本题考查了三角形内角和定理、角平分线的定义以及对顶角,利用三角形内角和定理及角平分线的定义,求出∠ADC 的度数是解题的关键.22.(1)∠A 1,A ,12∠A ;(2)25°;(3)①的结论是正确的,且这个定值为180°. 【分析】(1)根据角平分线的定义可得∠A 1BD =12∠ABC ,∠A 1CD =12∠ACD ,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD =∠A +∠ABC ,∠A 1CD =∠A 1BC +∠A 1,则可得出答案;(2)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°﹣(∠A+∠D),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°﹣∠DCE)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,从而得出结论;(3)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【详解】解:(1)∵BA1是∠ABC的平分线,CA1是∠ACD的平分线,∴∠A1BD=12∠ABD,∠A1CD=12∠ACD,∴∠A1CD﹣∠A1BD=12(∠ACD﹣∠ABD),∵∠A1CD﹣∠A1BD=∠A1,∠ACD﹣∠ABD=∠A,∴∠A1=12∠A.故答案为:∠A1,A,12∠A;(2)∵∠ABC+∠DCB=360°﹣(∠A+∠D),∵∠ABC+(180°﹣∠DCE)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,∴360°﹣(∠A+∠D)=180°﹣2∠F,2∠F=∠A+∠D﹣180°,∴∠F=12(∠A+∠D)﹣90°,∵∠A+∠D=230°,∴∠F=25°;(3)△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°﹣∠Q),化简得:∠A1+∠Q=180°,因此①的结论是正确的,且这个定值为180°.【点睛】此题考查三角形的角平分线的性质,三角形内角和定理,三角形外角定理,熟练掌握三角形的外角等于与它不相邻的两个内角的和是解题的关键.23.(1)∠BEF=∠BFE,理由见解析;(2)存在,90°<α<180°【分析】(1)根据余角的定义得到∠DCE+∠DEC=90°,∠BCF+∠BFC=90°,根据角平分线的定义得到∠DCE=∠BCF,等量代换得到∠BEF=∠BFC,于是得到∠BEF=∠BFE;(2)根据角的和差和三角形的内角和定理即可得到结论.【详解】(1)∠BEF=∠BFE;理由:∵∠ADB=∠ABC=90°,∴∠DCE+∠DEC=90°,∠BCF+∠BFC=90°,∵CF平分∠ACB,∴∠DCE=∠BCF,∴∠DEC=∠BFC,∵∠DEC=∠BEF,∴∠BEF=∠BFC,即∠BEF=∠BFE;(2)∵∠BEF=∠EBC+∠ECB,∠BFE=∠A+∠ACF,∠ECB=∠ACF,∴∠BEF-∠BFE=(∠EBC+∠ECB)-(∠A+∠ACF)=∠EBC-∠A,∵∠EBC=∠ABC-∠ABD=α-∠ABD,∠A=180°-∠ADB-∠ABD=180°-α-∠ABD,∴∠BEF-∠BFE=(α-∠ABD)-(180°-α-∠ABD)=2α-180°,若∠BEF>∠BFE,则∠BEF﹣∠BFE>0,即2α﹣180°>0,∴α>90°,∴90°<α<180°.【点评】本题考查了三角形的内角和定理,角平分线的定义,余角的性质,正确的理解题意是解题的关键.24.(1)120°;(2)36°.【分析】(1)根据角平分线的定义求出∠ACB,再根据三角形的内角和定理列式计算即可得解;(2)设∠A=∠ACB=x,根据直角三角形两锐角互余求出∠CDE,然后利用三角形的一个外角等于与它不相邻的两个内角的和列方程求解即可.【详解】(1)∵CD为△ABC的角平分线,∴∠ACB=2∠DCB=2×15°=30°,∵∠A=∠ACB,∴∠CBD=180°-∠A-∠ACB=180°-30°-30°=120°;(2)设∠A=∠ACB=x,∵CE是△ABC的高,∠DCE=36°,∴∠CDE=90°-36°=54°,∵CD为△ABC的角平分线,∴∠ACD=12∠ACB=12x,由三角形的外角性质得,∠CDE=∠A+∠ACD , ∴1542x x +=︒, 解得x =36°,即∠ACB=36°.【点睛】 本题考查了三角形的内角和定理,角平分线的定义,直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键. 25.10DAE ∠=︒,120BOA ∠=︒【分析】根据垂直的定义、角平分线的定义、三角形内角和定理及三角形的外角性质计算即可.【详解】解:80,CAB ∠=︒且AE 平分,CAB ∠1402CAE CAB ∴∠=∠=︒, 又60,C AD BC ∠=︒⊥,9030,CAD C ∴∠=︒-∠=︒10DAE CAE CAD ∴∠=∠-∠=︒;60,40C CAE ∠=︒∠=︒,100BEO C CAE ∴∠=∠+∠=︒,又180,ABC C CAB ∠+∠+∠=︒40,ABC ∴∠=︒ BF 平分,ABC ∠120,2OBE ABC ∴∠=∠=︒ 120BOA OBE BEO ∴∠=∠+∠=︒.【点睛】本题考查的是三角形内角和定理、三角形的高和角平分线的定义以及三角形的外角性质,掌握三角形内角和等于180°是解题的关键.26.(1)//AC DF ,理由见解析;(2)40︒.【分析】(1)先根据平行线的判定可得//BD CE ,再根据平行线的性质可得D CEF ∠=∠,然后根据等量代换可得C CEF ∠=∠,最后根据平行线的判定即可得;(2)设A x ∠=,从而可得25C x ∠=+︒,再根据三角形的外角性质可求出x 的值,然后根据平行线的性质即可得.【详解】(1)//AC DF ,理由如下:175,2105∠=︒∠=︒,12180∴∠+∠=︒,//BD CE ∴,D CEF ∴∠=∠,又C D ∠=∠,C CEF ∴∠=∠,//AC DF ∴;(2)设A x ∠=,则25C x ∠=+︒,由三角形的外角性质得:2A C ∠=∠+∠,即10525x x ︒=++︒,解得40x =︒,即40A ∠=︒,由(1)已证://AC DF ,40F A ∴∠=∠=︒.【点睛】本题考查了平行线的判定与性质、三角形的外角性质等知识点,熟练掌握平行线的判定与性质是解题关键.。

八年级上册华东师大版数学第一单元测试题

八年级上册华东师大版数学第一单元测试题

八年级上册华东师大版数学第一单元测试题八年级上册华东师大版数学第一单元测试题指的是针对八年级上学期华东师范大学出版社出版的数学教材第一单元的知识点所设计的测试题目。

这些题目通常包括选择题、判断题、计算题等多种题型,用于评估学生对该单元知识点的掌握程度和应用能力。

以下是两道示例的八年级上册华东师大版数学第一单元测试题:
1.选择题:
题目:已知点A(2,3)在反比例函数 y = k/x (k ≠ 0)的图象上,则 k = ()
A. 6
B. -6
C. 4
D. -4
答案:A
2.计算题:
题目:若反比例函数 y = k/x (k ≠ 0)在第一象限内,y随x的增大而减小,则 k 的取值范围是 ___.
答案:k > 0
总结:八年级上册华东师大版数学第一单元测试题指的是用于检测学生对八年级上册华东师范大学出版社出版的数学教材第一单元知识点的掌握程度的题目。

通过这些测试题,学生可以了解自己对相关知识的掌握程度,发现自己的不足之处,并加以改进和提高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年度上学期质量考查评价卷
八年级数学第一单元
姓名: 班级 : 分数:
一、选择题(33分)
1.有下列长度的三条线段,能组成三角形的是( )
A 2cm ,3cm ,4cm
B 1cm ,4cm ,2cm C1cm ,2cm ,3cm D 6cm ,2cm ,3cm 2.如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻 店去配一块完全一样的玻璃,那么最省事的办法是( ) A.带①去 B. 带②去 C. 带③去 D. 带①和②去 3.右图中三角形的个数是( ) A .6 B .7
C .8
D .9
4.能把一个任意三角形分成面积相等的两部分是( ) A.角平分线 B.中线 C.高 D. A 、B 、C 都可以
5.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是( ) A .直角三角形
B .等腰三角形
C .锐角三角形
D .钝角三角形
6.如图1四个图形中,线段BE 是△ABC 的高的图是( )
7.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是( ) A.5 B.6 C.7 D.8 8.三角形的一个外角是锐角,则此三角形的形状是( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.无
9. 下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为500和200的三角形一定是钝角三角形,④直角三角形中两锐角的和为900,其中判断正确的有( )
A.1个
B.2个
C.3个
D.4个



2题
C
D
A B E
F
3题
10、等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为( ) A.150° B.80° C.50°或80° D.70° 11、三角形三条高的交点一定在 ( )
A.三角形的内部
B.三角形的外部
C.三角形的内部或外部
D.三角形的内部、外部或顶点 二、填空题:(27分)
12、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是 。

10题图 13、如图2所示:
(1)在△ABC 中,BC 边上的高是 ; (2)在△AEC 中,AE 边上的高是 ;
14、若一个等腰三角形的两边长分别是3 cm 和5 cm ,则它的周长是 cm 。

15、如图3中的三角形的个数是___个.
16、在△ABC 中,∠A ∶∠B ∶∠C =2∶3∶4,则∠A =________,∠C =________ 17、三角形的三边长分别为5,1+2x ,8,则x 的取值范围是________. 18、已知等腰三角形两边长是4cm 和9cm ,则它的周长是
三.解答题(40分)
18.已知△ABC 的周长是24cm ,三边a 、b 、c 满足c+a =2b ,c -a =4cm ,求a 、b 、c (6分)
19.△ABC 中,∠ABC 、∠ACB 的平分线相交于点O 。

(8分) (1)若∠ABC = 40°,∠ACB = 50°,则∠BOC =_______。

(2)若∠ABC +∠ACB =116°,则∠BOC =_______。

(3)若∠A = 76°,则∠BOC =_______。

(4)若∠BOC = 120°,则∠A =_______。

图2
图3
20.如图4,在△ABC 中,∠C =90°,外角∠EAB ,∠ABF 的平分线AD 、BD 相交于点D ,
求∠D 的度数. (8分)
20.如图5,四边形ABCD 中,∠A =∠C =90°,BE 、CF 分别是∠B 、∠D 的平分线.(8分)
(1)∠1与∠2有何关系,为什么? (2)BE 与DF 有何关系?请说明理由.
21.∠ACD 是△ABC 的外角,BE 平分∠ABC ,CE 平分∠ACD ,且BE 、CE 交于点E.(8分)
F
E
C
B
A
D 图4
3
2
1
F
E
D
C
B A
图5
图6
4
3
2
1E
D
C
B
A
G
F
E
D
B
A C 求证:(1)∠E =
1
2
∠A. (2)若BE 、CE 是△ABC 两外角平分线且交于点E ,则∠E 与∠A 又有什么关系?
22.如图,∠ECF =900,线段AB 的端点分别在CE 和CF 上,BD 平分∠CBA ,
并与∠CAB 的外角平分线AG 所在的直线交于一点D ,(12分) (1)∠D 与∠C 有怎样的数量关系?(直接写出关系及大小) (2)点A 在射线CE 上运动,(不与点C 重合)时,其它条件不变,
(1)中结论还成立吗?说说你的理由。

相关文档
最新文档