2018全国新课标1卷数学(文科)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年普通高等学校招生全国统一考试

文科数学

一、选择题:本题共12分,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.

1.已知集合{}02A =,,{}21012B =--,,,

,,则A B =( )

A .{}02,

B .{}12,

C .{}0

D .{}21012--,,

,, 2.设121i

z i i

-=

++,则z =( )

A. 0

B. 1

2

C. 1

D.

3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:

则下列结论中不正确的是( ) A. 新农村建设后,种植收入减少

B. 新农村建设后,其他收入增加了一倍以上

C. 新农村建设后,养殖收入增加了一倍

D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半

4.已知椭圆C :22

214

x y a +=的一个焦点为(20),

,则C 的离心率为( )

A .1

3

B .12

C D 5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )

A .

B .12π

C .

D .10π

6.设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为( )

A. 2y x =-

B. y x =-

C. 2y x =

D. y x =

7.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( ) A .

3144AB AC - B .1344AB AC - C .31

44

AB AC + D .

13

44

AB AC + 8.已知函数()2

2

2cos sin 2f x x x =-+,则( )

A .()f x 的最小正周期为π,最大值为3

B .()f x 的最小正周期为π,最大值为4

C .()f x 的最小正周期为2π,最大值为3

D .()f x 的最小正周期为2π,最大值为4 9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A .217

B. 25

C .3

D .2

10.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( ) A .8

B .62

C .82

D .83

11.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,

,()2B b ,,且2

cos 23

α=

,则a b -=( ) A .15

B .

55

C .

25

5

D .1

12.设函数()2,0

1,0x x f x x -⎧≤=⎨>⎩

,则满足()()12f x f x +<的x 的取值范围是( )

A .(]1-∞-,

B .()0+∞,

C .()10-,

D .()0-∞,

二、填空题:本题共4小题,每小题5分,共20分.

13.已知函数()()22log f x x a =+,若()31f =,则a =________.

14.若,x y 满足约束条件220

100x y x y y --≤⎧⎪

-+≥⎨⎪≤⎩

,则32z x y =+的最大值为________.

15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.

16.△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.

三、解答题:共70分。 解答应写出文字说明、证明过程或演算步骤. 第17~21题为必考题,每个试题考生都必须作答. 第22、23题为选考题,考生根据要求作答。 (一)必考题:60分。

17.已知数列{}n a 满足11a =,()121n n na n a +=+,设n n a

b n =.

(1)求123b b b ,

,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.

18.如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;

(2)Q 为线段AD 上一点,P 为线段BC 上一点,且2

3

BP DQ DA ==

,求三棱锥Q ABP -的体积.

相关文档
最新文档