学而思奥数模块之行程问题
行程问题(题 答案)
一、相遇与追及1、路程和路程差公式【例 1】如下图,某城市东西路与南北路交会于路口A.甲在路口A南边560米的B点,乙在路口A.甲向北,乙向东同时匀速行走.4分钟后二人距A的距离相等.再继续行走24分钟后,二人距A的距离恰又相等.问:甲、乙二人的速度各是多少?【考点】行程问题【难度】3星【题型】解答【关键词】2003年,明心奥数挑战赛【解析】本题总共有两次距离A相等,第一次:甲到A的距离正好就是乙从A出发走的路程.那么甲、乙两人共走了560米,走了4分钟,两人的速度和为:5604140÷= (米/分)。
第二次:两人距A的距离又相等,只能是甲、乙走过了A点,且在A点以北走的路程=乙走的总路程.那么,从第二次甲比乙共多走了560米,共走了=,显然÷=(米/分),甲速+乙速140 42428+=(分钟),两人的速度差:5602820甲速要比乙速要快;甲速-乙速20=,解这个和差问题,甲速()(米/分),乙速1408060=-=(米/分).14020280=+÷=【答案】甲速80米/分,乙速60米/分2、多人相遇【例 2】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?【考点】行程问题【难度】2星【题型】解答【解析】甲、丙6分钟相遇的路程:()+⨯=(米);1007561050甲、乙相遇的时间为:()÷-=(分钟);10508075210东、西两村之间的距离为:()+⨯=(米).1008021037800【答案】37800米3、多次相遇【例 3】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?【考点】行程问题【难度】2星【题型】解答【解析】画线段示意图(实线表示甲车行进的路线,虚线表示乙车行进的路线):可以发现第一次相遇意味着两车行了一个A、B两地间距离,第二次相遇意味着两车共行了三个A、B两地间的距离.当甲、乙两车共行了一个A、B两地间的距离时,甲车行了95千米,当它们共行三个A、B两地间的距离时,甲车就行了3个95千米,即95×3=285(千米),而这285千米比一个A、B两地间的距离多25千米,可得:95×3-25=285-25=260(千米).【答案】260千米二、典型行程专题1、火车过桥【例 4】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?【考点】行程问题之火车问题【难度】3星【题型】解答a)根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),某列车的速度为:(25O-210)÷(25-23)=40÷2=20(米/秒)某列车的车长为:20×25-250=500-250=250(米),两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒)。
奥数七大模块逐个突破系列四之行程模块总复习资料
学而思寒假课程第四讲行程预习资料出题人:卫沈傲审题人:贾豪杰一、 复杂相遇追及例1:甲车每小时行40千米,乙车每小时行60千米,甲车从A地、乙车从B地同时出发相向而行,两车相遇后4.5小时,甲车到达B地,A,B两地相距多少千米?(答案:300千米)二、 多人相遇追及例1:快、中、慢三辆车同时同地出发,沿同一公路去追赶前面一骑车人,这三辆车分别用时6分、10分、12分追上骑车人。
已知快、慢车的速度分别为24千米/时和19千米/时,求中速车的速度。
(答案:20千米/小时)三、 多次相遇追及例题略(秋季)四、 发车例1:有个人步行去市中心文化馆,发现市内1路公交车每阁4分钟就从对面开过一辆,每阁12分钟就从后面赶过一辆车,车的速是匀速的,工交车停站所用时间不计,问该公交车每阁几分钟发一辆车?(答案:6分钟)五、 接送(春季)例题略六、 火车过桥例1:小明在铁路旁边沿铁路散步,他散步的速度是2米/秒,这时从他后面开过来一列火车,从车头到车尾经过他身旁共用了21秒。
已知火车全长336米,求火车的速度。
(答案:18米/秒)七、 流水行船例1:一艘轮船顺流航行80千米,逆流航行48千米共用9时;顺流航行64千米,逆流航行96千米共用12时。
求轮船的速度。
(答案:14千米/时)八、 时钟问题例1:钟表的时针与分针在4点多少分第一次重合?)(答案:21例2:有一个时钟每时快20秒,它在3月1日中午12时准确,下一次准确的时间是什么时间?(答案:5月30日12时)九、 变速变道(春季)例题略备注:行程六大方法及更多例题讲解敬请关注寒假第四讲(行程)。
学而思五年级春季第五讲行程问题
(2)甲乙二人在相同的一段时间内行走,甲速为 10 米每秒,乙速为 12 米每秒,则甲速:乙速=
10:12=5:6;同样我们也可以得到甲乙二人在这段时间内所走的路程关系: 甲: 乙=5:6.
时间一定时,路程与速度成正比例
二、例题讲解
例 1、分析:第一问:速度提高之前与提高之后走的总路程是一样的,那么根据路程一定,速度与时间成
设甲的速度为 x 米/分钟。(x-50)×26=(x+50)×6
x=80
A,B 两地距离为:(80-50)×26=780(米)或者(80+50)×6=780(米)
第五讲 行程问题 5.2
五年级春季班 第五讲 行程问题
曹威
法二:比例法。由图可知(绿线表示同时间内的相遇过程红线表示同时间内的追及过程)
A
4份
B
3份
4份
乙
红色表示相同时间内甲乙走的路程比为 5:4,但此时相遇点距 A,B 两点的距离比为 3:4,
则我们可以统一甲走的路程为 15 份,则 72 千米占 8 份,全程 35 份可求。
例 4、分析:
答案:315 千米
甲
4800
2400 乙
A
B
2880
10 分钟
由图可知速度改变前,相遇时甲走了 4800 米,乙走了 2400 米,则甲乙的速度比为 2:1,
学而思奥数网奥数专题 (行程问题)
学而思奥数网奥数专题 (行程问题)1、六年级行程问题:多人行程难度:中难度甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;当乙跑到B时,丙离B还有24米。
问:(1) A, B相距多少米?(2)如果丙从A跑到B用24秒,那么甲的速度是多少?2、五年级行程问题:多人行程难度:高难度甲乙丙三人同时从东村去西村,甲骑自行车每小时比乙快12公里,比丙快15公里,甲行3.5小时到达西村后立刻返回.在距西村30公里处和乙相聚,问:丙行了多长时间和甲相遇?3、五年级行程问题:多人行程难度:中难度甲、乙、丙三辆车同时从A地出发到B地去,出发后6分甲车超过了一名长跑运动员,2分后乙车也超过去了,又过了2分丙车也超了过去。
已知甲车每分走1000米,乙车每分走800米,丙车每分钟走多少米?4、五年级行程问题:多人行程难度:中难度甲、乙、丙三辆车先后从A地开往B地,乙比丙晚出发5分,出发后45分追上丙;甲比乙晚出发15分,出发后1时追上乙。
甲和丙的速度比是多少?5、五年级行程问题:多人行程难度:高难度张、李、赵3人都从甲地到乙地.上午6时,张、李两人一起从甲地出发,张每小时走5千米,李每小时走4千米.赵上午8时从甲地出发.傍晚6时,赵、张同时达到乙地.那么赵追上李的时间是几时?学而思奥数网奥数专题 (行程问题) 多人行程1. 五年级行程问题:多人行程难度:高难度甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为60千米/时和48千米/时。
有一辆迎面开来的卡车分别在他们出发后 6时、7时、8时先后与甲、乙、丙三辆车相遇。
求丙车的速度。
解答:解题思路:(多人相遇问题要转化成两两之间的问题,咱们的相遇和追击公式也是研究的两者。
另外ST图也是很关键)第一步:当甲经过6小时与卡车相遇时,乙也走了6小时,甲比乙多走了6 60-48 6=72千米;(这也是现在乙车与卡车的距离)第二步:接上一步,乙与卡车接着走1小时相遇,所以卡车的速度为72-48 1=24第三步:综上整体看问题可以求出全程为:(60+24) 6=504或(48+24) 7=504第四步:收官之战:504 8-24=39(千米)注意事项:画图时,要标上时间,并且多人要同时标,以防思路错乱!2. 五年级行程问题:多人行程难度:高难度李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。
四年级奥数行程问题及火车过桥问题的例题讲解练习答案
火车过桥问题的例题讲解1学而思奥数网奥数专题 (行程问题) 火车过桥1、四年级行程问题:火车过桥难度:中难度:一人每分钟60米的速度沿铁路步行,一列长144米的客车对面而来,从他身边通过用了8秒,求列车的速度?答:2、四年级行程问题:火车过桥难度:中难度:两列火车,一列长120米,每秒钟行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾分开须要几秒钟?答:3、四年级行程问题:火车过桥难度:中难度:某人步行的速度为每秒钟2米,一列火车从后面开来,越过他用了10秒钟,已知火车的长为90米,求列车的速度。
答:四年级行程问题:火车过桥难度:中难度:一辆长60米的火车以每秒钟50米的速度行驶,在它的前面有一辆长40米的火车以每秒钟30米的速度行驶.当快车车头及慢车车尾相遇到车尾分开车头须要几秒钟?答:4、四年级行程问题:火车过桥难度:中难度:两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米。
两车错车时,甲车上一乘客发觉:从乙车车头经过他的车窗时开场到乙车车尾经过他的车窗共用了14秒,求乙车的车长。
答:学而思奥数网奥数专题(行程问题)1、四年级火车过桥问题答案:解答:【可以看成一个相遇问题,总路程就是车身长度,所以火车及人的速度之和是144÷8=18米,而人的速度是每分钟60米,也就是每秒钟1米,所以火车的速度是每秒钟18-1=17米.2、四年级火车过桥问题答案:解答:如图:从车头相遇到车尾分开,两列火车一共走的路程就是两辆火车的车身长度之和,即120+160=280米,所以从车头相遇到车尾分开所用时间为280÷(20+15)=8秒.3、四年级火车过桥问题答案:解答:【分析】此题是火车的追及问题。
火车越过人时,车比人多行驶的路程是车长90米,追刚好间是10秒,所以速度差是90÷10=9米/秒,因此车速是2+9=11米/秒。
4、四年级火车过桥问题答案:解答:此题是一个追及问题,要求追刚好间,须要求出速度差和路程差.快车车头及慢车车尾相遇到车尾分开车头,快车要比慢车多行60+40=100米,即100米是路程差,因此追刚好间为:100÷(50-30)=5秒.5、四年级火车过桥问题答案:解答:此题是两列火车的相遇问题,路程和正好是乙车的长度,速度和是36+54=90千米/时,时间是14秒,乙车长是90×1000×14÷3600=350米。
学而思内部资料-奥数-行程问题(一)
第29讲行程问题(一)一、专题简析:我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。
行程问题主要包括相遇问题、相背问题和追及问题。
这一周我们来学习一些常用的、基本的行程问题。
解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。
二、精讲精练:例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?1、甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。
两地间的水路长多少千米?2、一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。
8小时后两车相距多少千米?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。
如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。
这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?1、甲乙两队学生从相隔18千米的两地同时出发相向而行。
一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。
甲队每小时行5千米,乙队每小时行4千米。
两队相遇时,骑自行车的同学共行多少千米?2、A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。
一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去。
这样一直飞下去,燕子飞了多少千米,两车才能相遇?例3:甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?学而思内部资料共享练习三1、甲车每小时行6千米,乙车每小时行5千米,两车于相隔10千米的两地同时相背而行,几小时后两人相隔65千米?2、甲每小时行9千米,乙每小时行7千米,甲从南庄向南行,同时乙从北庄向北行。
学而思行程问题-火车过桥
由以上两个等式可以得到:8× 车 -8× 人 =7× 车 +7× 人
得出火车与人的速度关系: 车 =15 人 ,即火车的速度是人的速度的 15 倍
火车的长可以表示为:L=8×15 人 -8× 人 =112 人 火车离开甲后 5 分钟与乙相遇,如图,
5 分钟时,火车与乙共走:(15 人 + 人 )×5×60=4800 人
火车过桥
咨询电话:85513391
1、 ★一人以每分钟 120 米的速度沿铁路边跑步.一列长 240 米的火车从对面开
来,从他身边通过用了 8 秒钟,求列车的速度。
【解析】
相遇时,车头与人对齐,找车 的路程时,看车头走的路程
人车
行程问题最重要的方法是画图,同学们要掌握画图的方法。
刚开始人往左走,车往右走,人与车头相遇(红色表示),画图时人与车头对齐;
果中有小数时,同学们不容易想到转换单位。
12、 ★★★★甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过
用了 8 秒钟,离甲后 5 分钟又遇乙,从乙身边开过,只用了 7 秒钟,问从乙与火车相
遇开始再过几分钟甲乙二人相遇?
【解析】 甲
乙
车长
车的路程
乙的路程
Hale Waihona Puke 火车刚离开甲时,甲乙的距离
甲、乙相向而行,火车经过甲的时间比乙长,可判断出火车与甲同向,与乙相向,
8
货车走的路程
列车长
列车走的路程
列车的速度比货车快,它最终将超过货车,它比货车多走的路程为货车与列车长
之和,即多走
260+220=480(米)
列车比货车每秒多走 20-15=5(米),即速度差为 5 米/秒
相遇到相离需要的时间 480÷5=96(秒)
学而思六年级奥数行程问题一刘用教师版综述
第一讲行程问题学习目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题知识点拨:发车问题(1)、一般间隔发车问题。
用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。
标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。
(3)当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.接送问题根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
时钟问题:时钟问题可以看做是一个特殊的圆形轨道上2人追及问题,不过这里的两个“人”分别是时钟的分针和时针。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
三年级学而思 行程问题
一艘船在逆水中的速度为15千米/小时,水流速度为3千米/小时。问该船逆流而 上需要多少时间才能行驶60千米?
05
相对速度问题
相对速度问题的定义
相对速度问题是指两个物体在相对运 动中,由于参照物的不同而产生的速 度变化的问题。
在相对速度问题中,我们需要考虑两 个物体的速度、方向和相对位置,以 确定它们之间的相对运动关系。
例题2
甲、乙两车同时从A、B两地出发,同向而行,甲车的速度为80千米/小时,乙车的速度为 60千米/小时,甲车追上乙车时,两车共行驶了多少小时?
例题3
甲、乙两车从同一地点同时出发,沿同一路线追赶前面的丙车,甲车的速度为120千米/ 小时,乙车的速度为100千米/小时,丙车的速度为90千米/小时,最终甲车追上了丙车, 问此时乙车距离丙车多远?
相对速度问题的实例解析
甲乙两车相向而行,甲车的速度为50km/h,乙车的速度为 30km/h,两车相遇时,它们的相对速度是多少?
甲乙两车同向而行,甲车的速度为50km/h,乙车的速度为 30km/h,两车相距10km时,乙车追上甲车需要多少时间?
THANKS
感谢观看
பைடு நூலகம்
得出结论
根据解的合理性得出结论,解 决实际问题。
追及问题的实例解析
示例1
甲、乙两辆汽车在同一直线上同向行驶,甲车的速度为60 km/h,乙车的速度 为40 km/h,乙车从甲车后面驶来,两车相距100 km,问乙车需要多少时间 才能追上甲车?
示例2
甲、乙两辆汽车在同一直线上相向而行,甲车的速度为50 km/h,乙车的速度 为30 km/h,两车相距20 km,问两车相遇需要多少时间?
建立数学模型
根据运动场景和已知条件,建立速度、时间 、路程之间的数学关系式。
学而思行程专题第1~4讲
学习目标本讲主要通过例题加深对行程问题的三个基本数量关系的理解。
在历年小升初与各类小学竞赛试卷中,行程问题的试题占的比值是相当大的,所以学好行程问题不但对于应对小升初考试和各类数学竞赛有着举足轻重的关键性作用,而且也为初中阶段的学习打下良好的基础。
我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题. 行程问题主要涉及时间 (t)、速度 (v)和路程 (.s)这三个基本量,它们之间的关系如下: 路程 = 速度×时间 可简记为:s vt = 速度 = 路程÷时间 可简记为:/v s t = 时间 = 路程÷速度 可简记为:/t s v = 路程一定,速度与时间成反比 速度一定,路程与时间成正比 时间一定,路程与速度成正比显然,知道其中的两个量就可以求出第三个量.【例 1】 一段路程分为上坡、平路、下坡三段,各段路程的长度之比是 1:2:3,某人走这三段路所用的时间之比是 4:5:6,已知他上坡时每小时行2.5千米,路程全长为 20千米,此人走完全程需多少时间?【例 2】甲、乙两地相距60千米,自行车队 8点整从甲地出发到乙地去,前一半时间每分钟行 1千米,后一半时间每分钟行0.8千米。
自行车队到达乙地的时间是几点几分几秒?【例3】某人上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟,已知下山的速度是上山速度的1.5倍,如果上山用了3 时50分钟,那么下山用多少时间?【例4】汽车以72千米/时的速度从甲地到乙地,到达后立即以48千米/时的速度返回甲地,求该车的平均速度。
【例5】甲、乙两车往返于A、B两地之间,甲车去时的速度为60千米/时,返回时的速度为40千米/时,乙车往返的速度都是50千米/时,求甲、乙两车往返一次所用的时间比.【例6】从甲地到乙地全部是山路,其中上山路程是下山路程的23,一辆汽车上山速度是下山速度的一半,从甲地到乙地共行7时,这辆汽车从乙地返回甲地需要多少时间?【例7】一辆车从甲地行往乙地,如果把车速提高20%,那么可以比原定时间提前1 小时到达;如果以原速度行驶100千米后再将车速提高30%,那么也比原定时间提前 1 小时到达,求甲、乙两地的距离。
学而思-六年级奥数-第七讲.行程问题(一).刘--用-教师版
第一讲行程问题学习目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“ 1”变化的比例问题5、方程解比例应用题知识点拨:发车问题(1)、一般间隔发车问题。
用 3 个公式迅速作答;汽车间距=(汽车速度+行人速度)X相遇事件时间间隔汽车间距=(汽车速度-行人速度)X追及事件时间间隔汽车间距=汽车速度X汽车发车时间间隔( 2)、求到达目的地后相遇和追及的公共汽车的辆数。
标准方法是:画图一一尽可能多的列3个好使公式一一结合s全程=vXt-结合植树问题数数。
( 3 ) 当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴ 火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵ 火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶ 火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.接送问题根据校车速度(来回不同) 、班级速度(不同班不同速) 、班数是否变化分类为四种常见题型:( 1)车速不变-班速不变- 班数2 个(最常见)(2)车速不变-班速不变-班数多个( 3)车速不变-班速变-班数 2 个( 4)车速变-班速不变- 班数2 个标准解法:画图+列 3 个式子1、总时间=一个队伍坐车的时间+ 这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间= 班车同时出发后回来接它的时间。
时钟问题:时钟问题可以看做是一个特殊的圆形轨道上 2 人追及问题,不过这里的两个“人”分别是时钟的分针和时针。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是 2 个指针“每分钟走多少角度”或者“每分钟走多少小格”。
奥数行程问题要点及解题技巧
奥数行程问题要点及解题技巧奥数中的行程问题是一个难度较高的模块,常出现在小学奥数考试和各大奥数比赛中。
其中包括火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等问题。
虽然每一类问题都有自己的特点和解决方法,但是它们都离不开“三个量,三个关系”,即路程(s)、速度(v)、时间(t)以及简单行程、相遇问题和追击问题。
只要掌握好这三个量和它们之间的关系,解决行程问题就不是难事。
在多人行程问题中,最常见的是“三人行程”。
例如,有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。
甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。
在途中,甲和乙相遇后3分钟和丙相遇。
问:这个花圃的周长是多少米?这个三人行程问题可以分解为两个相遇和一个追击问题。
在题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。
首先,在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)。
其次,在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成了逆向的追击过程。
可以求出甲、乙相遇的时间为228÷(38-36)=114(分钟)。
最后,在114分钟里,甲、乙二人一起走完了全程。
因此,花圃的周长为(40+38)×114=8892(米)。
除了多人行程问题,还有多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。
所有行程问题都是围绕路程、速度和时间这一基本关系式展开的,其中相遇问题和追及问题的本质也是这三个量之间的关系转化。
只要掌握好这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解。
在解决多次相遇追及问题时,需要注意分析题目中给出的条件,逐步推导出所求的答案。
总之,行程问题是奥数中的重点、难点,但也是锻炼思维的好工具。
只要掌握好“三个量”之间的“三个关系”,解决行程问题并非难事!行程问题的基本关系式是"",通过抓住这个公式,我们可以解决多人相遇和追及的问题。
学而思 六年级奥数-第七讲.行程问题(一).刘 用,教师版
第一讲行程问题学习目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题知识点拨:发车问题(1)、一般间隔发车问题。
用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。
标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。
(3)当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.接送问题根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
时钟问题:时钟问题可以看做是一个特殊的圆形轨道上2人追及问题,不过这里的两个“人”分别是时钟的分针和时针。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
学而思行程问题
学而思行程问题Prepared on 21 November 2021学习目标本讲主要通过例题加深对行程问题的三个基本数量关系的理解。
在历年小升初与各类小学竞赛试卷中,行程问题的试题占的比值是相当大的,所以学好行程问题不但对于应对小升初考试和各类数学竞赛有着举足轻重的关键性作用,而且也为初中阶段的学习打下良好的基础。
我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.行程问题主要涉及时间(t)、速度(v)和路程(.s)这三个基本量,它们之间的关系如下:=路程=速度×时间可简记为:s vt速度=路程÷时间可简记为:/v s t=时间=路程÷速度可简记为:/=t s v路程一定,速度与时间成反比速度一定,路程与时间成正比时间一定,路程与速度成正比显然,知道其中的两个量就可以求出第三个量.【例1】一段路程分为上坡、平路、下坡三段,各段路程的长度之比是1:2:3,某人走这三段路所用的时间之比是4:5:6,已知他上坡时每小时行2.5千米,路程全长为20千米,此人走完全程需多少时间?【例2】甲、乙两地相距60千米,自行车队8点整从甲地出发到乙地去,前一半时间每分钟行1千米,后一半时间每分钟行0.8千米。
自行车队到达乙地的时间是几点几分几秒?【例3】某人上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟,已知下山的速度是上山速度的1.5倍,如果上山用了3时50分钟,那么下山用多少时间?【例4】汽车以72千米/时的速度从甲地到乙地,到达后立即以48千米/时的速度返回甲地,求该车的平均速度。
【例5】甲、乙两车往返于A、B两地之间,甲车去时的速度为60千米/时,返回时的速度为40千米/时,乙车往返的速度都是50千米/时,求甲、乙两车往返一次所用的时间比.【例6】从甲地到乙地全部是山路,其中上山路程是下山路程的23,一辆汽车上山速度是下山速度的一半,从甲地到乙地共行7时,这辆汽车从乙地返回甲地需要多少时间?【例7】一辆车从甲地行往乙地,如果把车速提高20%,那么可以比原定时间提前1小时到达;如果以原速度行驶100千米后再将车速提高30%,那么也比原定时间提前1小时到达,求甲、乙两地的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学而思奥数模块之行程问题1、基本行程问题:基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置2、简单的相遇、追及问题:相遇问题:速度和×相遇时间=相遇路程追击问题:追击时间=路程差÷速度差简单的相遇与追及问题各自解题时的入手点及需要注意的地方1.相遇问题:与速度和、路程和有关⑴是否同时出发⑵是否有返回条件⑶是否和中点有关:判断相遇点位置⑷是否是多次返回:按倍数关系走。
⑸一般条件下,入手点从"和"入手,但当条件与"差"有关时,就从差入手,再分析出时间,由此再得所需结果2.追及问题:与速度差、路程差有关⑴速度差与路程差的本质含义⑵是否同时出发,是否同地出发。
⑶方向是否有改变⑷环形时:慢者落快者整一圈(1) 甲、乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?(2) 两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过2.5小时两车相遇。
两个车站之间的铁路长多少千米?(3) 甲、乙两列火车同时从相距988千米的两地相向而行,经过5.2小时两车相遇。
甲列车每小时行93千米,乙列车每小时行多少千米?(1)师徒两人合作加工520个零件,师傅每小时加工30个,徒弟每小时加工20个,几小时以后还有70个零件没有加工?(2)甲、乙两队合挖一条水渠,甲队从东往西挖,每天挖75米;乙队从西往东挖,每天比甲队少挖5米,两队合作8天挖好,这条水渠一共长多少米?(3) 甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米。
已知乙船每小时行42千米,甲船每小时行多少千米?(4)一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇。
已知汽车每小时比自行车多行31.5千米,求汽车、自行车的速度各是多少?(5)两地相距270千米,甲、乙两列火车同时从两地相对开出,经过4小时相遇。
已知甲车的速度是乙车的1.5倍,求甲、乙两列火车每小时各行多少千米?(6)甲、乙两城相距680千米,从甲城开往乙城的普通客车每小时行驶60千米,2小时后,快车从乙城开往甲城,每小时行80千米,快车开出几小时后两车相遇?(7)甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。
乙车每小时行多少千米?(8)A、B两地相距3300米,甲、乙两人同时从两地相对而行,甲每分钟走82米,乙每分钟走83米,已经行了15分钟,还要行多少分钟才可以相遇?(9)甲、乙两列汽车同时从两地出发,相向而行。
已知甲车每小时行45千米,乙车每小时行32千米,相遇时甲车比乙车多行52千米。
求甲乙两地相距多少千米?(10)姐妹俩同时从家里到少年宫,路程全长770米。
妹妹步行每分钟行60米,姐姐骑自行车以每分钟160米的速度到达少年宫后立即返回,途中与妹妹相遇。
这时妹妹走了几分钟?(2001年上海市金山区升级考试卷)(11)小明和小华从甲、乙两地同时出发,相向而行。
小明步行每分钟走60米,小华骑自行车每分钟行190米,几分钟后两人在距中点650米处相遇?(2002年上海市金山区升级考试卷)(12)A、B两地相距300千米,两辆汽车同时从两地出发,相向而行。
各自达到目的地后又立即返回,经过8小时后它们第二此相遇。
已知甲车每小时行45去,千米,乙车每小时行多少千米?3、平均速度:平均速度=总路程÷总时间例题:张师傅驾驶一辆载重汽车从县城出发到省城送货,到达省城后马上卸货并随即沿原路返回。
他驾驶的这辆汽车去时每小时行64千米,返回时每小时行56千米,往返一趟共用去12小时(在省城卸货所用时间略去不计)。
张师傅在省城和县城之间往返一趟共行了多少千米?[题说] 第五届《小数报》数学竞赛初赛第1题答案:716.8(千米)D10–022一辆汽车以每小时60千米的速度从A地开往B地,它又以每小时40千米的速度从B地返回A地,那么这辆汽车行驶的平均速度是__千米/小时[题说] 第六届“祖冲之杯”数学邀请赛第4题答案:48(千米/小时)D10–034王师傅驾车从甲地开往乙地交货。
如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地,可是当到达乙地时,他发现他从甲地到乙地的速度只有每小时55千米。
如果他想按时返回甲地,他应以多大的速度往回开?[题说] 第二届“华杯赛”复赛第6题答案:每小时66千米4、钟面行程:两个速度单位:分针每分钟走6度,时针每分钟走0.5度时钟问题主要有3大类题型:第一类是追及问题(注意时针分针关系的时候往往有两种情况);第二类是相遇问题(时针分针永远不会是相遇的关系,但是当时针分针与某一刻度夹角相等时,可以求出路程和);第三种就是走不准问题,这一类问题中最关键的一点:找到表与现实时间的比例关系。
5、走走停停:行程问题里走走停停的题目应该怎么做画出速度和路程的图。
要学会读图。
每一个加速减速、匀速要分清楚,这有利于你的解题思路。
要注意每一个行程之间的联系。
【题目】甲乙两人同时从一条800环形跑道同向行驶,甲100米/分,乙80米/分,两人每跑200米休息1分钟,甲需多久第一次追上乙?【解答】这样的题有三种情况:在乙休息结束时被追上、在休息过程中被追上和在行进中被追上。
很显然首先考虑在休息结束时的时间最少,如果不行再考虑在休息过程中被追上,最后考虑行进中被追上。
其中在休息结束时或者休息过程中被追上的情况必须考虑是否是在休息点追上的。
由此首先考虑休息800÷200-1=3分钟的情况。
甲就要比乙多休息3分钟,就相当于甲要追乙800+80×3=1040米,需要1040÷(100-80)=52分钟,52分钟甲行了52×100=5200米,刚好是在休息点追上的满足条件。
行5200米要休息5200÷200-1=25分钟。
因此甲需要52+25=77分钟第一次追上乙。
【题目】在400米环形跑道上,A、B两点的跑道相距200米,甲、乙两人分别从A、B 两点同时出发,按逆时针方向跑步,甲每秒跑7米,乙每秒跑5米,他们每人跑100米都停5秒.那么,甲追上乙需要多少秒?【解答】这是传说中的“走走停停”的行程问题。
这里分三种情况讨论休息的时间,第一、如果在行进中追上,甲比乙多休息10秒,第二,如果在乙休息结束的时候追上,甲比乙多休息5秒,第三,如果在休息过程中且又没有休息结束,那么甲比乙多休息的时间,就在这5~10秒之间。
显然我们考虑的顺序是首先看是否在结束时追上,又是否在休息中追上,最后考虑在行进中追上。
有了以上的分析,我们就可以来解答这个题了。
我们假设在同一个地点,甲比乙晚出发的时间在200/7+5=235/7和200/7+10=270/7的之间,在以后的行程中,甲就要比乙少用这么多时间,由于甲行100米比乙少用100/5-100/7=40/7秒。
继续讨论,因为270/7÷40/7不是整数,说明第一次追上不是在乙休息结束的时候追上的。
因为在这个范围内有240/7÷40/7=6是整数,说明在乙休息的中追上的。
即甲共行了6×100+200=800米,休息了7次,计算出时间就是800/7+7×5=149又2/7秒。
注:这种方法不适于休息点不同的题,具有片面性。
在有些行程问题中,既有路程上的前后调头,又有时间上的走走停停,同时又有速度上的前后变化。
遇到此类问题,我们应分析其中的运动规律,把整个运动过程分成几段,再仔细分析每一段中的情况,然后再类推到其它各段中去。
这样既可使运动关系明确、简化,又可减少复杂重复的推理及计算。
例:甲、乙两名运动员在周长400米的环形跑道上进行10000米长跑比赛,两人从同一起跑线同时起跑,甲每分钟跑400米,乙每分钟跑360米,当甲比乙领先整整一圈时,两人同时加速,乙的速度比原来快,甲每分比原来多跑18米,并且都以这样的速度保持到终点。
问:甲、乙两人谁先到达终点?停走问题这类题抓住一个关键--假设不停走,算出本来需要的时间。
【例1】龟兔赛跑,全程5.4千米,兔子每小时跑25千米,乌龟每小时跑4千米,乌龟不停的跑,但兔子却边跑边玩,它先跑1分,然后再玩15分,又跑2分,玩15分,再跑3分,玩15分,……,那么先到达终点的比后到达终点的快几分钟呢?【例2】在一条公路上,甲、乙两个地点相距600米。
张明每小时行走4千米,李强每小时5千米。
8点整,他们两人从甲、乙两地同时出发相向而行,1分钟后他们都的掉头反向而行,再过3分钟,他们又掉头相向而行,依次按照1,3,5,7,9,……分钟数掉头行走,那么,张、李二人相遇时间是8点几分呢?5.多人行程---这类问题主要涉及的人数为3人,主要考察的问题就是求前两个人相遇或追及的时刻,第三个人的位置,解题的思路就是把三人问题转化为寻找两两人之间的关系。
【例1】有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲于乙、丙背向而行。
甲每分40米,乙每分38米,丙每分36米。
出发后,甲和乙相遇后3分钟又与丙相遇。
这花圃的周长是多少?【例2】甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米。
甲从A地,乙和丙从B出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地的距离。
【题目】在400米环形跑道上,A、B两点的跑道相距200米,甲、乙两人分别从A、B 两点同时出发,按逆时针方向跑步,甲每秒跑7米,乙每秒跑5米,他们每人跑100米都停5秒.那么,甲追上乙需要多少秒?这里分三种情况讨论休息的时间,第一、如果在行进中追上,甲比乙多休息10秒,第二,如果在乙休息结束的时候追上,甲比乙多休息5秒,第三,如果在休息过程中且又没有休息结束,那么甲比乙多休息的时间,就在这5~10秒之间。
显然我们考虑的顺序是首先看是否在结束时追上,又是否在休息中追上,最后考虑在行进中追上。
有了以上的分析,我们就可以来解答这个题了。
我们假设在同一个地点,甲比乙晚出发的时间在200/7+5=235/7和200/7+10=270/7的之间,在以后的行程中,甲就要比乙少用这么多时间,由于甲行100米比乙少用100/5-100/7=40/7秒。
继续讨论,因为270/7÷40/7不是整数,说明第一次追上不是在乙休息结束的时候追上的。
因为在这个范围内有240/7÷40/7=6是整数,说明在乙休息的中追上的。