2020中考数学模拟卷5

合集下载

2020年安徽省宣城市中考数学模拟试卷(5月份) (解析版)

2020年安徽省宣城市中考数学模拟试卷(5月份) (解析版)

2020年安徽省宣城市中考数学模拟试卷(5月份)一、选择题1.﹣1绝对值的相反数是()A.﹣2B.﹣1C.0D.12.计算a3•a•(﹣1)的结果是()A.a2B.﹣a2C.a4D.﹣a43.太阳半径约696000千米,则696000千米用科学记数法可表示为()A.0.696×106B.6.96×105C.0.696×107D.6.96×1084.如图,该几何体的俯视图是()A.B.C.D.5.化简的结果是()A.x+1B.x﹣1C.﹣x D.x6.已知一次函数y1=x﹣3和反比例函数y2=的图象在平面直角坐标系中交于A、B两点,当y1>y2时,x的取值范围是()A.x<﹣1或x>4B.﹣1<x<0或x>4C.﹣1<x<0或0<x<4D.x<﹣1或0<x<47.如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则劣弧的长为()A.B.C.2πD.8.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2B.3a2C.4a2D.5a29.如图,在矩形ABCD中,点E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②DF=DC;③S△DCF=4S△DEF;④tan∠CAD=.其中正确结论的个数是()A.4B.3C.2D.110.如图1,正△ABC的边长为4,点P为BC边上的任意一点,且∠APD=60°,PD交AC于点D,设线段PB的长度为x,图1中某线段的长度为y,y与x的函数关系的大致图象如图2,则这条线段可能是图1中的()A.线段AD B.线段AP C.线段PD D.线段CD二、填空题(本大题共4小题,每小题5分,满分20分)11.函数y=的自变量x的取值范围是.12.如图,由一些点组成形如正多边形的图案,按照这样的规律摆下去,则第n(n>0)个图案需要点的个数是.13.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是.14.小光和小王玩“石头、剪子、布”游戏,规定:一局比赛后,胜者得3分,负者得﹣1分,平局两人都得0分,小光和小王都制订了自己的游戏策略,并且两人都不知道对方的策略.小光的策略是:石头、剪子、布、石头、剪子、布、……小王的策略是:剪子、随机、剪子、随机……(说明:随机指石头、剪子、布中任意一个)例如,某次游戏的前9局比赛中,两人当时的策略和得分情况如下表局数123456789小光实际策略石头剪子布石头剪子布石头剪子布小王实际策略剪子布剪子石头剪子剪子剪子石头剪子小光得分33﹣100﹣13﹣1﹣1小王得分﹣1﹣13003﹣133已知在另一次游戏中,50局比赛后,小光总得分为﹣6分,则小王总得分为分.三、(本大题共2小题,每小题0分,满分0分)15.计算:()﹣2+(π2﹣π)0+cos60°+|﹣2|16.如图,四边形ABCD为平行四边形,∠BAD和∠BCD的平分线AE,CF分别交DC,BA的延长线于点E,F,交边BC,AD于点H,G.(1)求证:四边形AECF是平行四边形.(2)若AB=5,BC=8,求AF+AG的值.四、(本大题共2小题,每小题0分,满分0分)17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,并使它与△ABC全等且A与A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.18.浮式起重机是海上打捞、海上救援和海上装卸的重要设备(如图①),某公司的浮式起重机需更换悬索,该公司设计了一个数学模型(如图②),测量知,∠A=30°,∠C =49°,AB=60m.请你利用以上数据,求出悬索AC和支架BC的长(结果取整数).参考数据:≈1.73,sin49°≈0.75,cos49°≈0.66,tan49°≈1.15..五、(本大题共2小题,每小题0分,满分0分)19.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.这本书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.用现代白话文可以这样理解:甲口袋中装有黄金9枚(每枚黄金重量相同),乙口袋中装有白银11枚(每枚白银重量相同),用称分别称这两个口袋的重量,它们的重量相等.若从甲口袋中拿出1枚黄金放入乙口袋中,乙口袋中拿出1枚白银放入甲口袋中,则甲口袋的重量比乙口袋的重量轻了13两(袋子重量忽略不计).问一枚黄金和一枚白银分别重多少两?请根据题意列方程(组)解之.20.如图,△ACE,△ACD均为直角三角形,∠ACE=90°,∠ADC=90°,AE与CD相交于点P,以CD为直径的⊙O恰好经过点E,并与AC,AE分别交于点B和点F.(1)求证:∠ADF=∠EAC.(2)若PC=PA,PF=1,求AF的长.六、(本大题满分0分)21.鄂尔多斯市加快国家旅游改革先行示范区建设,越来越多的游客慕名而来,感受鄂尔多斯市“24℃夏天的独特魅力”,市旅游局工作人员依据2016年7月份鄂尔多斯市各景点的游客数量,绘制了如下尚不完整的统计图;根据以上信息解答下列问题:(1)2016年7月份,鄂尔多斯市共接待游客万人,扇形统计图中乌兰木伦景观湖所对应的圆心角的度数是,并补全条形统计图;(2)预计2017年7月份约有200万人选择来鄂尔多斯市旅游,通过计算预估其中选择去响沙湾旅游的人数;(3)甲、乙两个旅行团准备去响沙湾、成吉思汗陵、蒙古源流三个景点旅游,若这三个景点分别记作a、b、c,请用树状图或列表法求他们选择去同一个景点的概率.七、(本大题满分0分)22.2020年3月,我国湖北省A、B两市遭受严重新冠肺炎影响,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(2)经过当地政府的大力支持,从D市到B市的运输时间缩短了,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m 的取值范围.八、(本大题满分0分)23.已知:△ABC和△ADE按如图所示方式放置,点D在△ABC内,连接BD、CD和CE,且∠DCE=90°.(1)如图①,当△ABC和△ADE均为等边三角形时,试确定AD、BD、CD三条线段的关系,并说明理由;(2)如图②,当BA=BC=2AC,DA=DE=2AE时,试确定AD、BD、CD三条线段的关系,并说明理由;(3)如图③,当AB:BC:AC=AD:DE:AE=m:n:p时,请直接写出AD、BD、CD三条线段的关系.参考答案一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的.1.﹣1绝对值的相反数是()A.﹣2B.﹣1C.0D.1【分析】先根据负数的绝对值是其相反数,再利用相反数得出答案.解:﹣1的绝对值为1,所以﹣1绝对值的相反数是﹣1,故选:B.2.计算a3•a•(﹣1)的结果是()A.a2B.﹣a2C.a4D.﹣a4【分析】根据同底数幂的乘法法则计算即可.解:a3•a•(﹣1)=a3+1•(﹣1)=﹣a4.故选:D.3.太阳半径约696000千米,则696000千米用科学记数法可表示为()A.0.696×106B.6.96×105C.0.696×107D.6.96×108【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.解:696000千米=6.96×105米,故选:B.4.如图,该几何体的俯视图是()A.B.C.D.【分析】找到从几何体的上面所看到的图形即可.解:从几何体的上面看可得,故选:A.5.化简的结果是()A.x+1B.x﹣1C.﹣x D.x【分析】将分母化为同分母,通分,再将分子因式分解,约分.解:=﹣===x,故选:D.6.已知一次函数y1=x﹣3和反比例函数y2=的图象在平面直角坐标系中交于A、B两点,当y1>y2时,x的取值范围是()A.x<﹣1或x>4B.﹣1<x<0或x>4C.﹣1<x<0或0<x<4D.x<﹣1或0<x<4【分析】先求出两个函数的交点坐标,再根据函数的图象和性质得出即可.解:解方程组得:,,即A(4,1),B(﹣1,﹣4),所以当y1>y2时,x的取值范围是﹣1<x<0或x>4,故选:B.7.如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则劣弧的长为()A.B.C.2πD.【分析】先计算圆心角为120°,根据弧长公式=,可得结果.解:连接OD,∵∠ABD=30°,∴∠AOD=2∠ABD=60°,∴∠BOD=120°,∴的长==,故选:D.8.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2B.3a2C.4a2D.5a2【分析】根据正八边形的性质得出∠CAB=∠CBA=45°,进而得出AC=BC=a,再利用正八边形周围四个三角形的特殊性得出阴影部分面积即可.解:∵某小区将原来正方形地砖更换为如图所示的正八边形植草砖,设正八边形与其内部小正方形的边长都为a,∴AB=a,且∠CAB=∠CBA=45°,∴sin45°===,∴AC=BC=a,∴S△ABC=×a×a=,∴正八边形周围是四个全等三角形,面积和为:×4=a2.正八边形中间是边长为a的正方形,∴阴影部分的面积为:a2+a2=2a2,故选:A.9.如图,在矩形ABCD中,点E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②DF=DC;③S△DCF=4S△DEF;④tan∠CAD=.其中正确结论的个数是()A.4B.3C.2D.1【分析】①正确.只要证明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;②根据已知条件得到四边形BMDE是平行四边形,求得BM=DE=BC,根据线段垂直平分线的性质得到DM垂直平分CF,于是得到结论,③根据三角形的面积公式即可得到结论;④设AE=a,AB=b,则AD=2a,根据相似三角形的性质即可得到结论.解:如图,过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,S△DCF=4S△DEF∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;②∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故②正确;③∵点E是AD边的中点,∴S△DEF=S△ADF,∵△AEF∽△CBF,∴AF:CF=AE:BC=,∴S△CDF=2S△ADF=4S△DEF,故③正确;④设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有=,即b=a,∴tan∠CAD===.故④正确;故选:A.10.如图1,正△ABC的边长为4,点P为BC边上的任意一点,且∠APD=60°,PD交AC于点D,设线段PB的长度为x,图1中某线段的长度为y,y与x的函数关系的大致图象如图2,则这条线段可能是图1中的()A.线段AD B.线段AP C.线段PD D.线段CD【分析】设出等边三角形的边长,根据等边三角形的性质确定各个线段取最小值时,x 的范围,结合图象得到答案.解:由图2知,当x取最小值2时,y=3.正△ABC的边长为4,则0≤x≤4,根据等边三角形的性质可知,当AP⊥BC即x=2时,线段AP、PD有最小值,此时AP=2,PD=AP=,AD=AP cos30°=3,CD=AC﹣AD=1,故选:A.二、填空题(本大题共4小题,每小题5分,满分20分)11.函数y=的自变量x的取值范围是x≥2.【分析】根据被开方数大于等于0列式计算即可得解.解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.12.如图,由一些点组成形如正多边形的图案,按照这样的规律摆下去,则第n(n>0)个图案需要点的个数是n2+2n.【分析】由第1个图形是2×3﹣3、第2个图形是3×4﹣4、第3个图形是4×5﹣5,据此可得答案.解:第1个图形是2×3﹣3,第2个图形是3×4﹣4,第3个图形是4×5﹣5,按照这样的规律摆下去,则第n个图形需要云子的个数是(n+1)(n+2)﹣(n+2)=n2+2n,故答案为:n2+2n.13.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是10或4.【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,即可求出斜边的长.解:①如图,因为CD=,点D是斜边AB的中点,所以AB=2CD=4;②如图,因为CE═=5,E是斜边AB的中点,所以AB=2CE=10,综上,原直角三角形纸片的斜边长是10或4,故答案为:10或4.14.小光和小王玩“石头、剪子、布”游戏,规定:一局比赛后,胜者得3分,负者得﹣1分,平局两人都得0分,小光和小王都制订了自己的游戏策略,并且两人都不知道对方的策略.小光的策略是:石头、剪子、布、石头、剪子、布、……小王的策略是:剪子、随机、剪子、随机……(说明:随机指石头、剪子、布中任意一个)例如,某次游戏的前9局比赛中,两人当时的策略和得分情况如下表局数123456789小光实际策略石头剪子布石头剪子布石头剪子布小王实际策略剪子布剪子石头剪子剪子剪子石头剪子小光得分33﹣100﹣13﹣1﹣1小王得分﹣1﹣13003﹣133已知在另一次游戏中,50局比赛后,小光总得分为﹣6分,则小王总得分为90分.【分析】观察二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿﹣1分,第五局小光拿0分,进而可得出五十局中可预知的小光胜9局、平8局、负8局,设其它二十五局中,小光胜了x局,负了y局,则平了(25﹣x﹣y)局,根据50局比赛后小光总得分为﹣6分,即可得出关于x、y的二元一次方程,由x、y、(25﹣x﹣y)均非负,可得出x=0、y=25,再由胜一局得3分、负一局得﹣1分、平不得分,可求出小王的总得分.解:由二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿﹣1分,第五局小光拿0分.∵50÷6=8(组)……2(局),∴(3﹣1+0)×8+3=19(分).设其它二十五局中,小光胜了x局,负了y局,则平了(25﹣x﹣y)局,根据题意得:19+3x﹣y=﹣6,∴y=3x+25.∵x、y、(25﹣x﹣y)均非负,∴x=0,y=25,∴小王的总得分=(﹣1+3+0)×8﹣1+25×3=90(分).故答案为:90.三、(本大题共2小题,每小题0分,满分0分)15.计算:()﹣2+(π2﹣π)0+cos60°+|﹣2|【分析】直接利用负指数幂的性质以及特殊角的三角函数值、绝对值的性质、零指数幂的性质进而化简得出答案.解:原式=+1++2﹣=+1++2﹣=4﹣.16.如图,四边形ABCD为平行四边形,∠BAD和∠BCD的平分线AE,CF分别交DC,BA的延长线于点E,F,交边BC,AD于点H,G.(1)求证:四边形AECF是平行四边形.(2)若AB=5,BC=8,求AF+AG的值.【分析】(1)由平行四边形的性质,结合角平分线的定义可证得AE∥CF,结合AF∥CE,可证得结论;(2)由条件可证得△DCG∽△AFG,利用相似三角形的性质可求得DG与AG的关系,结合条件可求得AG的长,从而可求得答案.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AD∥BC,∠BAD=∠BCD,∵AE、CF分别平分∠BAD和∠BCD,∴∠BCG=∠CGD=∠HAD,∴AE∥CF,∵AF∥CE,∴四边形AECF是平行四边形;(2)解:由(1)可知∠BCF=∠DCF=∠F,∴BF=BC=AD=8,∵AB=CD=5,∴AF=BF﹣AB=3,∵BF∥DE,∴∠DCG=∠F,∠D=∠FAG,∴△DCG∽△AFG,∴==,∴DG=AG,∴AD=AG+DG=AG=8,∴AG=3,∴AF+AG=3+3=6.四、(本大题共2小题,每小题0分,满分0分)17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,并使它与△ABC全等且A与A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.【分析】(1)利用△ABC三边长度,画出以A1为顶点的三角形三边长度即可,利用图象平移,可得出△A1B1C1,(2)利用点B关于直线AC的对称点D,得出D点坐标即可得出AD与AB的位置关系.解:(1)如图所示:根据AC=3,AB=,BC=5,利用△ABC≌△A1B1C1,利用图象平移,可得出△A1B1C1,(2)如图所示:AD可以看成是AB绕着点A逆时针旋转90度得到的.18.浮式起重机是海上打捞、海上救援和海上装卸的重要设备(如图①),某公司的浮式起重机需更换悬索,该公司设计了一个数学模型(如图②),测量知,∠A=30°,∠C =49°,AB=60m.请你利用以上数据,求出悬索AC和支架BC的长(结果取整数).参考数据:≈1.73,sin49°≈0.75,cos49°≈0.66,tan49°≈1.15..【分析】过点B作CD⊥AC于点D,根据锐角三角函数的定义即可求出答案.解:过点B作CD⊥AC于点D,∵∠A=30°,AB=60,∴BD=AB=30,∴AD=BD=30,在Rt△CBD中,tan49°=,sin49°=,∴CD≈26,BC≈40,∴AC=AD+CD≈78.五、(本大题共2小题,每小题0分,满分0分)19.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.这本书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.用现代白话文可以这样理解:甲口袋中装有黄金9枚(每枚黄金重量相同),乙口袋中装有白银11枚(每枚白银重量相同),用称分别称这两个口袋的重量,它们的重量相等.若从甲口袋中拿出1枚黄金放入乙口袋中,乙口袋中拿出1枚白银放入甲口袋中,则甲口袋的重量比乙口袋的重量轻了13两(袋子重量忽略不计).问一枚黄金和一枚白银分别重多少两?请根据题意列方程(组)解之.【分析】设每枚黄金重x两,每枚白银重y两,根据题意列出方程组即可求出答案.解:设每枚黄金重x两,每枚白银重y两,由题意得,解得,答:每枚黄金重两,每枚白银重两20.如图,△ACE,△ACD均为直角三角形,∠ACE=90°,∠ADC=90°,AE与CD相交于点P,以CD为直径的⊙O恰好经过点E,并与AC,AE分别交于点B和点F.(1)求证:∠ADF=∠EAC.(2)若PC=PA,PF=1,求AF的长.【分析】(1)根据圆周角定理,等角的余角相等可以证明结论成立;(2)根据(1)中的结论和三角形相似的知识可以求得AF的长.【解答】(1)证明:∵∠ADC=90°,∠ACE=90°,∴∠ADF+∠FDC=90°,∠EAC+∠CEF=90°,∵∠FDC=∠CEF,∴∠ADF=∠EAC;(2)连接FC,∵CD是圆O的直径,∴∠DFC=90°,∴∠FDC+∠FCD=90°,∵∠ADF+∠FDC=90°,∠ADF=∠EAC,∴∠FCD=∠EAC,即∠FCP=CAP,∵∠FPC=∠CPA,∴△FPC∽△CPA,∴,∵PC=PA,PF=1,∴,解得,PA=,∴AF=PA﹣PF=,即AF=.六、(本大题满分0分)21.鄂尔多斯市加快国家旅游改革先行示范区建设,越来越多的游客慕名而来,感受鄂尔多斯市“24℃夏天的独特魅力”,市旅游局工作人员依据2016年7月份鄂尔多斯市各景点的游客数量,绘制了如下尚不完整的统计图;根据以上信息解答下列问题:(1)2016年7月份,鄂尔多斯市共接待游客150万人,扇形统计图中乌兰木伦景观湖所对应的圆心角的度数是72,并补全条形统计图;(2)预计2017年7月份约有200万人选择来鄂尔多斯市旅游,通过计算预估其中选择去响沙湾旅游的人数;(3)甲、乙两个旅行团准备去响沙湾、成吉思汗陵、蒙古源流三个景点旅游,若这三个景点分别记作a、b、c,请用树状图或列表法求他们选择去同一个景点的概率.【分析】(1)根据条形图和扇形图得到游“其他”的人数和所占的百分比,计算出共接待游客人数,用“乌兰木伦景观湖”所占的百分比乘以360°求出圆心角;用总人数减去各个旅游景点的人数求出黄河大峡谷的人数,从而补全条形统计图;(2)用总人数乘以去响沙湾旅游的人数所占的百分比,即可得出答案;(3)列树状图得出共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,根据概率公式计算即可.解:(1)由条形图和扇形图可知,游其他的人数是12万人,占8%,则鄂尔多斯市共接待游客人数为:12÷8%=150(万人),乌兰木伦景观湖所对应的圆心角的度数是:360°×=72°,黄河大峡谷人数为:150﹣45﹣27﹣30﹣24﹣12=12(万人),补全条形统计图如图:故答案为:150,72;(2)根据题意得:200×=60(万人)答:估计其中选择去响沙湾旅游的人数有60万人;(3)设a,b,c分别表示响沙湾、成吉思汗陵、蒙古源流,列树状图如下:由此可见,共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种则同时选择去同一个景点的概率是=七、(本大题满分0分)22.2020年3月,我国湖北省A、B两市遭受严重新冠肺炎影响,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(2)经过当地政府的大力支持,从D市到B市的运输时间缩短了,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m 的取值范围.【分析】(1)根据题意可以求得w与x的函数关系式,并写出x的取值范围;(2)根据题意,利用分类讨论的数学思想可以解答本题.解:(1)由题意可得,w=20(x﹣60)+25(300﹣x)+15(260﹣x)+30x=10x+10200,∴w=10x+10200(60≤x≤260);(2)由题意可得,w=10x+10200﹣mx=(10﹣m)x+10200,当0<m<10时,x=60时,w取得最小值,此时w=(10﹣m)×60+10200≥10320,解得,0<m≤8,当m>10时,x=260时,w取得最小值,此时,w=(10﹣m)×260+10200≥10320,解得,m≤.∵<10,∴m>10这种情况不符合题意,由上可得,m的取值范围是0<m≤8.八、(本大题满分0分)23.已知:△ABC和△ADE按如图所示方式放置,点D在△ABC内,连接BD、CD和CE,且∠DCE=90°.(1)如图①,当△ABC和△ADE均为等边三角形时,试确定AD、BD、CD三条线段的关系,并说明理由;(2)如图②,当BA=BC=2AC,DA=DE=2AE时,试确定AD、BD、CD三条线段的关系,并说明理由;(3)如图③,当AB:BC:AC=AD:DE:AE=m:n:p时,请直接写出AD、BD、CD三条线段的关系.【分析】(1)先判断出∠BAD=∠CAE,进而判断出△ABD≌△ACE,最后用勾股定理即可得出结论;(2)先判断出△ABC∽△ADE,进而得出∠BAC=∠DAE,即可判断出△BAD∽△CAE,最后用勾股定理即可得出结论.解:(1)CD2+BD2=AD2,理由:∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE=DE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,在Rt△DCE中,CD2+CE2=DE2,∴CD2+BD2=AD2,(2)CD2+BD2=AD2,理由:∵BA=BC=2AC,DA=DE=2AE,∴,∴△ABC∽△ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,∵,∴△BAD∽△CAE,∴=2,∴BD=2CE,在Rt△DCE中,CD2+CE2=DE2,∴CD2+BD2=AD2,(3)(mCD)2+(pBD)2=(nAD)2,理由:∵AB:BC:AC=AD:DE:AE=m:n:p,∴DE=AD,△ABC∽△ADE,∴∠BAC=∠DAE,∵,∴△ABD∽△ACE,∴,∴CE=BD,在Rt△DCE中,CD2+CE2=DE2,∴CD2+BD2=AD2,∴(mCD)2+(pBD)2=(nAD)2。

精品模拟2020年安徽省中考数学模拟试卷五解析版

精品模拟2020年安徽省中考数学模拟试卷五解析版

精品模拟2020年安徽省中考数学模拟试卷五一.选择题(共10小题,满分40分,每小题4分)1.﹣(﹣2019)的相反数是()A.﹣2019B.2019C.D.2.下列计算正确的是()A.a2•a3=a6B.3a2﹣a2=2C.a6÷a2=a3D.(﹣2a)2=4a23.如图,下列选项中不是正六棱柱三视图的是()A.B.C.D.4.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣15.不等式3x+4≥x的解集是()A.x≥﹣2B.x≥1C.x≤﹣2D.x≤16.小明家承包了一个鱼塘,快到年底了,爸爸想知道这个鱼塘大约有多少条鱼.小明采用“捉放法”先随机抓1000条鱼做上标记,再放回鱼塘过一段时间后再随机抓1000条鱼发现有5条鱼是做标记的,再以此来估算整个池塘的鱼大约有()A.10000条B.100000C.200000条D.2000000条7.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D.x(x﹣1)=2108.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为()A.1B.2C.4D.不能确定9.如图,A,B是半径为1的⊙O上两点,且∠AOB=60°,点P从A出发,在⊙O上以每秒个单位长度的速度匀速运动,回到点A运动结束.设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x的函数关系的是()A.①或②B.②或③C.③或④D.①或④10.如图,Rt△ABC中,∠ACB=90°,AC=BC=,以AB为斜边另作Rt△APB,连接PC,当点P在AC左侧时,下列结论正确的是()A.∠APC的度数不确定B.PB=PC+PAC.当PA=1时,PC=D.当PA=PC时,PB2=2+二.填空题(共4小题,满分20分,每小题5分)11.若=0.694,=1.442,则=12.因式分解:a2b2﹣a2﹣b2+1=.13.如图,两弦AB 、CD 相交于点E ,且AB ⊥CD ,若∠B =60°,则∠A 等于 度.14.在平面直角坐标系中,二次函数y =x 2+bx +c 的图象如图所示,关于x 的方程x 2+3bx +3c =m 有实数根,则m 的取值范围是 .三.解答题(共2小题,满分16分,每小题8分) 15.(8分)计算:sin45°﹣|﹣3|+(2018﹣)0+()﹣116.(8分)购买甲、乙、丙三种不同品种的练习本各四次,其中,有一次购买时,三种练习本同时打折,四次购买的数量和费用如表:(1)第 次购物时打折;练习本甲的标价是 元/本,练习本乙的标价是 元/本,练习本丙的标价是 元/本;(2)如果三种练习本的折扣相同,请问折扣是打几折?(3)现有资金100.5元,全部用于购买练习本,计划以标价购进练习本36本,如果购买其中两种练习本,请你直接写出一种购买方案,不需说明理由. 四.解答题(共2小题,满分16分,每小题8分)17.(8分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣2,2),B(﹣4,0),C(﹣4,﹣4).(1)在y轴右侧,以O为位似中心,画出△A′B′C′,使它与△ABC的相似比为1:2;(2)根据(1)的作图,sin∠A′C′B′=.18.(8分)如图1,2分别是某款篮球架的实物图与示意图,已知AB⊥BC于点B,底座BC的长为1米,底座BC与支架AC所成的角∠ACB=60°,点H在支架AF上,篮板底部支架EH∥BC,EF⊥EH于点E,已知AH长米,HF长米,HE长1米.(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.(2)求篮板底部点E到地面的距离.(结果保留根号)五.解答题(共2小题,满分20分,每小题10分)19.(10分)阅读下面材料:勾股定理的逆定理:如果是直角三角形的三条边长a,b,c,满足a2+b2=c2,那么这个三角形是直角三角形.能够成为直角三角形三条边长的正整数,称为勾股数.例如:32+42=52,3、4、5是一组勾股数.古希腊的哲学家柏拉图曾指出,如果m表示大于1的整数,a=2m,b=m2﹣1,c=m2+1,那么a,b,c为勾股数,你认为正确吗?如果正确,请说明理由,并利用这个结论得出一组勾股数.20.(10分)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,(1)求⊙O的半径;(2)求O到弦BC的距离.六.解答题(共1小题,满分12分,每小题12分)21.(12分)张老师把QQ运动里“好友计步榜”排名前20名好友一天行走的步数做了整理,绘制了如下尚不完整的统计图表:根据信息解答下列问题(1)填空:m=,n=,请补全条形统计图.(2)这20名朋友一天行走的步数的中位数落在组.(3)张老师准备随机给排名前4名的甲、乙、丙、丁中两人点赞,求乙、丙被同时点赞的概率.七.解答题(共1小题,满分12分,每小题12分)22.(12分)现计划把一批货物用一列火车运往某地.已知这列火车可挂A,B两种不同规格的货车厢共40节,使用A型车厢每节费用6000元,使用B型车厢每节费用为8000元.(1)设运送这批货物的总费用为y元,这列火车挂A型车厢x节,写出y关于x的函数表达式,并求出自变量x的取值范围;(2)已知A型车厢数不少于B型车厢数,运输总费用不低于276000元,问有哪些不同运送方案?八.解答题(共1小题,满分14分,每小题14分)23.(14分)在矩形ABCD中,AB=6,AD=8,点E是边AD上一点,EM⊥EC交AB于点M,点N在射线MB上,且AE是AM和AN的比例中项.(1)如图1,求证:∠ANE=∠DCE;(2)如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;(3)连接AC,如果△AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据相反数的意义,直接可得结论.【解答】解:﹣(﹣2019)=2019,所以﹣(﹣2019)的相反数是﹣2019,故选:A.【点评】本题考查了相反数的意义.理解a的相反数是﹣a,是解决本题的关键.2.【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别判断得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a2﹣a2=2a2,故此选项错误;C、a6÷a2=a4,故此选项错误;D、(﹣2a)2=4a2,正确.故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.3.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:正六棱柱三视图分别为:三个左右相邻的矩形,两个左右相邻的矩形,正六边形.故选:A.【点评】本题考查了几何体的三种视图,注意所有的看到的棱都应表现在三视图中.4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.056用科学记数法表示为5.6×10﹣2,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【分析】不等式移项合并,把x系数化为1,即可求出解集.【解答】解:移项,得:3x﹣x≥﹣4,合并同类项,得:2x≥﹣4,系数化为1,得:x≥﹣2,故选:A.【点评】此题考查了解一元一次不等式,注意不等式两边除以负数时,不等号要改变方向.6.【分析】第二次捕上的1000条,发现其中带标记的鱼有5条,说明有标记的占到,而有标记的共有1000条,从而根据所占比例求出总数.【解答】解:1000÷=20000条.故选:C.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.7.【分析】根据题意列出一元二次方程即可.【解答】解:由题意得,x(x﹣1)=210,故选:B.【点评】本题考查的是一元二次方程的应用,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系.8.【分析】可以设出M的坐标是(m,n),△MNP的面积即可利用A的坐标表示,据此即可求解.【解答】解:设M的坐标是(m,n),则mn=2.∵MN=m,△MNP的MN边上的高等于n.∴△MNP的面积=mn=1.故选:A.【点评】本题主要考查了反比例函数的系数k的几何意义,在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.9.【分析】分析图象中P到B的时间,可排除其它选项;分两种情形讨论:当点P顺时针旋转时,图象是②,当点P逆时针旋转时,图象是③,由此即可解决问题.【解答】解:分两种情形讨论:①当点P顺时针旋转时,∵⊙O的半径为1,点P从A出发,在⊙O上以每秒个单位长度的速度匀速运动,∠AOB=60°,点P从A到达B点的时间==5,∴图象是②;②当点P逆时针旋转时,点P从A到达B点的时间==1,∴图象是③;故选:B.【点评】本题考查了动点问题的函数图象、圆周长公式,解答时注意数形结合和关注动点到达临界点前后的图象变化趋势.10.【分析】因为∠ACB=∠APB=90°,可得A,P,C,B四点共圆,即∠CPB=∠CAB=45°,可得∠APC=∠APB+∠CPB=90°+45°=135°,故选项A错误;过点C作CP的垂线交PB于点K,证明△BCK≌△ACP,得AP=BK,所以PB=PC+PA,故选项B错误;当PA=1时和PA=PC时,结合PB=PC+PA的关系式,即可对选项C,D作出判断.【解答】解:∵∠ACB=∠APB=90°,∴A,P,C,B四点共圆,∵AC=BC,∴∠CAB=45°,∴∠CPB=∠CAB=45°,∴∠APC=∠APB+∠CPB=90°+45°=135°,∴选项A错误;如图,过点C作CP的垂线交PB于点K,∵∠CPK=45°,∴∠CKP=∠CPK=45°,∴PC=KC,∠CKB=∠CPA=135°,∵∠PCK=∠ACB=90°,∴∠BCK=∠ACP,∴△BCK≌△ACP((ASA),∴AP=BK,∵PK=PC,∴PB=PC+PA,∴选项B错误;当PA=1时,∵AC=BC=,∴AB=2,∴PB=,∵PB=PC+PA,∴=PC+1,解得PC=,∴选项C错误;当PA=PC时,PB=(+1)PA,∵PA2+PB2=AB2,∴(﹣1)2PB2+PB2=4,解得PB2=2+∴选项D正确.故选:D.【点评】本题考查了图形的旋转,三角形全等判定和性质,勾股定理.解题的关键是构造全等三角形得出关系式:PB=PC+PA.二.填空题(共4小题,满分20分,每小题5分)11.【分析】根据立方根的性质即可求解.【解答】解:∵=0.694,∴=6.94.故答案为:6.94.【点评】考查了立方根,解决本题的关键是熟练掌握立方根的性质.12.【分析】分成两组:(a2b2﹣b2)和(1﹣a2),利用平方差公式和提取公因式法进行因式分解.【解答】解:原式=(a2b2﹣b2)+(1﹣a2)=b2(a2﹣1)﹣(a2﹣1)=(a+1)(a﹣1)(b+1)(b﹣1).故答案是:(a+1)(a﹣1)(b+1)(b﹣1).【点评】本题考查用分组分解法进行因式分解.难点是采用两两分组还是三一分组.13.【分析】由同弧所对圆周角相等得出∠C=∠B=60°,再根据垂直知∠AEC=90°,利用直角三角形两锐角相等得出答案.【解答】解:∵∠B=60°,∴∠C=∠B=60°,∵AB⊥CD,∴∠AEC=90°,∴∠A=30°,故答案为:30.【点评】本题主要考查圆周角定理,解题的关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14.【分析】二次函数y=x2+bx+c=(x﹣6)2﹣3=x2﹣4x+9,求出b、c,然后用△≥0,即可求解.【解答】解:由图象知,抛物线的顶点坐标为(6,﹣3),∴二次函数y=x2+bx+c=(x﹣6)2﹣3=x2﹣4x+9,则方程x2+3bx+3c=m有实数根,∴方程x2﹣12x+(27﹣m)=0有实数根,∴△=122﹣4(27﹣m)≥0,解得:m≥﹣9.故:答案是m≥﹣9.【点评】本题考查的是一元二次方程根的情况,涉及到函数表达式的求解、根判别式的运用,题目难度不大.三.解答题(共2小题,满分16分,每小题8分)15.【分析】先代入三角函数值、计算绝对值、零指数幂和负整数指数幂,再进一步计算可得.【解答】解:原式=×﹣3+1+2=1﹣3+1+2=1.【点评】本题主要考查实数的运算,解题的关键是熟练掌握特殊锐角三角函数值、绝对值性质及零指数幂和负整数指数幂的运算法则.16.【分析】(1)观察表格中总价与购买数量可得出第四次购物时打折,设练习本甲的标价是a元/本,练习本乙的标价是b元/本,练习本丙的标价是c元/本,根据总价=单价×数量结合前三次购物的数量及总价,即可得出关于a、b、c的三元一次方程组,解之即可得出结论;(2)设打m折,根据总价=单价×折扣率×数量,即可得出关于m的一元一次方程,解之即可得出结论;(3)设购进甲种练习本x本,乙种y本,丙种z本,分只购进甲、乙两种练习本、只购进甲、丙两种练习本、只购进乙、丙两种练习本三种情况列出二元一次方程组,解之即可得出结论.【解答】解:(1)观察表格中的总费用与购买数量,可知:第四次购物时打折.设练习本甲的标价是a元/本,练习本乙的标价是b元/本,练习本丙的标价是c元/本,根据题意得:,解得:.故答案为:四;6;4;2.5.(2)设打m折,根据题意得:10××6+10××4+4××2.5=88,解得:m=8.答:折扣是打8折.(3)设购进甲种练习本x本,乙种y本,丙种z本,分以下三种情况考虑:①当只购进甲、乙两种练习本时,,解得:(不合题意,舍去);②当只购进甲、丙两种练习本时,,解得:;③当只购进乙、丙两种练习本时,,解得:.综上所述,有两种方案可供选择:第一种方案是购进甲种练习本3本,丙种33本;第二种方案是购进乙种练习本7本,丙种29本.【点评】本题考查了一元一次方程的应用、二元一次方程组的应用以及三元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出三元一次方程组;(2)找准等量关系,正确列出一元一次方程;(3)分只购进甲、乙两种练习本、只购进甲、丙两种练习本、只购进乙、丙两种练习本三种情况考虑.四.解答题(共2小题,满分16分,每小题8分)17.【分析】(1)连接AO,并延长使OA=2OA′,同理作出点B和点C的对应点,再顺次连接即可得;(2)利用正弦函数的定义求解可得.【解答】解:(1)如图所示,△A′B′C′即为所求.(2)∵A′C′==,∴sin∠A′C′B′==,故答案为:.【点评】本题主要考查作图﹣位似变换,解题的关键是掌握位似变换的定义和性质,并据此得出变换后的对应点及正弦函数的定义.18.【分析】(1)由cos∠FHE==可得答案;(2)延长FE交CB的延长线于M,过点A作AG⊥FM于G,过点H作HN⊥AG于N,据此知GM=AB,HN=EG,Rt△ABC中,求得AB=BC tan60°=;Rt△ANH中,求得HN=AH sin45°=;根据EM=EG+GM可得答案.【解答】解:(1)在Rt△EFH中,cos∠FHE==,∴∠FHE=45°,答:篮板底部支架HE与支架AF所成的角∠FHE的度数为45°;(2)延长FE交CB的延长线于M,过点A作AG⊥FM于G,过点H作HN⊥AG于N,则四边形ABMG和四边形HNGE是矩形,∴GM=AB,HN=EG,在Rt△ABC中,∵tan∠ACB=,∴AB=BC tan60°=1×=,∴GM=AB=,在Rt△ANH中,∠FAN=∠FHE=45°,∴HN=AH sin45°=×=,∴EM=EG+GM=+,答:篮板底部点E到地面的距离是(+)米.【点评】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.五.解答题(共2小题,满分20分,每小题10分)19.【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:正确.理由:∵m表示大于1的整数,∴a,b,c都是正整数,且c是最大边,∵(2m)2+(m2﹣1)2=(m2+1)2,∴a2+b2=c2,即a、b、c为勾股数.当m=2时,可得一组勾股数3,4,5.【点评】本题考查了勾股数.解答此题要用到勾股数的定义,及勾股定理的逆定理:已知△ABC 的三边满足a2+b2=c2,则△ABC是直角三角形.20.【分析】(1)连结OB,设半径为r,则OE=r﹣2,构建方程即可解决问题.=BC⋅OF=OC⋅BE,求解即可.(2)根据S△BCO【解答】解:(1)连结OB,设半径为r,则OE=r﹣2,∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,∴BE=DE=4,在Rt△OBE中,∵OE2+BE2=OB2 ,∴(r﹣2)2+42=r2∴r=5.(2)∵r=5,∴AC=10,EC=8,BE=DE=4cm,∴BC==4(cm)∵OF⊥BC,=BC⋅OF=OC⋅BE∴S△BCO∴4⋅OF=5×4,∴OF=.【点评】本题考查圆周角定理,垂径定理,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.六.解答题(共1小题,满分12分,每小题12分)21.【分析】(1)依据统计图表中的数据,即可得到m,n的值,进而得出C组频数为20×0.05=1,E组频数为20×0.2=4;(2)依据中位数是第10和第11个数据的平均数,A,B两组的人数之和为12,即可得到中位数的位置;(3)画树状图展示所有12种等可能的结果数,再找出2名学生恰好是乙和丙的结果数,然后根据概率公式求解.【解答】解:(1)n=3÷20=0.15,则m=1﹣(0.1+0.5+0.15+0.2)=0.05,∴C组频数为20×0.05=1,E组频数为20×0.2=4,补全图形如下:故答案为:0.05、0.15;(2)由题可得,中位数是第10和第11个数据的平均数,A,B两组的人数之和为12,∴这20名朋友一天行走的步数的中位数落在B组,故答案为:B;(3)画树状图为:共有12种等可能的结果数,其中2名学生恰好是乙和丙的结果数为2,所以乙、丙被同时点赞的概率==.【点评】本题考查了列表法与树状图法以及中位数的计算;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.七.解答题(共1小题,满分12分,每小题12分)22.【分析】(1)总费用=6000×A型车厢节数+8000×B型车厢节数.(2)根据题意列出不等式组,进而解答即可.【解答】解:(1)设用A型车厢x节,则用B型车厢(40﹣x)节,总运费为y元,依题意,得y=6000x+8000(40﹣x)=﹣2000x+320000;∵,∴x的取值范围是0≤x≤40且x为整数,∴函数关系式为y=﹣2000x+320000(0≤x≤40且x为整数)(2)由题意得:,解得:20≤x≤22,∵x为整数,∴运送方案有:A型车厢20节,B型车厢20节;A型车厢21节,B型车厢19节;A型车厢22节,B型车厢18节.【点评】此题考查了一次函数的应用,解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式组.八.解答题(共1小题,满分14分,每小题14分)23.【分析】(1)由比例中项知=,据此可证△AME∽△AEN得∠AEM=∠ANE,再证∠AEM=∠DCE可得答案;(2)先证∠ANE=∠EAC,结合∠ANE=∠DCE得∠DCE=∠EAC,从而知=,据此求得AE=8﹣=,由(1)得∠AEM=∠DCE,据此知=,求得AM=,由=求得MN=;(3)分∠ENM=∠EAC和∠ENM=∠ECA两种情况分别求解可得.【解答】解:(1)∵AE是AM和AN的比例中项∴=,∵∠A=∠A,∴△AME∽△AEN,∴∠AEM=∠ANE,∵∠D=90°,∴∠DCE+∠DEC=90°,∵EM⊥BC,∴∠AEM+∠DEC=90°,∴∠AEM=∠DCE,∴∠ANE=∠DCE;(2)∵AC与NE互相垂直,∴∠EAC+∠AEN=90°,∵∠BAC=90°,∴∠ANE+∠AEN=90°,∴∠ANE=∠EAC,由(1)得∠ANE=∠DCE,∴∠DCE=∠EAC,∴tan ∠DCE =tan ∠DAC ,∴=,∵DC =AB =6,AD =8,∴DE =,∴AE =8﹣=, 由(1)得∠AEM =∠DCE , ∴tan ∠AEM =tan ∠DCE ,∴=, ∴AM =,∵=,∴AN =, ∴MN =;(3)∵∠NME =∠MAE +∠AEM ,∠AEC =∠D +∠DCE , 又∠MAE =∠D =90°,由(1)得∠AEM =∠DCE , ∴∠AEC =∠NME ,当△AEC 与以点E 、M 、N 为顶点所组成的三角形相似时 ①∠ENM =∠EAC ,如图2,∴∠ANE =∠EAC , 由(2)得:DE =; ②∠ENM =∠ECA , 如图3,过点E作EH⊥AC,垂足为点H,由(1)得∠ANE=∠DCE,∴∠ECA=∠DCE,∴HE=DE,又tan∠HAE===,设DE=3x,则HE=3x,AH=4x,AE=5x,又AE+DE=AD,∴5x+3x=8,解得x=1,∴DE=3x=3,综上所述,DE的长分别为或3.【点评】本题是相似三角形的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用等知识点.。

河南中考数学模拟试卷(05)

河南中考数学模拟试卷(05)

河南中考数学模拟试卷(05)一.选择题(共10小题,满分30分,每小题3分)1.(3分)21的相反数是()A.21B.﹣21C.D.﹣2.(3分)有一个正方体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2022次后,骰子朝下一面的点数是()A.5B.3C.4D.23.(3分)如图,直线AB,CD相交于点O,若CO⊥AB,∠1=56°,则∠2等于()A.30°B.45°C.34°D.56°4.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.=﹣3C.x2•x4=x6D.(2x2)3=6x65.(3分)如图,菱形ABCD的对角线AC、BD相交于O点,E、F分别是AB、BC边上的中点,连接EF,若EF=3,BD=8,则菱形ABCD的周长为()A.5B.14C.20D.286.(3分)一元二次方程6x2+2x+1=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根7.(3分)甲同学射靶8次,成绩分别为:5,7,6,7,7,8,6,7,则甲同学的射靶成绩的众数为()A.5B.6C.7D.88.(3分)一种计算机每秒可以进行4×108次运算,则它工作3×103秒运算的次数为()A.12×1024B.1.2×1012C.12×1012D.1.2×1013 9.(3分)如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A.B.C.256D.10.(3分)某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),在坐标系中进行描点,则正确的是()A.B.C.D.二.填空题(共5小题,满分15分,每小题3分)11.(3分)写出同时具备下列两个条件的一次函数表达式:(1)y随着x的增大而减小;(2)图象经过点(﹣2,﹣1):(写出一个即可).12.(3分)不等式组的解集是.13.(3分)小南和小开在新华书店选购了部分课外阅读书籍,结账时发现该书店自助收银系统允许购书读者从“微信”“支付宝”“云闪付”“网银”四种支付方式中任选一种方式进行支付,则他们分别独立结账,恰好选择的是同一种支付方式的概率为.14.(3分)如图,在扇形ABC中,∠BAC=90°,AB=1,若以点C为圆心,CA为半径画弧,与交于点D,则图中阴影部分的面积和是.15.(3分)如图,直线CD与EF相交于点O,∠COE=60°,将一等腰直角三角尺AOB 的直角顶点与O重合,OA平分∠COE.将三角尺AOB以每秒2°的速度绕点O顺时针旋转,同时直线EF以每秒6°的速度绕点O顺时针旋转,设运动时间为t秒(0≤t≤60),若直线EF平分∠BOD,则t的值为.三.解答题(共8小题,满分75分)16.(10分)计算:﹣|﹣1|+.17.(9分)为倡导绿色健康节约的生活方式,某社区开展“垃圾分类,从我做起”的活动,志愿者随机抽取了社区内50名居民,对其3月份垃圾分类投放次数进行了调查,并对数据进行了统计整理,以下是部分数据和不完整的统计图表:信息1:垃圾分类投放次数分布表信息组别投放次数频数A0≤x<5aB5≤x<1010C10≤x<15cD15≤x<2014E x≥20e合计50信息2:垃圾分类投放次数占比统计图信息3:C组包含的数据:12,12,10,12,13,10,11,13,12,11,13.请结合以上信息完成下列问题:(1)统计表中的a=,e=.(2)统计图中B组对应扇形的圆心角为度;(3)C组数据的众数是,抽取的50名居民3月份垃圾分类投放次数的中位数是;(4)根据调查结果,请你估计该社区2000名居民中3月份垃圾分类投放次数不少于15次的人数.18.(9分)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数的图象于点B.(1)若AB=2,求反比例函数的解析式;(2)若P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.19.(9分)如图,从一栋两层楼的楼顶A处看对面的教学楼CD,测得教学楼底部点C处的俯角是45°,测得此大楼楼顶D处的仰角为60°,已知两栋楼的水平距离为8米.求该大楼CD的高度(结果保留根号).20.(9分)2020年5月,全国两会召开以后,应势复苏的“地摊经济”带来了市场新活力,雅苑社区拟建A,B两类摊位以激活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米,建A类摊位每平方米的费用为50元,建B类摊位每平方米的费用为40元,用120平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共100个,且B类摊位的数量不少于A类摊位数量的4倍,求建造这100个摊位的最大费用.21.(9分)某超市销售樱桃,已知樱桃的进价为15元/千克,如果售价为20元/千克,那么每天可售出250千克,如果售价为25元/千克,那么每天可售出200千克,经调查发现:每天的销售量y(千克)与售价x(元/千克)之间存在一次函数关系.(1)求y与x之间的函数关系式;(2)若樱桃的售价不得高于28元/千克,请问售价定为多少时,该超市每天销售樱桃所获的利润最大?最大利润是多少元?22.(10分)如图,AB是⊙O的直径,弦CD⊥AB于H,E为CD延长线上一点,过E点作⊙O的切线,切点为G,连接AG交CD于F点.(1)求证:EF=EG;(2)若FG2=FD•FE,试判断AC与GE的位置关系,并说明理由;(3)在(2)的条件下,若sin E=,AH=3,求⊙O半径的长.23.(10分)如图,已知正方形ABCD的顶点D关于射线CP的对称点G落在正方形内,连接BG并延长交边AD于点E,交射线CP于点F.连接DF,AF,CG.(1)试判断DF与BF的位置关系,并说明理由;(2)若CF=4,DF=2,求AE的长;(3)若∠ADF=2∠F AD,求tan∠F AD的值.。

2020年浙江省台州市路桥区中考数学(5月份)模拟试卷 (解析版)

2020年浙江省台州市路桥区中考数学(5月份)模拟试卷 (解析版)

2020年台州市路桥区中考数学模拟试卷(5月份)一、选择题(共10小题).1.﹣的相反数是()A.2B.﹣2C.D.±2.计算(3a)2的结果是()A.6a B.3a2C.6a2D.9a23.如图,由5个相同的正方体组合而成的几何体,它的主视图是()A.B.C.D.4.若正多边形的一个外角是36°,则该正多边形为()A.正八边形B.正九边形C.正十边形D.正十一边形5.在战“疫”诗歌创作大赛中,有7名同学进入了决赛,他们的最终成绩均不同.小弘同学想知道自己能否进入前3名,除要了解自己的成绩外,还要了解这7名同学成绩的()A.中位数B.平均数C.众数D.方差6.某公司拟购进A,B两种型号机器人.已知用240万元购买A型机器人和用360万元购买B型机器人的台数相同,且B型机器人的单价比A型机器人多10万元.设A型机器人每台x万元,则所列方程正确的是()A.B.C.=10D.=107.如图,BC是⊙O的一条弦,经过点B的切线与CO的延长线交于点A,若∠C=23°,则∠A的度数为()A.38°B.40°C.42°D.44°8.如图,在矩形ABCD中,将△ABE沿着BE翻折,使点A落在BC边上的点F处,再将△DEG沿着EG翻折,使点D落在EF边上的点H处.若点A,H,C在同一直线上,AB=1,则AD的长为()A.B.C.D.9.甲、乙两个草莓采摘园为吸引顾客,在草莓销售价格相同的基础上分别推出优惠方案,甲园:顾客进园需购买门票,采摘的草莓按六折优惠.乙园:顾客进园免门票,采摘草莓超过一定数量后,超过的部分打折销售.活动期间,某顾客的草莓采摘量为xkg,若在甲园采摘需总费用y1元,若在乙园采摘需总费用y2元.y1,y2与x之间的函数图象如图所示,则下列说法中错误的是()A.甲园的门票费用是60元B.草莓优惠前的销售价格是40元/kgC.乙园超过5kg后,超过的部分价格优惠是打五折D.若顾客采摘12kg草莓,那么到甲园或乙园的总费用相同10.如图,Rt△ABC中,∠C=90°,BC=6,DE是△ABC的中位线,点D在AB上,把点B绕点D按顺时针方向旋转α(0°<α<180°)角得到点F,连接AF,BF.下列结论:①△ABF是直角三角形;②若△ABF和△ABC全等,则α=2∠BAC或2∠ABC;③若α=90°,连接EF,则S△DEF=4.5;其中正确的结论是()A.①②B.①③C.①②③D.②③二、填空题(本题有6小题,每小题5分,共30分)11.二次根式中字母x的取值范围是.12.已知点A(2,﹣3)和B(﹣1,m)均在双曲线y=(k为常数,且k≠0)上,则m =.13.在一个不透明的袋子中有三张完全相同的卡片,分别编号为1,2,3.若从中随机取出两张卡片,则卡片上编号之和为偶数的概率是.14.如图,已知△ABC中,AB=AC,∠A=36°,分别以点A,C为圆心,大于AC的长度为半径画弧,两弧相交于点P,Q,直线PQ与AB交于点M,若BC=a,MB=b,则AC=.15.定义:有一组邻边相等的凸四边形叫做等邻边四边形.如图,在Rt△ABC中,∠ABC =90°,AB=2,BC=1,将△ABC沿∠ABC的平分线BB'的方向平移,得到A'B'C',连接AC',CC',若四边形ABCC'是等邻边四边形,则平移距离BB'的长度是.16.如图,在正方形ABCD中,AB=6,点E在AB边上,CE与对角线BD交于点F,连接AF,若AE=2,则sin∠AFE的值是.三、解答题(本题共8小题,其中第17-20题每题8分,第21题10分,第22-23题每题12分,第24题14分,共80分)17.计算:.18.解方程组.19.等腰三角形的屋顶,是建筑中经常采用的结构形式.在如图所示的等腰三角形屋顶ABC 中,AB=AC,测得BC=20米,∠C=41°,求顶点A到BC边的距离是多少米?(结果精确到0.1米.参考数据:sin41°≈0.656,cos41°≈0.755,tan41°≈0.869)20.如图,“漏壶”是一种古代计时器.在它内部盛一定量的水,水从壶下的小孔漏出.壶内壁有刻度,人们根据壶中水面的位置计算时间.用x(小时)表示漏水时间,y(厘米)表示壶底到水面的高度,某次计时过程中,记录到部分数据如表:漏水时间x(小时)…3456…壶底到水面高度y(厘米)…9753…(1)问y与x的函数关系属于一次函数、二次函数和反比例函数中的哪一种?求出该函数解析式及自变量x的取值范围;(2)求刚开始计时时壶底到水面的高度.21.为了解阳光社区年龄20~60岁居民对垃圾分类的认识,学校课外实践小组随机抽取了该社区、该年龄段的部分居民进行了问卷调查,并将调查数据整理后绘成如下两幅不完整的统计图.图中A表示“全部能分类”,B表示“基本能分类”,C表示“略知一二”,D表示“完全不会”.请根据图中信息解答下列问题:(1)补全条形统计图并填空:被调查的总人数是人,扇形图中D部分所对应的圆心角的度数为;(2)若该社区中年龄20~60岁的居民约3000人,请根据上述调查结果,估计该社区中C类有多少人?(3)根据统计数据,结合生活实际,请你对社区垃圾分类工作提一条合理的建议.22.已知AB是⊙O的直径,C是⊙O上的一点(不与点A,B重合),过点C作AB的垂线交⊙O于点D,垂足为E点.(1)如图1,当AE=4,BE=2时,求CD的长度;(2)如图2,连接AC,BD,点M为BD的中点.求证:ME⊥AC.23.已知y关于x的二次函数y=x2﹣bx+b2+b﹣5的图象与x轴有两个公共点.(1)求b的取值范围;(2)若b取满足条件的最大整数值,当m≤x≤时,函数y的取值范围是n≤y≤6﹣2m,求m,n的值;(3)若在自变量x的值满足b≤x≤b+3的情况下,对应函数y的最小值为,求此时二次函数的解析式.24.已知菱形ABCD中,∠ABC=60°,AB=4,点M在BC边上,过点M作PM∥AB 交对角线BD于点P,连接PC.(1)如图1,当BM=1时,求PC的长;(2)如图2,设AM与BD交于点E,当∠PCM=45°时,求证:=;(3)如图3,取PC的中点Q,连接MQ,AQ.①请探究AQ和MQ之间的数量关系,并写出探究过程;②△AMQ的面积有最小值吗?如果有,请直接写出这个最小值;如果没有,请说明理由.参考答案一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.﹣的相反数是()A.2B.﹣2C.D.±【分析】根据只有符号不同的两数叫做互为相反数解答.解:实数﹣的相反数是.故选:C.2.计算(3a)2的结果是()A.6a B.3a2C.6a2D.9a2【分析】根据积的乘方运算法则计算即可,积的乘方,等于每个因式乘方的积.解:(3a)2=32•a2=9a2.故选:D.3.如图,由5个相同的正方体组合而成的几何体,它的主视图是()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形解答即可.解:根据主视图的定义可知,此几何体的主视图有两层,底层3个正方形,上层中间是1个正方形.故选:B.4.若正多边形的一个外角是36°,则该正多边形为()A.正八边形B.正九边形C.正十边形D.正十一边形【分析】多边形的外角和等于360°,因为所给多边形的每个外角均相等,故又可表示成36°n,列方程可求解.解:设所求正多边形边数为n,则36n=360,解得n=10.故正多边形的边数是10.故选:C.5.在战“疫”诗歌创作大赛中,有7名同学进入了决赛,他们的最终成绩均不同.小弘同学想知道自己能否进入前3名,除要了解自己的成绩外,还要了解这7名同学成绩的()A.中位数B.平均数C.众数D.方差【分析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.解:由于总共有7个人,且他们的成绩各不相同,第3的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少.故选:A.6.某公司拟购进A,B两种型号机器人.已知用240万元购买A型机器人和用360万元购买B型机器人的台数相同,且B型机器人的单价比A型机器人多10万元.设A型机器人每台x万元,则所列方程正确的是()A.B.C.=10D.=10【分析】设A型机器人每台x万元,则B型机器人每台(x+10)万元,根据数量=总价÷单价结合用240万元购买A型机器人和用360万元购买B型机器人的台数相同,即可得出关于x的分式方程,此题得解.解:设A型机器人每台x万元,则B型机器人每台(x+10)万元,依题意,得:=.故选:A.7.如图,BC是⊙O的一条弦,经过点B的切线与CO的延长线交于点A,若∠C=23°,则∠A的度数为()A.38°B.40°C.42°D.44°【分析】连接OB,如图,先利用切线的性质得∠OBA=90°,然后根据等腰三角形的性质和三角形外角性质可计算出∠A的度数.解:连接OB,如图,∵AB为切线,∴OB⊥AB,∴∠OBA=90°,∵OC=OB,∴∠C=∠OBC=23°,∴∠BOC=180°﹣2×23°=134°,∵∠BOC=∠A+∠OBA,∴∠A=134°﹣90°=44°.故选:D.8.如图,在矩形ABCD中,将△ABE沿着BE翻折,使点A落在BC边上的点F处,再将△DEG沿着EG翻折,使点D落在EF边上的点H处.若点A,H,C在同一直线上,AB=1,则AD的长为()A.B.C.D.【分析】由折叠的性质可得AB=BF=1,AE=EF,∠ABE=∠FBE,∠A=∠EFB=90°,DE=EH,可证四边形CDEF是矩形,可得DE=FC,由平行线分线段成比例可得,可求AD的长.解:连接AC,∵四边形ABCD是矩形,∴∠A=∠C=∠ADC=∠ABC=90°,AD=BC,∵将△ABE沿着BE翻折,使点A落在BC边上的点F处,再将△DEG沿着EG翻折,使点D落在EF边上的点H处,∴AB=BF=1,AE=EF,∠ABE=∠FBE,∠A=∠EFB=90°,DE=EH,∴AB∥EF,∠FEB=∠EBF=45°,∴EF=BF=1=AE,∵∠EFC=∠C=∠ADC=90°,∴四边形CDEF是矩形,∴DE=FC,∴DE=EH=FC=AD﹣AE=AD﹣1,∴HF=1﹣(AD﹣1)=2﹣AD,∵点A,H,C在同一直线上,EF∥AB,∴,∴,∴AD=或(舍去)∴AD=,故选:B.9.甲、乙两个草莓采摘园为吸引顾客,在草莓销售价格相同的基础上分别推出优惠方案,甲园:顾客进园需购买门票,采摘的草莓按六折优惠.乙园:顾客进园免门票,采摘草莓超过一定数量后,超过的部分打折销售.活动期间,某顾客的草莓采摘量为xkg,若在甲园采摘需总费用y1元,若在乙园采摘需总费用y2元.y1,y2与x之间的函数图象如图所示,则下列说法中错误的是()A.甲园的门票费用是60元B.草莓优惠前的销售价格是40元/kgC.乙园超过5kg后,超过的部分价格优惠是打五折D.若顾客采摘12kg草莓,那么到甲园或乙园的总费用相同【分析】根据题意和函数图象中的数据,可以判断各个选项中的说法是否正确,从而可以解答本题.解:由图象可得,甲园的门票为60元,故选项A正确;乙园草莓优惠前的销售价格是:200÷5=40(元/千克),故选项B正确;=0.5,即乙园超过5kg后,超过的部分价格优惠是打5折,故选项C正确;若顾客采摘12kg草莓,甲园花费为:60+12×40×0.6=344(元),乙园的花费为:40×5+(12﹣5)×40×0.5=340(元),∵344>340,∴若顾客采摘12kg草莓,那么到甲园比到乙园的总费用高,故选项D错误;故选:D.10.如图,Rt△ABC中,∠C=90°,BC=6,DE是△ABC的中位线,点D在AB上,把点B绕点D按顺时针方向旋转α(0°<α<180°)角得到点F,连接AF,BF.下列结论:①△ABF是直角三角形;②若△ABF和△ABC全等,则α=2∠BAC或2∠ABC;③若α=90°,连接EF,则S△DEF=4.5;其中正确的结论是()A.①②B.①③C.①②③D.②③【分析】由三角形中位线定理和旋转的性质可得AD=BD=DF,可得△ABF是直角三角形,可判断①;由全等三角形的性质和等腰三角形的性质,可得∠BDF=α=2∠DAF,∠DAF=∠BAC或∠DAF=∠ABC,可判断②;过点B作BN⊥DE,交ED的延长线于N,过点F作FH⊥DE,交交ED的延长线于H,由“AAS”可证△DFH≌△BDN,可得DN=FH=3,由三角形面积公式可得S△DEF=4.5,可判断③,即可求解.解:∵DE是△ABC的中位线,∴AD=DB,∵把点B绕点D按顺时针方向旋转α(0°<α<180°)角得到点F,∴BD=DF,∴BD=AD=DF,∴△ABF是直角三角形,故①正确,∵AD=BD=DF,∴∠DAF=∠DFA,∴∠BDF=α=2∠DAF,若△ABF和△ABC全等,且∠AFB=∠C=90°,∴∠DAF=∠BAC或∠DAF=∠ABC,∴α=2∠BAC或2∠ABC,故②正确,如图,过点B作BN⊥DE,交ED的延长线于N,过点F作FH⊥DE,交交ED的延长线于H,∵BC=6,DE是△ABC的中位线,∴DE∥BC,DE=BC=3,∵BN⊥DE,∠C=90°,∴∠NEC+∠C=180°,∴∠C=∠NEC=90°,又∵BN⊥DE,∴四边形BCEN是矩形,∴BC=NE=6,∴DN=3,∵把点B绕点D按顺时针方向旋转90°,∴DF=DB,∠FDB=90°,∴∠FDH+∠BDN=90°,又∵∠FDH+∠F=90°,∴∠F=∠BDN,又∵DF=BD,∠FHD=∠BND=90°,∴△DFH≌△BDN(AAS),∴DN=FH=3,∴S△DEF=4.5,故③正确,故选:C.二、填空题(本题有6小题,每小题5分,共30分)11.二次根式中字母x的取值范围是x≥﹣2.【分析】根据被开方数大于等于0列式计算即可得解.解:根据题意得,x+2≥0,解得x≥﹣2.故答案为:x≥﹣2.12.已知点A(2,﹣3)和B(﹣1,m)均在双曲线y=(k为常数,且k≠0)上,则m =6.【分析】根据反比例函数图象上点的坐标特征得到2×(﹣3)=﹣1×k,然后解一次方程即可.解:∵点A(2,﹣3)和B(﹣1,m)均在双曲线y=(k为常数,且k≠0)上,∴2×(﹣3)=﹣1×m,∴m=6.故答案为:6.13.在一个不透明的袋子中有三张完全相同的卡片,分别编号为1,2,3.若从中随机取出两张卡片,则卡片上编号之和为偶数的概率是.【分析】依据题意先用列表法或画树状图法分析所有等可能和出现所有结果的可能,然后根据概率公式求出该事件的概率.解:列表如下:1 2 3134235345由上表可知,所有等可能结果共有6种,其中两张卡片数字之和为偶数的结果有2种.所以卡片上编号之和为偶数的概率是=,故答案为:.14.如图,已知△ABC中,AB=AC,∠A=36°,分别以点A,C为圆心,大于AC的长度为半径画弧,两弧相交于点P,Q,直线PQ与AB交于点M,若BC=a,MB=b,则AC=a+b.【分析】根据线段垂直平分线的性质和等腰三角形的性质即可得到结论.解:由题意得,直线PQ是AC的垂直平分线,连接CM,∴AM=CM,∴∠A=∠ACM=36°,∵AB=AC,∴∠B=∠ACB=72°,∴∠BCM=36°,∴∠BMC=180°﹣36°﹣72°=72°,∴CM=BC=a,∴AM=CM=a,∴AB=AM+BM=a+b,故答案为:a+b.15.定义:有一组邻边相等的凸四边形叫做等邻边四边形.如图,在Rt△ABC中,∠ABC =90°,AB=2,BC=1,将△ABC沿∠ABC的平分线BB'的方向平移,得到A'B'C',连接AC',CC',若四边形ABCC'是等邻边四边形,则平移距离BB'的长度是1或.【分析】由平移的性质得到BB′=CC′,A′B′∥AB,A′B′=AB=2,B′C′=BC=1,A′C′=AC=,①如图,当CC′=BC时,BB′=CC′=BC=1;②如图,当AC′=AB=2时,③如图2,当AC′=C′C时,则AC′=BB′,延长C′B′交AB于H,设BH=B′H=x,根据勾股定理即可得到结论.解:∵将Rt△ABC平移得到△A′B′C′,∴BB′=CC′,A′B′∥AB,A′B′=AB=2,B′C′=BC=1,A′C′=AC=,①如图1,当CC′=BC时,BB′=CC′=BC=1;②如图1,当AC′=AB=2时,∵∠ABC=90°,BB′是∠ABC的角平分线,∴∠B′BA=45°,延长C′B′交AB于H,∵A′B′∥AB,∠A′B′C′=90°,∴∠AHC′=∠A′B′C′=90°,∴∠BHB′=90°,设BH=B′H=x,∴BB′=x,AH=2﹣x,C′H=1+x,∵AC′2=AH2+C′H2,∴22=(2﹣x)2+(1+x)2,整理方程为:2x2﹣2x+1=0,∵△=4﹣8=﹣4<0,∴此方程无实数根,故这种情况不存在;③如图2,当AC′=C′C时,则AC′=BB′,延长C′B′交AB于H,∵A′B′∥AB,∠A′B′C′=90°,∴∠AHC′=∠A′B′C′=90°,∴∠BHB′=90°,设BH=B′H=x,∴BB′=AC′=x,AH=2﹣x,C′H=1+x,∵AC′2=AH2+C′H2,∴(x)2=(2﹣x)2+(1+x)2,解得:x=,∴BB′=,综上所述,若四边形ABCC'是等邻边四边形,则平移距离BB'的长度是1或,故答案为:1或.16.如图,在正方形ABCD中,AB=6,点E在AB边上,CE与对角线BD交于点F,连接AF,若AE=2,则sin∠AFE的值是.【分析】过F作FG⊥AB于G,根据正方形的性质得到BC=AB=6,∠ABD=45°,求得BG=FG,根据相似三角形的性质得到FG=,根据勾股定理得到EF==,AF==,过E作EH⊥AF于H,根据相似三角形的性质得到EH=,根据三角函数的定义即可得到结论.解:过F作FG⊥AB于G,∵在正方形ABCD中,AB=6,∴BC=AB=6,∠ABD=45°,∴BG=FG,∵AE=2,∴BE=4,∵FG⊥AB,∠ABC=90°,∴FG∥BC,∴△EFG∽△ECB,∴=,∴=,∴FG=,∴BG=FG=,∴EG=4﹣=,∴AG=AB﹣BG=,∴EF==,AF==,过E作EH⊥AF于H,∴∠AHE=∠AGF=90°,∵∠EAH=∠FAG,∴△AEH∽△AFG,∴=,∴=,∴EH=,∴sin∠AFE===.故答案为:.三、解答题(本题共8小题,其中第17-20题每题8分,第21题10分,第22-23题每题12分,第24题14分,共80分)17.计算:.【分析】先计算零指数幂、化简二次根式、去绝对值符号,再计算加减可得.解:原式==3.18.解方程组.【分析】方程组利用加减消元法求出解即可.解:,①+②得:7x=14,解得:x=2,把x=2代入①得:10+y=9,解得:y=﹣1,∴原方程组的解为:.19.等腰三角形的屋顶,是建筑中经常采用的结构形式.在如图所示的等腰三角形屋顶ABC 中,AB=AC,测得BC=20米,∠C=41°,求顶点A到BC边的距离是多少米?(结果精确到0.1米.参考数据:sin41°≈0.656,cos41°≈0.755,tan41°≈0.869)【分析】作AD⊥BC,垂足为D点.根据等腰三角形三线合一的性质得出BD=CD =BC =10,再解Rt△ACD,求出AD=CD•tan41°≈8.7米.解:如图,作AD⊥BC,垂足为D点.∵AB=AC,BC=20,∴BD=CD =BC=10.∵在Rt△ACD中,∠C=41°,∴tan C=tan41°=,∴AD=CD•tan41°≈10×0.869≈8.7(米).答:顶点A到BC边的距离约为8.7米.20.如图,“漏壶”是一种古代计时器.在它内部盛一定量的水,水从壶下的小孔漏出.壶内壁有刻度,人们根据壶中水面的位置计算时间.用x(小时)表示漏水时间,y(厘米)表示壶底到水面的高度,某次计时过程中,记录到部分数据如表:漏水时间x(小时)…3456…壶底到水面高度y(厘…9753…米)(1)问y与x的函数关系属于一次函数、二次函数和反比例函数中的哪一种?求出该函数解析式及自变量x的取值范围;(2)求刚开始计时时壶底到水面的高度.【分析】(1)观察可得该函数是一次函数,设出一次函数解析式,把其中两点代入即可求得该函数解析式,进而把其余两点的横坐标代入看纵坐标是否与点的纵坐标相同;(2)把x=0代入解析式即可解答.解:(1)y是x的一次函数;设y=k x+b,把(3,9)与(4,7)代入得:,解,,∴y=﹣2x+15 (0≤x≤7.5),(2)把x=0代入y=﹣2x+15,得y=15,∴刚开始计时时壶底到水面的高度为15厘米.21.为了解阳光社区年龄20~60岁居民对垃圾分类的认识,学校课外实践小组随机抽取了该社区、该年龄段的部分居民进行了问卷调查,并将调查数据整理后绘成如下两幅不完整的统计图.图中A表示“全部能分类”,B表示“基本能分类”,C表示“略知一二”,D表示“完全不会”.请根据图中信息解答下列问题:(1)补全条形统计图并填空:被调查的总人数是50人,扇形图中D部分所对应的圆心角的度数为36°;(2)若该社区中年龄20~60岁的居民约3000人,请根据上述调查结果,估计该社区中C类有多少人?(3)根据统计数据,结合生活实际,请你对社区垃圾分类工作提一条合理的建议.【分析】(1)根据“全部能分类”的人数和所占的百分比,求出被调查的总人数,用总人数减去其他类别的人数求出B类的人数;用360°乘以D部分所占的百分比,求出D 部分所对应的圆心角的度数,再把条形统计图补全即可;(2)用总人数乘以社区中C类所占的百分比即可;(3)通过数据分析可知,该社区多数居民对垃圾分类知识了解不够,应多加宣传.解:(1)被调查的总人数是:5÷10%=50(人),B类的人数有:50﹣5﹣30﹣5=10(人),扇形图中D部分所对应的圆心角的度数为:360°×=36°,补全条形统计图如下:故答案为:50,36°;(2)根据题意得:3000×=1800(人),答:根据样本估计总体,该社区中C类约有1800人;(3)通过数据分析可知,该社区多数居民对垃圾分类知识了解不够,社区工作人员可以通过宣传橱窗加强垃圾分类知识的普及.22.已知AB是⊙O的直径,C是⊙O上的一点(不与点A,B重合),过点C作AB的垂线交⊙O于点D,垂足为E点.(1)如图1,当AE=4,BE=2时,求CD的长度;(2)如图2,连接AC,BD,点M为BD的中点.求证:ME⊥AC.【分析】(1)如图1,连接OC,在直角△OEC中,OC=3,OE=1,利用勾股定理求得CE的长度;则CD=2CE;(2)如图2,延长ME与AC交于点N.由直角三角形斜边上中线的性质和等腰三角形的两底角相等得到:∠DEM=∠D,由对顶角相等知∠CEN=∠DEM=∠D,易得∠CNE =∠BED=90°,即ME⊥AC.解:(1)如图1,连接OC,∵AE=4,BE=2,∴AB=6,∴CO=AO=3.∴OE=AE﹣AO=1.∵CD⊥AB,∴由勾股定理可得:CE=.由垂径定理可得CE=DE.∴CD=2CE=;(2)证明:如图2,延长ME与AC交于点N,∵CD⊥AB,∴∠BED=90°.∵M为BD中点,∴EM=BD=DM.∴∠DEM=∠D,∴∠CEN=∠DEM=∠D.∵∠B=∠C,∴∠CNE=∠BED=90°,即ME⊥AC.23.已知y关于x的二次函数y=x2﹣bx+b2+b﹣5的图象与x轴有两个公共点.(1)求b的取值范围;(2)若b取满足条件的最大整数值,当m≤x≤时,函数y的取值范围是n≤y≤6﹣2m,求m,n的值;(3)若在自变量x的值满足b≤x≤b+3的情况下,对应函数y的最小值为,求此时二次函数的解析式.【分析】(1)由b2﹣4ac>0列出不等式进行解答;(2)根据二次函数的增减性质列出m、n的方程进行解答;(3)分三种情况,对称轴在x=b与x=b+3之间;在x=b的左边;在x=b+3的右边.根据二次函数的增减性和局部范围内的最小值,列出b的方程,求得b值便可.解:(1)由题意知,△>0,即,∴﹣4b+20>0,解得:b<5;(2)由题意,b=4,代入得:y=x2﹣4x+3,∴对称轴为直线,又∵a=1>0,函数图象开口向上,∴当m≤x≤时,y随x的增大而减小,∴当x=时,y=n=;当x=m时,y=6﹣2m=m2﹣4m+3,m2﹣2m﹣3=0,解得:m1=﹣1,m2=3(不合题意,舍去);∴m=﹣1,n=;(3)∵,∴对称轴为x=0.5b,开口向上,∴①当b≤0.5b≤b+3,即﹣6≤b≤0时,函数y在顶点处取得最小值,有b﹣5=,∴b=(不合题意,舍去);②当b+3<0.5b,即b<﹣6时,取值范围在对称轴左侧,y随x的增大而减小,∴当x=b+3时,y最小值=,代入得:,b2+16b+15=0,解得:b1=﹣15,b2=﹣1(不合题意,舍去),∴此时二次函数的解析式为:;③当0.5b<b,即b>0时,取值范围在对称轴右侧,y随x的增大而增大,∴当x=b时,y最小值=,代入得:,b2+4b﹣21=0,解得:b1=﹣7(不合题意,舍去),b2=3,∴此时二次函数的解析式为:.综上所述,符合题意的二次函数的解析式为:或.24.已知菱形ABCD中,∠ABC=60°,AB=4,点M在BC边上,过点M作PM∥AB 交对角线BD于点P,连接PC.(1)如图1,当BM=1时,求PC的长;(2)如图2,设AM与BD交于点E,当∠PCM=45°时,求证:=;(3)如图3,取PC的中点Q,连接MQ,AQ.①请探究AQ和MQ之间的数量关系,并写出探究过程;②△AMQ的面积有最小值吗?如果有,请直接写出这个最小值;如果没有,请说明理由.【分析】(1)作PF⊥BC于点F.根据菱形的性质即可得到PF和CF的长,再根据勾股定理即可得到PC的长;(2)作PG⊥BC于点G.设MG=x,由(1)可知:BM=PM=2x,GC=PG=x,再根据△BEM∽△DEA,即可得出=;(3)①延长MQ与CD交于点H,连接AH,AC.根据△PMQ≌△CHQ,即可得出PM =CH=BM,MQ=HQ,进而得到△ABM≌△ACH,可得AM=AH,∠BAM=∠CAH,根据△AMH为等边三角形,即可得到AQ=MQ.②根据△AMH为等边三角形,Q是MH的中点,即可得到△AMQ的面积等于△AMH 的面积的一半,根据AM⊥BC时AM最短,即可得到△AMH的面积的最小值为,进而得到△AMQ的面积最小值为.解:(1)如图1,作PF⊥BC于点F.∵四边形ABCD是菱形,∠ABC=60°,∴∠ABD=∠CBD=30°,AB=BC=CD=AD=4.∵PM∥AB,∴∠ABD=∠BPM=∠CBD=30°,∠PMF=∠ABC=60°,∴PM=BM=1,∴MF=PM=,PF=,FC=BC﹣BM﹣MF=4﹣1﹣=,∴PC==.(2)证明:如图2,作PG⊥BC于点G.∵∠PCM=45°,∴∠CPG=∠PCM=45°,∴PG=GC,设MG=x,由(1)可知:BM=PM=2x,GC=PG=x,由BM+MG+GC=BC得:2x+x+x=4,∴x=,∴BM=.∵四边形ABCD是菱形,∴BM∥AD,∴△BEM∽△DEA,∴=.(3)①如图3,延长MQ与CD交于点H,连接AH,AC.∵PM∥AB∥CD,∴∠PMQ=∠CHQ,∠MPQ=∠HCQ.∵Q是PC的中点,∴PQ=CQ,∴△PMQ≌△CHQ(AAS),∴PM=CH=BM,MQ=HQ,由四边形ABCD是菱形,∠ABC=60°,可得△ABC为等边三角形,∴AB=AC,∠ABM=∠ACH=60°,∴△ABM≌△ACH(SAS),∴AM=AH,∠BAM=∠CAH,∴∠MAH=∠BAC=60°,∴△AMH为等边三角形,∴AQ⊥MH,∠MAQ=∠MAH=30°,∴AQ=MQ.②△AMQ的面积有最小值,最小值为.。

2019-2020学年抚顺市新抚区中考数学模拟试卷试题(五)(有标准答案)

2019-2020学年抚顺市新抚区中考数学模拟试卷试题(五)(有标准答案)

辽宁省抚顺市新抚区中考数学模拟试卷(五)一、选择题(共10小题,每小题3分,满分30分)1.﹣3的倒数是()A.3 B.C.﹣3 D.﹣2.由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的主视图是()A.B.C.D.3.下列事件中,是确定性事件的是()A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中10环C.明天会下雨D.度量三角形的内角和,结果是360°4.如图,AB∥CD,CE交AB于点F,若∠E=20°,∠C=45°,则∠A的度数为()A.15° B.25° C.35° D.45°5.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A.B.C.D.16.方程x2﹣3x﹣5=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法确定是否有实数根7.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b <2x的解集为()A.x>0 B.0<x<1 C.1<x<2 D.x>28.如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A.8,6 B.8,5 C.52,53 D.52,529.如图,在△ABC中,D,E分别是边AB,BC上的点,且DE∥AC,若S△BDE=4,S△CDE=16,则△ACD的面积为()A.64 B.72 C.80 D.9610.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个二、填空题11.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖,石墨烯目前是世界上最薄也是最坚硬的纳米材料,同时还是导电性最好的材料,其原理厚度仅0.00000000034米,将0.00000000034这个数用科学记数法表示为.12.计算: = .13.有一箱子装有3张分别标示1、5、8的号码牌,已知小明以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,则组成的二位数能被3整除的概率是.14.如图有6个质地均匀和大小相同的球,每个球只标有一个数字,现将标有3,4,5,的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.小明和小海分别从甲、乙两箱中各摸一球,则小海所摸球上的数字比小明所摸球上数字大的概率为.15.一个正方形和两个等边三角形的位置如图所示,若∠1=40°,则∠2+∠3= .16.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=4,CD=2,则AC的长是.17.如图,若双曲线y=与斜边长为5的等腰直角△AOB的两个直角边OA,AB分别相交于C,D两点,OC=2BD,则k的值为.18.古希腊人常用小石子在沙滩上摆成各种形状来研究数.称图中的数1,5,12,22…为五边形数,则第6个五边形数是.三、解答题(第19题10分,第20题12分,共22分)19.先化简,再求值:(﹣)÷,其中x是不等式组的整数解.20.为了解学生体育训练的情况,某市从全市九年级学生中随机抽取部分学生进行了一次体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)扇形图中∠α的度数是,并把条形统计图补充完整;(3)对A,B,C,D四个等级依次赋分为90,75,65,55(单位:分),该市九年级共有学生9000名,如果全部参加这次体育测试,则测试等级为D的约有人;该市九年级学生体育平均成绩约为分.四、21.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?22.如图,AB为⊙O的直径,BC、AD是⊙O的切线,过O点作EC⊥OD,EC交BC于C,交直线AD于E.(1)求证:CD是⊙O的切线;(2)若AE=1,AD=3,求阴影部分的面积.五、(本题12分)23.如图,在小山的西侧A处有一热气球,以25米/分钟的速度沿着与垂直方向所成夹角为15°的方向升空,40分钟后到达B处,这时热气球上的人发现,在A处的正东方向有一处着火点C,在B处测得着火点C 的俯角为30°,求热气球升空点A与着火点C的距离.(结果保留根号)六、(本题12分)24.某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?七、(本题12分)25.如图,△ABC与△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,连接BE,将BE绕点B顺时针旋转90°,得BF,连接AD,BD,AF(1)如图①,D、E分别在AC,BC边上,求证:四边形ADBF为平行四边形;(2)△DEC绕点C逆时针旋转,其它条件不变,如图②,(1)的结论是否成立?说明理由.(3)在图①中,将△DEC绕点C逆时针旋转一周,其它条件不变,问:旋转角为多少度时.四边形ADBF为菱形?直接写出旋转角的度数.八、(本题14分)26.如图,抛物线y=ax2+bx﹣4经过A(﹣3,0)、B(2,0)两点,与y轴的交点为C,连接AC、BC,D为线段AB上的动点,DE∥BC交AC于E,A关于DE的对称点为F,连接DF、EF.(1)求抛物线的解析式;(2)EF与抛物线交于点G,且EG:FG=3:2,求点D的坐标;(3)设△DEF与△AOC重叠部分的面积为S,BD=t,直接写出S与t的函数关系式.辽宁省抚顺市新抚区中考数学模拟试卷(五)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.﹣3的倒数是()A.3 B.C.﹣3 D.﹣【分析】根据倒数的定义即若两个数的乘积是1,我们就称这两个数互为倒数,即可得出答案.【解答】解:﹣3的倒数是﹣.故选D.【点评】此题考查了倒数,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的主视图是()A.B.C.D.【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有四列,从左到右分别是1,2,2,1个正方形.【解答】解:由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,2,1个正方形.故选:A.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.3.下列事件中,是确定性事件的是()A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中10环C.明天会下雨D.度量三角形的内角和,结果是360°【分析】直接利用随机事件的定义以及确定事件的定义分析得出答案.【解答】解:A、买一张电影票,座位号是奇数,是随机事件,故此选项错误;B、射击运动员射击一次,命中10环,是随机事件,故此选项错误;C、明天会下雨,是随机事件,故此选项错误;D、度量三角形的内角和,结果是360°,是不可能事件,故是确定事件,故此选项正确.故选:D.【点评】此题主要考查了随机事件的定义以及确定事件的定义,正确把握相关定义是解题关键.4.如图,AB∥CD,CE交AB于点F,若∠E=20°,∠C=45°,则∠A的度数为()A.15° B.25° C.35° D.45°【分析】先根据平行线的性质求出∠EFB,再根据三角形外角性质求出∠A=∠EFB﹣∠E,代入求出即可.【解答】解:∵AB∥CD,∠C=45°,∴∠EFB=∠C=45°,∵∠E=20°,∴∠A=∠EFB﹣∠E=25°,故选B.【点评】本题考查了三角形的外角性质,平行线的性质的应用,解此题的关键是求出∠EFB的度数,注意:两直线平行,同位角相等.5.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A.B.C.D.1【分析】先在图中找出∠ABC所在的直角三角形,再根据三角函数的定义即可求出tan∠ABC的值.【解答】解:如图,在直角△ABD中,AD=3,BD=4,则tan∠ABC==.故选B.【点评】本题考查锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.6.方程x2﹣3x﹣5=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法确定是否有实数根【分析】求出b2﹣4ac的值,再进行判断即可.【解答】解:x2﹣3x﹣5=0,△=b2﹣4ac=(﹣3)2﹣4×1×(﹣5)=29>0,所以方程有两个不相等的实数根,故选A.【点评】本题考查了一元二次方程的根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根.7.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b <2x的解集为()A.x>0 B.0<x<1 C.1<x<2 D.x>2【分析】先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.【解答】解:把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),所以当x>1时,2x>kx+b,∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.8.如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A.8,6 B.8,5 C.52,53 D.52,52【分析】找出出现次数最多的速度即为众数,将车速按照从小到大顺序排列,求出中位数即可.【解答】解:根据题意得:这些车的车速的众数52千米/时,车速分别为50,50,51,51,51,51,51,52,52,52,52,52,52,52,52,53,53,53,53,53,53,54,54,54,54,55,55,中间的为52,即中位数为52千米/时,则这些车的车速的众数、中位数分别是52,52.故选:D.【点评】此题考查了频数(率)分布直方图,中位数,以及众数,弄清题意是解本题的关键.9.如图,在△ABC中,D,E分别是边AB,BC上的点,且DE∥AC,若S△BDE=4,S△CDE=16,则△ACD的面积为()A.64 B.72 C.80 D.96【分析】由S△BDE=4,S△CDE=16,得到S△BDE:S△CDE=1:4,根据等高的三角形的面积的比等于底边的比求出=,然后求出△DBE和△ABC相似,根据相似三角形面积的比等于相似比的平方求出△ABC的面积,然后求出△ACD的面积.【解答】解:∵S△BDE=4,S△CDE=16,∴S△BDE:S△CDE=1:4,∵△BDE和△CDE的点D到BC的距离相等,∴=,∴=,∵DE∥AC,∴△DBE∽△ABC,∴S△DBE:S△ABC=1:25,∴S△ACD=80.故选C.【点评】本题考查了相似三角形的判定与性质,等高的三角形的面积的比等于底边的比,熟记相似三角形面积的比等于相似比的平方,用△BDE的面积表示出△ABC的面积是解题的关键.10.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和2S△ABE,再通过比较大小就可以得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF(故①正确).∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故③正确).设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,(故④错误),∵S△CEF=x2,S△ABE=x2,∴2S△ABE=x2=S△CEF,(故⑤正确).综上所述,正确的有4个,故选:C.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.二、填空题11.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖,石墨烯目前是世界上最薄也是最坚硬的纳米材料,同时还是导电性最好的材料,其原理厚度仅0.00000000034米,将0.00000000034这个数用科学记数法表示为 3.4×10﹣10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.计算: = 4 .【分析】根据负整数指数幂等于正整数指数幂的倒数进行解答即可.【解答】解: ==4.故答案为:4.【点评】本题考查的是负整数指数幂的运算,熟知其运算性质是解答此题的关键,即负整数指数幂:a﹣p=(a≠0,p为正整数).13.有一箱子装有3张分别标示1、5、8的号码牌,已知小明以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,则组成的二位数能被3整除的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与组成的二位数能被3整除的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,组成的二位数能被3整除的有4种情况,∴组成的二位数能被3整除的概率是: =.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.14.如图有6个质地均匀和大小相同的球,每个球只标有一个数字,现将标有3,4,5,的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.小明和小海分别从甲、乙两箱中各摸一球,则小海所摸球上的数字比小明所摸球上数字大的概率为.【分析】利用列表的方法列举出所有等可能的结果,再找出小海所摸球上的数字比小明所摸球上的数字大的情况数目,两者的比值即为发生得概率.【解答】解:列举摸球的所有可能结果:小海小明4 5 63(3,4) (3,5) (3,6) 4(4,4) (4,5) (4,6) 5 (5,4) (5,5) (5,6) 从上表可知,一共有九种可能,其中小海所摸球上的数字比小明所摸球上数字大有6种,因此小海所摸球上的数字比小明所摸球上数字大的概率=,故答案为:.【点评】此题考查了利用画树状图及列表格的方法求事件发生的概率,利用了数形结合的思想.通过画树状图或列表法将复杂的概率问题化繁为简,化难为易,因为这种方法可以直观的把所有可能的结果一一罗列出来,方便于计算.15.一个正方形和两个等边三角形的位置如图所示,若∠1=40°,则∠2+∠3= 110°.【分析】设围成的小三角形为△ABC ,分别用∠1、∠2、∠3表示出△ABC 的三个内角,再利用三角形的内角和等于180°列式整理即可得解.【解答】解:如图,∠BAC=180°﹣90°﹣∠1=90°﹣∠1,∠ABC=180°﹣60°﹣∠3=120°﹣∠3,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,在△ABC 中,∠BAC+∠ABC+∠ACB=180°,∴90°﹣∠1+120°﹣∠3+120°﹣∠2=180°,∴∠1+∠2=150°﹣∠3,∵∠1=40°,∴∠2+∠3=150°﹣40°=110°.故答案为:110°.【点评】本题考查了三角形的内角和定理,用∠1、∠2、∠3表示出△ABC的三个内角是解题的关键,也是本题的难点.16.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=4,CD=2,则AC的长是2.【分析】作DE⊥AB于E,根据角平分线的性质得到DE=DC,根据勾股定理求出BE,再根据勾股定理计算即可.【解答】解:作DE⊥AB于E,∵AD是∠BAC的平分线,∠ACB=90°,DE⊥AB,∴DE=DC=3,∴AC=AE,由勾股定理得,BE==2,设AC=AE=x,由勾股定理得,x2+62=(x+2)2,解得,x=2,故答案为:2.【点评】本题考查的是勾股定理以及角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.17.如图,若双曲线y=与斜边长为5的等腰直角△AOB的两个直角边OA,AB分别相交于C,D两点,OC=2BD,则k的值为 4 .【分析】过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设BD=x,则OC=2x,分别表示出点C、点D 的坐标,代入函数解析式求出k,继而可建立方程,解出x的值后即可得出k的值.【解答】解:如图,过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设BD=x,则OC=2x,∵Rt△OCE为等腰直角三角形,∴∠COE=45°,∴OE=CE=OC=x,∴则点C坐标为(x, x),同理在等腰Rt△BDF中,BD=x,∴BF=DF=BD=x,∴OF=OB﹣BF=5﹣x则点D的坐标为(5﹣x, x),将点C的坐标代入反比例函数解析式可得:k=2x2,将点D的坐标代入反比例函数解析式可得:k=x﹣x2,∴2x2=x﹣x2,解得:x1=,x2=0(舍去),∴k=2x2=4,故答案为:4.【点评】本题考查了反比例函数图象上点的坐标特征,解答本题关键是利用k的值相同建立方程,有一定难度.18.古希腊人常用小石子在沙滩上摆成各种形状来研究数.称图中的数1,5,12,22…为五边形数,则第6个五边形数是51 .【分析】计算不难发现,相邻两个图形的小石子数的差值依次增加3,根据此规律依次进行计算即可得解.【解答】解:∵5﹣1=4,12﹣5=7,22﹣12=10,∴相邻两个图形的小石子数的差值依次增加3,∴第5个五边形数是22+13=35,第6个五边形数是35+16=51.故答案为:51.【点评】本题是对图形变化规律的考查,仔细观察图形求出相邻两个图形的小石子数的差值依次增加3是解题的关键.三、解答题(第19题10分,第20题12分,共22分)19.先化简,再求值:(﹣)÷,其中x是不等式组的整数解.【分析】先把括号内通分,再把除法运算化为乘法运算后约分得到=,接着解不等式组得到整数解,然后根据分式有意义的条件得到x的值,最后把x的值代入计算即可.要使原分式有意义,x只能取0,当x=0时,原式==﹣1.【解答】解:原式=•=•=,解不等式组得﹣2≤x≤1,它的整数解为﹣2,﹣1,0,1,要使原分式有意义,x只能取0,当x=0时,原式==﹣1.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.为了解学生体育训练的情况,某市从全市九年级学生中随机抽取部分学生进行了一次体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是400 ;(2)扇形图中∠α的度数是108°,并把条形统计图补充完整;(3)对A,B,C,D四个等级依次赋分为90,75,65,55(单位:分),该市九年级共有学生9000名,如果全部参加这次体育测试,则测试等级为D的约有900 人;该市九年级学生体育平均成绩约为75.5 分.【分析】(1)根据B级的人数和百分比求出学生人数;(2)求出A级的百分比,360°乘百分比即为∠α的度数,根据各等级人数之和等于总人数求出C等级人数,补全条形图;(3)根据样本中D等级所占比例乘以总人数9000可得,运用加权平均数的求法即可求出九年级学生体育平均成绩.【解答】解:(1)本次抽样测试的学生人数是:160÷40%=400,故答案为:400;(2)扇形图中∠α的度数是:×360°=108°,C等级人数为:400﹣120﹣160﹣40=80(人),补全条形图如图:故答案为:108°;(3)测试等级为D的约有×9000=900(人),学生体育平均成绩约为:90×+75×+65×+55×=75.5(分),故答案为:900,75.5.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.四、21.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?【分析】(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,然后根据利润4000元和3500元列出方程组,然后求解即可;(2)①根据总利润等于两种电脑的利润之和列式整理即可得解;②根据B型电脑的进货量不超过A型电脑的2倍列不等式求出x的取值范围,然后根据一次函数的增减性求出利润的最大值即可.【解答】解:(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,根据题意得,解得.答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元;(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.【点评】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.22.如图,AB为⊙O的直径,BC、AD是⊙O的切线,过O点作EC⊥OD,EC交BC于C,交直线AD于E.(1)求证:CD是⊙O的切线;(2)若AE=1,AD=3,求阴影部分的面积.【分析】(1)首先作OH⊥CD,垂足为H,由BC、AD是⊙O的切线,易证得△BOC≌△AOE(ASA),继而可得OD是CE的垂直平分线,则可判定DC=DE,即可得OD平分∠CDE,则可得OH=OA,证得CD是⊙O的切线;(2)首先证得△AOE∽△ADO,然后由相似三角形的对应边成比例,求得OA的长,然后利用三角函数的性质,求得∠DOA的度数,继而求得答案.【解答】(1)证明:作OH⊥CD,垂足为H,∵BC、AD是⊙O的切线,∴∠CBO=∠OAE=90°,在△BOC和△AOE中,,∴△BOC≌△AOE(ASA),∴OC=OE,又∵EC⊥OD,∴DE=DC,∴∠ODC=∠ODE,∴OH=OA,∴CD是⊙O的切线;(2)∵∠E+∠AOE=90°,∠DOA+∠AOE=90°,∴∠E=∠DOA,又∵∠OAE=∠ODA=90°,∴△AOE∽△ADO,∴=,∴OA2=EA•AD=1×3=3,∵OA>0,∴OA=,∴tanE==,∴∠DOA=∠E=60°,∵DA=DH,∠OAD=∠OHD=90°,∴∠DOH=∠DOA=60°,∴S阴影部分=×3×+×3×﹣=3﹣π.【点评】此题考查了切线的判定与性质、全等三角形的判定与性质、线段垂直平分线的性质、角平分线的性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.五、(本题12分)23.如图,在小山的西侧A处有一热气球,以25米/分钟的速度沿着与垂直方向所成夹角为15°的方向升空,40分钟后到达B处,这时热气球上的人发现,在A处的正东方向有一处着火点C,在B处测得着火点C 的俯角为30°,求热气球升空点A与着火点C的距离.(结果保留根号)【分析】在RT△ABD中求出AD,再在RT△ADC中求出AC即可解决问题.【解答】解:作AD⊥BC垂足为D,AB=40×25=1000,∵BE∥AC,∴∠C=∠EBC=30°,∠ABD=90°﹣30°﹣15°=45°,在Rt△ABD中,sin∠ABD=,AD=ABsin∠ABD=1000×sin45°=1000×=500,AC=2AD=1000,答:热气球升空点A与着火点C的距离是1000米.【点评】本题考查解直角三角形的应用、俯角俯角、三角函数等知识,解题的关键是添加辅助线,构造直角三角形,记住三角函数的定义,以及特殊三角形的边角关系,属于中考常考题型.六、(本题12分)24.某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?【分析】(1)根据题意可得出销量乘以每台利润进而得出总利润,进而得出答案;(2)根据销量乘以每台利润进而得出总利润,即可求出即可.【解答】解:(1)y=,(2)在0≤x≤10时,y=100x,当x=10时,y有最大值1000;在10<x≤30时,y=﹣3x2+130x,当x=21时,y取得最大值,∵x为整数,根据抛物线的对称性得x=22时,y有最大值1408.∵1408>1000,∴顾客一次购买22件时,该网站从中获利最多.【点评】此题主要考查了二次函数的应用,根据题意得出y与x的函数关系是解题关键.七、(本题12分)25.如图,△ABC与△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,连接BE,将BE绕点B顺时针旋转90°,得BF,连接AD,BD,AF(1)如图①,D、E分别在AC,BC边上,求证:四边形ADBF为平行四边形;(2)△DEC绕点C逆时针旋转,其它条件不变,如图②,(1)的结论是否成立?说明理由.(3)在图①中,将△DEC绕点C逆时针旋转一周,其它条件不变,问:旋转角为多少度时.四边形ADBF为菱形?直接写出旋转角的度数.【分析】(1)先根据△ABC与△DEC均为等腰直角三角形,以及旋转的性质,得出AD=BF,AD∥BF,进而得到四边形ADBF为平行四边形;(2)先延长BE交AD于G,交AC于O,根据△ABC与△DEC均为等腰直角三角形,判定△ACD≌△BCE(SAS),得出AD=BE,∠CAD=∠CBE,再根据“8字形”得出∠AGE=90°,判定AD∥BF,即可得出四边形ADBF为平行四边形;(3)分两种情况讨论:当旋转角∠BCE=135°时,当旋转角为315°时,分别判定△ACD≌△BCD,得到AD=BD,再根据四边形ADBF为平行四边形,得出四边形ADBF为菱形.【解答】解:(1)如图1,∵△ABC与△DEC均为等腰直角三角形,∴AC﹣DC=BC﹣EC,∴AD=BE,∵将BE绕点B顺时针旋转90°得BF,∴BE=BF,∴AD=BF,又∵∠ACB=90°,∠CBF=90°,∴∠C+∠CBF=180°,。

2020-2021学年辽宁省抚顺市中考数学模拟试卷(五)及答案解析

2020-2021学年辽宁省抚顺市中考数学模拟试卷(五)及答案解析
∵白球有5个,
∴红球有9×5=45(个),
故选:A.
【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.
8.如图,在△ABC中,点D在边AB上,BD=2AD,DE∥BC交AC于点E,若线段DE=5,则线段BC的长为( )
A.7.5B.10C.15D.20
【考点】相似三角形的判定与性质.
9.如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是( )
A. B. C. D.
【考点】动点问题的函数图象.
【专题】压轴题.
【分析】通过设出BE=x,FC=y,且△AEF为直角三角形,运用勾股定理得出y与x的关系,再判断出函数图象.
A. B. C. D.
10.如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD上的动点,则|PA﹣PB|的最大值是( )
A.4B.5C.6D.8
二、填空题:每小题3分,共24分.
11.不等式组 的整数解是.
12.计算:2×( ﹣1)0﹣12015+ 的值为.
13.函数 的自变量x的取值范围是.
【分析】根据主视图的定义,找到从正面看所得到的图形即可.
【解答】解:从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,
故选:C.
【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.
6.学校准备设计一款女生校服,对全校女生喜欢的颜色进行了问卷调查,统计如下表所示:
辽宁省抚顺市中考数学模拟试卷(五)
一、选择题:每小题3分,共30分,在四个选项中只有一项是正确的.

2020年中考数学模拟试卷(江苏南京)(五)(解析版)

2020年中考数学模拟试卷(江苏南京)(五)(解析版)

2020年中考考前(江苏南京卷)全真模拟卷(5)数学(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题有6个小题,共2分,满分12分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.据统计截止2019年南京常住人口为843.62万人,共有55个民族,其中汉族占总人口的98.76%,少数民族约9.92万人,843.62万用科学记数法表示为()A.8.4362×102B.8.4362×104C.8.4362×105D.8.4362×106【解析】解:843.62万=843.62×104=8.4362×106.故选D.2.下列运算正确的是()A.a2•a4=a8 B.(a2)4=a8 C.(a4b2)2=a6b4 D.a8÷a4=a2【解析】解:A.a2•a4=a6,故本选项不符合题意;B.(a2)4=a8,正确,故本选项符合题意;C.(a4b2)2=a8b4,故本选项不符合题意;D.a8÷a4=a4,故本选项不符合题意.故选:B.3.下列说法正确的是()A.-3是-9的平方根B.1的立方根是±1C.a是a2的算术平方根D.4的负的平方根是-2【解析】解:A.-9没有平方根,此选项错误;B.1的立方根是1,此选项错误;C.|a|是a2的算术平方根,此选项错误;D.4的负的平方根是-2,此选项正确;故选:D.4.如图,已知有理数a,b,c在数轴上对应的点分别为A,B,C,则下列不等式中不正确的是()A.c<b<a B.ac>ab C.cb>ab D.c+b<a+b【解析】解:由题意,可知a>0>b>c.A、∵a>0>b>c,∴c<b<a,故此选项错误;B、∵b>c,a>0,∴ac<ab,故此选项正确;C、∵c<a,b<0,∴cb>ab,故此选项错误;D、∵c<a,∴c+b<a+b,故此选项错误;故选:B.5.若正数x的平方等于10,则下列对x的估算正确的是()A.1<x<2B.2<x<3C.3<x<4D.4<x<5【解析】解:∵x2=10且x>0,∴x=10,34,∴3<x<4.故选:C.6.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF 沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是()A.2B.6C.2D.4【解析】解:如图,B′的运动路径是以E为圆心,以AE的长为半径的圆.所以,当B′点落在DE上时,B′D取得最小值.根据折叠的性质,△EBF≌△EB′F,∴EB′⊥B′F,∴EB′=EB,∵E是AB边的中点,AB=4,∴AE=EB′=2,∵AD=6,∴DE DB′=2.故选:A.二、填空题(本大题有10个小题,每小题2分,共20分)7.已知|x|=2020,则x=______.【解析】解:∵|±2020|=2020,∴x=±2020.故答案为:±2020.8.计算__________.6=5+- 5.故答案为:5.9.因式分解:-2ab2+12ab-18a=__________.【解析】解:原式=-2a(b2-6b+9)=-2(b-3)2.故答案为:-2(b-3)2.10.已知方程x2-x-7=0的两个实数根分别为m,n,则m2+n的值为__________.【解析】解:由题意可知m+n=1,m2-m-7=0,∴m2=m+7,∴原式=m+7+n=8,故答案为:8.11.如图,若∠1=∠D=39°,∠C=52°,则∠B=__________°.【解析】解:∵∠1=∠D,∴AB∥CD,∴∠B+∠C=180°,∴∠B=180°-∠C=180°-52°=128°,故答案为:128.12.如图,一座城墙高11.7米,墙外有一个宽为9米的护城河,那么一个长为15米的云梯_______(填“能”或“否”)到达墙的顶端.【解析】解:设这把梯子能够到达的墙的最大高度是h米,根据勾股定理h=12(米)∵h=12>11.7∴一个长为15米的云梯能够到达墙的顶端.故答案为:能.13.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为________.【解析】解:甲的成绩为(70×5+60×2+90×3)÷(5+2+3)=74,故答案为:74.14.有一块三角板ABC,∠C为直角,∠ABC=30°,将它放置在⊙O中,如图,点A、B在圆上,»AB的度数等于________.边BC经过圆心O,劣弧【解析】解:如图,延长BC交⊙O于点D,连接AD,OA.∵BD是直径,∴∠DAB=90°,∵∠B=30°,∴∠D=90°-30°=60°,∵OA=OD,∴∠D=∠OAD=60°,∴∠AOB=∠D+∠OAD=120°,»AB的度数等于120°.∴劣弧故答案为:120°.15.如图,在矩形ABCD中,AB=4,BC=8,点E,F分别在BC,CD上.若BE=2,∠EAF=45°,则DF的长是______.【解析】解:如图,过点E作EG⊥AE交AF于点G,过点G作MN∥AB交BC于点M,交AD 于点N.∵∠EAF=45°,∴△AEG是等腰直角三角形,∴△BEA≌△MGE,∴AB=EM,BE=MG,∴EM=4,MG=2,∴AF=6,NG=2,∵△ANG∽△ADF,∴AN NGAD DF=,即628DF=,解得DF=8 3 .故答案为:8 3 .16.如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是____________.【解析】解:如图,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2在Rt△ABC1中,AB=A=60°,∴∠ABC1=30°,∴AC1=AB=3,由勾股定理得:BC1=3,在Rt△ABC2中,AB=A=60°,∴∠AC2B=30°,∴AC2=BC2=6,当△ABC 是锐角三角形时,点C 在C 1C 2上移动,此时3<BC <6.故答案为:3<BC <6.三、解答题(本大题有11个小题,共88分.解答应写出文字说明、证明过程或演算步骤)17.(7分)计算:3(2x -1)-(-3x -4)(3x -4).【解析】解:原式=6x -3-(16-9x 2)=6x -3-16+9x 2=9x 2+6x -19.18.(7分)已知关于x 的分式方程211x k x x-=--的解为正数,求k 的取值范围. 【解析】解:∵211x k x x -=--,∴1x k x +-=2,∴x =2+k , ∵该分式方程有解,∴x ≠1,∴2+k ≠1,∴k ≠﹣1,∵x >0,∴2+k >0,∴k >﹣2,∴k >﹣2且k ≠﹣1,19.(7分))如图,正方形ABCD 的对角线AC 与BD 相交于点O ,E 是OB 上一点,DH ⊥CE ,垂足为H ,DH 与OC 相交于点F ,求证:OE =OF .证明:∵四边形ABCD 是正方形,∴AC ⊥BD ,AC =BD ,∴∠COB =∠DOC =90°,CO =DO ,∵DH ⊥CE ,∴∠DHE =90°,∠EDH +∠DEH =90°,∵∠ECO +∠DEH =90°,∴∠ECO =∠EDH ,∴△ECO ≌△FDO (ASA ),∴OE =OF .20.(8分)为了使“祖国在我心中”为主题的读书活动更具有针对性,海庆中学在全校范围内随机抽取部分学生进行问卷调查,要求学生在“教育、科技、国防、农业、工业”五类书籍中,选取自己最想读的一种(必选且只选一种),学校将收集到的调查结果适当整理后,绘制成如图所示的不完整的统计图.请根据图中所给的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)如果海庆中学共有1500名学生,请你估计该校最想读科技类书籍的学生有多少名.【解析】解:(1)根据题意得:18÷30%=60(名),答:在这次调查中,一共抽取了60名学生;(2)60﹣(18+9+12+6)=15(名),则本次调查中,选取国防类书籍的学生有15名,补全条形统计图,如图所示:(3)根据题意得:1500×960=225(名),答:该校最想读科技类书籍的学生有225名.21.(8分)为丰富校园文化生活,提高学生的综合素质,促进中学生全面发展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片的正面上,然后将这四张卡片背面朝上洗匀后放在桌面上.(1)小明从中随机抽取一张卡片是足球社团B 的概率是__________.(2)小明先从中随机抽取一张卡片,记录下卡片上的字母后不放回,再从剩余的卡片中随机抽取一张卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一张是科技社团D 的概率.【解析】解:(1)小明从中随机抽取一张卡片是足球社团B 的概率=14; (2)列表如下:由表可知共有12种等可能结果,小明两次抽取的卡片中有一张是科技社团D 的结果数为6种, 所以小明两次抽取的卡片中有一张是科技社团D 的概率为612=12. 22.(7分))已知:如图,点I 是△ABC 的内心,延长AI 交△ABC 的外接圆于点D ,求证:DB =DC =ID .证明:∵点I 是△ABC 的内心,延长AI 交△ABC 的外接圆于点D ,∴∠BAD =∠CAD =∠DBC =∠DCB =12∠BAC ,∠ABI =∠CBI =12∠ABC , ∴BD =CD ,∵∠BID =∠BAD +∠ABI ,∠DBI =∠DBC +∠IBC ,∴∠DBI =∠BID ,∴BD =DI ,∴DB =DC =ID .23.(8分)如图,一次函数y 1=k 1x +b (k 1、b 为常数,k 1≠0)的图象与反比例函数y 2=2k x(k 2≠0,x >0)的图象交于点A (m ,8)与点B (4,2).①求一次函数与反比例函数的解析式.②根据图象说明,当x 为何值时,k 1x +b ﹣2k x<0.【解析】解:①把点B (4,2)代入反比例函数y 2=2k x(k 2≠0,x >0)得,k 2=4×2=8, ∴反比例函数的解析式为y 2=8x, 将点A (m ,8)代入y 2得,8=8m ,解得m =1, ∴A (1,8),将A 、B 的坐标代入y 1=k 1x +b (k 1、b 为常数,k 1≠0)得11842k b k b +=⎧⎨+=⎩,解得1210k b =-⎧⎨=⎩, ∴一次函数的解析式为y 1=﹣2x +10;②由图象可知:当0<x <1或x >4时,y 1<y 2,即k 1x +b ﹣2k x<0. 24.(8分)如图,拦水坝的横断面为梯形ABCD ,AD =3m ,坝高AE =DF =6m ,坡角α=45°,β=30°,求BC 的长.【解析】解:过A 点作AE ⊥BC 于点E ,过D 作DF ⊥BC 于点F ,则四边形AEFD 是矩形,有AE =DF =6,AD =EF =3,∵坡角α=45°,β=30°,∴BE =AE =6,CF=,∴BC =BE +EF +CF =6+3+=9+,∴BC =(9+)m ,答:BC的长(9+m.25.(8分)2017年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2019年,家庭年人均纯收入达到了3600元.(1)求该贫困户2017年到2019年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2020年该贫困户的家庭年人均纯收入是否能达到4200元?【解析】解:(1)设该贫困户2017年到2019年家庭年人均纯收入的年平均增长率为x,依题意,得:2500(1+x)2=3600,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:该贫困户2017年到2019年家庭年人均纯收入的年平均增长率为20%.(2)3600×(1+20%)=4320(元),4320>4200.答:2020年该贫困户的家庭年人均纯收入能达到4200元.26.(9分)如图,在矩形ABCD中,AD=4cm,AB=3cm,E为边BC上一点,BE=AB,连接AE.动点P、Q从点A同时出发,点P cm/s的速度沿AE向终点E运动;点Q以2cm/s的速度沿折线AD﹣DC向终点C运动.设点Q运动的时间为x(s),在运动过程中,点P,点Q经过的路线与线段PQ围成的图形面积为y(cm2).(1)AE=________cm,∠EAD=________°;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)当PQ=cm时,直接写出x的值.【解析】解:(1)∵AB=3cm,BE=AB=3cm,∴AE cm,∠BAE=∠BEA=45°∵∠BAD=90°∴∠DAE=45°故答案为:,45(2)当0<x ≤2时,如图,过点P 作PF ⊥AD ,∵AQ =2x ,APx ,∠DAE =45°,PF ⊥AD ,∴PA =PQx ,∴y =S △PQA =12×PQ 2=x 2; 当2<x ≤3时,如图,过点P 作PF ⊥AD ,∵APx ,PF =AF =x ,QD =2x ﹣4,∴DF =4﹣x ,∴y =12x 2+12(2x ﹣4+x )(4﹣x )=﹣x 2+8x ﹣8; 当3<x ≤72时,如图,点P 与点E 重合.∵CQ =(3+4)﹣2x =7﹣2x ,CE =4﹣3=1cm ,∴y =12(1+4)×3﹣12(7﹣2x )×1=x +4. 综上所述,y =22884x x x x ⎧⎪-+-⎨⎪+⎩()()0223732x x x <≤<≤⎛⎫<≤ ⎪⎝⎭.(3)当0<x ≤2时∵QF =AF =x ,PF ⊥AD ,∴PQ =AP ,∵PQ =54cm ,x =54,∴x . 当2<x ≤3时,过点P 作PM ⊥CD ,∴四边形MPFD 是矩形,∴PM =DF =4﹣x ,MD =PF =x ,∴MQ =x ﹣(2x ﹣4)=4﹣x ,∵MP 2+MQ 2=PQ 2,∴(4﹣x )2+(4﹣x )2=2516,∵x =4±8>3(舍), 当3<x ≤72时,如图,∵PQ 2=CP 2+CQ 2,∴2516=1+(7﹣2x )2,∴x =258.综上所述:x =258或8. 27.(11分)问题提出:(1)如图1,已知△ABC ,试确定一点D ,使得以A ,B ,C ,D 为顶点的四边形为平行四边形,请画出这个平行四边形;问题探究:(2)如图2,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC=90°,求满足条件的点P到点A的距离;问题解决:(3)如图3,有一座草根塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的草根景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE=120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)【解析】解:(1)如图记为点D所在的位置.(2)如图,∵AB=4,BC=10,∴取BC的中点O,则OB>AB.∴以点O为圆心,OB=5长为半径作⊙O,⊙O一定与AD相交于P1,P2两点,连接BP1,P1C,P1O,∵∠BPC=90°,点P不能在矩形外;∴△BPC的顶点P在点P1或P2位置时,△BPC的面积最大,作P1E⊥BC,垂足为E,则OE=3,∴AP1=BE=OB﹣OE=5﹣3=2,由对称性得AP2=8.(3)可以,如图所示,连接BD,∵点A为□BCDE的对称中心,BA=50,∠CBE=120°,∴BD=100,∠BED=60°作△BDE的外接圆⊙O,则点E在优弧»BD上,取¼BED的中点E′,连接E′B,E′D,则E′B=E′D,且∠BE′D=60°,∴△BE′D为等边三角形.连接E′O并延长,经过点A至C′,使E′A=AC′,连接BC′,DC′,∵E′A⊥BD,∴四边形BC′DE′为菱形,且∠C′BE′=120°,作EF⊥BD,垂足为F,连接EO,则EF≤EO+OA﹣E′O+OA=E′A,∴S△BDE=12BD·EF≤12BD·E′A=S△E′BD,∴S□BCDE≤S□BC′DE′=2S△E′BD=1002sin60°=(m2)所以符合要求的□BCDE的最大面积为2.。

2020年江苏省南通市海门市东洲国际学校中考数学模拟考试试卷(五) 解析版

2020年江苏省南通市海门市东洲国际学校中考数学模拟考试试卷(五) 解析版

2020年南通市海门市东洲国际学校中考数学模拟试卷(五)一.选择题(共10小题)1.﹣4的相反数是()A.4B.﹣4C.﹣D.2.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A.1.496×107B.14.96×108C.0.1496×108D.1.496×108 3.如图,该几何体的俯视图是()A.B.C.D.4.下列计算正确的是()A.3m+3n=6mn B.y3÷y3=y C.a2•a3=a6D.(x3)2=x6 5.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.70°B.60°C.40°D.30°6.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差7.如果抛物线y=ax2+bx+c经过点(﹣1,0)和(3,0),那么对称轴是直线()A.x=0B.x=1C.x=2D.x=38.现有一块长方形绿地,它的短边长为20m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300m2,设扩大后的正方形绿地边长为xm,下面所列方程正确的是()A.x(x﹣20)=300B.x(x+20)=300C.60(x+20)=300D.60(x﹣20)=3009.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,已知∠BAC=90°,AB=6,AC =8,点D、E、F、G、H、I都在矩形KLMJ的边上,则矩形KLMJ的周长为()A.40B.44C.84D.8810.对于不为零的两个实数a,b,如果规定:a★b=,那么函数y=2★x的图象大致是()A.B.C.D.二.填空题(共4小题)11.分解因式:a3﹣a=.12.若a,b,c是一个三角形的三条边,且a,b满足+|7﹣b|=0,则第三边c的取值范围为13.如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则的长为.14.如图,正方形ABCD中,E为AB边上一点,过点E作EF⊥AB交对角线BD于点F.连接EC交BD于点G.取DF的中点H,并连接AH.若AH=,EG=,则四边形AEFH 的面积为.三.解答题(共9小题)15.计算:(﹣)﹣1+(2016﹣)0﹣4sin60°+|﹣|16.我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.17.如图,在平面直角坐标系中,△ABC的三个顶点分别是A(1,1)、B(4,0)、C(4,4).(1)按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转得到90°得到△A2B2C2;(2)求点C从开始到点C2的过程中所经过的路径长.18.某小区开展了“行车安全,方便居民”的活动,对地下车库作了改进.如图,这小区原地下车库的入口处有斜坡AC长为13米,它的坡度为i=1:2.4,AB⊥BC,为了居民行车安全,现将斜坡的坡角改为13°,即∠ADC=13°(此时点B、C、D在同一直线上).(1)求这个车库的高度AB;(2)求斜坡改进后的起点D与原起点C的距离(结果精确到0.1米).(参考数据:sin13°≈0.225,cos13°≈0.974,tan13°≈0.231,cot13°≈4.331)19.用黑白棋子摆出下列一组图形,根据规律可知.(1)在第n个图中,白棋共有枚,黑棋共有枚;(2)在第几个图形中,白棋共有300枚;(3)白棋的个数能否与黑棋的个数相等?若能,求出是第几个图形,若不能,说明理由.20.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.21.如图,AB为⊙O的直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,连接CD,过点C作CE⊥DB,垂足为E,直径AB与CE的延长线相交于F点.(1)求证:CF是⊙O的切线;(2)当BD=,sin F=时,求OF的长.22.某茶农要对1号、2号、3号、4号四个品种共500株茶树幼苗进行成活实验,从中选出成活率高的品种进行推广,通过实验得知,3号茶树幼苗成活率为89.6%,把实验数据绘制成图1和图2所示的两幅不完整的统计图.(1)实验所用的2号茶树幼苗的数量是株;(2)求出3号茶树幼苗的成活数,并补全统计图2;(3)该茶农要从这四种茶树中选择两个品种进行推广,请用列表或画树状图的方法求出1号品种被选中的概率.23.已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上,如图2,当点P为AB的中点时,判断△ACE的形状,并说明理由;(3)在(1)的条件下,将正方形ABCD固定,正方形BPEF绕点B旋转一周,设AB =4,BP=a,若在旋转过程中△ACE面积的最小值为4,请直接写出a的值.参考答案与试题解析一.选择题(共10小题)1.﹣4的相反数是()A.4B.﹣4C.﹣D.【分析】根据只有符号不同的两个数互为相反数,0的相反数是0即可求解.【解答】解:﹣4的相反数是4.故选:A.2.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A.1.496×107B.14.96×108C.0.1496×108D.1.496×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据1.496亿用科学记数法表示为1.496×108,故选:D.3.如图,该几何体的俯视图是()A.B.C.D.【分析】找到从几何体的上面所看到的图形即可.【解答】解:从几何体的上面看可得,故选:A.4.下列计算正确的是()A.3m+3n=6mn B.y3÷y3=y C.a2•a3=a6D.(x3)2=x6【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、3m与3n不是同类项,不能合并,故本选项错误;B、y3÷y3=y,故本选项错误;C、a2•a3=a2+3=a5,故本选项错误;D、(x3)2=x3×2=a6,故本选项正确.故选:D.5.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.70°B.60°C.40°D.30°【分析】先根据两直线平行,同位角相等求出∠1,再利用三角形的外角等于和它不相邻的两个内角的和即可求出∠E的度数.【解答】解:如图,∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠E=70°﹣40°=30°.故选:D.6.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差【分析】依据的定义和公式分别计算新旧两组数据的平均数、中位数、众数、方差求解即可.【解答】解:原数据的2、3、3、4的平均数为=3,中位数为=3,众数为3,方差为×[(2﹣3)2+(3﹣3)2×2+(4﹣3)2]=0.5;新数据2、3、3、3、4的平均数为=3,中位数为3,众数为3,方差为×[(2﹣3)2+(3﹣3)2×3+(4﹣3)2]=0.4;∴添加一个数据3,方差发生变化,故选:D.7.如果抛物线y=ax2+bx+c经过点(﹣1,0)和(3,0),那么对称轴是直线()A.x=0B.x=1C.x=2D.x=3【分析】根据抛物线的对称性得到抛物线的对称轴经过两点(﹣1,0)和(3,0)的中点,于是可得到抛物线的对称轴为直线x=2.【解答】解:∵抛物线y=ax2+bx+c与x轴两交点的坐标为(﹣1,0)和(3,0),而抛物线y=ax2+bx+c与x轴两交点是对称点,∴抛物线的对称轴为直线x=1.故选:B.8.现有一块长方形绿地,它的短边长为20m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300m2,设扩大后的正方形绿地边长为xm,下面所列方程正确的是()A.x(x﹣20)=300B.x(x+20)=300C.60(x+20)=300D.60(x﹣20)=300【分析】设扩大后的正方形绿地边长为xm,根据“扩大后的绿地面积比原来增加300m2”建立方程即可.【解答】解:设扩大后的正方形绿地边长为xm,根据题意得x(x﹣20)=300.故选:A.9.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,已知∠BAC=90°,AB=6,AC =8,点D、E、F、G、H、I都在矩形KLMJ的边上,则矩形KLMJ的周长为()A.40B.44C.84D.88【分析】延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.【解答】解:如图,延长AB交KF于点O,延长AC交GM于点P,∴四边形AOLP是正方形,边长AO=AB+AC=6+8=14,∴KL=6+14=20,LM=8+14=22,∴矩形KLMJ的周长为2×(20+22)=84.故选:C.10.对于不为零的两个实数a,b,如果规定:a★b=,那么函数y=2★x的图象大致是()A.B.C.D.【分析】先根据规定得出函数y=2★x的解析式,再利用一次函数与反比例函数的图象性质即可求解.【解答】解:由题意,可得当2<x,即x>2时,y=2+x,y是x的一次函数,图象是一条射线除去端点,故A、D错误;当2≥x,即x≤2时,y=﹣,y是x的反比例函数,图象是双曲线,分布在第二、四象限,其中在第四象限时,0<x≤2,故B错误.故选:C.二.填空题(共4小题)11.分解因式:a3﹣a=a(a+1)(a﹣1).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).12.若a,b,c是一个三角形的三条边,且a,b满足+|7﹣b|=0,则第三边c的取值范围为2<c<12【分析】根据非负数的性质列式求出a、b,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求解即可.【解答】解:由题意得a﹣5=0,7﹣b=0,解得a=5,b=7,∵7﹣5=2,5+7=12,∴2<c<12.故答案为:2<c<12.13.如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则的长为π.【分析】连接CF,DF,得到△CFD是等边三角形,得到∠FCD=60°,根据正五边形的内角和得到∠BCD=108°,求得∠BCF=48°,根据弧长公式即可得到结论.【解答】解:连接CF,DF,则△CFD是等边三角形,∴∠FCD=60°,∵在正五边形ABCDE中,∠BCD=108°,∴∠BCF=48°,∴的长==π,故答案为:π.14.如图,正方形ABCD中,E为AB边上一点,过点E作EF⊥AB交对角线BD于点F.连接EC交BD于点G.取DF的中点H,并连接AH.若AH=,EG=,则四边形AEFH 的面积为.【分析】如图,连接HE,HC,作HM⊥AB于M.,延长MH交CD于N.首先证明△EHC是等腰直角三角形,推出EC=2,由EF∥BC,推出==,设EF=BE=4a,则BC=AB=10a,AE=6a,AM=ME=3a,由EF∥HM,推出=,推出=,推出HM=7a,可得S四边形AEFH=S△AMH+S梯形EFHM=×3a×7a+(4a+7a)×3a =27a2,在Rt△BEC中,根据BE2+BC2=EC2,构建方程求出a2即可解决问题;【解答】解:如图,连接HE,HC,作HM⊥AB于M.,延长MH交CD于N.∵四边形ABCD是正方形,∴DA=DC,∠ADH=∠CDH=45°,∵DH=DH,∴△ADH≌△CDH(SAS),∴AH=CH=,∵EF⊥AB,HM⊥AB,DA⊥AB∴EF∥HM∥AD,∵HF=HD,∴AM=EM,∴HA=HE=HC,∵∠AMN=∠∠ADN=90°,∴四边形AMND是矩形,∴AM=DN,∵DN=HN,AM=EM,∴EM=HN,∴Rt△HME≌Rt△CNH(HL),∴∠MHE=∠HCN,∵∠HCN+∠CHN=90°,∴∠MHE+∠CHN=90°,∴∠EHC=90°,∴EC=HE=2,∵EG=,∴GC=2﹣=,∵EF∥BC,∴==,设EF=BE=4a,则BC=AB=10a,AE=6a,AM=ME=3a,∵EF∥HM,∴=,∴=,∴HM=7a,∴S四边形AEFH=S△AMH+S梯形EFHM=×3a×7a+(4a+7a)×3a=27a2,在Rt△BEC中,∵BE2+BC2=EC2,∴16a2+100a2=4,∴a2=,∴S四边形AEFH=.故答案为.三.解答题(共9小题)15.计算:(﹣)﹣1+(2016﹣)0﹣4sin60°+|﹣|【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣3+1﹣4×+2=﹣2.16.我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.【分析】直接利用5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛,分别得出等式组成方程组求出答案.【解答】解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,则,解得:,答:1个大桶可以盛酒斛,1个小桶可以盛酒斛.17.如图,在平面直角坐标系中,△ABC的三个顶点分别是A(1,1)、B(4,0)、C(4,4).(1)按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转得到90°得到△A2B2C2;(2)求点C从开始到点C2的过程中所经过的路径长.【分析】(1)①利用点平移的坐标规律写出点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;②利用网格特点和旋转的性质画出点A1、B1、C1的对应点A2、B2、C2,从而得到△A2B2C2;(2)计算线段CC1的长和弧C1C2的长即可.【解答】解:(1)①如图,△A1B1C1为所作;②如图,将△A2B2C2为所作;(2)从C点到C1所经过的路径长为4,从点C1到C2所经过的路径长==2π,所以点C从开始到点C2的过程中所经过的路径长为4+2π.18.某小区开展了“行车安全,方便居民”的活动,对地下车库作了改进.如图,这小区原地下车库的入口处有斜坡AC长为13米,它的坡度为i=1:2.4,AB⊥BC,为了居民行车安全,现将斜坡的坡角改为13°,即∠ADC=13°(此时点B、C、D在同一直线上).(1)求这个车库的高度AB;(2)求斜坡改进后的起点D与原起点C的距离(结果精确到0.1米).(参考数据:sin13°≈0.225,cos13°≈0.974,tan13°≈0.231,cot13°≈4.331)【分析】(1)根据坡度的概念,设AB=5x,则BC=12x,根据勾股定理列出方程,解方程即可;(2)根据余切的定义列出算式,求出DC.【解答】解:(1)由题意,得:∠ABC=90°,i=1:2.4,在Rt△ABC中,i==,设AB=5x,则BC=12x,∴AB2+BC2=AC2,∴AC=13x,∵AC=13,∴x=1,∴AB=5,答:这个车库的高度AB为5米;(2)由(1)得:BC=12,在Rt△ABD中,cot∠ADC=,∵∠ADC=13°,AB=5,∴DB=5cot13°≈21.655(m),∴DC=DB﹣BC=21.655﹣12=9.655≈9.7(米),答:斜坡改进后的起点D与原起点C的距离为9.7米.19.用黑白棋子摆出下列一组图形,根据规律可知.(1)在第n个图中,白棋共有n(n+1)枚,黑棋共有3n+6枚;(2)在第几个图形中,白棋共有300枚;(3)白棋的个数能否与黑棋的个数相等?若能,求出是第几个图形,若不能,说明理由.【分析】依据题意求出白棋和黑棋的表达式即可求解.【解答】解:(1)由题意得:白棋为:n(n+1),黑棋为3n+6;故答案为:n(n+1),3n+6;(2)n(n+1)=600,解得:n=24(已舍去负值)故:第24个图形中,白棋共有300枚;(3)n(n+1)=600,解得:n=为无理数,所以,白棋的个数不能与黑棋的个数相等.20.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.【分析】(1)设甲种苹果的进价为a元/千克,乙种苹果的进价为b元/千克,根据“1千克甲种苹果和1千克乙种苹果的进价之和为18元/千克,购买3千克甲种苹果和4千克乙种苹果共用82元”,即可得出关于a,b的二元一次方程组,解之即可得出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.【解答】解:(1)设甲种苹果的进价为a元/千克,乙种苹果的进价为b元/千克,根据题意得:,解得:.答:甲种苹果的进价为10元/千克,乙种苹果的进价为8元/千克.(2)根据题意得:(4+x)(100﹣10x)+(2+x)(140﹣10x)=960,整理得:x2﹣9x+14=0,解得:x1=2,x2=7,经检验,x1=2,x2=7均符合题意.答:x的值为2或7.21.如图,AB为⊙O的直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,连接CD,过点C作CE⊥DB,垂足为E,直径AB与CE的延长线相交于F点.(1)求证:CF是⊙O的切线;(2)当BD=,sin F=时,求OF的长.【分析】(1)连接OC.先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC∥DB,再由CE⊥DB,得到OC⊥CF,根据切线的判定即可证明CF为⊙O的切线;(2)连接AD.由圆周角定理得出∠D=90°,证出∠BAD=∠F,得出sin∠BAD=sin ∠F==,求出AB=BD=6,得出OB=OC=3,再由sin F==即可求出OF.【解答】解:(1)连接OC.如图1所示:∵OA=OC,∴∠1=∠2.又∵∠3=∠1+∠2,∴∠3=2∠1.又∵∠4=2∠1,∴∠4=∠3,∴OC∥DB.∵CE⊥DB,∴OC⊥CF.又∵OC为⊙O的半径,∴CF为⊙O的切线;(2)连接AD.如图2所示:∵AB是直径,∴∠D=90°,∴CF∥AD,∴∠BAD=∠F,∴sin∠BAD=sin F==,∴AB=BD=6,∴OB=OC=3,∵OC⊥CF,∴∠OCF=90°,∴sin F==,解得:OF=5.22.某茶农要对1号、2号、3号、4号四个品种共500株茶树幼苗进行成活实验,从中选出成活率高的品种进行推广,通过实验得知,3号茶树幼苗成活率为89.6%,把实验数据绘制成图1和图2所示的两幅不完整的统计图.(1)实验所用的2号茶树幼苗的数量是100株;(2)求出3号茶树幼苗的成活数,并补全统计图2;(3)该茶农要从这四种茶树中选择两个品种进行推广,请用列表或画树状图的方法求出1号品种被选中的概率.【分析】(1)先根据百分比之和为1求得2号的百分比,再用总株数乘以所得百分比可得;(2)先用总株数乘以2号的百分比求得其数量,再用2号幼苗株数乘以其成活率即可得;(3)画树状图列出所有等可能结果,再从中找到1号品种被选中的结果数,利用概率公式计算可得.【解答】解:(1)∵2号幼苗所占百分比为1﹣(30%+25%+25%)=20%,∴实验所用的2号茶树幼苗的数量是500×20%=100株,故答案为:100;(2)实验所用的2号茶树幼苗的数量是500×25%=125株,∴3号茶树幼苗的成活数为125×89.6%=112株,补全条形图如下:(3)画树状图如下:由树状图知共有12种等可能结果,其中抽到1号品种的有6种结果,所以1号品种被选中的概率为=.23.已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上,如图2,当点P为AB的中点时,判断△ACE的形状,并说明理由;(3)在(1)的条件下,将正方形ABCD固定,正方形BPEF绕点B旋转一周,设AB =4,BP=a,若在旋转过程中△ACE面积的最小值为4,请直接写出a的值.【分析】(1)根据正方形的性质证明△APE≌△CFE,可得结论;(2)分别证明∠P AE=45°和∠BAC=45°,则∠CAE=90°,即△ACE是直角三角形;(3)如图3中,连接BD交AC于O.因为点E的运动轨迹是以B为圆心,a为半径的圆,推出当点E在线段OB上时,△ACE的面积最小,构建方程即可解决问题(注意一题多解).【解答】证明:(1)如图1中,∵四边形ABCD和四边形BPEF是正方形,∴AB=BC,BP=BF,∴AP=CF,在△APE和△CFE中,∵,∴△APE≌△CFE,∴EA=EC;(2)△ACE是直角三角形,理由是:如图2中,∵P为AB的中点,∴P A=PB,∵PB=PE,∴P A=PE,∴∠P AE=45°,又∵∠BAC=45°,∴∠CAE=90°,即△ACE是直角三角形;(3)如图3中,连接BD交AC于O.∵点E的运动轨迹是以B为圆心,a为半径的圆,∴当点E在线段OB上时,△ACE的面积最小,∵×AC×OE=4,∴OE=,∵BE=2﹣=∴a=1,∴满足条件的a的值为1.。

2020年春陕西省西安市曲江一中中考数学五模试卷 解析版

2020年春陕西省西安市曲江一中中考数学五模试卷  解析版

2020年陕西省西安市曲江一中中考数学五模试卷一、选择题(每题3分,共计30分)1.(3分)计算:﹣20+(﹣2)0的结果是()A.﹣21B.﹣19C.0D.22.(3分)如图所示的几何体的主视图正确的是()A.B.C.D.3.(3分)下列运算正确的是()A.a2+a3=a5B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1D.(2a3﹣a2)÷(﹣a)2=2a﹣14.(3分)如图,AB∥CD,EF平分∠AEG,若∠FGE=40°,那么∠EFC的度数为()A.100°B.140°C.70°D.110°5.(3分)若点A(﹣2,a),B(b,)在同一个正比例函数图象上,则的值是()A.B.﹣3C.3D.﹣6.(3分)如图,△ABC中,AB=10,AC=6,AD、AE分别是其角平分线和中线,过点C 作CF⊥AD于E,连接EF,则线段EF的长为()A.B.2C.D.37.(3分)在直角坐标系中,将直线l1沿x轴方向向左平移个单位后所得直线l2经过点A(0,2),将直线l2关于y轴对称后经过点B(,0),则直线l1的函数关系式为()A.y=﹣x B.y=x C.y=x﹣1D.y=﹣x﹣1 8.(3分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=2,CE=6,H是AF的中点,那么CH的长是()A.2.5B.C.D.49.(3分)如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=8,BH=2,⊙O的半径OC=5,则弦AB的长为()A.B.C.6D.10.(3分)一条抛物线与x轴相交于A、B两点(点A在点B的左侧),若点M、N的坐标分别为(﹣1,﹣2)、(1,﹣2),抛物线顶点P在线段MN上移动.点B的横坐标的最大值为3,则点A的横坐标的最小值为()A.﹣3B.﹣1C.1D.3二、填空题(共4小题,每题3分,共计12分)11.(3分)不等式﹣x+2<0的解集为.12.(3分)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于度.13.(3分)如图,矩形ABCD的顶点A和对称中心均在反比例函数y=(k≠0,x>0)上,若矩形ABCD的面积为6,则k的值为.14.(3分)如图,在菱形ABDC中,∠ABD=120°,AD与BC交于点O,AO=6,点E 为AD上的一个动点,将EC绕点E顺时针旋转60°得到线段EF,连接OF,则OF的最小值为.三、解答题(共11小题,计78分.解答应写出过程)15.(5分)计算:|2﹣|++(﹣1)2020﹣()﹣1.16.(5分)解分式方程:﹣1=.17.(5分)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.18.(5分)如图,在正方形ABCD中,E是边AB上一点,P是对角线BD上一点,若BC =BP,PE⊥PC,求证:PE=CP.19.(7分)为养成学生课外阅读的习惯,学校开展了“我的梦中国梦”课外阅读活动.某校为了解八年级960名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出不完整的频数分布表和频数分布直方图.请根据图表信息解答问题:组别时间段(小时)频数频率10≤x<0.5100.0520.5≤x<1.0200.103 1.0≤x<1.580b4 1.5≤x<2.0a0.355 2.0≤x<2.5120.066 2.5≤x<3.080.04(1)表中a=,b=;补全频数分布直方图中空缺的部分;(2)样本中,学生日阅读所用时间的中位数落在第组;(3)请估计该校八年级学生日阅读量不足1小时的人数.20.(7分)如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移动平面镜至点C处,此时小华在平面镜内可以看到点E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小华的身高为1.8米,请你利用以上的数据求出DE的长度.(结果保留根号)21.(7分)某年5月,我国南方某省A,B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C,D获知A,B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A,B两市.已知从C市运往A,B两市的运费分别为每吨20元和25元,从D 市运往A,B两市的运费分别为每吨15元和30元,设从D市运往B市的救灾物资为x 吨.(1)设C,D两市的总运费为w元,求w与x之间的函数关系式.(2)怎样安排调运使得总运费最小,并求出最小值.22.(7分)在一次数学兴趣小组活动中,小红和小明两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于11,则小红获胜;若指针所指区域内两数和等于11,则为平局;若指针所指区域内两数和大于11,则小明获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法求出小红获胜的概率;(2)这个游戏规则对双方公平吗?为什么?23.(8分)如图,三角形ABC中,AC=10,AB=12.以BC为直径作⊙O交AB于点D,交AC于点G,D为AB的中点,DF⊥AC,垂足为F,交CB的延长线于点E.(1)求证:直线EF是⊙O的切线;(2)求sin∠E的值.24.(10分)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).(1)求抛物线的函数解析式;(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;(3)在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.25.(12分)【问题探究】(1)如图1,AB是⊙O的弦,直线l与O相交于点M、N两点,M1,M2是直线l上异于点M,N的两个点,则∠AMB∠AM1B(用>,<或=连接).(2)如图2,AB是⊙O的弦,直线l与⊙O相切于点M,点M1是直线l上异于点M的任意一点,请在图2中画出图形,试判断∠AMB,∠AM1B的大小关系,并证明.【解决问题】(3)某游乐园的平面图如图3所示,场所保卫人员想在线段OD上的点M处安装监控装置,用来监控OC边上的AB段,为了让监控效果达到最佳,必须要求∠AMB最大.已知∠DOC=60°,OA=400米,AB=200米,问在线段OD上是否存在一点M,使得∠AMB最大,若存在,请求出此时OM的长和∠AMB的度数,如果不存在,请说明理由.2020年陕西省西安市曲江一中中考数学五模试卷参考答案与试题解析一、选择题(每题3分,共计30分)1.(3分)计算:﹣20+(﹣2)0的结果是()A.﹣21B.﹣19C.0D.2【分析】先算零指数幂,再算加法.【解答】解:﹣20+(﹣2)0=﹣20+1=﹣19.故选:B.2.(3分)如图所示的几何体的主视图正确的是()A.B.C.D.【分析】先细心观察原立体图形和长方体的位置关系,结合四个选项选出答案.【解答】解:由图可知,主视图由一个矩形和三角形组成.故选:D.3.(3分)下列运算正确的是()A.a2+a3=a5B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1D.(2a3﹣a2)÷(﹣a)2=2a﹣1【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、a2+a3为最简结果,故选项错误;B、原式=﹣8a6,故选项错误;C、原式=4a2﹣1,故选项错误;D、原式=2a﹣1,故选项正确.4.(3分)如图,AB∥CD,EF平分∠AEG,若∠FGE=40°,那么∠EFC的度数为()A.100°B.140°C.70°D.110°【分析】由平行线的性质可得∠AEG+∠FGE=180°,可得∠AEG=140°,由角平分线的性质和三角形外角的性质可求解.【解答】解:∵AB∥CD,∴∠AEG+∠FGE=180°,∴∠AEG=180°﹣40°=140°,∵EF平分∠AEG,∴∠AEF=∠FEG=70°,∴∠EFC=∠FEG+∠FGE=70°+40°=110°,故选:D.5.(3分)若点A(﹣2,a),B(b,)在同一个正比例函数图象上,则的值是()A.B.﹣3C.3D.﹣【分析】设正比例函数解析式为y=kx,将A,B两点代入可计算ab的值,再将原式化简后代入即可求解.【解答】解:设正比例函数解析式为y=kx,∵点A(﹣2,a),B(b,)都在该函数图象上,∴a=﹣2k,bk=,即k=a,∴,∴ab=﹣3,∴原式==,6.(3分)如图,△ABC中,AB=10,AC=6,AD、AE分别是其角平分线和中线,过点C 作CF⊥AD于E,连接EF,则线段EF的长为()A.B.2C.D.3【分析】过点C作CM∥AB,交AE的延长线于M,交AD的延长线于N,由“AAS”可证△ABE≌△MCE,可得AB=CM=10,AE=EM,由角平分线的性质和平行线的性质可证AC=CN=6,由等腰三角形的性质可得AF=FN,由三角形中位线定理可求解.【解答】解:如图,过点C作CM∥AB,交AE的延长线于M,交AD的延长线于N,∵CM∥AB,∴∠B=∠ECM,∠M=∠BAE,在△ABE和△MCE中,,∴△ABE≌△MCE(AAS),∴AB=CM=10,AE=EM,∵AD平分∠BAC,∴∠BAD=∠CAD,∵AB∥CM,∴∠BAD=∠ANC,∴∠ANC=∠CAD,∴AC=CN=6,∴MN=4,∵AC=CN,CF⊥AD,∴AF=FN,又∵AE=EM,∴EF=MN=2,故选:B.7.(3分)在直角坐标系中,将直线l1沿x轴方向向左平移个单位后所得直线l2经过点A(0,2),将直线l2关于y轴对称后经过点B(,0),则直线l1的函数关系式为()A.y=﹣x B.y=x C.y=x﹣1D.y=﹣x﹣1【分析】设直线l1的函数关系式为y=kx+b(k≠0),根据平移性质得到直线l2为:y=k (x+)+b,此时将点A的坐标代入,得到:b=2;最后根据对称的性质和一次函数图象上点的坐标特征解答.【解答】解:设直线l1的函数关系式为y=kx+b(k≠0),根据平移性质得到直线l2为:y=k(x+)+b,把A(0,2)代入y=k(x+)+b得到:k+b=2①,∵直线l2关于y轴对称后经过点B(,0),∴直线y=k(﹣x+)+b经过点B(,0),∴k(﹣+)+b=0②.联立①②解得:k=,b=﹣1∴直线l1的函数关系式y=x﹣1.故选:C.8.(3分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=2,CE=6,H是AF的中点,那么CH的长是()A.2.5B.C.D.4【分析】连接AC、CF,根据正方形的性质求出AC、CF,并判断出△ACF是直角三角形,再利用勾股定理列式求出AF,然后根据直角三角形斜边上的中线等于斜边的一半可求解.【解答】解:如图,连接AC、CF,在正方形ABCD和正方形CEFG中,AC=BC=2,CF=CE=6,∠ACD=∠GCF=45°,所以,∠ACF=45°+45°=90°,所以,△ACF是直角三角形,由勾股定理得,AF==4,∵H是AF的中点,∴CH=AF=×4=2.故选:B.9.(3分)如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=8,BH=2,⊙O的半径OC=5,则弦AB的长为()A.B.C.6D.【分析】延长CO交⊙O于D,连接AD,通过证明△ADC∽△HBA,可得,可求解.【解答】解:如图,延长CO交⊙O于D,连接AD,∵CD为⊙O的直径,∴CD=2OC=10,∠DAC=90°,∴AD===6,∵∠DAC=∠BHA=90°,∠D=∠B,∴△ADC∽△HBA,∴,∴,∴AB=,故选:A.10.(3分)一条抛物线与x轴相交于A、B两点(点A在点B的左侧),若点M、N的坐标分别为(﹣1,﹣2)、(1,﹣2),抛物线顶点P在线段MN上移动.点B的横坐标的最大值为3,则点A的横坐标的最小值为()A.﹣3B.﹣1C.1D.3【分析】根据顶点P在线段MN上移动,又知点M、N的坐标分别为(﹣1,﹣2)、(1,﹣2),分别求出对称轴过点M和N时的情况,即可判断出A点坐标的最小值.【解答】解:根据题意知,点B的横坐标的最大值为3,即可知当对称轴过N点时,点B的横坐标最大,此时的A点坐标为(﹣1,0),当可知当对称轴过M点时,点A的横坐标最小,此时的B点坐标为(1,0),此时A点的坐标最小为(﹣3,0),故点A的横坐标的最小值为﹣3,故选:A.二、填空题(共4小题,每题3分,共计12分)11.(3分)不等式﹣x+2<0的解集为x≥6.【分析】不等式移项,把x系数化为1,即可求出解集.【解答】解:不等式﹣x+2≤0,移项得:﹣x≤﹣2,解得:x≥6.故答案为:x≥6.12.(3分)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于108度.【分析】根据多边形的内角和,可得∠1,∠2,∠3,∠4,根据等腰三角形的内角和,可得∠7,根据角的和差,可得答案.【解答】解:如图,由正五边形的内角和,得∠1=∠2=∠3=∠4=108°,∠5=∠6=180°﹣108°=72°,∠7=180°﹣72°﹣72°=36°.∠AOB=360°﹣108°﹣108°﹣36°=108°,故答案为:108.13.(3分)如图,矩形ABCD的顶点A和对称中心均在反比例函数y=(k≠0,x>0)上,若矩形ABCD的面积为6,则k的值为3.【分析】设点A的坐标,利用矩形的面积,表示矩形的边长,再根据对称中心表示E的坐标,由点A、E都在反比例函数的图象上,由反比例函数k的几何意义求解即可.【解答】解:设矩形的对称中心为E,连接OA、OE,过E作EF⊥OC垂足为F,∵点E是矩形ABCD的对称中心,∴BF=FC=BC,EF=AB,设OB=a,AB=b,∵ABCD的面积为6,∴BC=,BF=FC=,∴点E(a+,b),∵S△AOB=S△EOF=k,∴ab=(a+)×b=k,即:ab=3=k,故答案为3.14.(3分)如图,在菱形ABDC中,∠ABD=120°,AD与BC交于点O,AO=6,点E 为AD上的一个动点,将EC绕点E顺时针旋转60°得到线段EF,连接OF,则OF的最小值为.【分析】连接BF,利用等边三角形的性质得出条件,判定△ACE≌△BCF(SAS),即可得到∠CBF=∠CAE=30°,进而得出射线BF与BC的夹角始终为30°,再根据BO的长,即可得到OF的最小值.【解答】解:如图所示,连接BF,∵菱形ABDC中,∠ABD=120°,∴∠ABC=60°,AB=AC,∴△ABC是等边三角形,∴AC=BC,∠ACB=60°,∠CAE=∠BAC=30°,由旋转可得,CE=FE,∠CEF=60°,∴△CEF是等边三角形,∴∠ECF=60°,EC=FC,∴∠ACE=∠BCF,∴△ACE≌△BCF(SAS),∴∠CBF=∠CAE=30°,即射线BF与BC的夹角始终为30°,∴当OF⊥BF时,垂线段OF最短,又∵等边三角形ABC中,AO=6,∴BO===2,∴当OF⊥BF时,OF=BO×sin30°=2×=,即OF的最小值为,故答案为:.三、解答题(共11小题,计78分.解答应写出过程)15.(5分)计算:|2﹣|++(﹣1)2020﹣()﹣1.【分析】本题涉及绝对值、负整数指数幂、乘方、二次根式化简4个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:|2﹣|++(﹣1)2020﹣()﹣1.=﹣2++2+1﹣2=3﹣3.16.(5分)解分式方程:﹣1=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2+2x+1﹣x2+1=﹣2,移项合并得:2x=﹣4,解得:x=﹣2,经检验,x=﹣2是分式方程的解.17.(5分)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.【分析】根据角平分线的性质、线段的垂直平分线的性质即可解决问题.【解答】解:∵点P到∠ABC两边的距离相等,∴点P在∠ABC的平分线上;∵线段BD为等腰△PBD的底边,∴PB=PD,∴点P在线段BD的垂直平分线上,∴点P是∠ABC的平分线与线段BD的垂直平分线的交点,如图所示:18.(5分)如图,在正方形ABCD中,E是边AB上一点,P是对角线BD上一点,若BC =BP,PE⊥PC,求证:PE=CP.【分析】由正方形的性质得∠ABD=∠CBD,证出四边形FBGP是矩形,由角平分线的性质得FP=FB,则矩形FBGP是正方形,得PF=PG,证△PFE≌△PGC(ASA),即可得出结论.【解答】证明:过点P作PF⊥AB于F,PG⊥BC于G,如图所示:∴∠PFB=∠PGB=∠PGC=90°,∵四边形ABCD是正方形,∴∠ABC=90°,∠ABD=∠CBD,∴四边形FBGP是矩形,∵PF⊥AB于F,PG⊥BC于G,∴FP=FB,∴矩形FBGP是正方形,∴PF=PG,∠FPG=90°,∴∠FPE+∠EPG=90°,∵PE⊥PC,∴∠EPC=90°,∴∠GPC+∠EPG=90°,∴∠FPE=∠GPC,在△PFE与△PGC中,,∴△PFE≌△PGC(ASA),∴PE=PC.19.(7分)为养成学生课外阅读的习惯,学校开展了“我的梦中国梦”课外阅读活动.某校为了解八年级960名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出不完整的频数分布表和频数分布直方图.请根据图表信息解答问题:组别时间段(小时)频数频率10≤x<0.5100.0520.5≤x<1.0200.103 1.0≤x<1.580b4 1.5≤x<2.0a0.355 2.0≤x<2.5120.066 2.5≤x<3.080.04(1)表中a=70,b=0.40;补全频数分布直方图中空缺的部分;(2)样本中,学生日阅读所用时间的中位数落在第3组;(3)请估计该校八年级学生日阅读量不足1小时的人数.【分析】(1)根据“频数÷百分比=数据总数”先计算总数为200人,再根据表中的数分别求a和b;(2)第100和第101个学生读书时间都在第3组;(3)前两组的读书时间不足1小时,用总数1200乘以这两组的百分比的和即可.【解答】解:(1)∵10÷0.05=200,∴a=200×0.35=70,b=80÷200=0.40,故答案为:70,0.40;(2)样本中一共有200人,中位数是第100和101人的读书时间的平均数,即第3组:1~1.5小时;故答案为:3;(3)960×(0.05+0.1)=960×0.15=144(人),答:估计该校七年级学生日阅读量不足1小时的人数为144人.20.(7分)如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移动平面镜至点C处,此时小华在平面镜内可以看到点E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小华的身高为1.8米,请你利用以上的数据求出DE的长度.(结果保留根号)【分析】根据相似三角形的性质解答即可.【解答】解:过E作EF⊥BC,∵∠CDE=120°,∴∠EDF=60°,设EF为x,DF=x,∵∠B=∠EFC=90°,∵∠ACB=∠ECD,∴△ABC∽△EFC,∴,即,解得:x=9+2,∴DE=,答:DE的长度为6+4.21.(7分)某年5月,我国南方某省A,B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C,D获知A,B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A,B两市.已知从C市运往A,B两市的运费分别为每吨20元和25元,从D 市运往A,B两市的运费分别为每吨15元和30元,设从D市运往B市的救灾物资为x 吨.(1)设C,D两市的总运费为w元,求w与x之间的函数关系式.(2)怎样安排调运使得总运费最小,并求出最小值.【分析】(1)由总运费=从D市运往B市的运费+从D市运往A市的运费+从C市运往B 市的运费+从C市运往A市的运费,可列出关系式;(2)由一次函数的性质可求解.【解答】解:由题意可得:w=20(x﹣60)+25(300﹣x)+15(260﹣x)+30x=10x+10200,∴w=10x+10200(60≤x≤260);(2)∵w=10x+10200(60≤x≤260)∴k=10>0,∴w随x的增大而增大,∴当x=60时,w有最小值为10800元,答:从D市运往B市的救灾物资为60吨,从D市运往A市的救灾物资为200吨,从C 市运往B市的救灾物资为240吨,从C市运往A市的救灾物资为0吨,此时总运费最小,最小值为10800元.22.(7分)在一次数学兴趣小组活动中,小红和小明两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于11,则小红获胜;若指针所指区域内两数和等于11,则为平局;若指针所指区域内两数和大于11,则小明获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法求出小红获胜的概率;(2)这个游戏规则对双方公平吗?为什么?【分析】(1)根据题意列出表格,得出游戏中两数和的所有可能的结果数;(2)根据(1)得出两数和共有的情况数和其中和小于12的情况、和大于12的情况数,再根据概率公式即可得出答案.【解答】解:(1)根据题意列表如下:678939101112410111213511121314由图表可知,两数和共有12种等可能结果,其中指针所指区域内两数和小于11的有3种,则小红获胜的概率是=;(2)由(1)可知,两数和共有12种等可能的情况,其中和小于11的情况有3种,和大于11的情况有6种,则小红获胜的概率为=;小明获胜的概率为=,∵<,∴这个游戏规则对双方不公平.23.(8分)如图,三角形ABC中,AC=10,AB=12.以BC为直径作⊙O交AB于点D,交AC于点G,D为AB的中点,DF⊥AC,垂足为F,交CB的延长线于点E.(1)求证:直线EF是⊙O的切线;(2)求sin∠E的值.【分析】(1)求证直线EF是⊙O的切线,只要连接OD证明OD⊥EF即可;(2)根据∠E=∠CBG,可以把求sin∠E的值得问题转化为求sin∠CBG,进而转化为求Rt△BCG中,两边的比的问题.【解答】证明:(1)连接OD、CD,∵BC是直径,∴CD⊥AB,∵AC=BC,∴D是AB的中点,∵O为CB的中点,∴OD∥AC,∵DF⊥AC,∴OD⊥EF,∴直线EF是⊙O的切线;(2)连BG,∵BC是直径,∴∠BDC=90°,∴CD===8,∵AB•CD=2S△ABC=AC•BG,∴BG==,∴CG===,∵BG⊥AC,DF⊥AC,∴BG∥EF.∴∠E=∠CBG,∴sin∠E=sin∠CBG===.24.(10分)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).(1)求抛物线的函数解析式;(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;(3)在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.【分析】(1)把点A、B的坐标代入抛物线解析式,解方程组求出b、c的值,即可得解;(2)令y=0,利用抛物线解析式求出点C的坐标,设点D的坐标为(0,m),作EF⊥y轴于点F,利用勾股定理列式表示出DC2与DE2,然后解方程求出m的值,即可得到点D的坐标;(3)根据点C、D、E的坐标判定△COD和△DFE全等,根据全等三角形对应角相等可得∠EDF=∠DCO,然后求出CD⊥DE,再利用勾股定理求出CD的长度,然后①分OC 与CD是对应边;②OC与DP是对应边;根据相似三角形对应边成比例列式求出DP的长度,过点P作PG⊥y轴于点G,再分点P在点D的左边与右边两种情况,分别求出DG、PG的长度,结合平面直角坐标系即可写出点P的坐标.【解答】解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(0,﹣3),∴,解得,故抛物线的函数解析式为y=x2﹣2x﹣3;(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则点C的坐标为(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴点E坐标为(1,﹣4),设点D的坐标为(0,m),作EF⊥y轴于点F,∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,∵DC=DE,∴m2+9=m2+8m+16+1,解得m=﹣1,∴点D的坐标为(0,﹣1);(3)∵点C(3,0),D(0,﹣1),E(1,﹣4),∴CO=DF=3,DO=EF=1,根据勾股定理,CD===,在△COD和△DFE中,∵,∴△COD≌△DFE(SAS),∴∠EDF=∠DCO,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD⊥DE,①分OC与CD是对应边时,∵△DOC∽△PDC,∴=,即=,解得DP=,过点P作PG⊥y轴于点G,则==,即==,解得DG=1,PG=,当点P在点D的左边时,OG=DG﹣DO=1﹣1=0,所以点P(﹣,0),当点P在点D的右边时,OG=DO+DG=1+1=2,所以,点P(,﹣2);②OC与DP是对应边时,∵△DOC∽△CDP,∴=,即=,解得DP=3,过点P作PG⊥y轴于点G,则==,即==,解得DG=9,PG=3,当点P在点D的左边时,OG=DG﹣OD=9﹣1=8,所以,点P的坐标是(﹣3,8),当点P在点D的右边时,OG=OD+DG=1+9=10,所以,点P的坐标是(3,﹣10),综上所述,满足条件的点P共有4个,其坐标分别为(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).25.(12分)【问题探究】(1)如图1,AB是⊙O的弦,直线l与O相交于点M、N两点,M1,M2是直线l上异于点M,N的两个点,则∠AMB<∠AM1B(用>,<或=连接).(2)如图2,AB是⊙O的弦,直线l与⊙O相切于点M,点M1是直线l上异于点M的任意一点,请在图2中画出图形,试判断∠AMB,∠AM1B的大小关系,并证明.【解决问题】(3)某游乐园的平面图如图3所示,场所保卫人员想在线段OD上的点M处安装监控装置,用来监控OC边上的AB段,为了让监控效果达到最佳,必须要求∠AMB最大.已知∠DOC=60°,OA=400米,AB=200米,问在线段OD上是否存在一点M,使得∠AMB最大,若存在,请求出此时OM的长和∠AMB的度数,如果不存在,请说明理由.【分析】(1)先利用三角形外角的性质得出∠AM1B>∠AEB,再利用同弧所对的圆周角相等得出∠AEB=∠AMB,即可得出结论;(2)先利用三角形外角的性质得出∠AM1B<∠AFB,再利用同弧所对的圆周角相等得出∠AEB=∠AMB,即可得出结论;(3)如图3中,当经过A,B的⊙T与OD相切于P时,∠APB的值最大,作TH⊥OC 于H,交OD于Q,连接TA,TB,OT.设TP=TA=TB=r,用两种方法求出QH,构建方程即可解决问题.【解答】解:(1)如图1,延长AM1交⊙O于E,连接BE,∵∠AM1B是△BEM1的外角,∴∠AM1B>∠AEB,∵∠AEB=∠AMB,∴∠AM1B>∠AMB,故答案为:<;(2)如图2,画出图形如图2所示,∠AMB>∠AM1B,证明:连接BF,∵∠AFB是△ABM1的外角,∴∠AFB>∠AM1B,∵∠AMB=∠AFB,∴∠AMB>∠AM1B;(3)如图3中,当经过A,B的⊙T与OD相切于M时,∠AMB的值最大,作TH⊥OC于H,交OD于Q,连接TA,TB,OT.设TM=TA=TB=r,∵TA=TB,TH⊥AB,∴AH=HB=100(m),∵∠OHQ=90°,∠COD=60°,OH=OA+AH=(400+100)(m),∴QH=OH=(400+300)(m),∠OQH=30°,∴TQ=2MT=2r,∵TH==,∴2r+=400+300,整理得:3r2﹣(1600+1200)r+60000+240000=0,∴(r﹣200)(r﹣1000﹣1200)=0,∴r=200或1000+1200(舍弃),∴AT=200m,∴AT=2AH,∴∠ATH=30°,∠ATB=2∠ATH=60°,∴∠AMB=∠ATB=30°,∴OM=OQ﹣MQ=800+200﹣600=(200+200)(m).。

2020年湖南省长沙市教科院中考数学第五次模拟试卷 (Word 含解析)

2020年湖南省长沙市教科院中考数学第五次模拟试卷 (Word 含解析)

2020年中考数学模拟试卷(五)一、选择题1.2-的绝对值是( ) A .12-B .2-C .12D .22.函数123y x =-中,自变量x 的取值范围为( ) A .32x >B .32x ≠C .32x ≠且0x ≠ D .32x <3.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( ) A .83.38610⨯B .90.338610⨯C .733.8610⨯D .93.38610⨯4.窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.下列表示我国古代窗棂样式结构图案中,不是轴对称图形的是( )A .B .C .D .5.一个正多边形的内角和为540︒,则这个正多边形的每一个外角等于( ) A .108︒B .90︒C .72︒D .60︒6.下列运算正确的是( ) A .88a a -=B .44()a a -=C .326a a a =gD .222()a b a b -=-7.在平面直角坐标系中, 若点(,)A a b -在第一象限内, 则点(,)B a b 所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限8.若方程23440x x --=的两个实数根分别为1x ,2x ,则12(x x += )A .4-B . 3C .43-D .439.下列命题中,其中正确命题的个数为( )个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件. A .1B .2C .3D .410.如图,AB 为O e 的直径,点C ,D 在O e 上,¶·AD DC=,若20CAB ∠=︒,则CAD ∠的大小为( )A .20︒B .25︒C .30︒D .35︒11.如图,在ABC ∆中,延长BC 至D ,使得12CD BC =,过AC 中点E 作//EF CD (点F 位于点E 右侧),且2EF CD =,连接DF .若8AB =,则DF 的长为( )A .3B .4C .3D .3212.已知点1(3,)A y -,2(2,)B y 均在抛物线2y ax bx c =++上,点(,)P m n 是该抛物线的顶点,若12y y n >…,则m 的取值范围是( ) A .32m -<<B .3122m -<<-C .12m >-D .2m >二、填空题(本大题共6个小题,每小题3分,共18分) 13.已知2210x x +-=,则2362x x +-= .14.在一个不透明的口袋中,装有A ,B ,C ,4D 个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是 . 15.如图,边长为2的正方形ABCD 的顶点A ,B 在x 轴正半轴上,反比例函数ky x=在第一象限的图象经过点D ,交BC 于E ,若点E 是BC 的中点,则OD 的长为 .16.用一个圆心角为180︒,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为 .17.如图,一张三角形纸片ABC ,90C ∠=︒,8AC cm =,6BC cm =.现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .18.如图,在Rt ABC ∆中,90B ∠=︒,2AB BC ==,将ABC ∆绕点C 顺时针旋转60︒,得到DEC ∆,则AE 的长是 .三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分第23、24题每小题6分,第25、26题每小题6分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.计算:201911(1)|13()tan 603----+-+︒20.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt ABC ∆三个顶点都在格点上,请解答下列问题:(1)写出A ,C 两点的坐标;(2)画出ABC ∆关于原点O 的中心对称图形△111A B C ;(3)画出ABC ∆绕原点O 顺时针旋转90︒后得到的△222A B C ,并直接写出点C 旋转至2C 经过的路径长.21.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表组别 海选成绩xA 组 5060x <„B 组 6070x <„C 组7080x <„D 组 8090x <„E 组90100x <„请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(2)在图2的扇形统计图中,记表示B组人数所占的百分比为%a,则a的值为,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?22.我们把有两边对应相等,且夹角互补(不相等)的两个三角形叫做“互补三角形”,如图1,ABCDY中,AOB∆和BOC∆是“互补三角形”.(1)写出图1中另外一组“互补三角形”;(2)在图2中,用尺规作出一个EFH∆,使得EFH∆和EFG∆为“互补三角形”,且EFH∆和EFG∆在EF同侧,并证明这一组“互补三角形”的面积相等.23.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?24.如图,在Rt ABC∆中,90C∠=︒,AD平分BAC∠交BC于点D,O为AB上一点,经过点A,D的Oe分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是Oe的切线;(2)设AB x=,AF y=,试用含x,y的代数式表示线段AD的长;(3)若8BE=,5sin13B=,求DG的长,25.已知二次函数21(0)y ax bx c a =++>的图象与x 轴交于(1,0)A -,(,0)B n 两点,一次函数22y x b =+的图象过点A . (1)若12a =. ①若二次函数21(0)y ax bx c a =++>与y 轴交于点C ,求ABC ∆的面积;②设312y y my =-,是否存在正整数m ,当0x …时,3y 随x 的增大而增大?若存在,求出正整数m 的值;若不存在,请说明理由. (2)若1235a <<,求证:54n -<<-.26.已知抛物线213y ax x c =-+经过(2,0)A -,(0,2)B 两点,动点P ,Q 同时从原点出发均以1个单位/秒的速度运动,动点P 沿x 轴正方向运动,动点Q 沿y 轴正方向运动,连接PQ ,设运动时间为t 秒 (1)求抛物线的解析式; (2)当13BQ AP =时,求t 的值; (3)随着点P ,Q 的运动,抛物线上是否存在点M ,使MPQ ∆为等边三角形?若存在,请求出t 的值及相应点M 的坐标;若不存在,请说明理由.参考答案一.选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共12个小题,每小题3分,共36分) 1.2-的绝对值是( ) A .12-B .2-C .12D .2【分析】根据绝对值的定义:数轴上某个数与原点的距离叫做这个数的绝对值.则2-的绝对值就是表示2-的点与原点的距离. 解:|2|2-=, 故选:D . 2.函数123y x =-中,自变量x 的取值范围为( ) A .32x >B .32x ≠C .32x ≠且0x ≠ D .32x <【分析】该函数是分式,分式有意义的条件是分母不等于0,故分母230x -≠,解得x 的范围.解:根据题意得:230x -≠, 解得:32x ≠. 故选:B .3.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( ) A .83.38610⨯B .90.338610⨯C .733.8610⨯D .93.38610⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 解:数字338 600 000用科学记数法可简洁表示为83.38610⨯. 故选:A .4.窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.下列表示我国古代窗棂样式结构图案中,不是轴对称图形的是( )A .B .C .D .【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.解:A 、是中心对称图形,不是轴对称图形,故此选项符合题意; B 、是轴对称图形,故此选项不合题意; C 、是轴对称图形,故此选项不合题意;D 、是轴对称图形,故此选项不合题意;故选:A .5.一个正多边形的内角和为540︒,则这个正多边形的每一个外角等于( ) A .108︒B .90︒C .72︒D .60︒【分析】首先设此多边形为n 边形,根据题意得:180(2)540n -=,即可求得5n =,再由多边形的外角和等于360︒,即可求得答案. 解:设此多边形为n 边形, 根据题意得:180(2)540n -=, 解得:5n =,∴这个正多边形的每一个外角等于:360725︒=︒. 故选:C .6.下列运算正确的是( ) A .88a a -=B .44()a a -=C .326a a a =gD .222()a b a b -=-【分析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则分别化简求出答案. 解:A 、87a a a -=,故此选项错误;B 、44()a a -=,正确;C 、325a a a =g ,故此选项错误;D 、222()2a b a ab b -=-+,故此选项错误;故选:B .7.在平面直角坐标系中, 若点(,)A a b -在第一象限内, 则点(,)B a b 所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限【分析】根据各象限内点的坐标特征解答即可 . 解:Q 点(,)A a b -在第一象限内,0a ∴>,0b ->, 0b ∴<,∴点(,)B a b 所在的象限是第四象限 .故选:D .8.若方程23440x x --=的两个实数根分别为1x ,2x ,则12(x x += ) A .4-B . 3C .43-D .43【分析】由方程的各系数结合根与系数的关系可得出“1243x x +=”, 由此即可得出结论 . 解:Q 方程23440x x --=的两个实数根分别为1x ,2x ,1243b x x a ∴+=-= 故选:D .9.下列命题中,其中正确命题的个数为( )个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件. A .1B .2C .3D .4【分析】利用方差的意义,众数的定义、折线图及随机事件分别判断后即可确定正确的选项.解:①方差是衡量一组数据波动大小的统计量,正确,是真命题;②影响超市进货决策的主要统计量是众数,正确,是真命题; ③折线统计图反映一组数据的变化趋势,正确,是真命题; ④水中捞月是必然事件,故正确,是真命题, 真命题有4个, 故选:D .10.如图,AB 为O e 的直径,点C ,D 在O e 上,¶·AD DC=,若20CAB ∠=︒,则CAD ∠的大小为( )A .20︒B .25︒C .30︒D .35︒【分析】先求出70ABC ∠=︒,进而判断出35ABD CBD ∠=∠=︒,最后用同弧所对的圆周角相等即可得出结论. 解:如图,连接BD ,AB Q 为O e 的直径, 90ACB ∴∠=︒, 20CAB ∠=︒Q , 70ABC ∴∠=︒,Q ¶¶AD CD=, 1352ABD CBD ABC ∴∠=∠=∠=︒, 35CAD CBD ∴∠=∠=︒.故选:D .11.如图,在ABC ∆中,延长BC 至D ,使得12CD BC =,过AC 中点E 作//EF CD (点F位于点E 右侧),且2EF CD =,连接DF .若8AB =,则DF 的长为( )A .3B .4C .23D .32【分析】取BC 的中点G ,连接EG ,根据三角形的中位线定理得:4EG =,设CD x =,则2EF BC x ==,证明四边形EGDF 是平行四边形,可得4DF EG ==. 解:取BC 的中点G ,连接EG , E Q 是AC 的中点, EG ∴是ABC ∆的中位线,118422EG AB ∴==⨯=, 设CD x =,则2EF BC x ==, BG CG x ∴==, 2EF x DG ∴==, //EF CD Q ,∴四边形EGDF 是平行四边形,4DF EG ∴==,故选:B .12.已知点1(3,)A y -,2(2,)B y 均在抛物线2y ax bx c =++上,点(,)P m n 是该抛物线的顶点,若12y y n >…,则m 的取值范围是( ) A .32m -<<B .3122m -<<-C .12m >-D .2m >【分析】根据点1(3,)A y -,2(2,)B y 均在抛物线2y ax bx c =++上,点(,)P m n 是该抛物线的顶点,12y y n >…,可知该抛物线开口向上,对称轴是直线x m =,则322m -+<,从而可以求得m 的取值范围,本题得以解决.解:Q 点1(3,)A y -,2(2,)B y 均在抛物线2y ax bx c =++上,点(,)P m n 是该抛物线的顶点,12y y n >…, ∴322m -+<, 解得12m >-,故选:C .二、填空题(本大题共6个小题,每小题3分,共18分) 13.已知2210x x +-=,则2362x x +-= 1 .【分析】直接利用已知得出221x x +=,再代入原式求出答案. 解:2210x x +-=Q , 221x x ∴+=,223623(2)23121x x x x ∴+-=+-=⨯-=.故答案为:1.14.在一个不透明的口袋中,装有A ,B ,C ,4D 个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是14. 【分析】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率. 解:画树状图如下:P ∴(两次摸到同一个小球)41164== 故答案为:1415.如图,边长为2的正方形ABCD 的顶点A ,B 在x 轴正半轴上,反比例函数ky x=在第一象限的图象经过点D,交BC于E,若点E是BC的中点,则OD的长为22.【分析】设(,2)D x则(2,1)E x+,由反比例函数经过点D、E列出关于x的方程,求得x的值即可得出答案.解:设(,2)D x则(2,1)E x+,Q反比例函数kyx=在第一象限的图象经过点D、点E,22x x∴=+,解得2x=,(2,2)D∴,2OA AD∴==,2222OD OA OD∴=+=.故答案为216.用一个圆心角为180︒,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为2.【分析】设这个圆锥的底面圆的半径为R,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题解:设这个圆锥的底面圆的半径为R,由题意:18042180Rππ=g,解得2R=.故答案为2.17.如图,一张三角形纸片ABC,90C∠=︒,8AC cm=,6BC cm=.现将纸片折叠:使点A与点B重合,那么折痕长等于4.【分析】根据折叠得:GH 是线段AB 的垂直平分线,得出AG 的长,再利用两角对应相等证ACB AGH ∆∆∽,利用比例式可求GH 的长,即折痕的长. 解:如图,折痕为GH ,由勾股定理得:226810AB cm =+=, 由折叠得:1110522AG BG AB cm ===⨯=,GH AB ⊥, 90AGH ∴∠=︒,A A ∠=∠Q ,90AGH C ∠=∠=︒, ACB AGH ∴∆∆∽, ∴AC BCAG GH =, ∴865GH=, 154GH cm ∴=. 故答案为:154.18.如图,在Rt ABC ∆中,90B ∠=︒,2AB BC ==,将ABC ∆绕点C 顺时针旋转60︒,得到DEC ∆,则AE 的长是26+ .【分析】如图,连接AD ,由题意得:CA CD =,60ACD ∠=︒,得到ACD ∆为等边三角形根据AC AD =,CE ED =,得出AE 垂直平分DC ,于是求出122EO DC ==,sin 606OA AC =︒=g ,最终得到答案26AE EO OA =+=+.解:如图,连接AD ,由题意得:CA CD =,60ACD ∠=︒, ACD ∴∆为等边三角形,AD CA ∴=,60DAC DCA ADC ∠=∠=∠=︒; 90ABC ∠=︒Q ,2AB BC ==,22AC AD ∴==, AC AD =Q ,CE ED =,AE ∴垂直平分DC , 122EO DC ∴==,sin 606OA CA =︒=g, 26AE EO OA ∴=+=+,故答案为26+.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分第23、24题每小题6分,第25、26题每小题6分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.计算:201911(1)|13()tan 603----+-+︒【分析】直接利用绝对值的性质以及负指数幂的性质、特殊角的三角函数值分别化简得出答案.解:原式1(31)33=----+ 3=-.20.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt ABC ∆三个顶点都在格点上,请解答下列问题:(1)写出A ,C 两点的坐标;(2)画出ABC ∆关于原点O 的中心对称图形△111A B C ;(3)画出ABC ∆绕原点O 顺时针旋转90︒后得到的△222A B C ,并直接写出点C 旋转至2C 经过的路径长.【分析】(1)利用第二象限点的坐标特征写出A ,C 两点的坐标;(2)利用关于原点对称的点的坐标特征写出1A 、1B 、1C 的坐标,然后描点即可; (3)利用网格特点和旋转的性质画出点A 、B 、C 的对应点2A 、2B 、2C ,然后描点得到△222A B C ,再利用弧长公式计算点C 旋转至2C 经过的路径长. 解:(1)A 点坐标为(4,1)-,C 点坐标为(1,3)-; (2)如图,△111A B C 为所作;(3)如图,△222A B C 为所作,221310OC =+=点C 旋转至2C 经过的路径长9010101802ππ==g g .21.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表组别 海选成绩xA 组 5060x <„B 组 6070x <„C 组7080x <„D 组 8090x <„E 组90100x <„请根据所给信息,解答下列问题: (1)请把图1中的条形统计图补充完整;(2)在图2的扇形统计图中,记表示B 组人数所占的百分比为%a ,则a 的值为 15 ,表示C 组扇形的圆心角θ的度数为 度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?【分析】(1)用随机抽取的总人数减去A 、B 、C 、E 组的人数,求出D 组的人数,从而补全统计图;(2)用B组抽查的人数除以总人数,即可求出a;用360乘以C组所占的百分比,求出C 组扇形的圆心角θ的度数;(3)用该校参加这次海选比赛的总人数乘以成绩在90分以上(包括90分)所占的百分比,即可得出答案.解:(1)D的人数是:2001030407050----=(人),补图如下:(2)B组人数所占的百分比是30100%15% 200⨯=,则a的值是15;C组扇形的圆心角θ的度数为4036072200⨯=︒;故答案为:15,72;(3)根据题意得:702000700200⨯=(人),答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.22.我们把有两边对应相等,且夹角互补(不相等)的两个三角形叫做“互补三角形”,如图1,ABCDY中,AOB∆和BOC∆是“互补三角形”.(1)写出图1中另外一组“互补三角形”AOD∆和DOC∆;(2)在图2中,用尺规作出一个EFH∆,使得EFH∆和EFG∆为“互补三角形”,且EFH∆和EFG∆在EF同侧,并证明这一组“互补三角形”的面积相等.【分析】(1)根据“互补三角形”可得结论;(2)作//EH FG ,且EH FG =,可得符合条件的EFH ∆,根据四边形EFGH 是平行四边形可知:这一组“互补三角形”的面积相等. 解:(1)ABCD Y 中,OA OC =, OD OD =Q ,180AOD COD ∠+∠=︒,AOD ∴∆和DOC ∆是“互补三角形”, 故答案为:AOD ∆和DOC ∆;(2)如图所示,//EH FG ,且EH FG =,则EFH ∆即为所求,证明:连接GH ,//EH FG Q ,且EH FG =, ∴四边形EFGH 是平行四边形,//GH EF ∴,EFG EFH S S ∆∆∴=.23.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元 (1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?【分析】(1)根据生产每提高一个档次的蛋糕产品,该产品每件利润增加2元,即可求出第五档的蛋糕的利润;(2)设烘焙店生产的是第x 档次的产品,根据单件利润⨯销售数量=总利润,即可得出关于x 的一元二次方程,解之即可得出结论. 解:(1)102(51)18+⨯-=(元). 答:该档次蛋糕每件利润为 18 元;(2)设烘焙店生产的是第x档次的产品,根据题意得:[102(1)][764(1)]1024x x+-⨯--=,整理得:216480x x-+=,解得:14x=,212x=(不合题意,舍去).答:该烘焙店生产的是四档次的产品.24.如图,在Rt ABC∆中,90C∠=︒,AD平分BAC∠交BC于点D,O为AB上一点,经过点A,D的Oe分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是Oe的切线;(2)设AB x=,AF y=,试用含x,y的代数式表示线段AD的长;(3)若8BE=,5sin13B=,求DG的长,【分析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;(3)连接EF,设圆的半径为r,由sin B的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin sinAEF B∠=,进而求出DG的长即可.【解答】(1)证明:如图,连接OD,ADQ为BAC∠的角平分线,BAD CAD∴∠=∠,OA OD=Q,ODA OAD∴∠=∠,ODA CAD∴∠=∠,//OD AC∴,90C∠=︒Q,90ODC ∴∠=︒,OD BC ∴⊥,BC ∴为圆O 的切线;(2)解:连接DF ,由(1)知BC 为圆O 的切线,FDC DAF ∴∠=∠,CDA CFD ∴∠=∠,AFD ADB ∴∠=∠,BAD DAF ∠=∠Q ,ABD ADF ∴∆∆∽, ∴AB AD AD AF=,即2AD AB AF xy ==g ,则AD =;(3)解:连接EF ,在Rt BOD ∆中,5sin 13OD B OB ==, 设圆的半径为r ,可得5813r r =+, 解得:5r =,10AE ∴=,18AB =, AE Q 是直径,90AFE C ∴∠=∠=︒,//EF BC ∴,AEF B ∴∠=∠,5sin 13AF AEF AE ∴∠==, 550sin 101313AF AE AEF ∴=∠=⨯=g , //AF OD Q , ∴501013513AG AF DG OD ===,即1323DG AD =,AD ∴===,则1323DG ==25.已知二次函数21(0)y ax bx c a =++>的图象与x 轴交于(1,0)A -,(,0)B n 两点,一次函数22y x b =+的图象过点A .(1)若12a =. ①若二次函数21(0)y ax bx c a =++>与y 轴交于点C ,求ABC ∆的面积;②设312y y my =-,是否存在正整数m ,当0x …时,3y 随x 的增大而增大?若存在,求出正整数m 的值;若不存在,请说明理由.(2)若1235a <<,求证:54n -<<-. 【分析】(1)①将点A 坐标代入解析式可求2b =,2c a =-,即可求抛物线解析式,可求点C ,点B 坐标,由三角形的面积公式可求解;②由22313132(22)(22)(2)2222y x x m x x m x m =++-+=+-+-,由二次函数的性质可求1m „,即可求解;(3)212(2)y ax x a =++-的对称轴为212x a a =-=-,由1235a <<,可得1532a -<-<-,又(1,0)A -、(,0)B n 两点关于对称轴对称,则11|1()|||n a a---=--,即可求解. 解:(1)①21(0)y ax bx c a =++>Q 过点A ,0a b c ∴-+=,22y x b =+Q 的图象过点A ,2b ∴=,2c a ∴=-;12a =Q , 13222c ∴=-=, 2113222y x x ∴=++,Q 二次函数2113222y x x =++与y 轴交于点C ,与x 轴交于(1,0)A -,(,0)B n 两点, ∴点3(0,)2C ,点(3,0)B -, 2AB ∴=,ABC ∴∆的面积1332222=⨯⨯=; ②23132(22)22y x x m x =++-+ 213(22)(2)22x m x m =+-+-, Q 在0x …时,3y 随x 的增大而增大, ∴对称轴22220122m x m -=-=-⨯„, 1m ∴„,m Q 是正整数,1m ∴=;(2)212(2)y ax x a =++-Q 的对称轴为212x a a =-=-, 又Q 1235a <<, 1532a ∴-<-<-, 又(1,0)A -Q 、(,0)B n 两点关于对称轴对称,11|1()|||n a a∴---=--, 21n a∴=-+或1n =-(舍去), 54n ∴-<<-.26.已知抛物线213y ax x c =-+经过(2,0)A -,(0,2)B 两点,动点P ,Q 同时从原点出发均以1个单位/秒的速度运动,动点P 沿x 轴正方向运动,动点Q 沿y 轴正方向运动,连接PQ ,设运动时间为t 秒(1)求抛物线的解析式;(2)当13BQ AP =时,求t 的值; (3)随着点P ,Q 的运动,抛物线上是否存在点M ,使MPQ ∆为等边三角形?若存在,请求出t 的值及相应点M 的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法确定函数关系式.(2)13BQ AP =,要考虑P 在OC 上及P 在OC 的延长线上两种情况,有此易得BQ ,AP 关于t 的表示,代入13BQ AP =可求t 值. (3)考虑等边三角形,我们通常只需明确一边的情况,进而即可描述出整个三角形.考虑MPQ ∆,发现PQ 为一有规律的线段,易得OPQ 为等腰直角三角形,但仅因此无法确定PQ 运动至何种情形时MPQ ∆为等边三角形.若退一步考虑等腰,发现,MO 应为PQ 的垂直平分线,即使MPQ ∆为等边三角形的M 点必属于PQ 的垂直平分线与抛物线的交点,但要明确这些交点仅仅满足MPQ ∆为等腰三角形,不一定为等边三角形.确定是否为等边,我们可以直接由等边性质列出关于t 的方程,考虑t 的存在性.解:(1)Q 抛物线经过(2,0)A -,(0,2)B 两点, ∴24032a c c ⎧++=⎪⎨⎪=⎩. 解得:23a =-,2c =. ∴抛物线的解析式为221233y x x =--+;(2)由题意可知,OQ OP t ==,2AP t =+.①如图1,当2t … 时,点Q 在点B 下方,此时2BQ t =-.13BQ AP =Q , 12(2)3t t ∴-=+, 1t ∴=.②如图2,当2t > 时,点Q 在点B 上方,此时2BQ t =-.13BQ AP =Q , 12(2)3t t ∴-=+, 4t ∴=.∴当13BQ AP = 时,1t = 或4t =.(3)存在.作MC x ⊥ 轴于点C ,连接OM .设点M 的横坐标为m ,则点M 的纵坐标为221233m m --+. 当MPQ ∆ 为等边三角形时,MQ MP =, 又OP OQ =Q ,∴点M 点必在PQ 的垂直平分线上, 1452POM POQ ∴∠=∠=︒, MCO ∴∆ 为等腰直角三角形,CM CO =,221233m m m ∴=--+, 解得11m =,23m =-.M ∴ 点可能为(1,1)或(3,3)--. ①如图3,当M 的坐标为(1,1)时,则有1PC t =-,221(1)MP t t =+-= 222t -+, 222PQ t =,MPQ ∆Q 为等边三角形,MP PQ ∴=,t ∴ 22222t t -+=,解得113t =-+213t =--(负值舍去).②如图4,当点M 的坐标为(3,3)--时,则有3PC t =+,3MC =, 22223(3)618MP t t t ∴=++=++,222PQ t =, MPQ ∆Q 为等边三角形, MP PQ ∴=, 解得1333t =+2333t =-(负值舍去).∴当13t =-抛物线上存在点(1,1)M ,或当333t =+时,抛物线上存在点(3,3)M --,使得MPQ ∆ 为等边三角形.。

福建省泉州实验中学中考数学模拟试卷(5月份)(解析版)

福建省泉州实验中学中考数学模拟试卷(5月份)(解析版)

2020年福建省泉州实验中学中考数学模拟试卷(5月份)一.选择题(共10小题)1.计算下列各式,值最小的是()A.2×0+1﹣9B.2+0×1﹣9C.2+0﹣1×9D.2+0+1﹣92.下列哪个图形是正方体的展开图()A.B.C.D.3.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD4.计算﹣a﹣1的正确结果是()A.﹣B.C.﹣D.5.如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+πB.2++πC.4+πD.2+π6.已知y=ax2+bx+c(a≠0)的图象如图,则y=ax+b和y=的图象为()A.B.C.D.7.点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差8.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是()A.AC=AD B.AB⊥EB C.BC=DE D.∠A=∠EBC 9.若点A(﹣3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y1<y2C.y1<y2<y3D.y3<y2<y1 10.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…﹣2﹣1012……t m﹣2﹣2n…y=ax2+bx+c且当x=﹣时,与其对应的函数值y>0.有下列结论:①abc>0;②﹣2和3是关于x的方程ax2+bx+c=t的两个根;③0<m+n<.其中,正确结论的个数是()A.0B.1C.2D.3二.填空题(共6小题)11.若有意义,则实数x的取值范围是.12.二元一次方程组的解为.13.在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为.14.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.15.如图,P A、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=.16.如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点C,点D在AB上,∠BAC=∠DEC=30°,AC与DE交于点F,连接AE,若BD=1,AD=5,则=.三.解答题(共9小题)17.计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.18.关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.19.如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO的长.20.如图,AB为半圆O的直径,C为半圆上一点,AC<BC.(1)请用直尺(不含刻度)与圆规在BC上作一点D,使得直线OD平分ABC的周长;(不要求写作法,但要保留作图痕迹)(2)在(1)的条件下,若AB=10,OD=,求△ABC的面积.21.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D 处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)22.某商场举办的购物狂欢节期间与一知名APP支付平台合作,为答谢顾客,该商场对某款价格为a元/件(a>0)的商品开展促销活动.据统计,在此期间顾客购买该商品的支付情况如表:支付方式现金支付购物卡支付APP支付频率10%30%60%优惠方式按9折支付按8折支付其中有的顾客按4折支付,顾客按6折支付,的顾客按8折支付将上述频率作为事件发生的概率,回答下列问题:(1)顾客购买该商品使用APP支付的概率是;(2)求顾客购买该商品获得的优惠超过20%的概率;(3)该商品在促销优惠期间平均每件商品优惠多少元.23.某商店销售一种商品,经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:售价x(元/件)506080周销售量y(件)1008040周销售利润w(元)100016001600注:周销售利润=周销售量×(售价﹣进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是元/件;当售价是元/件时,周销售利润最大,最大利润是元.(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.24.已知在平面直角坐标系中,点A(3,0),B(﹣3,0),C(﹣3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD.(1)求证:直线OD是⊙E的切线;(2)点F为x轴上任意一动点,连接CF交⊙E于点G,连接BG;①当tan∠ACF=时,求所有F点的坐标(直接写出);②求的最大值.25.如图,抛物线y=ax2+bx+c的顶点为C(0,),与x轴交于A、B两点,且A(﹣1,0).(1)求抛物线的解析式;(2)点P从点B出发,以每秒1个单位的速度向点A运动,同时点Q从点C出发,以每秒v个单位的速度向y轴负方向匀速运动,运动时间为t秒,连接PQ交射线BC于点D,当点P到达点A时,点Q停止运动,以点P为圆心,PB为半径的圆与射线BC交于点E.①求BE的长;当t=1时,求DE的长;②若在点P,Q运动的过程中,线段DE的长始终是一个定值,求v的值及DE长.参考答案与试题解析一.选择题(共10小题)1.计算下列各式,值最小的是()A.2×0+1﹣9B.2+0×1﹣9C.2+0﹣1×9D.2+0+1﹣9【分析】有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:A.2×0+1﹣9=﹣8,B.2+0×1﹣9=﹣7C.2+0﹣1×9=﹣7D.2+0+1﹣9=﹣6,故选:A.2.下列哪个图形是正方体的展开图()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图..故选:B.3.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【解答】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;设∠MOA=∠AOB=∠BON=α,则∠OCD=∠OCM=,∴∠MCD=180°﹣α,又∵∠CMN=∠CON=α,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.4.计算﹣a﹣1的正确结果是()A.﹣B.C.﹣D.【分析】先将后两项结合起来,然后再化成同分母分式,按照同分母分式加减的法则计算就可以了.【解答】解:原式=,=,=.故选:B.5.如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+πB.2++πC.4+πD.2+π【分析】连接OB、OC,先利用同弧所对的圆周角等于所对的圆心角的一半,求出扇形的圆心角为60度,即可求出半径的长2,利用三角形和扇形的面积公式即可求解;【解答】解:作OD⊥BC,则BD=CD,连接OB,OC,∴OD是BC的垂直平分线,∵=,∴AB=AC,∴A在BC的垂直平分线上,∴A、O、D共线,∵∠ACB=75°,AB=AC,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BOC=60°,∵OB=OC,∴△BOC是等边三角形,∴OA=OB=OC=BC=2,∵AD⊥BC,AB=AC,∴BD=CD,∴OD=OB=,∴AD=2+,∴S△ABC=BC•AD=2+,S△BOC=BC•OD=,∴S阴影=S△ABC+S扇形BOC﹣S△BOC=2++﹣=2+π,故选:A.6.已知y=ax2+bx+c(a≠0)的图象如图,则y=ax+b和y=的图象为()A.B.C.D.【分析】根据二次函数y=ax2+bx+c(a≠0)的图象可以得到a<0,b>0,c<0,由此可以判定y=ax+b经过一、二、四象限,双曲线y=在二、四象限.【解答】解:根据二次函数y=ax2+bx+c(a≠0)的图象,可得a<0,b>0,c<0,∴y=ax+b过一、二、四象限,双曲线y=在二、四象限,∴C是正确的.故选:C.7.点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.8.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是()A.AC=AD B.AB⊥EB C.BC=DE D.∠A=∠EBC 【分析】根据旋转的性质得到AC=CD,BC=CE,AB=DE,故A错误,C错误;得到∠ACD=∠BCE,根据三角形的内角和得到∠A=∠ADC=,∠CBE =,求得∠A=∠EBC,故D正确;由于∠A+∠ABC不一定等于90°,于是得到∠ABC+∠CBE不一定等于90°,故B错误.【解答】解:∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,BC=CE,AB=DE,故A错误,C错误;∴∠ACD=∠BCE,∴∠A=∠ADC=,∠CBE=,∴∠A=∠EBC,故D正确;∵∠A+∠ABC不一定等于90°,∴∠ABC+∠CBE不一定等于90°,故B错误故选:D.9.若点A(﹣3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y1<y2C.y1<y2<y3D.y3<y2<y1【分析】分别计算出自变量为﹣3、﹣2和1对应的函数值,从而得到y1,y2,y3的大小关系.【解答】解:当x=﹣3,y1=﹣=4;当x=﹣2,y2=﹣=6;当x=1,y3=﹣=﹣12,所以y3<y1<y2.故选:B.10.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x …﹣2﹣1012……t m﹣2﹣2n…y=ax2+bx+c且当x=﹣时,与其对应的函数值y>0.有下列结论:①abc>0;②﹣2和3是关于x的方程ax2+bx+c=t的两个根;③0<m+n<.其中,正确结论的个数是()A.0B.1C.2D.3【分析】①当x=0时,c=﹣2,当x=1时,a+b=0,abc>0,①正确;②x=是对称轴,x=﹣2时y=t,则x=3时,y=t,②正确;③m+n=4a﹣4;当x=﹣时,y>0,a>,m+n>,③错误;【解答】解:当x=0时,c=﹣2,当x=1时,a+b﹣2=﹣2,∴a+b=0,∴y=ax2﹣ax﹣2,∴abc>0,①正确;x=是对称轴,x=﹣2时y=t,则x=3时,y=t,∴﹣2和3是关于x的方程ax2+bx+c=t的两个根;②正确;m=a+a﹣2,n=4a﹣2a﹣2,∴m=n=2a﹣2,∴m+n=4a﹣4,∵当x=﹣时,y>0,∴m+n>,③错误;故选:C.二.填空题(共6小题)11.若有意义,则实数x的取值范围是x≤,且x≠1.【分析】直接利用二次根式的性质得出答案.【解答】解:若有意义,则x﹣1≠0,3﹣2x≥0,解得:x≤,且x≠1.故答案为:x≤,且x≠1.12.二元一次方程组的解为.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×8﹣②得:5x=10,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为.故答案为:.13.在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为0.【分析】由点A(a,b)(a>0,b>0)在双曲线y=上,可得k1=ab,由点A与点B 关于x轴的对称,可得到点B的坐标,进而表示出k2,然后得出答案.【解答】解:∵点A(a,b)(a>0,b>0)在双曲线y=上,又∵点A与点B关于x轴的对称,∴B(a,﹣b)∵点B在双曲线y=上,∴k2=﹣ab;∴k1+k2=ab+(﹣ab)=0;故答案为:0.14.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有5cm.【分析】根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.【解答】解:由题意可得:杯子内的筷子长度为:=15,则筷子露在杯子外面的筷子长度为:20﹣15=5(cm).故答案为:5.15.如图,P A、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=219°.【分析】连接AB,根据切线的性质得到P A=PB,根据等腰三角形的性质得到∠P AB=∠PBA=(180°﹣102°)=39°,由圆内接四边形的性质得到∠DAB+∠C=180°,于是得到结论.【解答】解:连接AB,∵P A、PB是⊙O的切线,∵∠P=102°,∴∠P AB=∠PBA=(180°﹣102°)=39°,∵∠DAB+∠C=180°,∴∠P AD+∠C=∠P AB+∠DAB+∠C=180°+39°=219°,故答案为:219°.16.如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点C,点D在AB上,∠BAC=∠DEC=30°,AC与DE交于点F,连接AE,若BD=1,AD=5,则=.【分析】过点C作CM⊥DE于点M,过点E作EN⊥AC于点N,先证△BCD∽△ACE,求出AE的长及∠CAE=60°,推出∠DAE=90°,在Rt△DAE中利用勾股定理求出DE 的长,进一步求出CD的长,分别在Rt△DCM和Rt△AEN中,求出MC和NE的长,再证△MFC∽△NFE,利用相似三角形对应边的比相等即可求出CF与EF的比值.【解答】解:如图,过点C作CM⊥DE于点M,过点E作EN⊥AC于点N,∵BD=1,AD=5,∴AB=BD+AD=6,∵在Rt△ABC中,∠BAC=30°,∠B=90°﹣∠BAC=60°,∴BC=AB=3,AC=BC=3,在Rt△BCA与Rt△DCE中,∵∠BAC=∠DEC=30°,∴tan∠BAC=tan∠DEC,∴,∵∠BCA=∠DCE=90°,∴∠BCA﹣∠DCA=∠DCE﹣∠DCA,∴∠BCD=∠ACE,∴△BCD∽△ACE,∴∠CAE=∠B=60°,,∴∠DAE=∠DAC+∠CAE=30°+60°=90°,,∴AE=,在Rt△ADE中,DE===2,在Rt△DCE中,∠DEC=30°,∴∠EDC=60°,DC=DE=,在Rt△DCM中,MC=DC=,在Rt△AEN中,NE=AE=,∵∠MFC=∠NFE,∠FMC=∠FNE=90°,∴△MFC∽△NFE,∴===,故答案为:.三.解答题(共9小题)17.计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.【分析】直接利用绝对值的性质以及零指数幂的性质、特殊角的三角函数值、负指数幂的性质分别化简得出答案【解答】解:原式=﹣1+2×+4=﹣1++4=3+.18.关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.【分析】直接利用根的判别式得出m的取值范围进而解方程得出答案.【解答】解:∵关于x的方程x2﹣2x+2m﹣1=0有实数根,∴b2﹣4ac=4﹣4(2m﹣1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴原方程可化为x2﹣2x+1=0,则(x﹣1)2=0,解得:x1=x2=1.19.如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO的长.【分析】(1)由菱形的性质得出AB=AD,AC⊥BD,OB=OD,OA=OC,得出AB:BE =AD:DF,证出EF∥BD即可得出结论;(2)由平行线的性质得出∠G=∠ADO,由三角函数得出tan G=tan∠CDO==,得出OC=OD,由BD=4,得出OD=2,得出OC=1,即可得出结果.【解答】(1)证明:连接BD,交AC于O,如图1所示:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,OB=OD,OA=OC,∵BE=DF,∴AB:BE=AD:DF,∴EF∥BD,∴AC⊥EF;(2)解:如图2所示:∵由(1)得:EF∥BD,∴∠G=∠CDO,∴tan G=tan∠CDO==,∴OC=OD,∵BD=4,∴OD=2,∴OC=1,∴OA=OC=1.20.如图,AB为半圆O的直径,C为半圆上一点,AC<BC.(1)请用直尺(不含刻度)与圆规在BC上作一点D,使得直线OD平分ABC的周长;(不要求写作法,但要保留作图痕迹)(2)在(1)的条件下,若AB=10,OD=,求△ABC的面积.【分析】(1)延长BC,在BC延长线上截取CE=CA,作BE的中垂线,垂足为D,作直线OD即可得;(2)由作图知OD是△ABE中位线,据此知AE=2OD=4,继而由△ACE为等腰直角三角形得出AC=2,利用勾股定理求出BC的长,进一步计算得出答案.【解答】解:(1)如图所示,直线OD即为所求;(2)如图,∵OD为△ABE的中位线,∵AB是⊙O的直径,∴∠ACB=90°,∵CE=CA,∴△ACE是等腰直角三角形,∴AC=AE=2,由勾股定理可得BC=2,则△ABC的面积为AC•BC=×2×2=10.21.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D 处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)【分析】延长AB交CD于H,利用正切的定义用CH表示出AH、BH,根据题意列式求出CH,计算即可.【解答】解:延长AB交CD于H,则AH⊥CD,在Rt△AHD中,∠D=45°,∴AH=DH,在Rt△AHC中,tan∠ACH=,∴AH=CH•tan∠ACH≈0.51CH,在Rt△BHC中,tan∠BCH=,∴BH=CH•tan∠BCH≈0.4CH,由题意得,0.51CH﹣0.4CH=33,解得,CH=300,∴EH=CH﹣CE=220,BH=120,∴DH=AH=153,∴HF=DH﹣DF=103,∴EF=EH+FH=323,答:隧道EF的长度为323m.22.某商场举办的购物狂欢节期间与一知名APP支付平台合作,为答谢顾客,该商场对某款价格为a元/件(a>0)的商品开展促销活动.据统计,在此期间顾客购买该商品的支付情况如表:支付方式现金支付购物卡支付APP支付频率10%30%60%优惠方式按9折支付按8折支付其中有的顾客按4折支付,顾客按6折支付,的顾客按8折支付将上述频率作为事件发生的概率,回答下列问题:(1)顾客购买该商品使用APP支付的概率是;(2)求顾客购买该商品获得的优惠超过20%的概率;(3)该商品在促销优惠期间平均每件商品优惠多少元.【分析】(1)由表格中选择APP支付的频率即可得;(2)优惠超过20%即优惠超过8折,结合表格可得;(3)先利用加权平均数计算出优惠后的价格,再用原价减去优惠后价格即可得.【解答】解:(1)顾客购买该商品使用APP支付的概率是60%=,故答案为:;(2)顾客购买该商品获得的优惠超过20%的概率为(+)×60%=;(3)10%a×0.9+30%a×0.8+60%a××0.4+60%a××0.6+60%a××0.8=0.69a,则该商品在促销优惠期间平均每件商品优惠a﹣0.69a=0.31a(元).23.某商店销售一种商品,经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:售价x(元/件)506080周销售量y(件)1008040周销售利润w(元)100016001600注:周销售利润=周销售量×(售价﹣进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是40元/件;当售价是70元/件时,周销售利润最大,最大利润是1800元.(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.【分析】(1)①依题意设y=kx+b,解方程组即可得到结论;②该商品进价是50﹣1000÷100=40,设每周获得利润w=ax2+bx+c:解方程组即可得到结论;(2)根据题意得,w=(x﹣40﹣m)(﹣2x+200)=﹣2x2+(280+2m)x﹣800﹣200m,把x=65,w=1400代入函数解析式,解方程即可得到结论.【解答】解:(1)①依题意设y=kx+b,则有解得:所以y关于x的函数解析式为y=﹣2x+200;②该商品进价是50﹣1000÷100=40,设每周获得利润w=ax2+bx+c:则有,解得:,∴w=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,∴当售价是70元/件时,周销售利润最大,最大利润是1800元;故答案为:40,70,1800;(2)根据题意得,w=(x﹣40﹣m)(﹣2x+200)=﹣2x2+(280+2m)x﹣8000﹣200m =﹣2(x﹣)2+m2﹣60m+1800,∵m>0,∴对称轴x=>70,∵﹣2<0,∴抛物线的开口向下,∵x≤65,∴w随x的增大而增大,当x=65时,w最大=1400,即1400=﹣2×652+(280+2m)×65﹣8000﹣200m,解得:m=5.24.已知在平面直角坐标系中,点A(3,0),B(﹣3,0),C(﹣3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD.(1)求证:直线OD是⊙E的切线;(2)点F为x轴上任意一动点,连接CF交⊙E于点G,连接BG;①当tan∠ACF=时,求所有F点的坐标,F2(5,0)(直接写出);②求的最大值.【分析】(1)连接ED,证明∠EDO=90°即可,可通过半径相等得到∠EDB=∠EBD,根据直角三角形斜边上中线等于斜边一半得DO=BO=AO,∠ODB=∠OBD,得证;(2)①分两种情况:a)F位于线段AB上,b)F位于BA的延长线上;过F作AC的垂线,构造相似三角形,应用相似三角形性质可求得点F坐标;②应用相似三角形性质和三角函数值表示出=,令y=CG2(64﹣CG2)=﹣(CG2﹣32)2+322,应用二次函数最值可得到结论.【解答】解:(1)证明:如图1,连接DE,∵BC为圆的直径,∴∠BDC=90°,∴∠BDA=90°∵OA=OB∴OD=OB=OA∴∠OBD=∠ODB∵EB=ED∴∠EBD=∠EDB∴EBD+∠OBD=∠EDB+∠ODB即:∠EBO=∠EDO∵CB⊥x轴∴∠EBO=90°∴∠EDO=90°∵点D在⊙E上∴直线OD为⊙E的切线.(2)①如图2,当F位于AB上时,过F作F1N⊥AC于N,∵F1N⊥AC∴∠ANF1=∠ABC=90°∴△ANF∽△ABC∴∵AB=6,BC=8,∴AC===10,即AB:BC:AC=6:8:10=3:4:5∴设AN=3k,则NF1=4k,AF1=5k∴CN=CA﹣AN=10﹣3k∴tan∠ACF===,解得:k=∴即F1(,0)如图3,当F位于BA的延长线上时,过F2作F2M⊥CA于M,∵△AMF2∽△ABC∴设AM=3k,则MF2=4k,AF2=5k∴CM=CA+AM=10+3k∴tan∠ACF=解得:∴AF2=5k=2OF2=3+2=5即F2(5,0)故答案为:F1(,0),F2(5,0).②方法1:如图4,过G作GH⊥BC于H,∵CB为直径∴∠CGB=∠CBF=90°∴△CBG∽△CFB∴∴BC2=CG•CF∴===≤∴当H为BC中点,即GH=BC时,的最大值=.方法2:设∠BCG=α,则sinα=,cosα=,∴sinαcosα=∵(sinα﹣cosα)2≥0,即:sin2α+cos2α≥2sinαcosα∵sin2α+cos2α=1,∴sinαcosα≤,即≤∴的最大值=.25.如图,抛物线y=ax2+bx+c的顶点为C(0,),与x轴交于A、B两点,且A(﹣1,0).(1)求抛物线的解析式;(2)点P从点B出发,以每秒1个单位的速度向点A运动,同时点Q从点C出发,以每秒v个单位的速度向y轴负方向匀速运动,运动时间为t秒,连接PQ交射线BC于点D,当点P到达点A时,点Q停止运动,以点P为圆心,PB为半径的圆与射线BC交于点E.①求BE的长;当t=1时,求DE的长;②若在点P,Q运动的过程中,线段DE的长始终是一个定值,求v的值及DE长.【分析】(1)由抛物线y=ax2+bx+c的顶点为C(0,﹣),可得对称轴,将抛物线解析式改为顶点式,将A(﹣1,0)代入即可;(2)连接PE,过D作D⊥y轴于H,设DH=a,设经过t秒时,①当0<t<1时,利用△QDH∽△QPO即可得DE的长与t无关,为定值;当t=1时,易得DE=CE=BC =1为定值;②当1<t≤2时,△QDH∽△QPO,可得DE为定值.【解答】解:(1)∵抛物线y=ax2+bx+c的顶点为C(0,﹣),∴抛物线的对称轴是y轴,∴b=0,设抛物线的解析式为y=ax2﹣,把A(﹣1,0)代入y=ax2﹣,得a=,∴抛物线的解析式为y=﹣;(2)如图1,连接PE,过D作D⊥y轴于H,设DH=a,设经过t秒时,PB=t,CQ=vt,①当0<t<1时,∵PB=PE=t,∠PBE=60°,∴△PBE是等边三角形,∴BE=PB=t;又OP=1﹣t,CQ=vt,QH=HC+CQ=vt+a,QO=OC+CQ=vt+,∵△QDH∽△QPO,∴,即,∴a=,∴DC=2DH=,∴DE=CB﹣EB﹣DC=2﹣t﹣=t+,依题意,DE为定值,故当v=时,DE的长与t无关,即DE=1;当t=1时,P到O点,C与D重合,显然DE=CE=BC=1为定值;②如图2,当1<t ≤2时,OP=PB﹣OB=t﹣1,∵DH=a,CH=a,QH=CQ﹣CH =vt﹣a ,QO=CQ+OC=vt+,同理,△QDH∽△QPO,得,即,∴a=,∴DC=2DH=,∴DE=DC+CE=+(2﹣t )=t+,依题意,DE为定值,故当v=时,DE=1,综上所述,在点P运动的过程中,v=,线段DE的长是定值1.31。

2020年数学中考模拟试题(及答案)

2020年数学中考模拟试题(及答案)

2020年数学中考模拟试题(及答案)一、选择题1.已知一个正多边形的内角是140°,则这个正多边形的边数是()A .9B .8C .7D .6 2.下列计算正确的是( ) A . 2a +3b = 5ab B . (a —b )2=a 2—b 2 C . (2x 2)3=6x 6D . x 8;x 3=x 5 3.若一个凸多边形的内角和为720°,则这个多边形的边数为() A .4 B .5 C .6 D .74.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89 分,则该同学这6次成绩的中位数是( )A . 94B . 95 分C . 95.5 分D . 96 分5.下列图形是轴对称图形的有( )6 .函数y =。

2 % -1中的自变量%的取值范围是()A . % 丰—B . % 之1C . % >—D . % 之一 ^2 ^2 ^27 .如图,矩形纸片ABCD 中,AB = 4 , BC = 6,将VABC 沿AC 折叠,使点B 落在点 E 处,CE 交AD 于点F ,则DF 的长等于()9.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价 10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更 合算( )A .甲B .乙C .丙D . 一样 10.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种 蔬菜放在一起同时保鲜,适宜的温度是() B . C . D .A .40°B .50°C .60°D .70°A . 2个B . 3个C . 4个D . 5个A . 8.将一个矩形纸片按如图所示折叠,若21=40°,则N2的度数是()A.1℃~3℃B.3℃~5℃C.5℃~8℃D.1℃~8℃413.如图,在四边形 ABCD 中,NB=ND = 90°, AB = 3, BC=2, tanA= 3,则 CD =14.如图:已知八3=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边4AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是.15.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是cm2.16.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次2。

2020年北京师大附中中考数学模拟试卷(五) (解析版)

2020年北京师大附中中考数学模拟试卷(五) (解析版)

2020年北京师大附中中考数学模拟试卷(五)一、选择题(共8小题).1.在国家大数据战略的引领下,我国在人工智能领域取得显著成就,自主研发的人工智能“绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储58000000000本书籍,将58000000000用科学记数法表示应为()A.5.8×1010B.5.8×1011C.58×109D.0.58×1011 2.在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是()A.千里江山图B.京津冀协同发展C.内蒙古自治区成立七十周年D.河北雄安新区建立纪念3.如图是某个几何体的三视图,该几何体是()A.三棱柱B.圆柱C.六棱柱D.圆锥4.若实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a<﹣5B.b+d<0C.|a|﹣c<0D.c5.如果一个正多边形的内角和等于720°,那么该正多边形的一个外角等于()A.45°B.60°C.72°D.90°6.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.如图是一年中部分节气所对应的白昼时长示意图.在下列选项中白昼时长不足11小时的节气是()A.惊蛰B.小满C.秋分D.大寒7.如图,△ABC中,AC<BC,如果用尺规作图的方法在BC上确定点P,使PA+PC=BC,那么符合要求的作图痕迹是()A.B.C.D.8.图1是2020年3月26日全国新冠疫情数据表,图2是3月28日海外各国疫情统计表,图3是中国和海外的病死率趋势对比图,根据这些图表,选出下例说法中错误的项()A.图1显示每天现有确诊数的增加量=累计确诊增加量﹣治愈人数增加量﹣死亡人数增加量B.图2显示美国累计确诊人数虽然约是德国的两倍,但每百万人口的确诊人数大约只有德国的一半C.图2显示意大利当前的治愈率高于西班牙D.图3显示大约从3月16日开始海外的病死率开始高于中国的病死率二、填空题(每题5分,满分40分,将答案填在答题纸上)9.若代数式的值为0,则实数x的值为.10.若a﹣b=2,则代数式(﹣b)•=.11.如图,在△ABC中,DE∥AB,DE分别与AC,BC交于D,E两点.若,AC=3,则DC=.12.比较大小:1(填“>”、“<”或“=”).13.举例说明命题“若>,则b>a.”是假命题,a=,b=.14.如图所示的网格是正方形网格,则∠ABC+∠ACB=.(点A,B,C是网格线交点).15.数学课上,王老师让同学们对给定的正方形ABCD,建立合适的平面直角坐标系,并表示出各顶点的坐标.下面是4名同学表示各顶点坐标的结果:甲同学:A(0,1),B(0,0),C(1,0),D(1,1);乙同学:A(0,0),B(0,﹣1),C(﹣1,﹣1),D(1,0);丙同学:A(0,3),B(0,0),C(3,0),D(3,3);丁同学:A(1,1),B(1,﹣2),C(4,﹣2),D(4,1);上述四名同学表示的结果中,四个点的坐标都表示正确的同学是.16.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如表统计表,其中“√”表示购买,“×”表示未购买.假定每位顾客购买商品的可能性相同.甲乙丙丁商品顾客人数100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率为.(2)如果顾客购买了甲,并且同时也在乙、丙、丁中进行了选购,则购买(填“乙”、“丙”、“丁”)商品的可能性最大.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.计算:+()﹣1﹣2cos45°﹣|2﹣3|.18.解不等式组,并求该不等式组的非负整数解.19.已知关于x的方程mx2+(3m+1)x+3=0.(1)求证:不论m为任何实数,此方程总有实数根;(2)若抛物线y=mx2+(3m+1)x+3与x轴交于两个不同的整数点,且m为正整数,试确定此抛物线的解析式.20.如图,四边形ABCD是矩形,点E在BC边上,点F在BC延长线上,且∠CDF=∠BAE.(1)求证:四边形AEFD是平行四边形;(2)若DF=3,DE=4,AD=5,求CD的长度.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为万美元;(结果保留一位小数)(4)下列推断合理的是.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.在平面直角坐标系xOy中,抛物线G:y=mx2+2mx+m﹣1(m≠0)与y轴交于点C,抛物线G的顶点为D,直线:y=mx+m﹣1(m≠0).(1)当m=1时,画出直线和抛物线G,并直接写出直线被抛物线G截得的线段长.(2)随着m取值的变化,判断点C,D是否都在直线上并说明理由.(3)若直线被抛物线G截得的线段长不小于2,结合函数的图象,直接写出m的取值范围.23.已知C为线段AB中点,∠ACM=α.Q为线段BC上一动点(不与点B重合),点P 在射线CM上,连接PA,PQ,记BQ=kCP.(1)若α=60°,k=1,①如图1,当Q为BC中点时,求∠PAC的度数;②直接写出PA、PQ的数量关系;(2)如图2,当α=45°时.探究是否存在常数k,使得②中的结论仍成立?若存在,写出k的值并证明;若不存在,请说明理由.参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在国家大数据战略的引领下,我国在人工智能领域取得显著成就,自主研发的人工智能“绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储58000000000本书籍,将58000000000用科学记数法表示应为()A.5.8×1010B.5.8×1011C.58×109D.0.58×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:将580 0000 0000用科学记数法表示应为5.8×1010.故选:A.2.在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是()A.千里江山图B.京津冀协同发展C.内蒙古自治区成立七十周年D.河北雄安新区建立纪念【分析】根据中心对称图形的概念求解.解:A选项是轴对称图形,不是中心对称图形,故本选项错误;B选项不是中心对称图形,故本选项错误;C选项为中心对称图形,故本选项正确;D选项不是中心对称图形,故本选项错误.故选:C.3.如图是某个几何体的三视图,该几何体是()A.三棱柱B.圆柱C.六棱柱D.圆锥【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解:由俯视图可知有六个棱,再由主视图即左视图分析可知为六棱柱,故选:C.4.若实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a<﹣5B.b+d<0C.|a|﹣c<0D.c【分析】根据各点在数轴上的位置、加减法符号法则、实数的算术平方根,对各个选择支作出判断.解:由数轴知:﹣5<a<﹣4,a<b<0<d,|b|<|d|,|a|>|c|∵﹣5<a<﹣4,所以选项A错误;∵b<0<d且|b|<|d|,所以b+d>0,故选项B错误;∵a<0<c且|a|>|c|,所以|a|﹣c>0.故选项C错误;∵0<c<1,,所以c<.故选:D.5.如果一个正多边形的内角和等于720°,那么该正多边形的一个外角等于()A.45°B.60°C.72°D.90°【分析】根据正多边形的内角和定义(n﹣2)×180°列方程求出多边形的边数,再根据正多边形内角和为360°、且每个外角相等求解可得.解:多边形内角和(n﹣2)×180°=720°,∴n=6.则正多边形的一个外角=,故选:B.6.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.如图是一年中部分节气所对应的白昼时长示意图.在下列选项中白昼时长不足11小时的节气是()A.惊蛰B.小满C.秋分D.大寒【分析】根据图象,可以写出白昼时长不足11小时的节气,然后即可解答本题.解:由图可得,白昼时长不足11小时的节气是立春、立秋、冬至、大寒,故选:D.7.如图,△ABC中,AC<BC,如果用尺规作图的方法在BC上确定点P,使PA+PC=BC,那么符合要求的作图痕迹是()A.B.C.D.【分析】由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得,点P在AB的垂直平分线上,进而得出结论.解:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选:C.8.图1是2020年3月26日全国新冠疫情数据表,图2是3月28日海外各国疫情统计表,图3是中国和海外的病死率趋势对比图,根据这些图表,选出下例说法中错误的项()A.图1显示每天现有确诊数的增加量=累计确诊增加量﹣治愈人数增加量﹣死亡人数增加量B.图2显示美国累计确诊人数虽然约是德国的两倍,但每百万人口的确诊人数大约只有德国的一半C.图2显示意大利当前的治愈率高于西班牙D.图3显示大约从3月16日开始海外的病死率开始高于中国的病死率【分析】根据所给图表和折线图针对每个选项进行分析即可.解:A、图1显示每天现有确诊数的增加量=累计确诊增加量﹣治愈人数增加量﹣死亡人数增加量,故原题说法正确;B、图2显示美国累计确诊人数虽然约是德国的两倍,但每百万人口的确诊人数大约只有德国的一半,故原题说法正确;C、图2显示西班牙当前的治愈率高于意大利,故原题说法错误;D、图3显示大约从3月16日开始海外的病死率开始高于中国的病死率,故原题说法正确;故选:C.二、填空题(每题5分,满分40分,将答案填在答题纸上)9.若代数式的值为0,则实数x的值为x=1.【分析】分式的值为零,分子等于零.解:依题意得:,所以x﹣1=0,解得x=1.故答案是:x=1.10.若a﹣b=2,则代数式(﹣b)•=.【分析】根据分式的减法和乘法可以化简题目中的式子,然后将a﹣b的值代入化简后的式子即可解答本题.解:(﹣b)•===,当a﹣b=2时,原式==,故答案为:.11.如图,在△ABC中,DE∥AB,DE分别与AC,BC交于D,E两点.若,AC=3,则DC=2.【分析】由DE∥AB可得出△DEC∽△ABC,根据相似三角形的性质可得出=()2=,再结合AC=3即可求出DC的长度.解:∵DE∥AB,∴△DEC∽△ABC,∴=()2=,∴=.又∵AC=3,∴DC=2.故答案为:2.12.比较大小:>1(填“>”、“<”或“=”).【分析】直接估计出的取值范围,进而得出答案.解:∵2<<3,∴1<﹣1<2,故>1.故答案为:>.13.举例说明命题“若>,则b>a.”是假命题,a=1答案不唯一,b=﹣2.【分析】通过实例说明命题不成立即可.解:当a=1,b=﹣2时,>,得出a>b,故答案为:答案不唯一,1,﹣2.14.如图所示的网格是正方形网格,则∠ABC+∠ACB=45°.(点A,B,C是网格线交点).【分析】延长BA交格点于D,连接CD,根据勾股定理得到AD2=CD2=1+22=5,AC2=12+32=10,求得AD2+CD2=AC2,于是得到∠ADC=90°,根据三角形外角的性质即可得到结论.解:延长BA交格点于D,连接CD,则AD2=CD2=1+22=5,AC2=12+32=10,∴AD2+CD2=AC2,∴∠ADC=90°,∴∠DAC=∠ABC+∠ACB=45°.故答案为:45°.15.数学课上,王老师让同学们对给定的正方形ABCD,建立合适的平面直角坐标系,并表示出各顶点的坐标.下面是4名同学表示各顶点坐标的结果:甲同学:A(0,1),B(0,0),C(1,0),D(1,1);乙同学:A(0,0),B(0,﹣1),C(﹣1,﹣1),D(1,0);丙同学:A(0,3),B(0,0),C(3,0),D(3,3);丁同学:A(1,1),B(1,﹣2),C(4,﹣2),D(4,1);上述四名同学表示的结果中,四个点的坐标都表示正确的同学是甲,丙,丁.【分析】正确画图,根据四个同学的原点确定平面直角坐标系,根据各点的坐标确定正方形的边长,可得结论.解:甲同学:如图1,易知点B为原点,则AB=BC=CD=AD=1,故甲同学所标的四个点的坐标正确;乙同学:如图2,易知点A为原点,则AB=BC=CD=AD=1,则A(0,0),B(0,﹣1),C(1,﹣1),D(1,0),故乙同学所标C点的坐标错误;丙同学:如图1,易知点B为原点,则AB=BC=CD=AD=3,故丙同学所标的四个点的坐标正确;丁同学:如图3,易知AB=BC=CD=AD=3,故丁同学所标的四个点的坐标正确;上述四名同学表示的结果都正确的是:甲,丙,丁;故答案为:甲,丙,丁.16.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如表统计表,其中“√”表示购买,“×”表示未购买.假定每位顾客购买商品的可能性相同.商品甲乙丙丁顾客人数100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率为0.2.(2)如果顾客购买了甲,并且同时也在乙、丙、丁中进行了选购,则购买丙(填“乙”、“丙”、“丁”)商品的可能性最大.【分析】(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,从而求得顾客同时购买乙和丙的概率.(2)在这1000名顾客中,求出同时购买甲和乙的概率、同时购买甲和丙的概率、同时购买甲和丁的概率,从而得出结论.解:(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,故顾客同时购买乙和丙的概率为=0.2.(2)在这1000名顾客中,同时购买甲和乙的概率为=0.2,同时购买甲和丙的概率为=0.6,同时购买甲和丁的概率为=0.1,故同时购买甲和丙的概率最大.故答案为:0.2;丙.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.计算:+()﹣1﹣2cos45°﹣|2﹣3|.【分析】直接利用负指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.解:+()﹣1﹣2cos45°﹣|2﹣3|=3+5﹣2×﹣(3﹣2)=3+5﹣﹣3+2=4+2.18.解不等式组,并求该不等式组的非负整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式3(x+2)≥x+4,得:x≥﹣1,解不等式<1,得:x<3,∴原不等式解集为﹣1≤x<3,∴原不等式的非负整数解为0,1,2.19.已知关于x的方程mx2+(3m+1)x+3=0.(1)求证:不论m为任何实数,此方程总有实数根;(2)若抛物线y=mx2+(3m+1)x+3与x轴交于两个不同的整数点,且m为正整数,试确定此抛物线的解析式.【分析】(1)分类讨论:当m=0时,方程变形为一元一次方程,有一个解;当m≠0时,先计算判别式的值得到△=(3m﹣1)2,根据非负数的性质得△≥0,则根据判别式的意义得到方程总有两个实数解,然后综合两种情况得到不论m为任何实数,此方程总有实数根;(2)先解方程得到x1=﹣,x2=﹣3,根据抛物线与x轴的两交点问题得到交点坐标为(﹣,0),(﹣3,0),再根据正数的整除性易得m=1,从而得到抛物线解析式.【解答】(1)证明:当m=0时,方程变形为x+3=0,解得x=﹣3;当m≠0时,△=(3m+1)2﹣4m•3=(3m﹣1)2,∵(3m﹣1)2≥0,即△≥0,∴m≠0时,方程总有两个实数解,∴不论m为任何实数,此方程总有实数根;(2)解:根据题意得m≠0,mx2+(3m+1)x+3=0.(mx+1)(x+3)=0,解得x1=﹣,x2=﹣3,则抛物线y=mx2+(3m+1)x+3与x轴的两交点坐标为(﹣,0),(﹣3,0),而m为正整数,﹣也为整数,所以m=1,所以抛物线解析式为y=x2+4x+3.20.如图,四边形ABCD是矩形,点E在BC边上,点F在BC延长线上,且∠CDF=∠BAE.(1)求证:四边形AEFD是平行四边形;(2)若DF=3,DE=4,AD=5,求CD的长度.【分析】(1)直接利用矩形的性质结合全等三角形的判定与性质得出BE=CF,进而得出答案;(2)利用勾股定理的逆定理得出∠EDF=90°,进而得出•ED•DF=EF•CD,求出答案即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=DC,∠B=∠DCF=90°,∵∠BAE=∠CDF,在△ABE和△DCF中,,∴△ABE≌△DCF(ASA),∴BE=CF,∴BC=EF,∵BC=AD,∴EF=AD,又∵EF∥AD,∴四边形AEFD是平行四边形;(2)解:由(1)知:EF=AD=5,在△EFD中,∵DF=3,DE=4,EF=5,∴DE2+DF2=EF2,∴∠EDF=90°,∴•ED•DF=EF•CD,∴CD=.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第17;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为 2.8万美元;(结果保留一位小数)(4)下列推断合理的是①②.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.【分析】(1)由国家创新指数得分为69.5以上(含69.5)的国家有17个,即可得出结果;(2)根据中国在虚线l1的上方,中国的创新指数得分为69.5,找出该点即可;(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,故答案为:17;(2)如图所示:(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.8万美元;故答案为:2.8;(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值;合理;故答案为:①②.22.在平面直角坐标系xOy中,抛物线G:y=mx2+2mx+m﹣1(m≠0)与y轴交于点C,抛物线G的顶点为D,直线:y=mx+m﹣1(m≠0).(1)当m=1时,画出直线和抛物线G,并直接写出直线被抛物线G截得的线段长.(2)随着m取值的变化,判断点C,D是否都在直线上并说明理由.(3)若直线被抛物线G截得的线段长不小于2,结合函数的图象,直接写出m的取值范围.【分析】(1)当m=1时,抛物线G的函数表达式为y=x2+2x,直线的函数表达式为y =x,求出直线被抛物线G截得的线段,再画出两个函数的图象即可;(2)先求出C、D两点的坐标,再代入直线的解析式进行检验即可;(3)先联立直线与抛物线的解析式,求出它们的交点坐标,再根据这两个交点之间的距离不小于2列出不等式,求解即可.解:(1)当m=1时,抛物线G的函数表达式为y=x2+2x,直线的函数表达式为y=x,直线被抛物线G截得的线段长为,画出的两个函数的图象如图所示:(2)无论m取何值,点C,D都在直线上.理由如下:∵抛物线G:y=mx2+2mx+m﹣1(m≠0)与y轴交于点C,∴点C的坐标为C(0,m﹣1),∵y=mx2+2mx+m﹣1=m(x+1)2﹣1,∴抛物线G的顶点D的坐标为(﹣1,﹣1),对于直线:y=mx+m﹣1(m≠0),当x=0时,y=m﹣1,当x=﹣1时,y=m×(﹣1)+m﹣1=﹣1,∴无论m取何值,点C,D都在直线上;(3)解方程组,得,或,∴直线与抛物线G的交点为(0,m﹣1),(﹣1,﹣1).∵直线被抛物线G截得的线段长不小于2,∴≥2,∴1+m2≥4,m2≥3,∴m≤﹣或m≥,∴m的取值范围是m≤﹣或m≥.23.已知C为线段AB中点,∠ACM=α.Q为线段BC上一动点(不与点B重合),点P 在射线CM上,连接PA,PQ,记BQ=kCP.(1)若α=60°,k=1,①如图1,当Q为BC中点时,求∠PAC的度数;②直接写出PA、PQ的数量关系;(2)如图2,当α=45°时.探究是否存在常数k,使得②中的结论仍成立?若存在,写出k的值并证明;若不存在,请说明理由.【分析】(1)如图1,作辅助线,构建等边三角形,证明△ADC为等边三角形.根据等边三角形三线合一可得∠PAC=∠PAD=30°;②作辅助线,证明△PCD'≌△PCQ,可得PA=PQ;(2)存在,如图2,作辅助线,构建全等三角形,证明△PAD≌△PQC(SAS).可得结论.解:(1)①如图1,在CM上取点D,使得CD=CA,连接AD,∵∠ACM=60°,∴△ADC为等边三角形.∴∠DAC=60°.∵C为AB的中点,Q为BC的中点,∴AC=BC=2BQ.∵BQ=CP,∴AC=BC=CD=2CP.∴AP平分∠DAC.∴∠PAC=∠PAD=30°.②如下图,将△APD绕点A顺时针旋转60°得△AD'C,连接CD',∴∠ACD'=∠ADP=60°,AP=AD',∠PAD'=60°,CD'=PD,∴△APD'是等边三角形,∴PD'=AP,∵k=1,∴BQ=CP,∵CD=AC=BC,∴PD=CQ=CD',∵∠PCQ=180°﹣∠ACP=120°,∠PCD'=∠ACP+∠ACD'=120°,∴∠PCD'=∠PCQ,∴△PCD'≌△PCQ(SAS),∴PD'=PQ,∴PA=PQ;(2)存在,使得②中的结论成立.证明:过点P作PC的垂线交AC于点D.∵∠ACM=45°,∴∠PDC=∠PCD=45°.∴PC=PD,∠PDA=∠PCQ=135°.∵,,∴CD=BQ.∵AC=BC,∴AD=CQ.∴△PAD≌△PQC(SAS).∴PA=PQ.。

2020广东中考数学.2020年广东省初中学业水平考试仿真模拟卷(五)

2020广东中考数学.2020年广东省初中学业水平考试仿真模拟卷(五)

(3)在点 P 的运动过程中,是否存在点 P,使△BEP 为等腰三 角形?若存在,求出点 P 的坐标;若不存在,请说明理由.
解:(1)∵x2-7x+12=0,∴x1=3,x2=4, ∵BC>AB,∴BC=4,AB=3, ∵OA=2OB,∴OA=2,OB=1, ∵四边形 ABCD 是矩形,∴点 D 的坐标为(-2,4).
由勾股定理得 OP= OE2-PE2= 102-82=6, ∴BP=OB-OP=10-6=4, ∵tan∠ABC=DBPP=43,∴DP=43BP=34×4=3, ∴DE=PE-DP=8-3=5.
25.如图,在平面直角坐标系中,矩形 ABCD 的边 AB 在 x 轴上,AB,BC 的长分别是一元二次方程 x2-7x+12=0 的两 个根(BC>AB),OA=2OB,边 CD 交 y 轴于点 E,动点 P 以 每秒 1 个单位长度的速度,从点 E 出发沿折线段 ED-DA 向 点 A 运动,运动的时间为 t(0≤t<6)秒,设△BOP 与矩形 AOED 重叠部分的面积为 S. (1)求点 D 的坐标; (2)求 S 关于 t 的函数关系式,并写出自变量的取值范围;
②∵tan∠ABC=ABCC=43,设 AC=3k,BC=4k(k>0), 由勾股定理得 AC2+BC2=AB2,即(3k)2+(4k)2=202,解得 k =4, ∴AC=12,BC=16,
∵点 E 是 的中点,∴OE⊥BC,BH=CH=8, ∴OE×BH=OB×PE,即 10×8=10PE,解得 PE=8,
②当 BP=PE 时,9+m2=m2-8m+20,解得 m=181,则 P-2,181; ③当 BE=PE 时,17=m2-8m+20,解得 m=4± 13,则 P(-2,4- 13). 综上,P(-2,2 2)或-2,181或(-2,4- 13).

苏教版2020年中考数学模拟卷(含答案解析)

苏教版2020年中考数学模拟卷(含答案解析)

2020年中考数学模拟试卷一.选择题(共8小题)1.下列各数中最小的数为()A.﹣3 B.﹣1 C.0 D.12.下列运算正确的是()A.3x2•4x2=12x2B.x3+x5=x8C.x4÷x=x3D.(x5)2=x73.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示为()A.0.3×105B.3×105C.0.3×106D.3×1064.下图几何体的主视图是()A.B.C.D.5.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 3 2A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.56.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450 B.300(1+2x)=450C.300(1+x)2=450 D.450(1﹣x)2=3007.某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图象如图所示,则超过500元的部分可以享受的优惠是()A.打六折B.打七折C.打八折D.打九折8.如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k<0)图象经过点C和AB边的中点D,若∠B=α,则k的值为()A.﹣4tanαB.﹣2sinαC.﹣4cosαD.﹣2tanα二.填空题(共8小题)9.=.10.分解因式:x3﹣x=.11.已知一个多边形的内角和为540°,则这个多边形是边形.12.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是.13.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是cm2.14.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为.15.抛物线y=﹣x2+2x+8与x轴交于B、C两点,点D平分BC,且点A为抛物线上的点,且∠BAC为锐角,则AD的值范围为.16.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为.三.解答题(共10小题)17.计算或化简:(1)(2)18.解方程:+=1.19.图书馆是一个很好的学习平台,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有万人次到图书馆阅读,其中商人占百分比为%.(2)将条形统计图补充完整.(3)5月份到图书馆的读者共有24000人次,根据以上调查结果,估计24000人次中是职工的人次.20.如图,E是AC上一点,AB=CE,AB∥CD,AC=CD.求证:BC=ED.21.有四张仅一面分别标有1,2,3,4的不透明纸片,除所标数字不同外,其余都完全相同.(1)将四张纸片分成两组,标有1、3的为第一组,标有2、4的为第二组,背面向上,放在桌上,从两组中各随机抽取一张,求两次抽取数字和为5的概率;(2)将四张纸片洗匀后背面向上,放在桌上,一次性从中随机抽取两张,用树形图法或列表法,求所抽取数字和为5的概率.22.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.23.如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.(1)求DE与水平桌面(AB所在直线)所成的角;(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)24.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.25.如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.26.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.参考答案与试题解析一.选择题(共8小题)1.下列各数中最小的数为()A.﹣3 B.﹣1 C.0 D.1【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣3<﹣1<0<1,∴各数中最小的数是﹣3.故选:A.2.下列运算正确的是()A.3x2•4x2=12x2B.x3+x5=x8C.x4÷x=x3D.(x5)2=x7【分析】A、利用单项式乘单项式法则计算得到结果,即可做出判断;B、原式不能合并,本选项错误;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、3x2•4x2=12x4,本选项错误;B、原式不能合并,错误;C、x4÷x=x3,本选项正确;D、(x5)2=x10,本选项错误,故选:C.3.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示为()A.0.3×105B.3×105C.0.3×106D.3×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将300 000用科学记数法表示为:3×105.故选:B.4.下图几何体的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到的几何体的左边有3个正方形,中间只有2个正方形,右边有1个正方形.故选:C.5.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 3 2A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.5【分析】根据众数和中位数的概念求解.【解答】解:这组数据中4出现的次数最多,众数为4,∵共有7个人,∴第4个人的劳动时间为中位数,所以中位数为4,故选:A.6.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450 B.300(1+2x)=450C.300(1+x)2=450 D.450(1﹣x)2=300【分析】设快递量平均每年增长率为x,根据我国2016年及2018年的快递业务量,即可得出关于x的一元二次方程,此题得解.【解答】解:设快递量平均每年增长率为x,依题意,得:300(1+x)2=450.故选:C.7.某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图象如图所示,则超过500元的部分可以享受的优惠是()A.打六折B.打七折C.打八折D.打九折【分析】根据题意和函数图象中的数据可以列出相应的方程,从而可以求得超过500元的部分可以享受的优惠,本题得以解决.【解答】解:设超过500元的部分可以享受的优惠是x折,(1000﹣500)×+500=900,解得,x=8,故选:C.8.如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k<0)图象经过点C和AB边的中点D,若∠B=α,则k的值为()A.﹣4tanαB.﹣2sinαC.﹣4cosαD.﹣2tanα【分析】过点C作CE⊥OA于E,过点D作DF⊥x轴于F,根据平行四边形的对边相等可得OC=AB,然后求出OC=2AD,再求出OE=2AF,设AF=a,表示出点C、D的坐标,然后根据CE、DF的关系列方程求出a的值,再求出OE、CE,然后利用∠COA的正切值列式整理即可得解.【解答】解:如图,过点C作CE⊥OA于E,过点D作DF⊥x轴于F,在▱OABC中,OC=AB,∵D为边AB的中点,∴OC=AB=2AD,CE=2DF,∴OE=2AF,设AF=a,∵点C、D都在反比例函数上,∴点C(﹣2a,﹣),∵A(3,0),∴D(﹣a﹣3,),∴=2×,解得a=1,∴OE=2,CE=﹣,∵∠COA=∠α,∴tan∠COA=tan∠α=,即tanα=﹣,k=﹣4tanα.故选:A.二.填空题(共8小题)9.= 2 .【分析】如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.【解答】解:∵22=4,∴=2.故答案为:210.分解因式:x3﹣x=x(x+1)(x﹣1).【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).11.已知一个多边形的内角和为540°,则这个多边形是五边形.【分析】利用n边形的内角和可以表示成(n﹣2)•180°,结合方程即可求出答案.【解答】解:根据多边形的内角和可得:(n﹣2)180°=540°,解得:n=5.则这个多边形是五边形.故答案为:五.12.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是.【分析】先写出3种等可能的结果数,然后根据三角形三边的关系确定三条线段能构成三角形的结果数,再根据概率公式求解.【解答】解:共有3种等可能的结果数,它们是:2、3、3,2、3、4,2、3、5,其中三条线段能构成三角形的结果数为2种,所以能构成三角形的概率=.故答案为:.13.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是35πcm2.【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr即可求解.【解答】解:底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm2.故答案是:35π.14.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为.【分析】分别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,先根据全等三角形的判定定理得出△BCE≌△ACF,故可得出CF及CE的长,在Rt△ACF中根据勾股定理求出AC的长,再由相似三角形的判定得出△CDG∽△CAF,故可得出CD的长,在Rt△BCD中根据勾股定理即可求出BD的长.【解答】解:别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,∵△ABC是等腰直角三角形,∴AC=BC,∵∠EBC+∠BCE=90°,∠BCE+∠ACF=90°,∠ACF+∠CAF=90°,∴∠EBC=∠ACF,∠BCE=∠CAF,在△BCE与△ACF中,∴△BCE≌△ACF(ASA)∴CF=BE,CE=AF,∵l1与l2的距离为1,l2与l3的距离为3,∴CF=BE=3,CE=AF=3+1=4,在Rt△ACF中,∵AF=4,CF=3,∴AC=5,∵AF⊥l3,DG⊥l3,∴△CDG∽△CAF,∴,∴∴在Rt△BCD中,∵CD=,BC=5,所以BD==.故答案为:.15.抛物线y=﹣x2+2x+8与x轴交于B、C两点,点D平分BC,且点A为抛物线上的点,且∠BAC为锐角,则AD的值范围为3<x≤9 .【分析】由“∠BAC为锐角”可知点A在以定线段BC为直径的圆外,又点A在x轴上侧,从而可确定动点A的范围.【解答】解:如图,∵抛物线y=﹣x2+2x+8,∴抛物线的顶点为A0(1,9),对称轴为x=1,与x轴交于两点B(﹣2,0)、C(4,0),分别以BC、DA为直径作⊙D、⊙E,则两圆与抛物线均交于两点P(1﹣2,1)、Q(1+2,1).可知,点A在不含端点的抛物线内时,∠BAC<90°,且有3=DP=DQ<AD≤DA0=9,即AD的取值范围是3<AD≤9.则A的横坐标取值范围是3<x≤9.故答案为:3<x≤9.16.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为15 .【分析】将△ABD绕着点A逆时针旋转90°,得△AFQ,延长FQ,BC,交于点E,连接CQ,判定△BAC≌△QAC(SAS),得到BC=CQ=BD+CD=5,再设AD=x,在Rt△CQE中,运用勾股定理列出关于x的方程,求得x的值,最后根据△ABC的面积=×BC×AD,进行计算即可【解答】解:如图,将△ABD绕着点A逆时针旋转90°,得△AFQ,延长FQ,BC,交于点E,连接CQ,由旋转可得,△ABD≌△AQF,∴AB=AQ,∠BAD=∠FAQ,BD=QF=3,∠F=∠ADC=∠DAF=90°=∠E,∵∠BAC=45°,∴∠BAD+∠DAC=45°,∴∠DAC+∠FAQ=45°,又∵∠DAF=90°,∴∠CAQ=45°,∴∠BAC=∠CAQ.且AB=AQ,AC=AC∴△BAC≌△QAC(SAS),∴BC=CQ=BD+CD=5,设AD=x,则QE=x﹣3,CE=x﹣2.在Rt△CQE中,CE2+QE2=CQ2∴(x﹣2)2+(x﹣3)2=52解得:x1=6,x2=﹣1(舍去),∴AD=6,∴△ABC的面积为=×BC×AD=15故答案为:15三.解答题(共10小题)17.计算或化简:(1)(2)【分析】(1)直接利用特殊角的三角函数值以及零指数幂的性质、二次根式的性质分别化简得出答案;(2)首先利用分式的混合运算法则进而化简得出答案.【解答】解:(1)原式=﹣2+2×+1=﹣2++1=1;(2)原式=1﹣×=1﹣=﹣.18.解方程:+=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:(x+1)(x+1)﹣4=x2﹣1,解得:x=1,经检验x=1是分式方程的增根,∴原分式方程无解.19.图书馆是一个很好的学习平台,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有16 万人次到图书馆阅读,其中商人占百分比为12.5 %.(2)将条形统计图补充完整.(3)5月份到图书馆的读者共有24000人次,根据以上调查结果,估计24000人次中是职工的人次.【分析】(1)利用到图书馆阅读的人数=学生的人数÷学生的百分比求解,商人占百分比=商人数÷总人数求解即可,(2)求出职工到图书馆阅读的人数,作图即可,(3)利用总人数乘读者是职工的人数所占的百分比求解即可.【解答】解:(1)在统计的这段时间内,到图书馆阅读的人数为4÷25%=16(万人),其中商人占百分比为×100%=12.5%;故答案为:16;12.5;(2)职工:16﹣4﹣2﹣4=6(万人),如图所示:(3)估计24000人次中是职工的人次为24000×=9000(人次).20.如图,E是AC上一点,AB=CE,AB∥CD,AC=CD.求证:BC=ED.【分析】要证明BC=ED,只要证明△ABC≌△CED即可,根据题意目中的条件和平行线的性质可以得到证明两个三角形全等的条件,本题得以解决.【解答】证明:∵AB∥CD,∴∠A=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴BC=ED.21.有四张仅一面分别标有1,2,3,4的不透明纸片,除所标数字不同外,其余都完全相同.(1)将四张纸片分成两组,标有1、3的为第一组,标有2、4的为第二组,背面向上,放在桌上,从两组中各随机抽取一张,求两次抽取数字和为5的概率;(2)将四张纸片洗匀后背面向上,放在桌上,一次性从中随机抽取两张,用树形图法或列表法,求所抽取数字和为5的概率.【分析】(1)应用列表法,求出两次抽取数字和为5的概率是多少即可.(2)应用列表法,求出所抽取数字和为5的概率是多少即可.【解答】解:(1)1 32 (1,2)(3,2)4 (1,4)(3,4)∵共有4种可能性,且每种可能性都相同,数字和为5有两种可能性,∴两次抽取数字和为5的概率为:=.(2)1 2 3 41 ﹣﹣(2,1)(3,1)(4,1)2 (1,2)﹣﹣(3,2)(4,2)3 (1,3)(2,3)﹣﹣(4,3)4 (1,4)(2,4)(3,4)﹣﹣∵共有12种可能性,且每种可能性都相同,数字和为5的有4种可能性,∴抽取数字和为5概率为:=.22.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.【分析】(1)连接OE,BE,因为DE=EF,所以=,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,从而可求出r的值.【解答】解:(1)连接OE,BE,∵DE=EF,∴=,∴∠OBE=∠DBE,∵OE=OB,∴∠OEB=∠OBE,∴∠OEB=∠DBE,∴OE∥BC,∵⊙O与边AC相切于点E,∴OE⊥AC,∴BC⊥AC,∴∠C=90°;(2)在△ABC,∠C=90°,BC=3,sin A=,∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,∴r=,∴AF=5﹣2×=.23.如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.(1)求DE与水平桌面(AB所在直线)所成的角;(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)【分析】(1)直接作出平行线和垂线进而得出∠EDF的值;(2)利用锐角三角函数关系得出DN以及EF的值,进而得出答案.【解答】解:(1)如图所示:过点D作DF∥AB,过点D作DN⊥AB于点N,EF⊥AB于点M,由题意可得,四边形DNMF是矩形,则∠NDF=90°,∵∠A=60°,∠AND=90°,∴∠ADN=30°,∴∠EDF=135°﹣90°﹣30°=15°,即DE与水平桌面(AB所在直线)所成的角为15°;(2)如图所示:∵∠ACB=90°,∠A=60°,AB=16cm,∴∠ABC=30°,则AC=AB=8cm,∵灯杆CD长为40cm,∴AD=48cm,∴DN=AD•cos30°≈41.76cm,则FM=41.76cm,∵灯管DE长为15cm,∴sin15°===0.26,解得:EF=3.9,故台灯的高为:3.9+41.76≈45.7(cm).24.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.【分析】(1)设今年年初猪肉价格为每千克x元;根据题意列出一元一次不等式,解不等式即可;(2)设5月20日两种猪肉总销量为1;根据题意列出方程,解方程即可.【解答】解:(1)设今年年初猪肉价格为每千克x元;根据题意得:2.5×(1+60%)x≥100,解得:x≥25.答:今年年初猪肉的最低价格为每千克25元;(2)设5月20日两种猪肉总销量为1;根据题意得:40(1﹣a%)×(1+a%)+40×(1+a%)=40(1+a%),令a%=y,原方程化为:40(1﹣y)×(1+y)+40×(1+y)=40(1+y),整理得:5y2﹣y=0,解得:y=0.2,或y=0(舍去),则a%=0.2,∴a=20;答:a的值为20.25.如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.【分析】(1)利用tan∠ABC=3,得出C点坐标,再利用待定系数法求出二次函数解析式;(2)①当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,则P的运动路程为△ABC的中位线HK,再利用勾股定理得出答案;②首先利用等腰三角形的性质得出∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,进而求出∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即可得出答案;(3)首先得出C△PEF=AD+EF,进而得出EG=PE,EF=PE=AD,利用C△PEF=AD+EF =(1+)AD=AD,得出最小值即可.【解答】解:(1)∵函数y=ax2+bx+c与x轴交于A、B两点,且一元二次方程ax2+bx+c =0两根为:﹣8,2,∴A(﹣8,0)、B(2,0),即OB=2,又∵tan∠ABC=3,∴OC=6,即C(0,﹣6),将A(﹣8,0)、B(2,0)代入y=ax2+bx﹣6中,得:,解得:,∴二次函数的解析式为:y=x2+x﹣6;(2)①如图1,当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,∴P的运动路程为△ABC的中位线HK,∴HK=BC,在Rt△BOC中,OB=2,OC=6,∴BC=2,∴HK=,即P的运动路程为:;②∠EPF的大小不会改变,理由如下:如图2,∵DE⊥AB,∴在Rt△AED中,P为斜边AD的中点,∴PE=AD=PA,∴∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,∴∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即∠EPF=2∠EAF,又∵∠EAF大小不变,∴∠EPF的大小不会改变;(3)设△PEF的周长为C,则C△PEF=PE+PF+EF,∵PE=AD,PF=AD,∴C△PEF=AD+EF,在等腰三角形PEF中,如图2,过点P作PG⊥EF于点G,∴∠EPG=∠EPF=∠BAC,∵tan∠BAC==,∴tan∠EPG==,∴EG=PE,EF=PE=AD,∴C△PEF=AD+EF=(1+)AD=AD,又当AD⊥BC时,AD最小,此时C△PEF最小,又S△ABC=30,∴BC×AD=30,∴AD=3,∴C△PEF最小值为:AD=.26.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为 1 ;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC ∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.。

2020成都中考数学综合模拟测试卷5(含答案)

2020成都中考数学综合模拟测试卷5(含答案)

成都市二〇一二年高中阶段 教育学校统一招生模拟考试试卷数学33A(满分:150分 时间:120分钟)A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)1.-3的绝对值是( ) A.3 B.-3C.D.-2.函数y=-中,自变量x 的取值范围是( )A.x>2B.x<2C.x ≠2D.x ≠-23.如图所示的几何体是由4个相同的小正方体组成,其主视图为( )4.下列计算正确的是( )A.a+2a=3a 2B.a 2·a 3=a 5C.a 3÷a=3D.(-a)3=a 35.成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为( )A.9.3×105万元B.9.3×106万元C.93×104万元D.0.93×106万元6.如图,在平面直角坐标系xOy 中,点P(-3,5)关于y 轴的对称点的坐标为( )A.(-3,-5)B.(3,5)C.(3,-5)D.(5,-3)7.已知两圆外切,圆心距为5cm,若其中一个圆的半径是3cm,则另一个圆的半径是( )A.8cmB.5cmC.3cmD.2cm的解为( )8.分式方程=-A.x=1B.x=2C.x=3D.x=49.如图,在菱形ABCD中,对角线AC,BD交于点O,下列说法错误..的是( )A.AB∥DCB.AC=BDC.AC⊥BDD.OA=OC10.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是( )A.100(1+x)=121B.100(1-x)=121C.100(1+x)2=121D.100(1-x)2=121第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分)11.分解因式:x2-5x= .12.如图,将▱ABCD的一边BC延长至E,若∠A=110°,则∠1= .13.商店某天销售了则这11件衬衫领口尺寸的众数是cm,中位数是cm.14.如图,AB是☉O的弦,OC⊥AB于C.若AB=2,OC=1,则半径OB的长为.三、解答题(本大题共6个小题,共54分)15.(本小题满分12分,每题6分)(1)计算:4cos45°-+(π+)0+(-1)2;-(2)解不等式组:16.(本小题满分6分)化简:-÷.-17.(本小题满分8分)如图,在一次测量活动中,小华站在离旗杆底部(B处)6米的D处,仰望旗杆顶端A,测得仰角为60°,眼睛离地面的距离ED为1.5米.试帮助小华求出旗杆AB的高度.(结果精确到0.1米,≈1.732)18.(本小题满分8分)如图,一次函数y=-2x+b(b为常数)的图象与反比例函数y=(k为常数,且k≠0)的图象交于A,B两点,且点A的坐标为(-1,4).(1)分别求出反比例函数及一次函数的表达式;(2)求点B的坐标.33B19.(本小题满分10分)某校将举办“心怀感恩·孝敬父母”的活动,为此,校学生会就全校1000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(注:每个时间段含最小值,不含最大值)(1)本次调查抽取的人数为,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.20.(本小题满分10分)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=a时,P,Q两点间的距离(用含a的代数式表示).B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)21.已知当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx的值为.22.一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为.(结果保留π)23.有七张正面分别标有数字-3,-2,-1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2-2(a-1)x+a(a-3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2-(a2+1)x-a+2的图象不经过...点(1,0)的概率是.24.如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A、B,与反比例函数y=(k 为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若=(m为大于1的常数),记△CEF的面积为S1,△OEF的面积为S2,则= .(用含m的代数式表示)25.如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN 右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC 面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为cm,最大值为cm.二、解答题(本大题共3个小题,共30分)26.(本小题满分8分)“城市发展交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V(单位:千米/时)是车流密度x(单位:辆/千米)的函数,且当0<x≤28时,V=80;当28<x≤188时,V是x的一次函数.函数关系如图所示.(1)求当28<x≤188时,V关于x的函数表达式;(2)若车流速度V不低于50千米/时,求当车流密度x为多少时,车流量P(单位:辆/时)达到最大,并求出这一最大值.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)27.(本小题满分10分)如图,AB是☉O的直径,弦CD⊥AB于H,过CD延长线上一点E作☉O的切线交AB的延长线于F,切点为G,连结AG交CD于K.(1)求证:KE=GE;(2)若KG2=KD·GE,试判断AC与EF的位置关系,并说明理由;(3)在(2)的条件下,若sin E=,AK=2,求FG的长.28.(本小题满分12分)如图,在平面直角坐标系xOy中,一次函数y=x+m(m为常数)的图象与x轴交于点A(-3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C 两点,并与x轴的正半轴交于点B.(1)求m的值及抛物线的函数表达式;(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值,并写出探究过程.A卷一、选择题1.A由绝对值的定义可知-3的绝对值是它的相反数3.故选A.评析本题主要考查绝对值的定义,熟练掌握绝对值的定义是解题的关键.2.C因为分式的分母不能为0,所以x-2≠0,即x≠2,故选C.3.D主视图是从几何体的正面看所得的平面图形,故选D.4.B合并同类项时,系数相加,字母和字母的指数不变,所以a+2a=3a,显然A错误;根据法则“同底数幂相乘,底数不变,指数相加”,可知选项B正确;根据“同底数幂相除,底数不变,指数相减”,可知a3÷a=a2,显然选项C错误;又因为(-a)3=[(-1)·a]3=(-1)3·a3=-1·a3=-a3,所以D错误,故选B.评析本题主要考查整式和幂的运算,其关键是先正确判断是哪种运算,然后再选择对应的法则进行运算.5.A因为科学记数法的表示形式为a×10n的形式(其中1≤|a|<10,n为整数),所以930 000=9.3×105,故选A.评析此类题型主要考查科学记数法的定义,其解题关键是熟记科学记数法的表示形式:a×10n(其中1≤|a|<10,n为整数),正确确定a和n的值.通常情况下,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数的绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.6.B因为点P(-3,5)在第二象限,所以其关于y轴的对称点在第一象限,显然在第一象限的只有B.故选B.评析一个点与它关于y轴的对称点之间的关系是:横坐标相反,纵坐标不变;一个点与它关于x轴的对称点之间的关系是:横坐标不变,纵坐标相反.7.D根据“两圆外切⇔d=R+r”,可知另一个圆的半径=5-3=2(cm).故选D.8.C去分母,得3(x-1)=2x,解这个整式方程,得x=3,检验:当x=3时,2x(x-1)≠0,∴x=3是原方程的根.评析本题主要考查分式方程的解法,体现了转化思想在解题中的应用.忽视对方程根的检验是学生的易错之处.9.B因为菱形是特殊的平行四边形,所以平行四边形具有的性质,菱形都具有,所以选项A、D都是对的;又根据菱形的特殊性质,可知对角线互相垂直,但不一定相等,所以选项C正确,而选项B错误.故选B.10.C原价是100元,第一次提价后变为100(1+x)元,第二次提价后变为100(1+x)2元,所以根据题意得100(1+x)2=121,故选C.二、填空题11.答案x(x-5)解析观察可知有公因式x,∴x2-5x=x(x-5),故答案为x(x-5).12.答案70°解析根据平行四边形的对角相等,可知∠A=∠BCD=110°,因为∠BCD与∠1是邻补角,所以∠1=180°-110°=70°,故填70°.13.答案39;40解析因为众数是出现次数最多的数据,所以众数是39cm,而中位数是将一组数据从小到大排列后,处在最中间的那个数据或最中间两个数据的平均数.所以中位数是第6个数据,即40cm.14.答案2解析根据垂径定理“垂直于弦的直径平分弦,并且平方弦所对的两条弧”,可知BC=AB=,根据勾股定理,得OB==2.三、解答题15.解析(1)原式=4×-2+1+1(4分)=2.(6分)(2)解x-2<0,得x<2.(8分)解≥1,得x≥1.(10分)∴原不等式组的解集是1≤x<2.(12分)评析本题主要考查解不等式的方法.注意解不等式时,要特别注意当不等式的两边都乘以或除以一个负数时,不等号的方向要改变.16.解析原式=-·-(2分)=·-(4分)=a-b.(6分)17.解析根据题意可知,∠AEC=60°,CE=BD=6米,(2分)∴在Rt△AEC中,AC=CE·tan∠AEC=6米.(5分)又∵BC=DE=1.5米,∴AB=AC+BC=6+1.5(7分)≈11.9(米).答:旗杆AB的高度约为11.9米.(8分)评析解直角三角形问题时,要选准三角函数并加以应用,是解题的关键.18.解析(1)∵反比例函数y=的图象经过点A(-1,4),∴4=-.解得k=-4.∴反比例函数的表达式为y=-.(2分)∵一次函数y=-2x+b的图象经过点A(-1,4),∴4=2+b.解得b=2.∴一次函数的表达式为y=-2x+2.(4分)(2)联立--消去y,整理得x2-x-2=0.解得x=2或x=-1.(6分)∴-或-∴点B的坐标为(2,-2).(8分)19.解析(1)50,320.(每空2分)(4分)(2)画树状图:所有可能结果是:(甲,乙),(甲,丙),(甲,丁),(乙,甲),(乙,丙),(乙,丁),(丙,甲),(丙,乙),(丙,丁),(丁,甲),(丁,乙),(丁,丙).(8分)或用列表法:(8分)由此可见,共有12种可能的结果,且每种结果的可能性相同,其中恰好抽到甲、乙两名同学的结果有2种.∴P(恰好抽到甲、乙两名同学)==.(10分)20.解析(1)∵△ABC是等腰直角三角形,∴AB=AC,∠B=∠C=45°.(1分)∵AP=AQ,∴BP=CQ.(2分)∵E是BC的中点,∴BE=CE.(3分)在△BPE和△CQE中,∵BP=CQ,∠B=∠C,BE=CE,∴△BPE≌△CQE.(4分)(2)∵∠BEF=∠C+CQE,∠BEF=∠DEF+∠BEP,且∠DEF=∠C=45°,∴∠BEP=∠CQE.(6分)在△BPE和△CEQ中,∵∠BEP=∠CQE,∠B=∠C,∴△BPE∽△CEQ.(7分)∴=.又BE=CE,∴BE2=BP·CQ.当BP=a,CQ=a时,BE2=a·a=a2.∴BE=a,BC=3 a.(9分)∵△ABC是等腰直角三角形,∴AB=AC=3a.∴AP=AB-BP=2a,AQ=CQ-AC=a.∴P,Q两点间的距离PQ==a.(10分)评析本题综合性较强,主要考查了全等三角形的判定、相似三角形的判定和性质以及勾股定理等知识的综合应用.B卷一、选择题21.答案6解析将x=1代入2ax2+bx=3,得2a+b=3,∴当x=2时,ax2+bx=4a+2b=2(2a+b)=2×3=6.故答案为6.22.答案68π解析由题图可知圆锥的底面直径是8,所以半径是4,因为圆锥的高是3,根据勾股定理可得圆锥的母线长为5,根据圆锥侧面积的计算公式可得其侧面积为×8π×5=20π;圆柱的侧面积为8π×4=32π;圆柱的底面积为π×42=16π.所以,全面积为20π+32π+16π=68π.评析本题考查了圆锥的侧面积的求法、圆柱侧面积的求法,圆的面积公式,体现了数学的应用价值,提高了学生的数学应用意识.23.答案解析∵方程有两个不相等的是实数根,∴Δ>0,即[-2(a-1)]2-4a(a-3)>0,解得a>-1,∴a 的可能的值为0、1、2、3,又∵以x为自变量的二次函数y=x2-(a2+1)x-a+2的图象不经过点(1,0),∴a=0,2,3,∴其所占概率等于.故填.24.答案-解析采用特殊值法:若过F作MC的平行线,我们不难证明==,于是设x E=1,x F=m;因为所求结果与反比例函数y=的k的值无关,所以可以设k=1,因为点E、F在函数y=,所以点E(1,1)、F,所以S四边形MONC=m×1=m,S△EFC=EC·FC=(m-1)·-=(m-1)2,S△MOE= EM·MO=×1×1=,S△NFO=FN·NO=××m=,所以S△OEF=S四边形2--=(m2-1),MONC-S△EFC-S△MOE-S△NFO=m-(m-1)所以=-=-,即=-.-25.答案20;12+4解析通过操作,易知最后所得的四边形纸片是一个平行四边形,其上下两条边的长度等于原来矩形的边AD=6,左右两边的长等于线段MN的长,当MN垂直于BC时,其最小值为AB=4,于是此平行四边形的周长的最小值为2(6+4)=20;当点E与点A重合,点M与点G重合,点N 与点C重合时,线段MN最长,且MN==2,此时,这个四边形的周长最大,其值为2(6+2)=12+4.评析本题属于操作探究类型题,主要考查学生空间想象能力和探究能力和数学的转化思想.二、解答题26.解析(1)当28<x≤188时,设V=ax+b.由已知,得(1分)-解得∴当28<x≤188时,V关于x的函数表达式为V=-x+94.(3分)(2)由题意,得P=V·x.(i)当0<x≤28时,P=80x.∵P随x的增大而增大,∴当x=28时,P最大,最大值为80×28=2240.(4分)(ii)当28<x≤188时,P=V·x=-·x=-(x-94)2+4418.(5分)由V=-x+94≥50,得x≤88.(6分)由二次函数图象可知,当28<x≤88时,P随x的增大而增大,∴当x=88时,P最大,最大值为-(88-94)2+4418=4400.(7分)∵2240<4400,∴当x=88时,P最大,最大值为4400.故当车流密度为88辆/千米时,车流量达到最大,最大值为4400辆/时.(8分)评析待定系数法求函数解析式是近几年中考中的高频考题,综合考查了数形结合思想和转化思想,解题关键是能从图象中获取信息,从而列出方程组求解,尤其是第(2)问,将二次函数的一般式化成顶点式时,要正确运算,避免出错.27.解析(1)连结OG.∵EF为☉O的切线,∴OG⊥EF.(1分)∴∠OGA+∠KGE=90°.∵CD⊥AB,∴∠OAG+∠HKA=90°.∵OA=OG,∴∠OGA=∠OAG.∴∠KGE=∠HKA.又∵∠HKA=∠GKE,∴∠KGE=∠GKE.∴KE=GE.(3分)(2)AC与EF的位置关系是AC∥EF.理由如下:连结DG.∵KG2=KD·GE=KD·KE,∴=.∵∠DKG=∠GKE,∴△KDG∽△KGE.(5分)∴∠AGD=∠E.又∵在☉O中,∠AGD=∠ACD,∴∠E=∠ACD.∴AC∥EF.(6分)(3)∵∠ACH=∠E,∴sin∠ACH=sin E=.在Rt△ACH中,设AH=3t,则AC=5t,CH=4t.由AC∥EF,易得△ACK是等腰三角形,CK=CA=5t,∴HK=CK-CH=t.在Rt△AHK中,由勾股定理得AH2+HK2=AK2,即(3t)2+t2=(2)2.解得t=.∴AH=3,CA=CK=5.(8分)连结BC,则∠ACB=90°.由△ACH∽△ABC,得AC2=AH·AB.∴AB===.(9分)在Rt△EFH中,由sin E=可得tan F=.在Rt△OFG中,tan F==,∴FG=OG=AB=.(10分)评析本题设置了三个小题,很有梯度,前两个小题比较基础,第(3)小题综合性较强,且运算量较大,属于较难题.28.解析(1)∵一次函数y=x+m的图象与x轴交于点A(-3,0),∴×(-3)+m=0,解得m=.(1分)∴点C的坐标是.∵抛物线y=ax2+bx+c经过A,C两点,且对称轴为直线x=1,-(2分)∴--解得∴抛物线的函数表达式为y=-x2+x+.(4分)(2)假设存在点E,使得以A,C,E,F为顶点的四边形是平行四边形.(i)当CE∥AF时,点E在x轴上方,y E=y C=.由-x2+x+=,解得x1=0(舍),x2=2.∴点E的坐标为E1.(5分)此时=2×=.(6分)(ii)当AE∥CF时,点E在x轴下方,y E=-y C=-.由-x2+x+=-,解得x1=1+,x2=1-(舍).∴点E的坐标为E2-.(7分)过E2作E2H⊥x轴于H,则△E2HF2≌△COA.于是HF2=AO=3,AF2=7+.∴=2=AF2·CO=.(8分)综上所述,存在符合条件的点E1,E2-,使得以A,C,E,F为顶点的四边形是平行四边形,相应的面积分别是,.(3)解法一:∵A,B两点关于抛物线的对称轴x=1对称,∴AP+CP=BP+CP≥BC.∴当C,P,B三点在一条直线上时,△ACP的周长取得最小值.此时点P的坐标为(1,3).(9分)分别过点M1,M2作直线x=1的垂线,垂足为N1,N2.在Rt△M1PN1中,由勾股定理得M1P2=M1+P=(x1-1)2+(y1-3)2.①∵y1=-+x1+=-(x1-1)2+4,即(x1-1)2=4(4-y1),将其代入①,得M1P2=(5-y1)2.∴M1P=5-y1(y1<5).(10分)同理M2P=5-y2.由M1N1∥M2N2,得△M1PN1∽△M2PN2,∴=,即--=--.整理得y1y2=4(y1+y2)-15.∴=----=--=1.故是定值,其值为1.(12分)解法二:同解法一得点P的坐标为(1,3).设过点P的直线表达式为y=kx+3-k.联立--消去y,整理得x2+(4k-2)x-(4k+3)=0.∴x1+x2=2-4k,x1x2=-(4k+3).由y1=kx1+3-k,y2=kx2+3-k,得y1-y2=k(x1-x2).(10分)∴M1P2·M2P2=[(x1-1)2+(y1-3)2][(x2-1)2+(y2-3)2]=[(x1-1)2+k2(x1-1)2][(x2-1)2+k2(x2-1)2]=(k2+1)2(x1-1)2(x2-1)2=(k2+1)2(x1x2-x1-x2+1)2=16(k2+1)2;M1=(x1-x2)2+(y1-y2)2=(k2+1)(x1-x2)2=(k2+1)[(x1+x2)2-4x1x2]=16(k2+1)2.于是,M1P2·M2P2=M1,即M1P·M2P=M1M2.故是定值,其值为1.(12分)评析在本题中,第(1)小题考查了知识的灵活应用能力和运算能力,第(2)小题是探究题,要求学生具有较强的观察、探究能力.。

河北省中考数学模拟试卷(5)

河北省中考数学模拟试卷(5)

河北省中考数学模拟试卷(5)一.选择题(共16小题)1.下列关于的说法中,正确的是()A.是有理数B.是2的算术平方根C.不是实数D.不是无理数2.下列多边形中,既是轴对称图形又是中心对称图形的是()A.平行四边形B.正方形C.等腰梯形D.等边三角形3.下列运算:①a•a3=a3;②a6÷a3=a2;③(a﹣2)2=a2﹣4;④(a﹣3)(a+2)=a2﹣a﹣6,不正确的有()个.A.1B.2C.3D.44.若实数a,b,c,d在数轴上的对应点的位置如图所示,则①a>﹣4;②b+d<0;③|a|<c2;④c<的结论中,正确的是()A.①②B.①④C.②③D.③④5.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.对顶角相等,两直线平行6.根据相关部门统计,2020年全国普通高校毕业生约8340000人.将8340000用科学记数法表示应为()A.83.4×105B.8.34×105C.8.34×106D.0.834×107 7.由一些大小相同的小正方体组成的几何体从上面看的图形如右图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么这个几何体从左面看的图形是()A.B.C.D.8.方程3+2x=﹣1的解为()A.x=1B.x=﹣2C.x=3D.x=49.如图,△ABC中,AB<AC<BC,如果要用尺规作图的方法在BC上确定一点P,使P A+PB =BC,那么符合要求的作图痕迹是()A.B.C.D.10.从调查消费者购买汽车能源类型的扇形统计图中可看出,人们更倾向购买的是()A.纯电动车B.混动车C.轻混车D.燃油车11.如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,∠ACB的平分线与∠ABC的外角平分线交于E点,连接AE,∠AEB的度数是()A.30°B.35°C.45°D.60°12.已知分式,当x=2时,分式的值为零;当x=﹣2时,分式没有意义,则分式有意义时,a+b的值为()A.﹣2B.2C.6D.﹣613.如图,边长为1的正六边形螺帽在足够长的桌面上滚动(没有滑动)一周,则O点所经过的路径长为()A.6B.5C.2πD.14.将一个圆分成四个扇形,使它们的圆心角的度数比为1:2:3:4,则这四个扇形中最大的圆心角是()A.90°B.144°C.180°D.210°15.我市某中学为便于管理,决定给每个学生编号,设定末尾用1表示男生,2表示女生.如果编号202003231表示“2020年入学的3班23号学生,是位男生”,那么2022年入学的6班20号女生同学的编号为()A.202006202B.202006201C.202206202D.202206201 16.如图,在△ABC中,点D、E、F分别是AB、BC、AC的中点,则下列四个判断中,不正确的是()A.四边形ADEF是平行四边形B.若∠A=90°,则四边形ADEF是矩形C.若AB=AC,则四边形ADEF是菱形D.若四边形ADEF是正方形,则△ABC是等边三角形二.填空题(共3小题)17.如图,把一个蛋糕分成n等份,要使每份中的角是45°,则n的值为.18.如果一个正多边形的一个内角是162°,则这个正多边形是正边形.19.平面直角坐标系xOy中,抛物线y=kx2﹣2k2x﹣3交y轴于A点,交直线x=﹣4于B 点.(1)若AB∥x轴,则抛物线的解析式是;(2)当﹣4<k<0时,记抛物线在A,B之间的部分为图象G(包含A,B两点),若对于图象G上任意一点P(x P,y P),y P≥﹣3,则k的取值范围是.三.解答题(共7小题)20.两组数据m,6,n与1,m,2n,7的平均数都是6,求这两组数据合并成一组数据后,这组新数据的中位数.21.全运会吉祥物以陕西秦岭独有的四个国宝级动物“金丝猴、羚牛、大熊猫、朱鹮”为创意原型,设计了一组幸福快乐、充满活力、精神焕发、积极向上的运动吉祥物形象.现有四张纪念卡片分别绘有吉祥物的图案(如图),纪念卡片背面完全相同,背面朝上,洗匀放好.(1)小丽从四张纪念卡片任意抽取一张,则小丽抽取到的卡片绘有吉祥物“羚羚”的概率为.(2)小明从四张纪念卡片中随机抽取两张卡片,请你用列表法或画树状图法求出小明抽到两张卡片恰好是“羚羚”和“熊熊”的概率.22.观察下列等式,,,将以上三个等式两边分别相加得.(1)猜想并写出;(2)计算:;(3)探究并计算:=;(4)计算:=.23.在平面直角坐标系xOy中,一次函数y=kx+5(x>﹣5)的图象G经过点A(﹣2,3),直线l:y=﹣x+b与图象G交于点B,与x轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当b=2时,直接写出区域W内的整点个数;②区域W内恰有3个整点,结合函数图象,求b的取值范围.24.问题提出:(1)如图1,已知Rt△ACB和Rt△ADB,∠ACB=90°,∠ADB=90°,其中CA=CB,∠DAB=30°,AB=4,求△ACB和△ADB的面积分别是多少?问题探究:滨河学校初二年级小张是一名特别爱好专研数学的学生,他在数学老师的帮助下发现:对于任意三角形,其中一个内角和其对边都为定值时,当另两边相等时,该三角形面积达到最大.例如,如图2,在△ABC中,已知三角形内角B和其对边AC都为定值,当BA=BC时,△ACB的面积达到最大.请利用小张同学的发现完成以下问题.(2)如图3,在△ACB中,∠BAC=120°,点D为BC的中点,AD=4,当△ABD面积最大时,求线段AB的值.问题解决:(3)如图4,已知等边△ACB,∠ADB=30°,CD=4,求四边形ADBC的面积的最小值.25.为预防新冠病毒,口罩成了生活必需品,某药店销售一种口罩,每包进价为6元,日均销售量y(包)与每包售价x(元)满足y=﹣5x+80,且10≤x≤16.(1)每包售价定为多少元时,药店的日均利润最大?最大为多少元?(2)当进价提高了a元,且每包售价为13元时,日均利润达到最大,求a的值.26.如图,AB、CD均为⊙O的直径,AB⊥CD.点M是射线CD上异于点C、O、D的一个动点,AM所在直线交⊙O于点N.点P是射线CD上另一点,且PM=PN.猜想:如图①,点M在直径CD上,PN与⊙O的位置关系是.探究:如图②,点M在直径CD的延长线上,判断PN与⊙O的位置关系,并说明理由.应用:如图③,点M在直径CD的延长线上,∠NMO=15°,⊙O的半径为1,直接写出图中阴影部分图形的面积.。

江苏杭州市中考数学模拟试卷(05)

江苏杭州市中考数学模拟试卷(05)

江苏杭州市中考数学模拟试卷(05)一.选择题(共10小题,满分30分,每小题3分)1.(3分)计算3.6﹣(﹣5.4)的结果是()A.1.8B.9C.﹣9D.﹣1.82.(3分)我国自主研发的北斗系统技术世界领先,2020年6月23日在西昌卫星发射中心成功发射最后一颗北斗三号组网卫星,该卫星发射升空的速度约为7100米/秒.将7100用科学记数法表示为()A.7100B.0.71×104C.71×102D.7.1×1033.(3分)已知x<y,则下列不等式成立的是()A.x﹣2>y﹣2B.2x>2yC.﹣2x+3>﹣2y+3D.﹣2x<﹣2y4.(3分)如图,下列推理正确的是()A.因为∠1=∠2,所以AB∥CDB.因为∠1+∠2=180°,所以AB∥CDC.因为∠3=∠4,所以AB∥CDD.因为∠1+∠4=180°,所以AB∥CD5.(3分)如图所示四个图形中,线段BE能表示三角形ABC的高的是()A.B.C.D.6.(3分)化简的结果为()A.a﹣3B.a C.3D.7.(3分)王老师去商店为课外小组活动购买三种奖品,已知相册每本10元,钢笔每支5元,笔记本每本2元,预计购买相册不多于2本,钢笔不少于10支,则在本次购买奖品预算100元都用尽的情况下,钢笔的买法共有()A.3种B.4种C.6种D.7种8.(3分)如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B的对应点B′坐标为()A.(3,4)B.(7,4)C.(7,3)D.(3,7)9.(3分)某数学兴趣小组在研究二次函数y=x2+ax+b的图象时,得出如下四个命题:甲:图象与x轴的一个交点为(3,0);乙:图象与x轴的一个交点为(1,0);丙:图象的对称轴为过点(1,0),且平行于y轴的直线;丁:图象与x轴的交点在原点两侧.若这四个命题中只有一个假命题,则该命题是()A.甲B.乙C.丙D.丁10.(3分)如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确的是()A.当弦PB最长时,△APC是等腰三角形B.当△APC是等腰三角形时,PO⊥ACC.当PO⊥AC时,∠ACP=30°D.当∠ACP=30°时,△BPC是直角三角形二.填空题(共6小题,满分24分,每小题4分)11.(4分)把化为最简二次根式为.12.(4分)从如图所示的四张扑克牌中任取一张,牌面数字是3的倍数的概率是.13.(4分)已知直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),则方程的解是.14.(4分)为了测量旗杆的高度,某同学测得阳光下旗杆的影长为2m,同一时刻长度为1m 的标杆影长为0.4m,则旗杆的高度为m.15.(4分)松花江商场一月份利润为100万元,三月份的利润为121万元,求这个商场二、三月利润的平均增长率.16.(4分)如图,在等腰Rt△ABC中,∠BAC=90°,.分别以点A,B,C为圆心,以的长为半径画弧分别与△ABC的边相交,则图中阴影部分的面积为.(结果保留π)三.解答题(共7小题,满分66分)17.(6分)“十一”黄金周期间,某市在7天中外出旅游的人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日人数变化(单位:万人) +1.6 +0.8 +0.4 ﹣0.4 ﹣0.8 +0.2 ﹣1.4(1)若9月30日外出旅游人数为5万人,求10月2日外出旅游的人数;(2)在(1)的条件下,请判断七天内外出旅游人数最多的是哪天?最少的是哪天?它们相差多少万人?(3)若9月30日出去旅游的人数有a 万人,且这七天中最多一天出游人数为8万人,则a 的值是多少?18.(8分)某家电销售商店第1~6周甲、乙两种品牌冰箱的周销售量如图所示(单位:台).现将这两种品牌冰箱第1~6周的销售量绘制成如下统计图表.中位数 众数 平均数 方差 甲品牌10 10 b c 乙品牌 a 9 10(1)根据图表信息填空:a = ,b = ,c = ;(2)根据计算平均数和方差及折线统计图,请你对该商店今后采购这两种品牌冰箱的意向提出建议,并说明理由.19.(10分)如图所示,在平行四边形ABCD 中,E 是CD 的延长线上一点,DE =CD ,连接BE 与AC ,AD ,FE 分别交于点O ,F .(1)若△DEF 的面积为2,求平行四边形ABCD 的面积.(2)求证OB 2=OE •OF .20.(10分)在平面直角坐标系xOy中,直线l:y=kx﹣k+4与函数y=(x>0)的图象交于点A(1,4).(1)求m的值;(2)横、纵坐标都是整数的点叫做整点.记直线l与函数y=(x>0)的图象所围成的区域(不含边界)为W.点B(n,1)(n≥4,n为整数)在直线l上.①当n=5时,求k的值,并写出区域W内的整点个数;②当区域W内恰有5个整点时,直接写出n和k的值.21.(10分)在直角三角形ABC中,∠ACB=90°,CD⊥AB,CE为AB边上的中线,且∠BCD=3∠DCA,求证:DE=DC.22.(10分)已知二次函数y=﹣3x2+6x+9.(1)用配方法把二次函数y=﹣3x2+6x+9化为y=a(x+m)2+k的形式,并指出这个函数图象的开口方向、对称轴和顶点的坐标;(2)如果将该函数图象向右平移2个单位,所得的新函数的图象与x轴交于点A、B(点A在点B左侧),与y轴交于点C,顶点为D,求四边形DACB的面积.23.(12分)自主探究:在课堂上,老师指导大家做以下活动:如图1,将已知矩形ABCD绕着点A顺时针旋转使得点D落在线段BC上,得到矩形AEFG,连接DG交AE于点H,在猜想线段HD与HG的关系时,大家一致认为HD=HG,并且有两个小组给出如下的证明思路:奋进组:要想证明HD=HG,已经知道线段HG是直角三角形GAH的斜边,所以可以构造一个以HD为斜边的直角三角形,然后证明这两个三角形全等;勤奋组:要想证明HD=HG,可构造一个三角形,使得H、A分别在此三角形的两条边上,再证明HA是这个三角形的中位线;操作思考:(1)请你在图1中分别作出符合“奋进组”和“勤奋组”思路需要的辅助线,并将辅助线的做法写在下面的横线上.奋进组:.勤奋组:.(2)请你根据“奋进组”和“勤奋组”提出的思路和作出的辅助线对下面问题做出选择.A.“奋进组”的思路正确,“勤奋组”的思路不正确B.“勤奋组”的思路正确,“奋进组”的思路不正确C.“奋进组”和“勤奋组”的思路都正确D.“奋进组”和“勤奋组”的思路都不正确变式证明:将矩形ABCD绕着点A顺时针旋转使得点D落在线段CB的延长线上点E处,得到矩形AEFG,连接DG交EA的延长线于点H,如图2,那么线段HD与HG还相等吗?说明理由.拓展延伸:将矩形ABCD绕着点A顺时针旋转使得点C落在线段CB的延长线上点F处,得到矩形AEFG,连接DG交F A的延长线于点H,且点C、A、G在同一直线上.如图3.问:线段HD与HG还相等吗?如果相等请直接写出的值;如果不相等,请说明理由.。

2020年浙江省温州市永嘉县十校联考中考数学(5月份)模拟试卷 (解析版)

2020年浙江省温州市永嘉县十校联考中考数学(5月份)模拟试卷 (解析版)

2020年中考数学模拟试卷(5月份)一、选择题(共10小题).1.给出四个实数﹣2,0,0.5,,其中无理数是()A.﹣2B.0C.0.5D.2.如图,桌面上有一个一次性纸杯,它的主视图应是()A.B.C.D.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10104.一名射击爱好者7次射击的中靶环数如下(单位:环):7,10,9,8,7,9,9,这7个数据的中位数是()A.7环B.8环C.9环D.10环5.在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是()A.B.C.D.6.要使分式有意义,则x的取值应满足()A.x≠﹣2B.x≠1C.x=﹣2D.x=17.在平面直角坐标系中,线段A′B′是由线段AB经过平移得到的,已知点A(﹣2,1)的对应点为A′(3,﹣1),点B的对应点为B′(4,0),则点B的坐标为()A.(9,﹣1)B.(﹣1,0)C.(3,﹣1)D.(﹣1,2)8.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三:人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是()A.B.C.D.9.如图,AB⊥x轴,B为垂足,双曲线y=(x>0)与△AOB的两条边OA,AB分别相交于C,D两点,OC=CA,△ACD的面积为3,则k等于()A.2B.3C.4D.610.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC、BC为直径作半圆,其中M,N分别是AC、BC为直径作半圆弧的中点,,的中点分别是P,Q.若MP+NQ=7,AC+BC=26,则AB的长是()A.17B.18C.19D.20二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:m2﹣6m+9=.12.已知扇形的弧长为8π,圆心角为60°,则它的半径为.13.一组数据1,3,2,7,x,2,3的平均数是3,则该组数据的众数为.14.不等式组的解集为.15.如图,直线y=﹣x+6与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为.16.小林家的洗手台面上有一瓶洗手液(如图1),当手按住顶部A下压时(如图2),洗手液瞬间从喷口B流出,已知瓶子上部分的和的圆心分别为D,C,下部分的视图是矩形CGHD,GH=10cm,GC=8cm,点E到台面GH的距离为14cm,点B距台面GH的距离为16cm,且B,D,H三点共线.如果从喷口B流出的洗手液路线呈抛物线形,且该路线所在的抛物线经过C.E两点,接洗手液时,当手心O距DH的水平距离为2cm时,手心O距水平台面GH的高度为cm.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:+(π﹣3)0﹣|﹣3|;(2)化简:(x+2)2﹣x(x﹣3).18.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=2,CF=4时,求AC的长.19.某校组织七年级学生参加冬令营活动,本次冬令营活动分为甲、乙、丙三组进行.如图,条形统计图和扇形统计图反映了学生参加冬令营活动的报名情况,请你根据图中的信息回答下列问题:(1)七年级报名参加本次活动的总人数为,扇形统计图中,表示甲组部分的扇形的圆心角是度;(2)补全条形统计图;(3)根据实际需要,将从甲组抽调部分学生到丙组,使丙组人数是甲组人数的3倍,则应从甲组抽调多少名学生到丙组?20.如图,A,B,C是方格纸中的格点,请按要求作图.(1)在图1中画出一个以A,B,C,D为顶点的格点平行四边形.(2)在图2中画出一个格点P,使得∠BPC=∠BAC.21.如图,在平面直角坐标系中,二次函数y=ax2+bx+3(a≠0)的图象经过点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求a,b的值;(2)若点P为直线BC上一点,点P到A,B两点的距离相等,将该抛物线向左(或向右)平移,得到一条新抛物线,并且新抛物线经过点P,求新抛物线的顶点坐标.22.如图,四边形ABCD内接于⊙O,AB是直径,C为的中点,延长AD,BC交于P,连结AC.(1)求证:AB=AP;(2)当AB=10,DP=2时,求线段CP的长.23.九二班计划购买A、B两种相册共42册作为毕业礼品,已知A种相册的单价比B种的多10元,买4册A种相册与买5册B种相册的费用相同.(1)求A、B两种相册的单价分别是多少元?(2)由于学生对两类相册喜好不同,经调查得知:购买的A种相册的数量要少于B种相册数量的,但又不少于B种相册数量的,如果设买A种相册x册.①有多少种不同的购买方案?②商店为了促销,决定对A种相册每册让利a元销售(12≤a≤18),B种相册每册让利b元销售,最后班委会同学在付款时发现:购买所需的总费用与购买的方案无关,当总费用最少时,求此时a的值.24.如图Rt△ABC中,∠ABC=90°,P是斜边AC上一个动点,以BP为直径作⊙O交BC于点D,与AC的另一个交点E,连接DE.(1)当时,①若=130°,求∠C的度数;②求证AB=AP;(2)当AB=15,BC=20时①是否存在点P,使得△BDE是等腰三角形,若存在,求出所有符合条件的CP的长;②以D为端点过P作射线DH,作点O关于DE的对称点Q恰好落在∠CPH内,则CP 的取值范围为.(直接写出结果)参考答案一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.给出四个实数﹣2,0,0.5,,其中无理数是()A.﹣2B.0C.0.5D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.解:﹣2,0是整数,属于有理数;0.5是有限小数,属于有理数;是无理数.故选:D.2.如图,桌面上有一个一次性纸杯,它的主视图应是()A.B.C.D.【分析】根据主视图是从正面看到的图形,可得答案.解:从正面看是一个上底在下的梯形.故选:A.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:4 400 000 000=4.4×109,故选:B.4.一名射击爱好者7次射击的中靶环数如下(单位:环):7,10,9,8,7,9,9,这7个数据的中位数是()A.7环B.8环C.9环D.10环【分析】根据中位数的概念求解.解:这组数据按照从小到大的顺序排列为:7,7,8,9,9,9,10,则中位数为9.故选:C.5.在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是()A.B.C.D.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.解:∵在一个不透明的袋子中装有除颜色外其他均相同的4个红球和3个黑球,∴从中任意摸出一个球,则摸出黑球的概率是.故选:B.6.要使分式有意义,则x的取值应满足()A.x≠﹣2B.x≠1C.x=﹣2D.x=1【分析】根据分式有意义,分母不为0列出不等式,解不等式即可.解:由题意得,x﹣1≠0,解得,x≠1,故选:B.7.在平面直角坐标系中,线段A′B′是由线段AB经过平移得到的,已知点A(﹣2,1)的对应点为A′(3,﹣1),点B的对应点为B′(4,0),则点B的坐标为()A.(9,﹣1)B.(﹣1,0)C.(3,﹣1)D.(﹣1,2)【分析】利用点A与点A′的坐标特征得到平移的规律,然后利用此平移规律由B′点的坐标确定点B的坐标.解:∵点A(﹣2,1)的对应点为A′(3,﹣1),∴线段A′B′是由线段AB先向右平移5个单位,再向下平移2个单位得到,而点B的对应点为B′(4,0),∴点B的坐标为(﹣1,2).故选:D.8.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三:人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是()A.B.C.D.【分析】根据“每人出8钱,会多3钱;每人出7钱,又会差4钱”,即可得出关于x,y的二元一次方程组,此题得解.解:依题意,得:.故选:A.9.如图,AB⊥x轴,B为垂足,双曲线y=(x>0)与△AOB的两条边OA,AB分别相交于C,D两点,OC=CA,△ACD的面积为3,则k等于()A.2B.3C.4D.6【分析】由反比例函数k的几何意义得到三角形OCE与三角形OAC面积相等,由相似三角形面积之比等于相似比得到三角形ODE与三角形OBA面积之比,设三角形OAC 面积为x,列出关于x的方程,求出方程的解确定出三角形OAC与三角形OCB面积之比即可解:连接OD,过点C作CE⊥x轴,∵OC=CA,∴OE:OB=1:2;设△OBD面积为x,根据反比例函数k的意义得到三角形OCE面积为x,∵△COE∽△AOB,∴三角形COE与三角形BOA面积之比为1:4,∵△ACD的面积为3,∴△OCD的面积为3,∴三角形BOA面积为6+x,即三角形BOA的面积为6+x=4x,解得x=2,∴|k|=2,∵k>0,∴k=4,故选:C.10.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC、BC为直径作半圆,其中M,N分别是AC、BC为直径作半圆弧的中点,,的中点分别是P,Q.若MP+NQ=7,AC+BC=26,则AB的长是()A.17B.18C.19D.20【分析】连接OP,OQ,根据M,N分别是AC、BC为直径作半圆弧的中点,,的中点分别是P,Q.得到OP⊥AC,OQ⊥BC,从而得到H、I是AC、BC的中点,利用中位线定理得到OH+OI=(AC+BC)=13和PH+QI=6,从而利用AB=OP+OQ=OH+OI+PH+QI求解.解:连接OP,OQ,分别交AC,BC于H,I,∵M,N分别是AC、BC为直径作半圆弧的中点,,的中点分别是P,Q,∴OP⊥AC,OQ⊥BC,由对称性可知:H,P,M三点共线,I,Q,N三点共线,∴H、I是AC、BC的中点,∴OH+OI=(AC+BC)=13,∵MH+NI=AC+BC=13,MP+NQ=7,∴PH+QI=13﹣7=6,∴AB=OP+OQ=OH+OI+PH+QI=13+6=19,故选:C.二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:m2﹣6m+9=(m﹣3)2.【分析】本题的多项式有三项,符合完全平方公式,可运用完全平方公式因式分解.解:m2﹣6m+9=(m﹣3)2,故答案为:(m﹣3)2.12.已知扇形的弧长为8π,圆心角为60°,则它的半径为24.【分析】根据弧长公式直接解答即可.解:设半径为r,8π=,解得:r=24,故答案为:24.13.一组数据1,3,2,7,x,2,3的平均数是3,则该组数据的众数为3.【分析】根据平均数的定义可以先求出x的值,再根据众数的定义求出这组数的众数即可.解:根据题意知=3,解得:x=3,则数据为1、2、2、3、3、3、7,所以众数为3,故答案为:3.14.不等式组的解集为2<x≤3.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.解:,由①得:x>2,由②得:x≤3,则不等式组的解集为2<x≤3.故答案为:2<x≤3.15.如图,直线y=﹣x+6与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB 上一点,四边形OEDC是菱形,则△OAE的面积为.【分析】通过求出点A、B、C的坐标,得到菱形的边长为3,则DE=3=DC,利用CD2=m2+(﹣m+6﹣3)2=9,解得:m=,即可求解.解:y=﹣x+6,当x=0,y=6,当y=0,则x=6,故点A、B的坐标分别为:(6,0)、(0,6),则点C(0,3),故菱形的边长为3,则DE=3=DC,设点D(m,﹣m+6),则点E(m,﹣x+6﹣3),则CD2=m2+(﹣m+6﹣3)2=9,解得:m=,故点E(,),S△OAE=×OA×y E=×6×=,故答案为:.16.小林家的洗手台面上有一瓶洗手液(如图1),当手按住顶部A下压时(如图2),洗手液瞬间从喷口B流出,已知瓶子上部分的和的圆心分别为D,C,下部分的视图是矩形CGHD,GH=10cm,GC=8cm,点E到台面GH的距离为14cm,点B距台面GH的距离为16cm,且B,D,H三点共线.如果从喷口B流出的洗手液路线呈抛物线形,且该路线所在的抛物线经过C.E两点,接洗手液时,当手心O距DH的水平距离为2cm时,手心O距水平台面GH的高度为11cm.【分析】根据题意得出各点坐标,利用待定系数法求抛物线解析式进而求解.解:如图:由题意可知:CD=DE=10cm,根据题意,得C(﹣5,8),E(﹣3,14),B(5,16).设抛物线解析式为y=ax2+bx+c,因为抛物线经过C、E、B三点,∴,解得,所以抛物线解析式为y=﹣x2+x+.当x=7时,y=11,∴Q(7,11),所以手心O距水平台面GH的高度为11cm.故答案为11.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:+(π﹣3)0﹣|﹣3|;(2)化简:(x+2)2﹣x(x﹣3).【分析】(1)原式利用算术平方根定义,零指数幂法则,以及绝对值的代数意义计算即可求出值;(2)原式利用完全平方公式及单项式乘多项式法则计算,去括号合并即可得到结果.解:(1)原式=4+1﹣3=2;(2)原式=x2+4x+4﹣x2+3x=7x+4.18.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=2,CF=4时,求AC的长.【分析】(1)根据平行线的性质得到∠B=∠FCD,∠BED=∠F,由AD是BC边上的中线,得到BD=CD,于是得到结论;(2)根据全等三角形的性质得到BE=CF=4,求得AB=AE+BE=6,于是得到结论.【解答】(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF,∴BE=CF=4,∴AB=AE+BE=2+4=6,∵AD⊥BC,BD=CD,∴AC=AB=6.19.某校组织七年级学生参加冬令营活动,本次冬令营活动分为甲、乙、丙三组进行.如图,条形统计图和扇形统计图反映了学生参加冬令营活动的报名情况,请你根据图中的信息回答下列问题:(1)七年级报名参加本次活动的总人数为60,扇形统计图中,表示甲组部分的扇形的圆心角是108度;(2)补全条形统计图;(3)根据实际需要,将从甲组抽调部分学生到丙组,使丙组人数是甲组人数的3倍,则应从甲组抽调多少名学生到丙组?【分析】(1)根据甲组有18人,所占的比例是30%,即可求得总数,360度乘以甲组的百分比可得圆心角度数;(2)根据乙组的人数即可补全条形统计图中乙组的空缺部分;(3)设应从甲组调x名学生到丙组,根据丙组人数是甲组人数的3倍,即可列方程求解解:(1)七年级报名参加本次活动的总人数为18÷30%=60人,扇形统计图中,表示甲组部分的扇形的圆心角是360°×30%=108°,故答案为:60,108;(2)乙组的人数为60﹣18﹣30=12(人),补全条形图如下:(3)设应从甲组调x名学生到丙组,可得方程:3(18﹣x)=30+x,解得x=6.答:应从甲组调6名学生到丙组.20.如图,A,B,C是方格纸中的格点,请按要求作图.(1)在图1中画出一个以A,B,C,D为顶点的格点平行四边形.(2)在图2中画出一个格点P,使得∠BPC=∠BAC.【分析】(1)根据平行四边形的定义,画出图形即可(答案不唯一).(2)利用辅助圆结合圆周角定理画出图形即可(答案不唯一).解:(1)如图1中,平行四边形ABCD,平行四边形ADBC即为所求.(2)如图2中,点P即为所求.21.如图,在平面直角坐标系中,二次函数y=ax2+bx+3(a≠0)的图象经过点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求a,b的值;(2)若点P为直线BC上一点,点P到A,B两点的距离相等,将该抛物线向左(或向右)平移,得到一条新抛物线,并且新抛物线经过点P,求新抛物线的顶点坐标.【分析】(1)利用待定系数法即可求得;(2)求得直线BC的解析式,根据题意P点在抛物线的对称轴上,从而求得P的坐标,设平移后的新抛物线的解析式为y=﹣(x﹣h)2+4,代入P的坐标,求得h的值,从而求得顶点坐标.解:(1)∵二次函数y=ax2+bx+3(a≠0)的图象经过点A(﹣1,0),点B(3,0),∴,解得;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为直线x=1,C(3,0),∵点P到A,B两点的距离相等,∴点P在抛物线的对称轴x=1上,∵B(3,0),C(0,3),∴直线BC的解析式为y=﹣x+3,令x=1,则y=﹣1+3=2,∴P(1,2),设平移后的新抛物线的解析式为y=﹣(x﹣h)2+4,∵新抛物线经过点P,∴2=﹣(1﹣h)2+4,解得h1=1+,h2=1﹣,∴新抛物线的顶点坐标为(1+,4)或(1﹣,4).22.如图,四边形ABCD内接于⊙O,AB是直径,C为的中点,延长AD,BC交于P,连结AC.(1)求证:AB=AP;(2)当AB=10,DP=2时,求线段CP的长.【分析】(1)利用等角对等边证明即可.(2)利用勾股定理分别求出BD,PB,再利用等腰三角形的性质即可解决问题.【解答】(1)证明:∵C为的中点,∴∠BAC=∠CAP,∵AB是直径,∴∠ACB=∠ACP=90°,∵∠ABC+∠BAC=90°,∠P+∠CAP=90°,∴∠ABC=∠P,∴AB=AP.(2)解:如图,连接BD.∵AB是直径,∴∠ADB=∠BDP=90°,∵AB=AP=10,DP=2,∴AD=10﹣2=8,∴BD===6,∴PB===2,∵AB=AP,AC⊥BP,∴BC=PC=PB=,∴PC=.23.九二班计划购买A、B两种相册共42册作为毕业礼品,已知A种相册的单价比B种的多10元,买4册A种相册与买5册B种相册的费用相同.(1)求A、B两种相册的单价分别是多少元?(2)由于学生对两类相册喜好不同,经调查得知:购买的A种相册的数量要少于B种相册数量的,但又不少于B种相册数量的,如果设买A种相册x册.①有多少种不同的购买方案?②商店为了促销,决定对A种相册每册让利a元销售(12≤a≤18),B种相册每册让利b元销售,最后班委会同学在付款时发现:购买所需的总费用与购买的方案无关,当总费用最少时,求此时a的值.【分析】(1)设A种相册的单价为m元,B种相册的单价为n元,根据“A种相册的单价比B种的多10元,买4册A种相册与买5册B种相册的费用相同”,即可得出关于m,n的二元一次方程组,解之即可得出结论;(2)①根据“购买的A种相册的数量要少于B种相册数量的,但又不少于B种相册数量的”,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为正整数即可得出x的可能值,进而可得出购买方案的种数;②设购买总费用为w元,根据总价=单价×数量,即可得出w关于x的函数关系式,由购买所需的总费用与购买的方案无关可得出b=a﹣10,进而可得出w关于a的函数关系式,再利用一次函数的性质,即可解决最值问题.解:(1)设A种相册的单价为m元,B种相册的单价为n元,依题意,得:,解得:.答:A种相册的单价为50元,B种相册的单价为40元.(2)①依题意,得:,解得:12≤x<18.又∵x为正整数,∴x可取12、13、14、15、16、17,共6种不同的购买方案.②设购买总费用为w元,依题意,得:w=(50﹣a)x+(40﹣b)(42﹣x)=(10﹣a+b)x+42(40﹣b).∵购买所需的总费用与购买的方案无关,则w的值与x无关,∴10﹣a+b=0,∴b=a﹣10,∴w=42(40﹣b)=42[40﹣(a﹣10)]=﹣42a+2100.∵﹣42<0,∴w随a的增大而减小.又∵12≤a≤18,∴当a=18时,w取得最小值.答:当总费用最少时,a的值为18.24.如图Rt△ABC中,∠ABC=90°,P是斜边AC上一个动点,以BP为直径作⊙O交BC于点D,与AC的另一个交点E,连接DE.(1)当时,①若=130°,求∠C的度数;②求证AB=AP;(2)当AB=15,BC=20时①是否存在点P,使得△BDE是等腰三角形,若存在,求出所有符合条件的CP的长;②以D为端点过P作射线DH,作点O关于DE的对称点Q恰好落在∠CPH内,则CP的取值范围为7<CP<12.5.(直接写出结果)【分析】(1)①连接BE,由圆周角定理得出∠BEC=90°,求出=50°,=100°,则∠CBE=50°,即可得出结果;②由=,得出∠CBP=∠EBP,易证∠C=∠ABE,由∠APB=∠CBP+∠C,∠ABP =∠EBP+∠ABE,得出∠APB=∠ABP,即可得出结论;(2)①由勾股定理得AC==25,由面积公式得出AB•BC=AC•BE,求出BE=12,连接DP,则PD∥AB,得出△DCP∽△BCA,求出CP==CD,△BDE是等腰三角形,分三种情况讨论,当BD=BE时,BD=BE=12,CD=BC﹣BD =8,CP=CD=10;当BD=ED时,可知点D是Rt△CBE斜边的中线,得出CD=BC =10,CP=CD=;当DE=BE时,作EH⊥BC,则H是BD中点,EH∥AB,求出AE==9,CE=AC﹣AE=16,CH=20﹣BH,由EH∥AB,得出=,求出BH=,BD=2BH=,CD=BC﹣BD=,则CP=CD=7;②当点Q落在∠CPH的边PH上时,CP最小,连接OD、OQ、OE、QE、BE,证明四边形ODQE是菱形,求出PC=AC﹣PE﹣AE=7;当点Q落在∠CPH的边PC上时,CP最大,连接OD、OQ、OE、QD,同理得四边形ODQE是菱形,连接DF,求出PC =AC=12.5,即可得出答案.【解答】(1)①解:连接BE,如图1所示:∵BP是直径,∴∠BEC=90°,∵=130°,∴=50°,∵=,∴=100°,∴∠CBE=50°,∴∠C=40°;②证明:∵=,∴∠CBP=∠EBP,∵∠ABE+∠A=90°,∠C+∠A=90°,∴∠C=∠ABE,∵∠APB=∠CBP+∠C,∠ABP=∠EBP+∠ABE,∴∠APB=∠ABP,∴AP=AB;(2)解:①由AB=15,BC=20,由勾股定理得:AC===25,∵AB•BC=AC•BE,即×15×20=×25×BE∴BE=12,连接DP,如图1﹣1所示:∵BP是直径,∴∠PDB=90°,∵∠ABC=90°,∴PD∥AB,∴△DCP∽△BCA,∴=,∴CP===CD,△BDE是等腰三角形,分三种情况:当BD=BE时,BD=BE=12,∴CD=BC﹣BD=20﹣12=8,∴CP=CD=×8=10;当BD=ED时,可知点D是Rt△CBE斜边的中线,∴CD=BC=10,∴CP=CD=×10=;当DE=BE时,作EH⊥BC,则H是BD中点,EH∥AB,如图1﹣2所示:AE===9,∴CE=AC﹣AE=25﹣9=16,CH=BC﹣BH=20﹣BH,∵EH∥AB,∴=,即=,解得:BH=,∴BD=2BH=,∴CD=BC﹣BD=20﹣=,∴CP=CD=×=7;综上所述,△BDE是等腰三角形,符合条件的CP的长为10或或7;②当点Q落在∠CPH的边PH上时,CP最小,如图2所示:连接OD、OQ、OE、QE、BE,由对称的性质得:DE垂直平分OQ,∴OD=QD,OE=QE,∵OD=OE,∴OD=OE=QD=QE,∴四边形ODQE是菱形,∴PQ∥OE,∵PB为直径,∴∠PDB=90°,∴PD⊥BC,∵∠ABC=90°,∴AB⊥BC,∴PD∥AB,∴DE∥AB,∵OB=OP,∴OE为△ABP中位线,∴PE=AE=9,∴PC=AC﹣PE﹣AE=25﹣9﹣9=7;当点Q落在∠CPH的边PC上时,CP最大,如图3所示:连接OD、OQ、OE、QD,同理得:四边形ODQE是菱形,∴OD∥QE,连接DF,∵∠DBC=90°,∴DF是直径,∴D、O、F三点共线,∴DF∥AQ,∴∠OFB=∠A,∵OB=OF,∴∠OFB=∠OBF=∠A,∴PA=PB,∵∠OBF+∠CBP=∠A+∠C=90°,∴∠CBP=∠C,∴PB=PC=PA,∴PC=AC=12.5,∴7<CP<12.5,故答案为:7<CP<12.5.。

湖南省长沙长郡双语中学2020年中考全真模拟卷数学(五)(解析版)

湖南省长沙长郡双语中学2020年中考全真模拟卷数学(五)(解析版)

湖南省长沙长郡双语中学2020年中考全真模拟卷(五)数学满分120分 考试时间:120分钟一.选择题(共10小题,满分30分,每小题3分) 1.(3分)|a |=1,|b |=4,且ab <0,则a +b 的值为( ) A .3B .﹣3C .±3D .±5【解析】解:∵|a |=1,|b |=4, ∴a =±1,b =±4, ∵ab <0,∴a +b =1﹣4=﹣3或a +b =﹣1+4=3, 故选:C .2.(3分)在下列运算中,正确的是( ) A .(x ﹣y )2=x 2﹣y 2 B .(a +2)(a ﹣3)=a 2﹣6C .(a +2b )2=a 2+4ab +4b 2D .(2x ﹣y )(2x +y )=2x 2﹣y 2【解析】解:A 、(x ﹣y )2=x 2﹣2xy +y 2,故本选项错误; B 、(a +2)(a ﹣3)=a 2﹣a ﹣6,故本选项错误; C 、(a +2b )2=a 2+4ab +4b 2,故本选项正确; D 、(2x ﹣y )(2x +y )=4x 2﹣y 2,故本选项错误; 故选:C .3.(3分)若x =﹣2是关于x 的方程3x ﹣k +1=0的解,则k 的值为( ) A .﹣5B .﹣1C .13D .5【解析】解:把x =﹣2代入方程得:﹣6﹣k +1=0, 解得:k =﹣5, 故选:A .4.(3分)对一组数据:2,1,3,2,3分析错误的是( ) A .平均数是2.2 B .方差是4C .众数是3和2D .中位数是2【解析】解:A 、这组数据的平均数是:(2+1+3+2+3)÷5=2.2,故原来的分析正确;B 、这组数据的方差是:15[(2﹣2.2)2+(1﹣2.2)2+(3﹣2.2)2+(2﹣2.2)2+(3﹣2.2)2]=0.56,故原来的分析不正确;C 、3和2都出现了2次,出现的次数最多,则众数是3和2,故原来的分析正确;D 、把这组数据从小到大排列为:1,2,2,3,3,中位数是2,故原来的分析正确. 故选:B .5.(3分)如图是由几个大小相同的小正方体搭成的几何体从上向下看得到的平面图形,小正方形中的数字表示该位置上小正方体的个数,则从左向右看得到的平面图形是( )A .B .C .D .【解析】解:由俯视图知,该几何体共2行3列,第1行自左向右依次有1个、2个、3个正方体,第2行第2列有1个正方体, 其左视图如下所示: 故选:A .6.(3分)关于x 的不等式组{x−13≤1a −x <2恰好只有四个整数解,则a 的取值范围是( )A .a <3B .2<a ≤3C .2≤a <3D .2<a <3【解析】解:由不等式x−13≤1,可得:x ≤4,由不等式a ﹣x <2,可得:x >a ﹣2, 由以上可得不等式组的解集为:a ﹣2<x ≤4,因为不等式组{x−13≤1a −x <2恰好只有四个整数解,所以可得:0≤a ﹣2<1,解得:2≤a <3,故选:C .7.(3分)一个正多边形的边长为2,每个外角为30°,则这个正多边形外接圆的半径可以表示为( ) A .sin15°B .tan15°C .1sin15°D .1tan15°【解析】解:如图所示:,∵一个正多边形的边长为2,每个外角为30°, ∴此正多边形的边数为360°30°=12,即多边形为12边形,连接OA 、OB ,过O 作ON ⊥AB , 边AB 对的圆心角AOB 的度数为360°12=30°,∵OA =OB ,ON ⊥AB ,∴∠NOB =12∠AOB =15°,AN =BN =12AB =1,∴OB =BN sin∠BON =1sin15°,即这个正多边形的半径是1sin15°,故选:C .8.(3分)某天,某同学早上8点坐车从余姚图书馆出发去宁波大学,汽车离开余姚图书馆的距离S (千米)与所用时间t (分)之间的函数关系如图所示.已知汽车在途中停车加油一次,则下列描述不正确的是( ) A .汽车在途中加油用了10分钟B .若OA ∥BC ,则加满油以后的速度为80千米/小时C .若汽车加油后的速度是90千米/小时,则a =25D .该同学8:55到达宁波大学【解析】解:A 、图中加油时间为25至35分钟,共10分钟,故本选项正确; B 、因为OA ∥BC ,所以a25=60−a20,解得a =1003,所以加满油以后的速度=10032560=80千米/小时,故本选项正确. C 、由题意:60−a2060=90,解得a =30,本选项错误.D 、该同学8:55到达宁波大学,正确. 故选:C .9.(3分)在同一平面直角坐标系中,函数y =kx +1(k ≠0)和y =kx (k ≠0)的图象大致是( )A .B .C .D .【解析】解:①当k >0时,y =kx +1过一、二、三象限;y =k x过一、三象限; ②当k <0时,y =kx +1过一、二、四象象限;y =kx过二、四象限. 观察图形可知,只有C 选项符合题意. 故选:C .10.(3分)如图,抛物线y =﹣x 2+mx 的对称轴为直线x =2,若关于x 的一元二次方程﹣x 2+mx ﹣t =0(t 为实数)在1<x <3的范围内有解,则t 的取值范围是( ) A .﹣5<t ≤4B .3<t ≤4C .﹣5<t <3D .t >﹣5【解析】解:∵抛物线y =﹣x 2+mx 的对称轴为直线x =2, ∴−m2×(−1)=2,解得m =4,∴抛物线解析式为y =﹣x 2+4x ,抛物线的顶点坐标为(2,4), 当x =1时,y =﹣x 2+4x =3;当x =3时,y =﹣x 2+4x =3,∵关于x 的一元二次方程x 2+mx ﹣t =0(t 为实数)在1<x <3的范围内有解, ∴抛物线y =﹣x 2+4x 与直线y =t 在1<x <3的范围内有公共点, ∴3<t ≤4. 故选:B .二.填空题(共5小题,满分15分,每小题3分)11.(3分)根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为 4.4×109 .【解析】解:4400000000=4.4×109.故答案为:4.4×10912.(3分)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于 72° . 【解析】解:设此多边形为n 边形,根据题意得:180(n ﹣2)=540,解得:n =5, ∴这个正多边形的每一个外角等于:360°5=72°.故答案为:72°.13.(3分)如图,l 1∥l 2,则α+β﹣γ= 180° . 【解析】解:∵l 1∥l 2, ∴∠1=α,∵∠1=180°﹣β﹣γ,∴α=180°﹣β﹣γ,即α+β﹣γ=180°.故答案为:180°.14.(3分)(1)小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是√5.(2)如图,⊙O是△ABC的内切圆,与边BC,CA,AB的切点分别为D,E,F,若∠A=70°,则∠BOC=125°,∠EDF=55°.(3)边长为4的等边三角形内切圆半径和外接圆半径分别是.(4)等腰三角形ABC外接圆的半径是5,底边BC=4,则△ABC的面积为.【解析】解:(1)如图1所示,作AB,BD的中垂线,交点O就是圆心.连接OA、OB,∵OC⊥AB,OA=OB∴O即为此圆形镜子的圆心,∵AC=1,OC=2,∴OA=2+OC2=√12+22=√5.故这个镜面的半径是√5,故答案为√5;(2)∵∠A=70°,∴∠ABC+∠ACB=180°﹣70°=110°,∵⊙O是△ABC的内切圆,切点分别为D、E、F,∴BO,CO分别是∠ABC和∠ACB的角平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(12∠ABC+12∠ACB)=125°;如图所示;连接OE,OF.∵∠ABC=60°,∠ACB=70°,∴∠A=180°﹣60°﹣70°=50°.∵AB是圆O的切线,∴∠OF A=90°.同理∠OEA =90°.∴∠A +∠EOF =180°. ∴∠EOF =110°.∴∠EDF =55°; 故答案为:125°,55°;(3)如图3,设O 为等边△ABC 的内心(也是等边△AB 的外心),连接OA 、OC 、OB ,设AO 交BC 于D ,则AD ⊥BC ,BD =DC ,即OB 是△ABC 外接圆的半径,OD 是△ABC 内切圆的半径, ∵BC =4,∴BD =DC =2, ∵O 为等边△ABC 内切圆的圆心, ∴∠OBD =12∠ABC =12×60°=30°, 在Rt △OBD 中,OD =BD •tan30°=2×√32=2√33;∴OB =2OD =4√33,∴正三角形的内切圆半径是2√33,外接圆半径是4√33.故答案为:2√33,4√33; (4)如图4,连接AO ,并延长与BC 交于一点D ,连接OC , ∵BC =4,⊙O 的半径为5,AB =AC , ∴CD =2,∴AD ⊥BC ,∴由勾股定理得:OD =2−22=√21, ∴AD =5+√21,∴△ABC 的面积为12BC ×AD =12×4×(5+√21)=10+2√21, 同理当BC 在圆心O 的上方时,三角形的高变为5−√21, ∴△ABC 的面积为12BC ×AD =10﹣2√21.故答案为:10+2√21或10﹣2√21.15.(3分)如图,在平面直角坐标系中,直线y =﹣x +n (n >2)交x 轴于点A ,交y 轴于点B ,C 为直线AB 上一点,过点C 作CD 垂直x 轴于点D ,抛物线y =ax 2+bx 过A ,C 两点,M 为抛物线的顶点,过点M 作ME 垂直y 轴于点E ,若D 的坐标为(1,0).则当△BEM 与△COD 相似时,n 的值为 3或5+√172.【解析】解:∵直线y =﹣x +n (n >2)交x 轴于点A ,交y 轴于点B , ∴A (n ,0),B (0,n ),∵CD ⊥OA ,D (1,0), ∴C (1,n ﹣1), ∵抛物线经过O ,A ,∴可以假设抛物线的解析式为y =ax (x ﹣n ), 把C (1,n ﹣1)代入y =ax (x ﹣n ),得到a =﹣1, ∴抛物线的解析式为y =﹣x 2+nx ,∴M (n2,n 24),∵△BEM 与△COD 相似,∴有两种情形:当EM OD=BE CD时,则有:n21=|n−n 24|n−1,解得n =±2或0(都不符合题意舍弃),当EM CD=BE OD时,则有:n2n−1=|n−n 24|1,解得n =2(舍)或3或5+√172或5−√172(舍弃), 综上所述,满足条件的n 的值为3或5+√172.故答案为:3或5+√172.三.解答题(共9小题,满分75分)16.(6分)2sin60°−(π−2)0+(13)−2+|1−√3| 【解析】解:原式=2×√32−1+9+√3−1=2√3+717.(7分)先化简,再求值:(2−x−1x+1)÷x 2+6x+9x 2−1,其中x =2.【解析】解:(2−x−1x+1)÷x 2+6x+9x 2−1=2(x+1)−(x−1)x+1⋅(x+1)(x−1)(x+3)2 =2x+2−x+1x+1⋅(x+1)(x−1)(x+3)2 =x+3x+1⋅(x+1)(x−1)(x+3)2=x−1x+3,当x =2时,原式=2−12+3=15.18.(7分)如图,四边形ABCD 为菱形,E 为对角线AC 上的一个动点(不与A ,C 重合),连接DE 并延长交射线AB 于点F ,连接BE .(1)求证:△DCE ≌△BCE ; (2)求证:∠AFD =∠EBC ;(3)若∠DAB =90°,当△BEF 为等腰三角形时,求∠EFB 的度数. 【解析】解:(1)证明:∵四边形ABCD 是菱形, ∴CD =AB ,∠ACD =∠ACB ,在△DCE 和△BCE 中, {DC =CB∠DCE =∠BCE EC =EC,∴△DCE ≌△BCE (SAS ), (2)∵△DCE ≌△BCE ,∴∠CDE =∠CBE ,∵CD ∥AB , ∴∠CDE =∠AFD ,∴∠EBC =∠AFD ,即∠F =∠EBC ; (3)解:分两种情况:①如图1,当F 在AB 延长线上时, ∵∠EBF 为钝角,∴只能是BE =BF ,设∠BEF =∠BFE =x °, 可通过三角形内角形为180°得:90+x +x +x =180, 解得:x =30,∴∠EFB =30°; ②如图2,当F 在线段AB 上时, ∵∠EFB 为钝角,∴只能是FE =FB ,设∠BEF =∠EBF =x °,则有∠AFD =2x °, 可证得:∠AFD =∠FDC =∠CBE , 得x +2x =90,解得:x =30,∴∠EFB =120°. 综上:∠F =30°或120°.19.(8分)为了创建文明城市,增强学生的环保意识.随机抽取8名学生,对他们的垃圾分类投放情况进行调查,这8名学生分别标记为A ,B ,C ,D ,E ,F ,G ,H ,其中“√”表示投放正确,“×”表示投放错误,统计情况如下表.学生 垃圾类别 ABCDEFGH厨余垃圾 √ √ √ √ √ √ √ √ 可回收垃圾 √ × √ × × √ √ √ 有害垃圾 × √ × √ √ × × √ 其他垃圾×√√××√√√(1)求8名学生中至少有三类垃圾投放正确的概率;(2)为进一步了解垃圾分类投放情况,现从8名学生里“有害垃圾”投放错误的学生中随机抽取两人接受采访,试用标记的字母列举所有可能抽取的结果.【解析】解:(1)8名学生中至少有三类垃圾投放正确的概率为58;(2)列表如下:A C F G A CA F A GA C AC FC GC F AF CF GF GAGCGFG20.(8分)某校为了开展“阳光体育运动”,计划购买篮球和足球,已知购买20个篮球和40个足球的总金额为4600元;购买30个篮球和50个足球的总金额为6100元. (1)每个篮球、每个足球的价格分别为多少元?(2)若该校购买篮球和足球共60个,且购买篮球的总金额不超过购买足球的总金额,则该校最多可购买多少个篮球?【解析】解:(1)设每个篮球、足球的价格分别是x 元,y 元, 根据题意得:{20x +40y =460030x +50y =6100,解得:{x =70y =80,答:每个篮球、足球的价格分别是70元,80元;(2)设购买了篮球m 个,根据题意得:70m ≤80(60﹣m ),解得:m ≤32,∴m 最多取32, 答:最多可购买篮球32个.21.(8分)某校综合实践小组要对一幢建筑物MN 的高度进行测量.如图,该小组在一斜坡坡脚A 处测得该建筑物顶端M 的仰角为45°,沿斜坡向上走20m 到达B 处,(即AB =20m )测得该建筑物顶端M 的仰角为30°.已知斜坡的坡度i =3:4,请你计算建筑物MN 的高度(即MN 的长,结果保留根号). 【解析】解:作BD ⊥AN 于D ,BC ⊥MN 于C .设MN =AN =x .在Rt △ABD 中,∵∠ADB =90°,AB =20m ,BD :AD =3:4, 设BD =3k ,AD =4k 则AB =5k , ∴5k =20,∴k =4,∴BD =12m ,AD =16m ,∵四边形BDNC 是矩形,∴CN =BD =12,BC =DN =16+x , 在Rt △BCM 中,∵∠MBC =30°, ∴BC =√3CM ,∴16+x =√3(x ﹣12), 解得x =(14√3+26)m ,答:建筑物MN 的高度为(14√3+26)m .22.(9分)如图,已知A (﹣4,a ),B (﹣1,2)是一次函数y 1=kx +b 与反比例函数y 2=mx (m <0)图象的两个交点,AC ⊥x 轴于C . (1)求出k ,b 及m 的值.(2)根据图象直接回答:在第二象限内,当y 1>y 2时,x 的取值范围是 ﹣4<x <﹣1 .(3)若P 是线段AB 上的一点,连接PC ,若△PCA 的面积等于12,求点P 坐标.【解析】解:(1)把B (﹣1,2)代入y =mx 得m =﹣1×2=﹣2, 把A (﹣4,a )代入y =−2x 得a =−2−4=12, 把A (﹣4,12),B (﹣1,2)代入y =kx +b ,得{−4k +b =12−k +b =2,解得:{k =12b =52, ∴k =12,b =52,m =﹣2;(2)结合图象可得:在第二象限内,当y 1>y 2时,x 的取值范围是﹣4<x <﹣1,故答案为﹣4<x <﹣1;(3)设点P 的横坐标为x P ,∵AC ⊥x 轴,点A (﹣4,12),∴AC =12.∵△PCA 的面积等于12, ∴12×12×[x P ﹣(﹣4)]=12,解得x P =﹣2,∵P 是线段AB 上的一点,∴y P =12×(﹣2)+52=32, ∴点P 的坐标为(﹣2,32).23.(10分)如图,在Rt △ABC 中,点O 在斜边AB 上,以O 为圆心,OB 为半径作圆,分别与BC 、AB 相交于点D 、E ,连接AD ,已知∠CAD =∠B(1)求证:AD 是⊙O 的切线;(2)若∠B =30°,AC =√3,求劣弧BD 与弦BD 所围图形的面积.(3)若AC =4,BD =6,求AE 的长.【解析】(1)证明:连接OD ,如图1所示:∵OB =OD ,∴∠3=∠B ,∵∠B =∠1,∴∠1=∠3,在Rt △ACD 中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD ⊥AD ,则AD 为⊙O 的切线;(2)解:连接OD ,作OF ⊥BD 于F ,如图2所示:∵OB =OD ,∠B =30°,∴∠ODB =∠B =30°,∴∠DOB =120°,∵∠C =90°,∠CAD =∠B =30°,∴CD =√33AC =1,BC =√3AC =3,∴BD =BC ﹣CD =2,∵OF ⊥BD ,∴DF =BF =12BD =1,OF =√33BF =√33,∴OB =2OF =2√33,∴劣弧BD 与弦BD 所围图形的面积=扇形ODB 的面积﹣△ODB 的面积=120π×(2√33)2360−12×2×√33=49π−√33; (3)解:∵∠CAD =∠B ,∠C =∠C ,∴△ACD ∽△BCA ,∴AC BC =CD AC =AD AB ,∴AC 2=CD ×BC =CD (CD +BD ),即42=CD (CD +6),解得:CD =2,或CD =﹣8(舍去),∴CD =2,∴AD =√AC 2+CD 2=2√5,∵CD AC =AD AB , ∴24=2√5AB,∴AB =4√5,∵AD 是⊙O 的切线,∴AD 2=AE ×AB , ∴AE =AD 2AB =(2√5)245=√5. 24.(12分)如图,直线y =−12x −3与x 轴,y 轴分别交于点A ,C ,经过点A ,C 的抛物线y =ax 2+bx ﹣3与x 轴的另一个交点为点B (2,0),点D 是抛物线上一点,过点D 作DE ⊥x 轴于点E ,连接AD ,DC .设点D 的横坐标为m .(1)求抛物线的解析式;(2)当点D 在第三象限,设△DAC 的面积为S ,求S 与m 的函数关系式,并求出S 的最大值及此时点D 的坐标;(3)连接BC ,若∠EAD =∠OBC ,请直接写出此时点D 的坐标.【解析】解:(1)在y =−12x ﹣3中,当y =0时,x =﹣6,即点A 的坐标为:(﹣6,0),将A (﹣6,0),B (2,0)代入y =ax 2+bx ﹣3得:{36a −6b −3=04a +2b −3=0, 解得:{a =14b =1, ∴抛物线的解析式为:y =14x 2+x ﹣3;(2)设点D 的坐标为:(m ,14m 2+m ﹣3),设DE 交AC 于F ,则点F 的坐标为:(m ,−12m ﹣3), ∴DF =−12m ﹣3﹣(14m 2+m ﹣3)=−14m 2−32m , ∴S △ADC =S △ADF +S △DFC =12DF •AE +12•DF •OE =12DF •OA =12×(−14m 2−32m )×6=−34m 2−92m =−34(m +3)2+274, ∵a =−34<0,∴抛物线开口向下,∴当m =﹣3时,S △ADC 存在最大值274,又∵当m =﹣3时,14m 2+m ﹣3=−154, ∴存在点D (﹣3,−154),使得△ADC 的面积最大,最大值为274; (3)①当点D 与点C 关于对称轴对称时,D (﹣4,﹣3),根据对称性此时∠EAD =∠ABC . ②作点D (﹣4,﹣3)关于x 轴的对称点D ′(﹣4,3),直线AD ′的解析式为y =32x +9,由{y =32x +9y =14x 2+x −3,解得{x =−6y =0或{x =8y =21, 此时直线AD ′与抛物线交于D (8,21),满足条件,综上所述,满足条件的点D 坐标为(﹣4,﹣3)或(8,21)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【文库独家】
2020中考数学模拟卷
一、选择题(本题有12小题,每小题4分,共48分。


1.2的相反数是………………………………………………………………………………( )
A .2
B .-2
C .21
D .2
2.y=(x -1)2+2的对称轴是直线……………………………………………………………( )
A .x=-1
B .x=1
C .y=-1
D .y=1
3.如图,DE 是ΔABC 的中位线,则ΔADE 与ΔABC 的面积之比是……………………( )
A .1:1
B .
D .1:4
4.上图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是…………………………………………………………………………………………………(

A .60°
B .80°
C .120°
D .150°
5.函数1
1+=x y 中自变量x 的取值范围是…………………………………………………( ) A .x ≠-1 B .x>-1 C .x ≠1 D .x ≠0
6.下列计算正确的是……………………………………………………………………………( )
A .a 2·a 3=a 6
B .a 3÷a=a 3
C .(a 2)3=a 6
D .(3a 2)4=9a 4
7.在下列图形中,既是中心对称图形又是轴对称图形的是…………………………………( )
A .等腰三角形
B .圆
C .梯形
D .平行四边形
8.抛物线22x y =是由抛物线2)1(22
++=x y 经过平移而得到的,则正确的平移是…( )
A 、先向右平移1个单位,再向下平移2个单位
B 、先向左平移1个单位,再向上平移2个单位
C 、先向右平移2个单位,再向下平移1个单位
D 、先向左平移2个单位,再向上平移1个单位
9.相交两圆的公共弦长为16cm ,若两圆的半径长分别为10cm 和17cm ,则这两圆的圆心距为…………………………………………………………………………………………………( )
A .7cm
B .16cm
C .21cm
D .27cm
10.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。

车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。

下面是行驶路程s(米)关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是…………………………………………………………………………………………………( )
A B C D
11.已知方程x 2+(2k+1)x+k 2-2=0的两实根的平方和等于11,k 的取值是…………………………( )
A .-3或1
B .-3
C .1
D .3
12.某超级市场失窃,大量的商品在夜间被罪犯用汽车运走。

三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在A 、B 、C 三人之外;(2)C 作案时总得有A 作从犯;(3)B 不会开车。

在此案中能肯定的作
案对象是……………………………………………………………………( )
A .嫌疑犯A
B .嫌疑犯B
C .嫌疑犯C
D .嫌疑犯A 和C
二、填空题(本题有6小题,每小题5分,共30分)
13.写出一个3到4之间的无理数 。

14.分解因式:a 3-a= 。

15.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走
向是北偏东48°。

甲、乙两地间同时开工,若干天后,公路准确接通,
则乙地所修公路的走向是南偏西___ ___度。

16.请写出一个开口向上,对称轴为直线x=2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 。

17.亮亮想制作一个圆锥模型,这个模型的侧面是用一个半径为9cm ,圆心角为240°的扇形铁皮制作的,再用一块圆形铁皮做底。

请你帮他计算这块铁皮的半径为 cm 。

18.如图AD 是△ABC 的中线,∠ADC=60°,BC=5,把△ADC 沿直线AD 折叠后,点C 落在C ’的位置上,
那么BC ’为 。

三、解答题(本题有7小题,共72分)
19.(本题8分) 计算:2sin60°20051)1()31(33-++--
20.(本题8分) 为美化环境,某单位需要在一块正方形空地上分别种植四种不同的花草,计划将这块空地按如下要求分成四块:⑴分割后的整个图形必须是中心对称图形;⑵四块图形的形状相同;⑶四块图形的面积相等.请按照上述三个要求,分别在下面的正方形中给出4种不同的分割方法.
21.

22.某中学部分同学参加全国初中数学竞赛,取得了优异的成绩,指导老师统计了所有参赛同学的成绩(成绩都是整数,试题满分120分),并且绘制了频率分布直方图。

请回答:
(1)该中学参加本次数学竞赛的有多少名同学?
(2)如果成绩在90分以上(含90
(3)
23.某校准备在甲、乙两家公司为毕业班学生制作一批纪念册。

甲公司提出:每册收材料费5元,另收设计费1500元;乙公司提出:每册收材料费8元,不收设计费。

(1)请写出制作纪念册的册数x与甲公司的收费y1(元)的函数关系式。

(2)请写出制作纪念册的册数x与乙公司的收费y2(元)的函数关系式。

(3)如果学校派你去甲、乙两家公司订做纪念册,你会选择哪家公司?
24.已知抛物线y=(1-m)x2+4x-3开口向下,与x轴交于A(x1,0)和B(x2,0)两点,其中x l<x2 .
(1)求m的取值范围;
(2)若x12+ x22=10,求抛物线的解析式;
(3)设(2)中的抛物线与y轴于点C,在y轴上是否存在点P,使以P、0、B为顶点的三角形与△AOC相似?
若存在,求出P点的坐标;若不存在,请说明理由.
25.如图,AB 是⊙O 的直径,BC 是⊙O 的弦,⊙O 的割线PDE 垂直AB 于点F ,交BC 于点G ,连结PC ,∠BAC=∠BCP ,求解下列问题:
(1)求证:CP 是⊙O 的切线。

(2)当∠ABC=30°,BG=32,CG=34时,求以PD 、PE 的长为两根的一元二次方程。

(3)若(1)的条件不变,当点C 在劣弧AD 上运动时,应再具备什么条件可使结论BG 2
=BF · BO 成立?试写出你的猜想,并说明理由。

答案
一、 选择题(每题4分,共48分)
B B D
C A C B
D C C C A
二、 填空题(每题5分,共30分)
13.π或10等 14. a(a +1)(a -1)
15.48 16. y=(x -2)2+3等 17.6
18. 三、解答题
21.(8分)解:设CD=x 米,则AD=
x 3
3,DB=x ∵AB=BD -AD ∴20=x -
x 3
3 x=米)31030()33(103
3120+=+=- 答:河宽CD 为(30+103)米。

22.(10分) (1)4+6+8+7+5+2=32人
(2)90分以上人数:7+5+2=14人 %75.434375.032
14== (3)该中学参赛同学的成绩均不低于60分。

成绩在80—90分数的人数最多。

23.(12分) (1) y 1=5x+1500; (2) y 2=8x. (3) ∵当y 1=y 2时,5x+1500=8x, x=500.
当y 1>y 2时,5x +1500>8x ,x<500.
当y 1<y 2时,5x +1500<8x ,x>500.
∴当订做纪念册的册数为500时,选择甲、乙两家公司均可;
当订做纪念册的册数少于500时,选择乙公司;
当订做纪念册的册数大于500时,选择甲公司;
24.(12分) (1) 1<m ≤3
7 (2)y=-x 2+4x -3 (3) 存在 p(0,9) 或 p(0,-9) 或 p(0,1) 或 p(0,-1) 25.(14分) (1) 连结OC ,证∠OCP=90°即可
(2)∵∠B=30° ∴∠A=∠BGP=60°
∴∠BCP=∠BGP=60°
∴ΔCPG 是正三角形.
∴PG=CP=34
∵PC 切⊙O 于C
∴PC 2=PD ·PE=48)34(2=
又∵BC=36 ∴AB=6 FD=33 EG=3
∴PD=23
∴PD+PE=3103832=+
∴以PD 、PE 为两根的一元二次方程为x 2-48x +103=0
(3)当G为BC中点,OG⊥BC,OG∥AC或∠BOG=∠BAC…时,结论BG2=BF·BO成立。

要让此结论成立,只要证明ΔBFG∽ΔBGO即可,凡是能使ΔBFG∽ΔBGO的条件都可。

相关文档
最新文档