牛顿-莱布尼茨公式的详细证明word版本
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿-莱布尼茨公式的
详细证明
牛顿—莱布尼茨公式
●前言
此证明主要是献给那些无论如何,竭斯底里都想知道自已手上这条无与伦比公式背后的秘密的高中生。
公式的证明首先是从定积分的基本性质和相关定理的证明开始,然后给出积分上限函数的定义,最后总揽全局,得出结论。证明过程会尽可能地保持严密,也许你会不太习惯,会觉得多佘,不过在一些条件上如函数f(x),我们是默认可积的。
所有证明过程都是为后续的证明做铺掂的,都是从最低层最简单开始的,所以你绝对,注意,请注意,你是绝对能看懂的,对于寻求真理的人,你值得看懂!
(Ps:如果你不太有耐心,我建议你别看了,因为这只会让你吐出垃圾两个字)
●定积分性质的证明
首先给出定积分的定义:
设函数f(x)在区间[a,b]上连续,我们在区间[a,b]上插入n-1个点分成n个区间[a,x1],[x1,x2]…[x n,x n-1],其中x0=a,x n=b,第i个小区间∆x i= x i-x i-1(i=1,2…n)。由它的几何意义,我们是用无数个小矩形的面积相加去模拟它的面积,因此任一个小矩形的面积可表示为∆S i=f(εi)∆x i ,为此定积分可以归结为一个和式的极
限即:
1
()lim()
n
b
a n
i
i i
f x dx f x
ε
→∞
=
=∆
∑
⎰
收集于网络,如有侵权请联系管理员删除
收集于网络,如有侵权请联系管理员删除
性质1:证明⎰b
a
c dx = C(b-a),其中C 为常数.
几何上这就是矩形的面积
性质2:F(x)和G(x)为函数z(x)的两个原函数,证明F(x)=G(x)+C,C 为常数.
设K(x)=F(x)-G(x) 定义域为K
即对任意的x ∈K,都存在一个以|x ∆|为半径的区间,使得K(x+x ∆)=K(x)
∴函数值在K 内处处相等,K(x)=C K(x)为一直线
即: F(x)-G(x)=C
性质3:如果f(x)≤g(x),则
设k(x)=f(x)-g(x),有k(x)≤0.
即 1021110()lim ()lim (...)lim ()()n b i i n n a n n i n n f x dx f x c x x x x x x c x x c b a ε-→∞→∞=→∞
=∆=-+-++-=-=-∑⎰0()()()
()()()()()
()()()lim 0x F x G x z x K x F x G x z x z x K x x K x K x x ∆→''=='''∴=-=-=+∆-'∴==∆Q ()()b b a a
f x dx
g x dx ≤⎰⎰1()lim ()0n b i i a n i k x dx k x ε→∞==∆≤∑⎰
Q ()[()()]()()0b b b b a a a a k x dx f x g x dx f x dx g x dx =-=-≤⎰
⎰⎰⎰()()b b a a f x dx g x dx ∴≤⎰⎰
相关定理的证明
介值定理:设f(x)在区间[a,b]上连续,当x∈[a,b],取m为f(x)的最小值,M 为f(x)的最大值,对于任意的一个介于m,M的数C,至少存在一点ε∈(a,b),有f(ε)=C
证明:
运用零点定理:
设f(x)在[a,b]上连续,若f(a)*f(b)<0,则至少存在一点ε∈(a,b),有f(ε)=0 设x1,x2∈[a,b],且x1 则:g(x1)=f(x1)-C<0 g(x2)=f(x2)-C>0 即: g(x1)*g(x2)<0 由零点定理得,至少存在一点ε∈(x1,x2),有 g(ε)=0= f(ε)-C => f(ε)=C Ps: 在这里,零点定理在高中应该有介绍,很美妙的一个定理,在几何上有明显 的意义,通俗的理解是:有两个点,一个大于0(在x轴上方),一个小于0(在x轴下方),要用一条连续的线把它连起来,那么势必至少会与x 轴有一个交点。严格的证明这里就不了,其实我也不太懂,有兴趣的可以上网查查. 收集于网络,如有侵权请联系管理员删除 收集于网络,如有侵权请联系管理员删除 积分中值定理: 若函数 f(x)在区间[a, b]上连续,,则在区间 [a, b]上至少 存在一个点ε∈(a,b),有 几何意义:曲线所围成的面积总有一个以积分区间为长的矩形面积与之相等 设f(x)在区间[a, b]的最大值为M ,最小值为m ,即:m ≤f(x)≤M 由介值定理:在区间 [a, b]上至少存在一个点ε∈(a,b),有 积分上限函数(变上限的定积分)的定义 设函数f(x)在区间[a,b]上连续,则定积分 的值由区间[a,b]与 f(x)决定,与积分变量的记号x 无关,因此可以记为 而对于积分 ,当x ∈[a,b]时,都会有一个由积分 所确定的值与之对应,因此积分 是上限x 的函数.记为: ()()()b a f x dx f b a ε=-⎰()()()()()b b b a a a b a b a mdx f x dx Mdx m b a f x dx M b a f x dx m M b a ∴≤≤⇒ -≤≤-⇒≤≤-⎰⎰⎰⎰⎰()()b a f x dx f b a ε=-⎰()b a f x dx ⎰()b a f t dt ⎰ ()x a f t dt ⎰()x a f t dt ⎰()x a f t dt ⎰()()x a x f t dt ϕ=⎰