判断一个函数的单调性
函数单调性判断或证明方法
函数单调性判断或证明方法函数的单调性是指函数在定义域上的取值呈现递增或递减的趋势。
判断函数的单调性有两种常用的方法:1.利用导函数进行判断:对于函数f(x),若在一个区间上导函数f'(x)始终大于等于零(或小于等于零),则f(x)在该区间上是递增(或递减)的。
具体步骤如下:a.求出f(x)的导函数f'(x);b.列出f'(x)=0的根,即f'(x)的驻点;c.对于这些驻点,再求出它们对应的函数值,得到(f(x),f'(x))的表格;d.根据(f(x),f'(x))的表格,判断函数的递增或递减区间。
2.利用原函数进行判断:对于函数f(x),若在一个区间上f'(x)始终大于零(或小于零),则f(x)在该区间上是递增(或递减)的。
具体步骤如下:a.求出f(x)的原函数F(x),即有F'(x)=f(x);b.对F(x)进行求导得到F'(x),即二阶导函数,然后化简;c.列出F'(x)=0的根,即F'(x)的驻点;d.对于这些驻点,再求出它们对应的函数值,得到(F(x),F'(x))的表格;e.根据(F(x),F'(x))的表格,判断函数的递增或递减区间。
下面以具体的例子来说明如何利用这两种方法判断函数的单调性。
例1:对函数f(x)=x^3进行单调性判断。
a.利用导函数进行判断:f'(x)=3x^2,该函数导数恒大于零。
由此可知,f(x)=x^3在整个定义域上都是递增的。
表格示意如下:(x,f'(x))(-∞,+∞)b.利用原函数进行判断:F(x)=1/4*x^4是f(x)=x^3的一个原函数。
对F(x)进行求导得到F'(x)=x^3,该函数恒大于零。
由此可知,f(x)=x^3在整个定义域上都是递增的。
表格示意如下:(x,F'(x))(-∞,+∞)可以看出,无论是利用导函数还是原函数进行判断,都得到了相同的结论:函数f(x)=x^3在整个定义域上都是递增的。
判断函数单调性的方法
判断函数单调性的方法函数的单调性是指函数在定义域内的增减规律。
判断函数的单调性是数学分析中的一个重要内容,也是解题的关键步骤之一。
在实际问题中,判断函数的单调性有助于我们更好地理解函数的性质,从而解决实际问题。
下面我们将介绍判断函数单调性的方法。
首先,我们来看一元函数的单调性判断方法。
对于一元函数y=f(x),要判断其在定义域内的单调性,我们可以通过导数的符号来进行判断。
具体来说,如果函数在定义域内的导数大于0,那么函数在该区间内是单调递增的;如果函数在定义域内的导数小于0,那么函数在该区间内是单调递减的。
而当函数在定义域内的导数恒为0时,我们可以通过导数的二阶导数来判断函数的单调性。
如果二阶导数大于0,那么函数在该点附近是严格单调递增的;如果二阶导数小于0,那么函数在该点附近是严格单调递减的;如果二阶导数等于0,那么函数在该点附近是不确定的。
其次,对于二元函数y=f(x, y),我们可以通过偏导数的符号来判断函数的单调性。
具体来说,如果函数在定义域内的偏导数大于0,那么函数在该区域内是单调递增的;如果函数在定义域内的偏导数小于0,那么函数在该区域内是单调递减的。
同样地,当函数在定义域内的偏导数恒为0时,我们可以通过偏导数的二阶偏导数来判断函数的单调性。
此外,对于一般的多元函数,我们可以通过雅可比矩阵来判断函数的单调性。
雅可比矩阵是一个重要的工具,可以帮助我们判断多元函数在定义域内的单调性。
具体来说,如果雅可比矩阵的所有主子式都大于0,那么函数在该区域内是单调递增的;如果雅可比矩阵的所有主子式都小于0,那么函数在该区域内是单调递减的。
当雅可比矩阵的主子式既有大于0又有小于0时,函数在该区域内是不确定的。
综上所述,判断函数单调性的方法主要包括导数的符号、二阶导数、偏导数、二阶偏导数以及雅可比矩阵等。
这些方法在数学分析和实际问题中都有着重要的应用价值,能够帮助我们更好地理解函数的性质,解决实际问题。
判断函数单调性的三种途径
(1)若 m - 1 ≤ 0 ,
即 m≤1,
由 f ′(x) > 0 ,得 x > 1 ;由 f ′(x) < 0 ,
得 0<x<1.
故当 m ≤ 1 时,函数 f (x) 在 (1, +∞) 上单调递增,在
(0,1) 上单调递减.
(2)若 0 < m - 1 < 1 ,
即 1 < m < 2,
用于判断复杂函数的单调性.图象法则十分形象直观,
ìx2 - x,x < 0,
(2)由题意可知,y = í 2
î-x + x,x ≥ 0,
地判断出函数在各个区间上的单调性.
相较而言,定义法的适用范围较广,导数法则常
解答过程也较为简便.
数学篇
(-∞,1] 上单调递减,
在 [2, +∞) 上单调递增.
象,明确各个区间段上曲线的升降情况,就能一目了然
讨论不同区间内函数的单调性.
三、利用图象判断函数的单调性.
借助函数的图象,可以快速明确函数的变化情
况,了解函数的特征,如函数的定义域、值域、单调性
等.在判断函数的单调性时,可以先根据函数的性质或
函数的解析式画出函数的图象;然后从左往右观察函
数图象的变化趋势,当函数在某一区间段内的图象呈
上升趋势,则该函数在此区间内为增函数;当函数在
(作者单位:江苏省仪征市南京师范大学第二附
属高级中学)
Copyright©博看网. All Rights Reserved.
39
证明:如图 1,曲线 f (x) 关于直线 x = a 对称,在曲
图1
图2
m - 1 ≤ 0 、0 < m - 1 、m - 1 > 1 、m - 1 = 1 几种情况,来
考点04 函数单调性的5种判断方法及3个应用方向(解析版)
专题二函数考点4 函数单调性的5种判断方法及3个应用方向【方法点拨】一、函数单调性的判断及解决应用问题的方法1.判断函数单调性的常用方法(1)定义法;(2)图象法;(3)利用函数的性质“增+增=增,减+减=减”判断;(4)复合函数的单调性根据“同增异减”判断;(5)导数法2.求函数的单调区间先定定义域,在定义域内求单调区间.单调区间不连续时,要用“和”或“,“连接,不能用“U”连接.3.单调性的应用的三个方向(1)比较大小:将自变量转化到同一个单调区间内,利用函数的单调性比较大小;(2)解函数型不等式:利用函数单调性,由条件脱去“f”;(3)求参数值或取值范围:利用函数的单调性构建参数满足的方程(组)、不等式(组).【高考模拟】1.函数()||1f x x =-与()()2g x x x =-的单调递增区间分别为( ) A .[1,+∞),[1,+∞) B .(﹣∞,1],[1,+∞) C .(1,+∞),(﹣∞,1] D .(﹣∞,+∞),[1,+∞)【答案】A 【分析】先对()f x ,()g x 进行化简,再求单调区间即可. 【解析】 解:()1,111,1x x f x x x x -≥⎧=-=⎨-+<⎩,()f x ∴在[)1,+∞上单调递增,()()222()211g x x x x x x -=-==--, ()g x ∴在[)1,+∞上单调递增,故选:A.2.函数y =)A .3,2⎛⎤-∞- ⎥⎝⎦B .3,2⎡⎫-+∞⎪⎢⎣⎭C .[)0,+∞D .(],3-∞-【答案】D 【分析】求出函数y =y =.【解析】由题意,230x x +≥,可得3x ≤-或0x ≥,函数y =(][),30,-∞-⋃+∞,令23t x x =+,则外层函数y =[)0,+∞上单调递增,内层函数23t x x =+在上(],3-∞-单调递减,在[)0,+∞上单调递增,所以,函数y =(],3-∞-.故选:D. 【点睛】方法点睛:求解函数的单调区间一般有以下几种方法:一是图象法,主要适用与基本初等函数及其在基本初等函数的基础上进行简单变化后的函数以及分段函数,可以借助图像来得到函数的单调区间;二是复合函数法,主要适用于函数结构较为复杂的函数,采用换元的思想将函数解析式分解为多层,利用同增异减的原理来求解;三是导数法,对于可导函数,可以解相应的导数不等式来求解函数的单调区间.3.函数()f x 在区间()4,7-上是增函数,则使得()3=-y f x 为增函数的区间为( ) A .()2,3- B .()1,7-C .()1,10-D .()10,4--【答案】C 【分析】先将函数()3=-y f x 看作函数()f x 向右平移3个单位所得到,再判断增区间即可. 【解析】函数()3=-y f x 可以看作函数()f x 向右平移3个单位所得到,故由函数()f x 在区间()4,7-上是增函数,得()3=-y f x 在区间()1,10-上是增函数. 故选:C.4.函数()2f x x x =-的单调减区间是( ) A .[]1,2 B .[]1,0-C .[]0,2D .[2,)+∞【答案】A 【分析】将函数写成分段函数的形式,即()(2),2,(2),2,x x x f x x x x -⋅≥⎧=⎨-⋅<⎩再根据解析式得到函数的单调区间;【解析】()(2),2,(2),2,x x x f x x x x -⋅≥⎧=⎨-⋅<⎩∴直接通过解析式,结合二次函数图象得:(,1),(2,)-∞+∞递增,在[]1,2递减,故选:A.5.函数f (x )=x 2+2(a -1)x +2在区间(-∞,4)上递减,则a 的取值范围是( ) A .[3,)-+∞ B .(,3]-∞- C .(,5)-∞ D .[3,)+∞【答案】B 【分析】利用二次函数的性质,比较对称轴和区间端点的大小,列不等式可得a 的取值范围. 【解析】函数f(x)的对称轴是1x a =-,开口向上,则14a -≥,解得3a ≤- 故选:B6.若函数2()()f x ax a -=∈R 在(0,)+∞上单调递增,则实数a 的取值范围为( ). A .(1,)+∞ B .(,1)-∞ C .(0,)+∞ D .(,0)-∞【答案】D 【分析】直接由单调性的定义求解即可 【解析】解:任取12,(0,)x x ∈+∞,且12x x <,因为函数2()()f x ax a -=∈R 在(0,)+∞上单调递增,所以12()()f x f x <,即22120ax ax ---<,所以221211()0a x x -<,21212212()()0x x x x a x x +-⋅<⋅, 因为120x x <<,所以210x x +>,210x x ->,22120x x ⋅>,所以0a <. 故选:D7.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是( ) A .3a ≤- B .3a ≥-C .5a ≤D .5a ≥【答案】A【分析】求出二次函数的对称轴,根据单调区间与对称轴之间的关系建立条件,即可求出a 的取值范围. 【解析】 解:二次函数2()2(1)2f x x a x =+-+的对称轴为2(1)(1)12a x a a -=-=--=-,抛物线开口向上,∴函数在(-∞,1]a -上单调递减,要使()f x 在区间(-∞,4]上单调递减, 则对称轴14a -, 解得3a-.故选:A . 【点睛】本题主要考查二次函数的图象和性质,根据二次函数单调性与对称轴之间的关系是解决本题的关键. 8.“1m ”是“函数1()2ln f x x mx x=-+单调递减”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【分析】求出()y f x =的导函数,利用()y f x =单调递减,则()0f x '≤恒成立,求出m 的范围,比较所求范围和条件中给定范围的关系,得出结论. 【解析】 由221()f x m x x '=--,若函数()y f x =单调递减,必有当(0,)x ∈+∞时,2210m x x--≤恒成立,可化为2111m x ⎛⎫≥--+ ⎪⎝⎭,可得m 1≥.故“1m ”是“函数1()2ln f x x mx x =-+单调递减”的充分不必要条件. 故选:A. 9.若函数2()1f x x =-的定义域是(﹣∞,1)∪[2,5),则其值域为( ) A .(﹣∞,0)B .(﹣∞,2]C .10,2⎛⎤ ⎥⎝⎦D .1(,0),22⎛⎤-∞⋃ ⎥⎝⎦【答案】D 【分析】分x<1和x ∈[2,5)两种情况,利用反比例函数的性质得出函数的值域. 【解析】由题意可得:当x<1时,则x ﹣1<0所以y ∈(﹣∞,0) 当x ∈[2,5)时,则x ﹣1∈[1,4),所以y ∈1,22⎛⎤⎥⎝⎦所以函数的值域为1(,0),22⎛⎤-∞⋃ ⎥⎝⎦.故选:D.10.若关于x 的不等式342xx a+-在[0x ∈,1]2上恒成立,则实数a 的取值范围是( )A .(-∞,1]2-B .(0,1]C .1[2-,1]D .[1,)+∞【答案】D 【分析】利用参数分离法进行转化,构造函数求函数的最大值即可得到结论. 【解析】解:由题意知,342xx a +-在(0x ∈,1]2上恒成立,设3()42x f x x =+-,则函数在102⎛⎤ ⎥⎝⎦,上为增函数,∴当12x =时,()12max 113()4211222f x f ==+-=-=, 则1a , 故选:D . 【点睛】 关键点睛:本题的关键是将已知不等式恒成立问题,通过参变分离得到参数的恒成立问题,结合函数的单调性求出最值.11.若01m n <<<且1mn =,则2m n +的取值范围是( )A.)+∞ B .[3,)+∞C.)+∞D .(3,)+∞【答案】D 【分析】先利用已知条件构造函数()2(),01f m m m m+<<=,再求其值域即得结果. 【解析】由01m n <<<且1mn =知,22m n m m +=+,故设()2(),01f m m m m+<<=, 设1201m m <<<,则()1212121212222()()1f m f m m m m m m m m m ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 12120,01m m m m -<<<,即1222m m >,故()1212210m m m m ⎛⎫--> ⎪⎝⎭,即12()()f m f m >, 函数2()f m m m =+在()0,1上单调递减,2(1)131f =+=,故函数的值域为(3,)+∞. 故选:D. 【点睛】方法点睛:利用定义证明函数单调性的方法(1)取值:设12,x x 是该区间内的任意两个值,且12x x <; (2)作差变形:即作差,即作差12()()f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形; (3)定号:确定差12()()f x f x -的符号;(4)下结论:判断,根据定义作出结论. 即取值---作差----变形----定号----下结论. 12.函数()()2404xf x x x x x =++>+的最小值为( ) A .2 B .103C .174D .265【答案】C 【分析】 令4t x x =+,利用基本不等式求得4t ≥,构造函数()1g t t t=+,证明出函数()g t 在[)4,+∞上为增函数,由此可求得函数()f x 的最小值. 【解析】令4t x x =+,则21144x x t x x==++,因为0x >,所以44t x x =+≥=,又2414x y x t x x t =++=++,令()1g t t t=+,其中4t ≥, 任取1t 、[)24,t ∈+∞且12t t >,即124t t >≥,则()()()()()121221121212121212111t t t t t t g t g t t t t t t t t t t t --⎛⎫⎛⎫--=+-+=-+= ⎪ ⎪⎝⎭⎝⎭, 124t t >≥,120t t ∴->,121t t >,()()120g t g t ∴->,即()()12g t g t >,所以,函数()g t 在[)4,+∞上为增函数,因此,()()min 1174444f xg ==+=. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.13.若函数1y ax =+在区间[]1,3上的最大值是4,则实数a 的值为( ) A .-1 B .1C .3D .1或3【答案】B 【分析】分0a >和0a <两种情况求解,0a >时,1y ax =+在区间[]1,3上为增函数,从而可求出其最大值,当0a <时,1y ax =+在区间[]1,3上为减函数,从而可求出其最大值,进而可得答案 【解析】解:当0a >时,1y ax =+在区间[]1,3上为增函数,则当3x =时,y 取得最大值,即314a +=,解得1a =;当0a <时,1y ax =+在区间[]1,3上为减函数,则当1x =时,y 取得最大值,即14a +=,解得3a =舍去, 所以1a =, 故选:B14.函数2y ax =+在[1,2]上的最大值与最小值的差为3,则实数a 为( ) A .3 B .-3 C .0 D .3或-3【答案】D 【分析】讨论a 的取值,判断函数的单调性,求出函数的最值,作差即可求解. 【解析】解:①当0a =时,2=2y ax =+,不符合题意;②当0a >时,2y ax =+在[]1,2上递增,则()()2223a a +-+=,解得3a =; ③当0a <时,2y ax =+在[]1,2上递减,则()()2223a a +-+=,解得3a =-.综上,得3a =±, 故选:D .15.已知函数24()2tx t f x x --+=+在区间[1,2]-上的最大值为2,则实数t 的值为( )A .2或3B .1或3C .2D .3【答案】A 【分析】 函数()24422tx t f x t x x --+==-+++,4[1,2],[1,4]2x t t t x ∈--+∈--+,根据绝对值的最大值为2进行分类讨论检验即可. 【解析】 由题函数()24422tx t f x t x x --+==-+++,4[1,2],[1,4]2x t t t x ∈--+∈--+ ()24422tx t f x t x x --+==-+++的最大值为4t -或1t -当41t t -≥-时,即52t ≤时,最大值42t -=解得:2t =;当41t t -<-时,即52t >时,最大值12t -=解得:3t = 综上所述:t 的值等于2或3. 故选:A 【点睛】解决本题的关键是利用单调性求出42t x -++的范围,再结合绝对值的性质进行求解. 16.若函数12,02()(21)3,2log x x f x a x a x <<⎧⎪=⎨⎪-+⎩的值域为R ,则实数a 的取值范围为( ) A .1[2,1)B .1(0,)7C .1[7,1)2D .1[2,1]【答案】C 【分析】根据分段函数的值域为R ,具有连续性,由12log y x =是减函数,可得(21)3y a x a =-+也是减函数,故得210a -<,(21)231a a -⨯+-,可得答案. 【解析】解:函数12,02()(21)3,2log x x f x a x a x <<⎧⎪=⎨⎪-+⎩的值域为R , 由12log y x =是减函数,(21)3y a x a ∴=-+也是减函数,故得210a -<, 解得:12a <, 函数()f x 的值域为R ,12(21)23log 21a a -⨯+=-,解得:17a. ∴实数a 的取值范围是1[7,1)2.故选:C .17.若函数()f x 是R 上的减函数,0a >,则下列不等式一定成立的是( ) A .2()()f a f a < B .1()f a f a ⎛⎫<⎪⎝⎭C .()(2)f a f a <D .2()(1)f a f a <-【答案】D 【分析】根据函数单调性,以及题中条件,逐项判断,即可得出结果. 【解析】因为函数()f x 是R 上的减函数,0a >,A 选项,()21a a a a -=-,当1a >时,2a a >,所以2()()f a f a <;当01a <<时,2a a <,所以2()()f a f a >,即B 不一定成立; B 选项,当1a >时,1a a >,所以1()f a f a ⎛⎫< ⎪⎝⎭;当01a <<时,1a a <,所以1()f a f a ⎛⎫> ⎪⎝⎭,即B 不一定成立;C 选项,0a >时,2a a >,则()(2)f a f a >,所以C 不成立;D 选项,()2221311024a a a a a ⎛⎫--=-+=-+> ⎪⎝⎭,则21a a >-;所以2()(1)f a f a <-,即D一定成立. 故选:D.18.已知函数2()f x x bx c =++,且(2)()f x f x +=-,则下列不等式中成立的是( ) A .(4)(0)(4)f f f -<< B .(0)(4)(4)f f f <-< C .(0)(4)(4)f f f <<- D .(4)(0)(4)f f f <<-【答案】C 【分析】由(2)()f x f x +=-,即可得到()f x 图象的对称轴为1x =,所以根据图象上的点离对称轴的距离即可比较出(0),(4),(4)f f f -的大小关系. 【解析】由(2)()f x f x +=-得()f x 图象的对称轴为1x =,所以()f x 在(,1]-∞上单调递减,在[1,)+∞上单调递增,且(4)(2)f f =-, 所以(0)(2)(4)(4)f f f f <-=<-, 故选:C. 【点睛】方法点睛:该题考查的是有关函数值的比较大小的问题,解题方法如下:(1)首先根据题中所给的函数解析式,判断函数类型,根据题中所给的条件,判断出函数图象的对称轴;(2)利用对称性,将自变量所对应的函数值进行转换; (3)根据函数的单调性求得结果.19.若定义在R 上的偶函数()f x 在[)0,+∞上是减函数,则下列各式一定成立的是( ) A .()()06f f < B .()()32f f -> C .()()13f f -> D .()()58f f -<-【答案】C 【分析】由偶函数及在[)0,+∞上是减函数,知在(,0]-∞上是增函数,即可判断各项的正误. 【解析】A :在[)0,+∞上是减函数,即()()06f f >,错误;B :(3)(3)f f -=,()f x 在[)0,+∞上是减函数,有()()32f f <,即()()32f f -<,错误; C :(1)(1)f f -=,()f x 在[)0,+∞上是减函数,有()()31f f <,即()()13f f ->,正确; D :由题意,()f x 在(,0]-∞上是增函数,()()58f f ->-,错误; 故选:C20.设函数()f x 是(),-∞+∞上的减函数,又若a R ∈,则( ) A .()()2f a f a >B .()()2f a f a < C .()()2f a a f a +<D .()()211f a f +≤【答案】D 【分析】利用特殊值法可判断ABC 选项的正误,利用函数的单调性可判断D 选项的正误. 【解析】对于A 选项,取0a =,则2a a =,()()2f a f a ∴=,A 选项错误; 对于B 选项,取0a =,则2a a =,所以,()()2f af a =,B 选项错误;对于C 选项,取0a =,则2a a a +=,所以,()()2f a a f a +=,C 选项错误;对于D 选项,对任意的a R ∈,211a +≥,所以,()()211f a f +≤,D 选项正确.故选:D.21.函数()f x 的定义域为,(1)0,()f f x '=R 为()f x 的导函数,且()0f x '>,则不等式()()20x f x ->的解集是( )A .(,1)(2,)-∞⋃+∞B .(,1)(1,)-∞⋃+∞C .(0,1)(2,)+∞D .(,0)(1,)-∞⋃+∞【答案】A 【分析】依题意可得()f x 再定义域上单调递增,又()10f =,即可得到1x <时,()0f x <;1 x >时,()0f x >;再分类讨论分别计算最后取并集即可;【解析】解:由题意可知()f x 在(),-∞+∞单调递增,又()10f =,1x <时,()0f x <;1 x >时,()0f x >; 对于()()2 0x f x ->,当2x >时,不等式成立, 当12x <<时,()20, 0x f x -<>,不等式不成立; 当1x <时,20x -<,且()0f x <, 不等式成立不等式的解集(,1)(2,)-∞⋃+∞ 故选:A .22.已知定义在R 上的函数()f x 的导函数为'()f x ,且满足'()()0f x f x ->,()20212021f e =,则不等式1ln 3f x ⎛⎫<⎪⎝⎭)A .()6063,e +∞B .()20210,eC .()2021,e +∞D .()60630,e【答案】D 【分析】由题意构造新函数()()xf x F x e =,得到函数的单调性,对问题进行变形,由单调性转化为求解不等式问题,即可得到结果 【解析】 由题可设()()x f x F x e=,'()()0f x f x ->,则2'()()'()()'()0x x x xf x e f x e f x f x F x e e--==>, 所以函数()F x 在R 上单调递增,2021(2021)(2021)1f F e==,将不等式1ln 3f x ⎛⎫< ⎪⎝⎭1ln 311ln ln 3311ln ln 33x x x f x f x e e e ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⋅=, 可得1ln 13F x ⎛⎫< ⎪⎝⎭,即1ln (2021)3F x F ⎛⎫< ⎪⎝⎭,有1ln 20213x <,故得60630x e <<,所以不等式1ln 3f x ⎛⎫< ⎪⎝⎭()60630,e ,故选:D. 【点睛】关键点睛:本题的解题关键是构造新函数,然后运用函数单调性求解不等式,通常情况构造新函数的形式如:()()xf x F x e =、()()F x xf x =或者()()f x F x x =等,需要结合条件或者问题出发进行构造.23.已知函数2()121xf x =-+,且()41(3)xf f ->,则实数x 的取值范围是( ). A .(2,)+∞ B .(,2)-∞C .(1,)+∞D .(,1)-∞【答案】D 【分析】用导数判断函数()f x 的单调性,再解不等式即可. 【解析】 因为()()22ln 2021x xf x -=<+',所以函数2()121x f x =-+在R 上单调递减, 由于()41(3)xf f ->所以413x-<,得1x <故选:D 【点睛】关键点点晴:判断函数()f x 的单调性是解题的关键.24.已知定义在R 上的函数()f x 满足()13f =,对x ∀∈R 恒有()2f x '<,则()21f x x ≥+的解集为( ) A .[)1,+∞ B .(],1-∞C .()1,+∞D .(),1-∞【答案】B 【分析】构造新函数()()21F x f x x =--,利用导数判断()F x 单减,又(1)0F =可解1x ≤. 【解析】令()()21F x f x x =--,则()()2F x f x ''=-, 又因为对x ∀∈R 恒有()2f x '< 所以()()20F x f x ''=-<恒成立, 所以()()21F x f x x =--在R 上单减. 又(1)(1)210F f =--=, 所以()0F x ≥的解集为(],1-∞ 故选:B 【点睛】利用单调性解不等式通常用于: (1)分段函数型不等式; (2)复合函数型不等式;(3)抽象函数型不等式; (4)解析式较复杂的不等式;25.已知函数f (x ) f (2a 2-5a +4)<f (a 2+a +4) ,则实数a 的取值范围是( ) A .1,2⎛⎫-∞ ⎪⎝⎭∪(2,+∞)B .[2,6)C .10,2⎛⎤ ⎥⎝⎦∪[2,6)D .(0,6)【答案】C 【分析】由解析式知()f x 在定义域上递增,由已知函数不等式有2222544a a a a ≤-+<++,即可求解a 的取值范围. 【解析】由题意,()f x 在[2,)+∞上单调递增,∵22(254)(4)f a a f a a -+<++,即2222544a a a a ≤-+<++, ∴260a a -<或22520a a -+≥,可得26a ≤<或102a <≤. 故选:C 【点睛】关键点点睛:利用函数的单调性,列不等式求参数的范围.易错点是定义域容易被忽略.26.已知函数()f x 的图象关于y 轴对称,当0x ≥时,()f x 单调递增,则不等式(2)(1)f x f x >-的解集为__________. 【答案】1(,1)(,)3-∞-⋃+∞ 【分析】由题意可得()f x 为偶函数,再由偶函数的性质可将(2)(1)f x f x >-,转化为(2)(1)f x f x >-,再由当0x ≥时,()f x 单调递增,可得21x x >-,从而可求出x 的范围 【解析】解:依题意,()f x 为偶函数,当0x ≥时,()f x 单调递增,要满足(2)(1)f x f x >-,则要求21x x >-,两边平方得22412x x x >-+,即23210x x +->,即(1)(31)0x x +->,解得1(,1)(,)3x ∈-∞-⋃+∞. 故答案为:1(,1)(,)3-∞-⋃+∞.27.设()xf x a x =+,若()36f =,则不等式()()21f x f x ->的解集为____________.【答案】()1,+∞ 【分析】先由()36f =,解出a ,讨论()xf x a x =+的单调性,利用函数单调性解不等式即可.【解析】因为()xf x a x =+,且()36f =,,所以33a =,解得1a =>.()(),ln 1x x f x f a x a x a =+∴=+' ln 0,ln 111,x x a a a a a >∴>∴>+,()x f x a x ∴=+在R 上单增.()()21f x f x ->可化为:21x x ->解得:1x >.不等式()()21f x f x ->的解集为()1,+∞ 故答案为:()1,+∞ 【点睛】利用单调性解不等式通常用于: (1)分段函数型不等式;(2)复合函数型不等式;(3)抽象函数型不等式;(4)解析式较复杂的不等式;28.已知定义域为R 的奇函数()f x 在区间(0,)+∞上为严格减函数,且()20f =,则不等式(1)01f x x +≥-的解集为___________.【答案】[]3,1-- 【分析】先由定义域为R 的奇函数()f x 在区间(0,)+∞上为严格减函数,且()20f =,画出()f x 的草图,结合图像对(1)01f x x +≥-进行等价转化,解不等式即可.【解析】()f x 是定义域为R 的奇函数,且在区间(0,)+∞上为严格减函数,有()20f =,∴()f x 在区间(,0)-∞上为严格减函数且()20f =,可作出()f x 的草图:不等式(1)01f x x +≥-可化为:()1010x f x ->⎧⎨+≥⎩或()1010x f x -<⎧⎨+≤⎩对于()1010x f x ->⎧⎨+≥⎩,当1x >时()12,10x f x +>+<,无解;对于()1010x f x -<⎧⎨+≤⎩,当1x <时()12,10x f x +<+≤,由图像观察,210x -≤+≤解得:31x -≤≤- 所以不等式(1)01f x x +≥-的解集为[]3,1--.故答案为:[]3,1-- 【点睛】常见解不等式的类型:(1)解一元二次不等式用图像法或因式分解法; (2)分式不等式化为标准型后利用商的符号法则; (3)高次不等式用穿针引线法; (4)含参数的不等式需要分类讨论.29.已知函数()()23log 440f x ax x =-+>在x ∈R 上恒成立,则a 的取值范围是_________.【答案】4,3⎛⎫+∞ ⎪⎝⎭【分析】由题意,把函数()()23log 440f x ax x =-+>在x ∈R 上恒成立转化为2430ax x -+>对x ∈R上恒成立,列不等式解得a 的范围. 【解析】()()23log 440f x x x α=-+>恒成立,即()2233log 44log 1430ax x ax x -+>⇔-+>恒成立,所以0a =时显然不成立.当0a ≠时()0Δ16120a a >⎧⎨=-<⎩得43a <,所以4,3a ⎛⎫∈+∞ ⎪⎝⎭.故答案为:4,3⎛⎫+∞ ⎪⎝⎭【点睛】(1)求参数的范围是常见题型之一,处理的方法有两种:①不分离参数,直接求最大值或最小值,解不等式;②分离参数法.(2)解指、对数型的不等式,通常化为同底的结构,利用函数的单调性解不等式.30.设函数3,1()1+1,1x x f x x x x ≤⎧⎪=⎨->⎪⎩,则不等式()26()f x f x ->的解集为_________.【答案】()3,2- 【分析】先判断函数的单调性,再解抽象不等式. 【解析】当1x >时,31+1y x x=-是增函数,此时1y >; 当1x ≤时, y x =是增函数,此时1y ≤, 所以函数()f x 是单调递增函数,()()2266f x f x x x ->⇔->,解得:32x -<<,所以不等式的解集是()3,2-. 故答案为:()3,2-。
证明函数单调性的方法总结
证明函数单调性的方法总结
证明函数单调性的方法总结
函数的单调性是函数的一个重要性质,下面是小编整理的证明函数单调性的方法总结,希望对大家有帮助!
1、定义法:
利用定义证明函数单调性的一般步骤是:
①任取x1、x2∈D,且x1<x2;
②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等);
③依据差式的符号确定其增减性.
2、导数法:
设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D内为增函数;如果f′(x)<0,则f(x)在区间D内为减函数.
注意:(补充)
(1)若使得f′(x)=0的x的值只有有限个,
则如果f ′(x)≥0,则f(x)在区间D内为增函数;
如果f′(x) ≤0,则f(x)在区间D内为减函数.
(2)单调性的判断方法:
定义法及导数法、图象法、
复合函数的单调性(同增异减)、
用已知函数的单调性等
(补充)单调性的有关结论
1.若f(x),g(x)均为增(减)函数,
则f(x)+g(x)仍为增(减)函数.
2.若f(x)为增(减)函数,
则-f(x)为减(增)函数,如果同时有f(x)>0,则
为减(增)函数,
为增(减)函数
3.互为反函数的两个函数有相同的单调性.4.y=f。
判断函数单调性的常用方法
判断函数单调性的常用方法一、定义法设x1,x2是函数f(x)定义域上任意的两个数,且x1<x2,若f(x1)<f(x2),则此函数为增函数;反知,若f(x1)>f(x2),则此函数为减函数. 【例1】证明:当0>x 时,)1ln(x x +>。
证明:令01111)()1ln()(>+=+-='+-=xx x x f x x x f 所以,当0>x 时,0)(>'x f ,所以)(x f 为严格递增的0)01ln(0)0()(=+-=>⇒f x f ,所以)1ln(x x +>。
二、性质法除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题. 若函数f(x)、g(x)在区间B 上具有单调性,则在区间B 上有: ⑴ f(x)与f(x)+C (C 为常数)具有相同的单调性;⑵ f(x)与c•f(x)当c >0具有相同的单调性,当c <0具有相反的单调性; ⑷当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数; ⑸当f(x)、g(x)都是增(减)函数,则f (x)•g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数;三、同增异减法是处理复合函数的单调性问题的常用方法. 对于复合函数y =f [g(x)]满足“同增异减”法(应注意内层函数的值域),可令 t =g(x),则三个函数 y =f(t)、t =g(x)、y =f [g(x)]中,若有两个函数单调性相同,则第三个函数为增函数;若有两个函数单调性相反,则第三个函数为减函数.注:(1)奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性;(2)互为反函数的两个函数有相同的单调性;(3)如果f(x)在区间D 上是增(减)函数,那么f(x)在D 的任一子区间上也是增(减)函数.设单调函数)(x f y =为外层函数,)(x g y =为内层函数 (1) 若)(x f y =增,)(x g y =增,则))((x g f y =增. (2) 若)(x f y =增,)(x g y =减,则))((x g f y =减. (3) 若)(x f y =减,)(x g y =减,则))((x g f y =增. (4) 若)(x f y =减,)(x g y =增,则))((x g f y =减.例1. 求函数222)(-+=x x x f 的单调区间.教学意图:先让学生学会找出外层函数和内层函数然后再进一步教会学生如何求此函数的单调区间.此题当中定义域是一切实数,在此处我还没有让学生认识到定义域的重要性,先让学生初步掌握复合函数单调区间的求法. 解题过程:外层函数:ty 2=内层函数:22-+=x x t内层函数的单调增区间:],21[+∞-∈x 内层函数的单调减区间:]21,[--∞∈x 由于外层函数为增函数所以,复合函数的增区间为:],21[+∞-∈x 复合函数的减区间为:]21,[--∞∈x 四、求导法导数小于0就是递减,大于0递增,等于0,是拐点极值点求函数值域的常用方法 1.观察法用于简单的解析式。
判断函数单调性的常用方法
判断函数单调性的常用方法判断函数的单调性是数学中常见的一个问题。
在解决这个问题时,有一些常用的方法和技巧可以帮助我们确定函数的单调性。
下面将就这些方法和技巧进行详细介绍。
1.用导数判断函数的单调性:常数函数:常数函数不会随自变量的变化而变化,因此常数函数在定义域上是单调的。
一次函数:一次函数的导数为常数,若导数大于零,则函数单调递增;若导数小于零,则函数单调递减。
幂函数:幂函数的导数根据指数、底数的不同具有不同的形式,通过求导后的符号进行判断函数的单调性。
指数函数:指数函数的导数为指数函数本身的常数倍,若底数大于1且指数函数变量在定义域上递增时,函数单调递增;若底数小于1且指数函数变量在定义域上递减时,函数单调递增。
对数函数:对数函数的导数为自变量在底数为e的自然对数函数中的导数,根据求导后的符号进行判断函数的单调性。
2.利用函数的一阶和二阶导数进行判断:函数的一阶导数描述了函数图像的斜率,可以通过判断一阶导数的符号确定函数的单调性。
若一阶导数始终大于零,则函数单调递增;若一阶导数始终小于零,则函数单调递减。
函数的二阶导数描述了函数图像的曲率,若二阶导数始终大于零,则函数图像为凹函数,函数单调递增;若二阶导数始终小于零,则函数图像为凸函数,函数单调递减。
3.利用函数的性质进行判断:常用的函数性质包括函数的奇偶性、周期性、对称性等。
若函数具有奇函数的性质,则在定义域的相对称点上具有相反的函数值,可以通过判断奇函数在其中一区间内的正负性得出函数在该区间的单调性。
若函数具有周期性,则可以通过观察一个周期内的变化趋势来判断函数的单调性。
4.利用图像进行判断:通过观察函数图像可以直观地判断函数的单调性。
若函数图像始终上升,则函数单调递增;若函数图像始终下降,则函数单调递减。
这些是常用的判断函数单调性的方法和技巧。
在实际问题中,有时候需要结合多个方法和技巧来确定函数的单调性。
同时,还可以利用函数的单调性来解决一些实际问题,例如在优化问题中,我们可以通过判断目标函数的单调性来确定最优解的存在性和位置。
判断函数单调性的方法
判断函数单调性的⽅法
函数单调性的判断⽅法有导数法、定义法、性质法和复合函数同增异减法。
⾸先对函数进⾏求导,令导函数等于零,得X值,判断X与导函数的关系,当导函数⼤于零时是增函数,⼩于零是减函数。
判断函数单调性的⽅法步骤
利⽤定义证明函数单调性的步骤
①任意取值:即设x1、x2是该区间内的任意两个值,且x1<x2
②作差变形:作差f(x1)-f(x2),并因式分解、配⽅、有理化等⽅法将差式向有利于判断差的符号的⽅向变形
③判断定号:确定f(x1)-f(x2)的符号
④得出结论:根据定义作出结论(若差0,则为增函数;若差0,则为减函数)
即“任意取值——作差变形——判断定号——得出结论”。
判断函数单调性的常见方法
判断函数单调性的常见方法函数的单调性是指函数在自变量的取值范围内是否呈现增加或减少的趋势。
判断函数单调性的常见方法包括函数的导数和函数的凹凸性等。
一、函数的导数判断单调性:当函数在其中一区间内可导时,可以通过判断函数的导数的符号来确定函数在该区间内的单调性。
1.若函数f'(x)>0,即导数大于0,则函数在该区间内是严格递增的。
2.若函数f'(x)<0,即导数小于0,则函数在该区间内是严格递减的。
3.若函数f'(x)=0,即导数等于0,则函数在该点可能有极值点。
4.若函数f'(x)>=0,即导数大于等于0,则函数在该区间内是递增的。
5.若函数f'(x)<=0,即导数小于等于0,则函数在该区间内是递减的。
需要注意的是,一个函数在一些区间上的单调性还需要满足函数在该区间上是连续的,即函数存在于该区间上。
二、函数的凹凸性判断单调性:函数的凹凸性也可以用来判断函数的单调性。
凹凸性表示函数的曲线是向上凸起还是向下凸起。
1.若函数f''(x)>0,即二阶导数大于0,则函数在该区间内是向上凸起的,且在该区间内是递增的。
2.若函数f''(x)<0,即二阶导数小于0,则函数在该区间内是向下凸起的,且在该区间内是递减的。
3.若函数f''(x)=0,即二阶导数等于0,则函数在该点可能存在拐点。
需要注意的是,函数的凹凸性需要函数存在二阶导数,因此这种方法只适用于可导的函数。
综合判断法:有时候,通过综合判断函数在不同区间上的单调性,可以更准确地判断函数的单调性。
这可以通过以下步骤进行:1.确定函数定义的区间,即函数存在的区间。
2.判断函数在每个区间上的导数的符号,根据导数和函数的关系来判断函数的单调性。
3.判断函数在每个区间上的凹凸性,根据凹凸性和函数的关系来判断函数的单调性。
4.将导数和凹凸性的结果综合起来,判断函数在整个定义区间上的单调性。
单调性的判断方法
单调性的判断方法在数学中,我们经常会遇到单调性的问题,而判断一个函数的单调性是十分重要的。
因此,我们需要掌握一定的方法来准确判断一个函数的单调性。
下面,我将介绍一些常用的方法,希望能够帮助大家更好地理解和应用单调性的判断方法。
首先,我们来看一下什么是单调函数。
一个函数f(x)在区间I上是单调递增的,是指对于任意的x1和x2(x1<x2),都有f(x1)≤f(x2)成立;而单调递减的定义则是对于任意的x1和x2(x1<x2),都有f(x1)≥f(x2)成立。
因此,判断一个函数的单调性,就是要确定它在给定区间上是单调递增还是单调递减。
其次,我们可以借助导数的概念来判断函数的单调性。
对于函数y=f(x),如果在区间I上f'(x)>0,则函数在该区间上是单调递增的;如果在区间I上f'(x)<0,则函数在该区间上是单调递减的。
这是因为导数f'(x)表示了函数f(x)的变化率,当导数大于0时,函数在该点上的斜率为正,说明函数在该点上是单调递增的;当导数小于0时,函数在该点上的斜率为负,说明函数在该点上是单调递减的。
另外,我们还可以通过函数的二阶导数来判断函数的单调性。
如果函数f(x)在区间I上的二阶导数f''(x)>0,则函数在该区间上是凹的,也就是说函数在该区间上是单调递增的;如果函数f(x)在区间I上的二阶导数f''(x)<0,则函数在该区间上是凸的,也就是说函数在该区间上是单调递减的。
这是因为二阶导数f''(x)表示了函数f(x)的变化率的变化率,当二阶导数大于0时,说明函数的斜率在该点上是递增的,函数是凹的,即单调递增;当二阶导数小于0时,说明函数的斜率在该点上是递减的,函数是凸的,即单调递减。
最后,我们还可以通过函数的图像来直观地判断函数的单调性。
通过观察函数的图像,我们可以看出函数在给定区间上是单调递增还是单调递减。
高中数学函数单调性的判断方式
高中数学函数单调性的判断方式单调性是函数的重要性质,它在数学中有许多应用,如咱们常常利用求函数单调性的方式求函数的值域。
那么,有哪些求函数单调性的方式呢? 方式一:概念法对于函数f(x)的概念域I 内某个区间A 上的任意两个值12,x x(1)当12x x <时,都有12()()f x f x <,则说f(x)在这个区间上是增函数;(2)若当12x x <时,都有12()()f x f x >,则说f(x) 在这个区间上是减函数。
例如:按照函数单调性的概念,证明:函数在 上是减函数。
要证明函数f (x )在概念域内是减函数,设任意1212,x x R x x ∈<且,则33221221212121()()()()f x f x x x x x x x x x -=-=-++,12x x <因为 210x x ->所以,且在1x 与2x 中至少有一个不为0,不妨设20x ≠,那么222222121123()24x x x x x x x ++=++0>,12()()f x f x >所以,故 ()f x 在 (,)-∞+∞上为减函数。
方式二:性质法除用大体初等函数的单调性之外,利用单调性的有关性质也能简化解题. 若函数f(x)、g(x)在区间B 上具有单调性,则在区间B 上有:1. f(x)与c•f(x)当c >0具有相同的单调性,当c <0具有相反的单调性;2.当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数;3.当f(x)、g(x)都是增(减)函数,则f(x)•g(x)当二者都恒大于0时也是增(减)函数,当二者都恒小于0时也是减(增)函数;例如,已知f (x )在R 上是减函数,那么-5f (x )为____函数。
这道题很简单,咱们按照单调性的性质,很容易就可以判断它是增函数。
方式三:同增异减法(处置复合函数的单调性问题)对于复合函数y =f [g(x)]知足“同增异减”法(应注意内层函数的值域), 可令 t =g(x),则三个函数 y =f(t)、t =g(x)、y =f [g(x)]中,如有两个函数单调性相同,则第三个函数为增函数;如有两个函数单调性相反,则第三个函数为减函数.注:(1)奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性;(2)互为反函数的两个函数有相同的单调性;(3)若是f(x)在区间D 上是增(减)函数,那么f(x)在D 的任一子区间上也是增(减)函数。
函数单调性的判断及证明
函数单调性的判断及证明1.引言函数是数学中重要的概念之一,是对变量与变量之间的规律进行描述的工具。
在实际应用中,我们往往需要判断一个函数的单调性,即其在定义域内是否是单调递增的或单调递减的。
因此,本文将介绍函数单调性的判断及证明方法。
2.函数单调性的定义在数轴上,如果对于任意两个实数$x_1,x_2$,若有$x_1<x_2$,则$f(x_1)\leq f(x_2)$,则称函数$f(x)$是单调递增的;若有$x_1<x_2$,则$f(x_1)\geq f(x_2)$,则称函数$f(x)$是单调递减的。
3.函数单调性的判断(1)导数法设函数$f(x)$在区间$(a,b)$内可导,则:若$f'(x)>0$,则$f(x)$在$(a,b)$内单调递增;若$f'(x)<0$,则$f(x)$在$(a,b)$内单调递减。
(2)二阶导数法若函数$f(x)$在$(a,b)$内二次可导,则:若$f''(x)>0$,则$f(x)$在$(a,b)$内是单调递增的;若$f''(x)<0$,则$f(x)$在$(a,b)$内是单调递减的。
(3)微分形式法对于一个函数$f(x)$,若能表示为$dy=f'(x)dx$的微分形式,则:若$dy>0$,则$f(x)$在$(a,b)$内单调递增;若$dy<0$,则$f(x)$在$(a,b)$内单调递减。
4.函数单调性的证明(1)导数法的证明设$f(x)$在区间$(a,b)$内可导,若$f'(x)>0$,则对于任意$x_1<x_2$,有$$f(x_2)-f(x_1)=\int_{x_1}^{x_2}f'(x)dx>0$$因此,$f(x)$在$(a,b)$内单调递增。
若$f'(x)<0$,则对于任意$x_1<x_2$,有$$f(x_2)-f(x_1)=\int_{x_1}^{x_2}f'(x)dx<0$$因此,$f(x)$在$(a,b)$内单调递减。
【高中数学考点精讲】考点一 函数的单调性的判断
考点08 函数单调性与最值1、函数单调性的判断方法(1)定义法:在定义域内的某个区间上任取并使得,通过作差比较与的大小来判断单调性。
(2)性质法:若函数为增函数,为增函数,为减函数,为减函数,则有①为增函数,②为增函数,③为减函数,④为减函数。
(3)图像法:对于含绝对值或者分段函数经常使用数形结合的思想,通过函数的图象来判断函数的单调性。
由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接.(4)复合函数法:对于函数,可设内层函数为,外层函数为,可以利用复合函数法来进行求解,遵循“同增异减”,即内层函数与外层函数在区间D上的单调性相同,则函数在区间D上单调递增;内层函数与外层函数在区间D 上的单调性相反,则函数在区间D上单调递减.增函数减函数增函数减函数增函数减函数减函数增函数随着的增大而增大随着的增大而增大随着的增大而减小随着的增大而减小增函数增函数减函数减函数2、函数单调性的应用(1)比较大小.比大小常用的方法是①利用单调性比大小;②搭桥法,即引入中间量,从而确定大小关系;③数形结合比大小。
注:一般三个数比较大小使用中间量法(一个大于1,一个介于0-1之间,一个小于0)再结合函数的图像判断大小。
(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.解抽象函数不等式问题(如:f(a2+a-5)<2.)的一般步骤:第一步:(定性)确定函数f(x)在给定区间上的单调性;第二步:(转化)将函数不等式转化为f(M)<f(N)的形式;第三步:(去f)运用函数的单调性“去掉”函数的抽象符号“f”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.(3)利用函数单调性求参数的取值范围.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②二次函数的单调性与开口和对称轴(对称轴左右两侧单调性相反)有关。
函数单调性怎么判断
函数单调性怎么判断
1、导数法
首先对函数进行求导,令导函数等于零,得X值,判断X与导函数的关系,当导函数大于零时是增函数,小于零是减函数。
2、定义法
设x1,x2是函数f(x)定义域上任意的两个数,且x1<x2,若f(x1)<f(x2),则此函数为增函数;反知,若f(x1)>f(x2),则此函数为减函数.
3、性质法
若函数f(x)、g(x)在区间B上具有单调性,则在区间B上有:
⑴f(x)与f(x)+C(C为常数)具有相同的单调性;
⑵f(x)与c•f(x)当c>0具有相同的单调性,当c<0具有相反的单调性;
⑶当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数;
⑷当f(x)、g(x)都是增(减)函数,则f(x)•g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数;
4、复合函数同增异减法
对于复合函数y=f[g(x)]满足“同增异减”法(应注意内层函数的值域),可令t=g(x),则三个函数y=f(t)、t=g(x)、y=f[g(x)]中,若有两个函数单调性相同,则第三个函数为增函数;若有两个函数单调性相反,则第三个函数为减函数。
拓展资料:
1、奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性;
2、互为反函数的两个函数有相同的单调性;
3、如果f(x)在区间D上是增(减)函数,那么f(x)在D的任一子区间上也是增(减)函数.。
函数单调性的判定方法最全
函数单调性的判定方法最全函数的单调性是描述函数在整个定义域上的增减趋势的特性。
判定函数单调性是数学分析中的重要内容之一,对于函数的应用和推导都有着重要的影响。
本文将介绍函数单调性的判定方法,包括函数的基本概念、单调函数的定义、单调性的判定方法以及一些特殊函数的单调性判定。
一、函数的基本概念函数是一种特殊的关系,用于将一个集合中的元素与另一个集合中的元素进行对应。
函数通常用f(x)表示,其中x是自变量,f(x)是因变量。
二、单调函数的定义单调函数是指函数在定义域上的取值随自变量的增大而单调增加(或单调减少)的函数。
具体来说,如果对于定义域上的任意两个数a和b,若a<b,则有f(a)≤f(b)(或f(a)≥f(b)),则函数f(x)称为递增函数(或递减函数)。
三、单调性的判定方法1.导数判定法:对于可导函数,通过计算导数可以判断函数的单调性。
如果函数的导数恒大于零,则函数单调递增;如果导数恒小于零,则函数单调递减。
2.一阶导数和二阶导数判定法:如果函数在定义域上的一阶导数恒大于零(或恒小于零),而二阶导数恒小于零(或恒大于零),则函数单调递增(或递减)。
3.函数值比较法:对于定义域上的两个不同的数a和b,如果f(a)>f(b),则函数单调递增;如果f(a)<f(b),则函数单调递减。
4.零点判定法:如果函数在定义域上恒大于零(或恒小于零),则函数单调递增(或递减)。
5.不等式判定法:对于定义域上的任意两个数a和b,如果对于任意x∈[a,b],有f'(x)≥0,则函数单调递增;如果对于任意x∈[a,b],有f'(x)≤0,则函数单调递减。
四、特殊函数的单调性判定1.幂函数:当指数n为正偶数时,函数在整个定义域上单调递增;当指数n为负偶数时,函数在整个定义域上单调递减;当指数n为正奇数时,函数在整个定义域上单调递增;当指数n为负奇数时,函数在整个定义域上单调递减。
2.指数函数:当底数a大于1时,函数在整个定义域上单调递增;当底数a大于0且小于1时,函数在整个定义域上单调递减。
函数单调性的判断方法
函数单调性的判断方法函数的单调性在数学中是一个非常重要的概念,它描述了函数在定义域内的增减趋势。
判断一个函数的单调性对于理解函数的性质和解决实际问题都具有重要意义。
本文将介绍函数单调性的判断方法,希望能够帮助读者更好地理解和运用这一概念。
首先,我们来看一下函数的单调性是如何定义的。
对于定义域内的函数f(x),如果对于任意的x1和x2(x1<x2),都有f(x1)≤f(x2),那么我们称函数f(x)在该区间上是单调不减的;如果对于任意的x1和x2(x1<x2),都有f(x1)≥f(x2),那么我们称函数f(x)在该区间上是单调不增的。
如果一个函数在定义域上既是单调不增的又是单调不减的,那么我们称该函数在该区间上是单调的。
接下来,我们将介绍如何判断一个函数在给定区间上的单调性。
首先,我们需要计算函数在该区间上的导数。
对于函数f(x),如果f'(x)>0,那么函数在该点上是单调递增的;如果f'(x)<0,那么函数在该点上是单调递减的。
如果f'(x)=0,那么函数在该点上可能是极值点,需要进一步讨论;如果f'(x)不存在,那么函数在该点上可能存在间断点或者垂直渐近线,也需要进一步讨论。
在实际应用中,我们常常需要判断一个函数在给定区间上的单调性,以便于优化问题的求解或者函数图像的绘制。
通过计算函数的导数,我们可以很方便地得到函数在各点上的单调性,从而更好地理解函数的性质。
除了通过导数来判断函数的单调性外,我们还可以通过函数的图像来进行判断。
通过观察函数的图像,我们可以直观地看出函数在给定区间上的单调性。
对于一些简单的函数,我们可以很容易地通过图像来判断函数的单调性。
但对于一些复杂的函数,通过图像来判断函数的单调性可能会比较困难,这时候我们就需要借助导数的方法来进行判断。
总之,函数的单调性是一个非常重要的数学概念,它对于理解函数的性质和解决实际问题都具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
判断一个函数的单调性2.下列函数中,在区间(0,+∞)上是增函数的是( ) A .f (x )=x B .g (x )=-2x C .h (x )=-3x +1 D .s (x )=1x解析:函数g (x )=-2x 在R 上是减函数,函数h (x )=-3x +1在R 上是减函数,函数s (x )=1x 在(0,+∞)上是减函数,故排除B 、C 、D ,选A.答案:A1.下列函数中,在区间(-∞,0)上是减函数的是( ) A .y =1-x 2 B .y =x 2+x C .y =--x D .y =xx -1[答案] D[解析] y =1-x 2在(-∞,0)上为增函数,y =x 2+x 在(-∞,0)上不单调,y =--x 在(-∞,0)上为增函数,故选D.3.下列函数中,在区间(0,2)上为增函数的是( ) A .y =3-x B .y =x 2+1 C .y =1xD .y =-|x | [答案] B[解析] y =3-x ,y =1x ,y =-|x |在(0,2)上都是减函数,y =x 2+1在(0,2)上是增函数.11.考察单调性,填增或减函数y =1-x 在其定义域上为________函数; 函数y =1x在其定义域上为________函数. [答案] 减 减1.(2009·福建高考)下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是 ( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)解析:∵对任意的x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2),∴f (x )在(0,+∞)上为减函数.故选A.答案:A2.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),都有f (x 2)-f (x 1)x 2-x 1<0”的是( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)答案 A解析 满足f (x 2)-f (x 1)x 2-x 1<0其实就是f (x )在(0,+∞)上为减函数,故选A.6.已知奇函数f (x )的定义域为(-∞,0)∪(0,+∞),且不等式f (x 1)-f (x 2)x 1-x 2>0对任意两个不相等的正实数x 1、x 2都成立.在下列不等式中,正确的是( )A .f (-5)>f (3)B .f (-5)<f (3)C .f (-3)>f (-5)D .f (-3)<f (-5) 答案 C解析 由f (x 1)-f (x 2)x 1-x 2>0对任意两个不相等的正实数x 1、x 2都成立,可知,f (x )在(0,+∞)上为增函数,又f (x )为奇函数,故f (x )在(-∞,0)上也为增函数,故选C.2.(2009年高考福建卷)下列函数f (x )中,满足“对任意的x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1x B .f (x )=(x -1)2 C .f (x )=e x D .f (x )=ln(x +1)解析:选A.由题意知函数f (x )在(0,+∞)上是减函数,在A 中,由f ′(x )=-1x 2<0得f (x )在(-∞,0)和(0,+∞)上为减函数;在B 中,由f ′(x )=2(x -1)<0得x <1,所以f (x )在(-∞,1)上为减函数.在C中,由f′(x)=e x>0知f(x)在R上为增函数.在D中,由f′(x)=1x+1且x+1>0知f′(x)>0,所以f(x)在(-1,+∞)上为减函数.6.(2009年高考陕西卷)定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)(f(x2)-f(x1))>0,则当n∈N*时,有()A.f(-n)<f(n-1)<f(n+1)B.f(n-1)<f(-n)<f(n+1)C.f(n+1)<f(-n)<f(n-1)D.f(n+1)<f(n-1)<f(-n)解析:选 C.对任意x1,x2∈(-∞,0](x1≠x2),有(x2-x1)·(f(x2)-f(x1))>0,因此x2-x1和f(x2)-f(x1)同号,所以f(x)在(-∞,0]上是增函数.由于n∈N*,且n+1>n>n-1,所以-n-1<-n<-n +1≤0,即f(n+1)=f(-n-1)<f(-n)<f(-n+1)=f(n-1).9.如果函数f(x)在[a,b]上是增函数,对于任意的x1、x2∈[a,b](x1≠x2),下列结论中正确的有________.①f(x1)-f(x2)x1-x2>0;②(x1-x2)[f(x1)-f(x2)]>0;③f(a)<f(x1)<f(x2)<f(b);④x1-x2f(x1)-f(x2)>0.解析:∵f(x)在[a,b]上为增函数.∴x1-x2与f(x1)-f(x2)的符号相同.∴①②④均正确.又∵不知道x1,x2的大小,∴无法比较f(x1)与f(x2)的大小,故③错误.答案:①②④1.已知f(x)在(-∞,+∞)内是减函数,a、b∈R,a+b≤0,则有( )A.f(a)+f(b)≤-f(a)-f(b)B.f(a)+f(b)≥-f(a)-f(b)C.f(a)+f(b)≤f(-a)+f(-b)D.f(a)+f(b)≥f(-a)+f(-b) 解析:a+b≤0⇒a≤-b,b≤-a⇒f(a)≥f(-b),f(b)≥f(-a)两式相加即得. 答案:D1.(2009年高考福建卷改编)下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是________.①f (x )=1x ②f (x )=(x -1)2 ③f (x )=e x ④f (x )=ln(x +1) 解析:∵对任意的x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2),∴f (x )在(0,+∞)上为减函数.答案:①4.(2009年高考陕西卷改编)定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则下列结论正确的是________.①f (3)<f (-2)<f (1) ②f (1)<f (-2)<f (3) ③f (-2)<f (1)<f (3) ④f (3)<f (1)<f (-2)解析:由已知f (x 2)-f (x 1)x 2-x 1<0,得f (x )在x ∈[0,+∞)上单调递减,由偶函数性质得f (2)=f (-2),即f (3)<f (-2)<f (1).答案:①判断函数的单调性和单调区间1. 下列函数中,在(-∞,0)上为增函数的是( )A .y =1-x 2B .y =x 2+2xC .y =11+x D .y =x x -1解析:∵y =1-x 2的对称轴为x =0,且开口向下,∴(-∞,0)为其单调递增区间.答案:A(理)下列函数中既是奇函数,又在区间[-1,1]上单调递减的是( ) A .f (x )=sin xB .f (x )=-|x +1|C .f (x )=12(a x +a -x )D .f (x )=ln 2-x2+x[答案] D[解析] y =sin x 与y =ln 2-x 2+x 为奇函数,而y =12(a x +a -x )为偶函数,y =-|x +1|是非奇非偶函数.y =sin x 在[-1,1]上为增函数.故选D. 5. 函数y =ln 1+x1-x的单调递增区间是________.解析:本题考查复合函数单调区间的确定;据题意需1+x1-x >0即函数定义域为(-1,1),原函数的递增区间即为函数u (x )=1+x 1-x 在(-1,1)上的递增区间,由于u ′(x )=(1+x1-x )′=2(1-x )2>0.故函数u (x )=1+x 1-x 的递增区间(-1,1)即为原函数的递增区间. 答案:(-1,1)综上知,函数f (x )的单调增区间为(-1,1),单调减区间为(-∞,-1]和[1,+∞) 2.设f (x )是增函数,则下列结论一定正确的是( ) A .y =[f (x )]2是增函数 B .y =1f (x )是减函数C .y =-f (x )是减函数D .y =|f (x )|是增函数解析:根据函数单调性定义判定,设x 1<x 2, 则f (x 1)<f (x 2),则-f (x 1)>-f (x 2),但[f (x 1)]2<[f (x 2)]2,1f (x 1)>1f (x 2),|f (x 1)|<|f (x 2)|,三个关系式不一定成立. 答案:C1.函数y =x +2x -2的单调区间是________,在该区间上是单调________.解析:y =x +2x -2可写成y =1+4x -2,所以函数的单调区间是(-∞,2)及(2,+∞),在这两个区间上都是单调减函数.答案:(-∞,2)及(2,+∞) 减函数1.函数y =x 2-6x +10在区间(2,4)上是( ) A .递减函数 B .递增函数 C .先减后增 D .先增后减答案 C解析 对称轴为x =3,函数在(2,3]上为减函数,在[3,4)上为增函数.3.若f (x )=x 2+2(a -1)x +2在区间(-∞,4)上是减函数,那么实数a 的取值范围是( )A .a <-3B .a ≤-3C .a >-3D .a ≥-3答案 B解析 对称轴x =1-a ≥4.∴a ≤-3.12.函数f (x )=-x 2+|x |的递减区间是________. 答案 ⎣⎡⎦⎤-12,0与⎣⎡⎭⎫12,+∞ 解析 数形结合13.在给出的下列4个条件中,①⎩⎪⎨⎪⎧0<a <1x ∈(-∞,0) ②⎩⎪⎨⎪⎧ 0<a <1x ∈(0,+∞) ③⎩⎪⎨⎪⎧ a >1a ∈(-∞,0) ④⎩⎪⎨⎪⎧a >1x ∈(0,+∞) 能使函数y =log a 1x 2为单调递减函数的是________.(把你认为正确的条件编号都填上). 答案 ①④解析 利用复合函数的性质,①④正确.。