学而思行程问题第6讲
四年级奥数行程问题及火车过桥问题的例题讲解练习答案
火车过桥问题的例题讲解1学而思奥数网奥数专题(行程问题) 火车过桥1、四年级行程问题:火车过桥难度:中难度:一人每分钟60米的速度沿铁路步行,一列长144米的客车对面而来,从他身边通过用了8秒,求列车的速度?答:2、四年级行程问题:火车过桥难度:中难度:两列火车,一列长120米,每秒钟行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要几秒钟?答:3、四年级行程问题:火车过桥难度:中难度:某人步行的速度为每秒钟2米,一列火车从后面开来,越过他用了10秒钟,已知火车的长为90米,求列车的速度。
答:四年级行程问题:火车过桥难度:中难度:一辆长60米的火车以每秒钟50米的速度行驶,在它的前面有一辆长40米的火车以每秒钟30米的速度行驶.当快车车头及慢车车尾相遇到车尾离开车头需要几秒钟?答:4、四年级行程问题:火车过桥难度:中难度:两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米。
两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长。
答:学而思奥数网奥数专题(行程问题)1、四年级火车过桥问题答案:解答:【可以看成一个相遇问题,总路程就是车身长度,所以火车及人的速度之和是144÷8=18米,而人的速度是每分钟60米,也就是每秒钟1米,所以火车的速度是每秒钟18-1=17米.2、四年级火车过桥问题答案:解答:如图:从车头相遇到车尾离开,两列火车一共走的路程就是两辆火车的车身长度之和,即120+160=280米,所以从车头相遇到车尾离开所用时间为280÷(20+15)=8秒.3、四年级火车过桥问题答案:解答:【分析】此题是火车的追和问题。
火车越过人时,车比人多行驶的路程是车长90米,追和时间是10秒,所以速度差是90÷10=9米/秒,因此车速是2+9=11米/秒。
4、四年级火车过桥问题答案:解答:此题是一个追和问题,要求追和时间,需要求出速度差和路程差.快车车头及慢车车尾相遇到车尾离开车头,快车要比慢车多行60+40=100米,即100米是路程差,因此追和时间为:100÷(50-30)=5秒.5、四年级火车过桥问题答案:解答:此题是两列火车的相遇问题,路程和正好是乙车的长度,速度和是36+54=90千米/时,时间是14秒,乙车长是90×1000×14÷3600=350米。
学而思奥数模块之行程问题
学而思奥数模块之行程问题1、基本行程问题:基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置2、简单的相遇、追及问题:相遇问题:速度和×相遇时间=相遇路程追击问题:追击时间=路程差÷速度差简单的相遇与追及问题各自解题时的入手点及需要注意的地方1.相遇问题:与速度和、路程和有关⑴是否同时出发⑵是否有返回条件⑶是否和中点有关:判断相遇点位置⑷是否是多次返回:按倍数关系走。
⑸一般条件下,入手点从"和"入手,但当条件与"差"有关时,就从差入手,再分析出时间,由此再得所需结果2.追及问题:与速度差、路程差有关⑴速度差与路程差的本质含义⑵是否同时出发,是否同地出发。
⑶方向是否有改变⑷环形时:慢者落快者整一圈(1) 甲、乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?(2) 两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过2.5小时两车相遇。
两个车站之间的铁路长多少千米?(3) 甲、乙两列火车同时从相距988千米的两地相向而行,经过5.2小时两车相遇。
甲列车每小时行93千米,乙列车每小时行多少千米?(1)师徒两人合作加工520个零件,师傅每小时加工30个,徒弟每小时加工20个,几小时以后还有70个零件没有加工?(2)甲、乙两队合挖一条水渠,甲队从东往西挖,每天挖75米;乙队从西往东挖,每天比甲队少挖5米,两队合作8天挖好,这条水渠一共长多少米?(3) 甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米。
已知乙船每小时行42千米,甲船每小时行多少千米?(4)一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇。
学而思行程问题第6讲
速度变化的行程'问题【例1】甲、乙两车分别从A、B两地同时出发相向而行,6小时后相遇在C点,如果甲车速度不变,乙'车每小时多行5千米,且两车还从A、B两地同时出发相向而行,则相遇地点距C点12千米,如果乙车速度不变,甲车每小时多行5千米,且两车还从A、B 两地同时出发相向而行,而相遇地点距C点16千米,甲车原来每小时行多少千米?【例2】甲、乙二人分别从A、B两地同时出发相向而行,5小时后相遇在C点,如果甲速度不变,乙每小时多行4千米,且甲、乙还从A、B两地同时出发相向而行,则相遇点D距C点10千米,如果乙速度不变,甲每小时多行3千米,且甲、乙还从A、B两地同时出发相向而行,则相遇点B距C点5千米,间:甲原来的速度是每小时多少千米?【例3】小红和小强同时从家里出发相向而行,小红每分走52米,小强每分走70米,二人在途中的A处相遇,若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇,小红和小强两人的家相距多少米?【例4】甲、乙两车分别从A、B两地同时出发,相向而行,6小时相遇,如果甲早出发2小时,甲乙相遇时,甲已经走过AB 的中点后还走了144千米,如果乙早出发2 小时,甲乙相遇时,甲还差48千米才到AB的中点,求甲、乙两人的速度差。
【例5】甲、乙二人在同一条椭圆形跑道上作特殊训练,他们同时以同一地出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈,跑第一圈时,乙的速度是甲的速度的23,甲跑第二圈的速度比第一圈提高了13,乙跑第二圈的速度提高了15,已知沿跑道看从甲乙两人第二次相遇点到第一次相遇点的最短路程是190米,问这条跑道长多少米?与数论有关的行程问题与行程杂题(上)【例1】甲乙二人从相距60千米的两地同时相向而行,6时后相遇,如果两人的速度各增加1千米/时,那么相遇的地点距前一次相遇的地点1 千米,问:甲乙二人的速度各是多少?【例2】甲、乙两车分别从A、B两地同时相向开出,4时后两车相遇,然后各自继续行驶3小时,此时甲车距B地10千米,乙车距A地80千米。
四年级奥数:行程问题及火车过桥问题的例题讲解、练习、答案
火车过桥问题的例题讲解1学而思奥数网奥数专题 (行程问题) 火车过桥1、四年级行程问题:火车过桥难度:中难度:一人每分钟60米的速度沿铁路步行,一列长144米的客车对面而来,从他身边通过用了8秒,求列车的速度?答:2、四年级行程问题:火车过桥难度:中难度:两列火车,一列长120米,每秒钟行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要几秒钟?答:3、四年级行程问题:火车过桥难度:中难度:某人步行的速度为每秒钟2米,一列火车从后面开来,越过他用了10秒钟,已知火车的长为90米,求列车的速度。
答:四年级行程问题:火车过桥难度:中难度:一辆长60米的火车以每秒钟50米的速度行驶,在它的前面有一辆长40米的火车以每秒钟30米的速度行驶.当快车车头与慢车车尾相遇到车尾离开车头需要几秒钟?答:4、四年级行程问题:火车过桥难度:中难度:两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米。
两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长。
答:学而思奥数网奥数专题(行程问题)1、四年级火车过桥问题答案:解答:【可以看成一个相遇问题,总路程就是车身长度,所以火车与人的速度之和是144÷8=18米,而人的速度是每分钟60米,也就是每秒钟1米,所以火车的速度是每秒钟18-1=17米.2、四年级火车过桥问题答案:解答:如图:从车头相遇到车尾离开,两列火车一共走的路程就是两辆火车的车身长度之和,即120+160=280米,所以从车头相遇到车尾离开所用时间为280÷(20+15)=8秒.3、四年级火车过桥问题答案:解答:【分析】此题是火车的追及问题。
火车越过人时,车比人多行驶的路程是车长90米,追及时间是10秒,所以速度差是90÷10=9米/秒,因此车速是2+9=11米/秒。
4、四年级火车过桥问题答案:解答:此题是一个追及问题,要求追及时间,需要求出速度差和路程差.快车车头与慢车车尾相遇到车尾离开车头,快车要比慢车多行60+40=100米,即100米是路程差,因此追及时间为:100÷(50-30)=5秒.5、四年级火车过桥问题答案:解答:此题是两列火车的相遇问题,路程和正好是乙车的长度,速度和是36+54=90千米/时,时间是14秒,乙车长是90×1000×14÷3600=350米。
学而思奥数网奥数专题 (行程问题)
学而思奥数网奥数专题 (行程问题)1、六年级行程问题:多人行程难度:中难度甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;当乙跑到B时,丙离B还有24米。
问:(1) A, B相距多少米?(2)如果丙从A跑到B用24秒,那么甲的速度是多少?2、五年级行程问题:多人行程难度:高难度甲乙丙三人同时从东村去西村,甲骑自行车每小时比乙快12公里,比丙快15公里,甲行3.5小时到达西村后立刻返回.在距西村30公里处和乙相聚,问:丙行了多长时间和甲相遇?3、五年级行程问题:多人行程难度:中难度甲、乙、丙三辆车同时从A地出发到B地去,出发后6分甲车超过了一名长跑运动员,2分后乙车也超过去了,又过了2分丙车也超了过去。
已知甲车每分走1000米,乙车每分走800米,丙车每分钟走多少米?4、五年级行程问题:多人行程难度:中难度甲、乙、丙三辆车先后从A地开往B地,乙比丙晚出发5分,出发后45分追上丙;甲比乙晚出发15分,出发后1时追上乙。
甲和丙的速度比是多少?5、五年级行程问题:多人行程难度:高难度张、李、赵3人都从甲地到乙地.上午6时,张、李两人一起从甲地出发,张每小时走5千米,李每小时走4千米.赵上午8时从甲地出发.傍晚6时,赵、张同时达到乙地.那么赵追上李的时间是几时?学而思奥数网奥数专题 (行程问题) 多人行程1. 五年级行程问题:多人行程难度:高难度甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为60千米/时和48千米/时。
有一辆迎面开来的卡车分别在他们出发后 6时、7时、8时先后与甲、乙、丙三辆车相遇。
求丙车的速度。
解答:解题思路:(多人相遇问题要转化成两两之间的问题,咱们的相遇和追击公式也是研究的两者。
另外ST图也是很关键)第一步:当甲经过6小时与卡车相遇时,乙也走了6小时,甲比乙多走了6 60-48 6=72千米;(这也是现在乙车与卡车的距离)第二步:接上一步,乙与卡车接着走1小时相遇,所以卡车的速度为72-48 1=24第三步:综上整体看问题可以求出全程为:(60+24) 6=504或(48+24) 7=504第四步:收官之战:504 8-24=39(千米)注意事项:画图时,要标上时间,并且多人要同时标,以防思路错乱!2. 五年级行程问题:多人行程难度:高难度李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。
四年级奥数行程问题及火车过桥问题的例题讲解练习答案
火车过桥问题的例题讲解1学而思奥数网奥数专题 (行程问题) 火车过桥1、四年级行程问题:火车过桥难度:中难度:一人每分钟60米的速度沿铁路步行,一列长144米的客车对面而来,从他身边通过用了8秒,求列车的速度?答:2、四年级行程问题:火车过桥难度:中难度:两列火车,一列长120米,每秒钟行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾分开须要几秒钟?答:3、四年级行程问题:火车过桥难度:中难度:某人步行的速度为每秒钟2米,一列火车从后面开来,越过他用了10秒钟,已知火车的长为90米,求列车的速度。
答:四年级行程问题:火车过桥难度:中难度:一辆长60米的火车以每秒钟50米的速度行驶,在它的前面有一辆长40米的火车以每秒钟30米的速度行驶.当快车车头及慢车车尾相遇到车尾分开车头须要几秒钟?答:4、四年级行程问题:火车过桥难度:中难度:两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米。
两车错车时,甲车上一乘客发觉:从乙车车头经过他的车窗时开场到乙车车尾经过他的车窗共用了14秒,求乙车的车长。
答:学而思奥数网奥数专题(行程问题)1、四年级火车过桥问题答案:解答:【可以看成一个相遇问题,总路程就是车身长度,所以火车及人的速度之和是144÷8=18米,而人的速度是每分钟60米,也就是每秒钟1米,所以火车的速度是每秒钟18-1=17米.2、四年级火车过桥问题答案:解答:如图:从车头相遇到车尾分开,两列火车一共走的路程就是两辆火车的车身长度之和,即120+160=280米,所以从车头相遇到车尾分开所用时间为280÷(20+15)=8秒.3、四年级火车过桥问题答案:解答:【分析】此题是火车的追及问题。
火车越过人时,车比人多行驶的路程是车长90米,追刚好间是10秒,所以速度差是90÷10=9米/秒,因此车速是2+9=11米/秒。
4、四年级火车过桥问题答案:解答:此题是一个追及问题,要求追刚好间,须要求出速度差和路程差.快车车头及慢车车尾相遇到车尾分开车头,快车要比慢车多行60+40=100米,即100米是路程差,因此追刚好间为:100÷(50-30)=5秒.5、四年级火车过桥问题答案:解答:此题是两列火车的相遇问题,路程和正好是乙车的长度,速度和是36+54=90千米/时,时间是14秒,乙车长是90×1000×14÷3600=350米。
三年级学而思暑假班6——9讲知识点总结
暑假班6——9讲重点难点复习【第6讲】乘车坐船的策略一、乘车坐船(一)有船主总人数÷每船载客数(除船主外)=商……余数1、无余数。
运的次数=商。
2、有余数。
运的次数=商+1渡的次数=运的次数×2-1.(二)无船主关键是先确定1个人当船主。
(总人数-1)÷每船载客数(除船主外)=商……余数1、无余数。
运的次数=商2、有余数。
运的次数=商+1.二、最优策略1、最合理。
(一次运完,全坐满)2、最合算。
(只要运完、可以有空位,钱最少)【第7讲】倍数问题与图解法一、和倍问题一倍数=和÷(倍数+1)(一)多则减、少则加。
(二)经典类型:1、直接计算型。
2、和增多或减少。
3、平均数求和。
和=平均数×个数4、统一单位。
5、除法算式中。
被除数=除数×商+余数二、差倍问题一倍数=差÷(倍数-1)经典类型:1、直接计算型2、年龄差永不变。
3、移多补少求差。
差=移动数×24、数射线求差。
三、和差问题大数=(和+差)÷2;小数=(和-差)÷2类型:1、直接计算型。
2、多步和差。
【第8讲】数字谜一、个位分析法二、高位分析法三、进位、借位分析法越加越少,一定有进位。
两数相加,最多进1;三数相加,最多进2.四、相同抵消五、化同为乘六、化减为加(若有楼梯,一定先看高位)【第9讲】用什么量一、最大和最小在一条直线上,某物体与A、B之间的距离:1、物体在A、B之间。
距离=A+B2、物体在A、B同侧。
距离=大-小。
二、立体图形1、方块数:分层数。
本层个数=本层看见的+上层个数2、方格数:(上+左+前)×2.三、砝码问题1、砝码放同侧:1、2、4、8……2、砝码放两侧:1、3、9、27……。
六年级数学行程问题四种类型专讲完整版讲解
六年级行程问题专讲第一部分:相遇问题知识概述:行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个以上物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题。
数量关系:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度注:(1)在处理相遇问题时,一定要注意公式的使用时二者开始运动那一刻所处的状态;(2)在行程问题里所用的时间都是时间段,而不是时间点(非常重要);(3)无论是在哪类行程问题里,只要是相遇,就与速度和有关。
解题秘诀:(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。
(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。
典型例题:例1.东西两地相距60千米,甲骑自行车,乙步行,同时从两地出发,相对而行,3小时后相遇。
已知甲每小时的速度比乙快10千米,二人每小时的速度各是多少千米?习题:一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,相向而行,汽车每小时行50千米,摩托车每小时行40千米,8小时两车相距多少千米?例2.甲港和乙港相距662千米,上午9点一艘“名士”号快艇从甲港开往乙港,中午12点另一艘“日立”号快艇从乙港开往甲港,到16点两艇相遇,“名士”号每小时行54千米,“日立”号的速度比“名士”号快多少千米?习题:甲乙两地的路程是600千米,上午8点客车以平均每小时60千米的速度从甲地开往乙地。
货车以平均每小时50千米的速度从乙地开往甲地。
要使两车在全程的中点相遇,货车必须在上午几点出发?例3.甲骑摩托车,乙骑自行车,同时从相距126千米的A 、B 两城出发相向而行。
3小时后,在离两城中点处24千米的地方,甲、乙二人相遇。
【奥数】六年级下册数学奥数课件-第6讲《变速行程问题(二)》全国通用
巩固提升
作业1:哼哼去奶奶家,途中要经过泥路、土路和水泥路各一段,路程比是3:6:15,已知哼哼在三种路段上的行走的速度比为2:3:5,且在土路上行走的时间是20分钟;那么哼哼去奶奶家路上一共花了多少分钟? 答案:65分钟
mathematics
巩固提升
作业2:(1)丽丽从家走到学校,如果速度提高五分之一,会早5分钟到,按原来的速度需要多长时间到? (2)丽丽从学校走到家,如果速度减少五分之一,会晚6分钟到,按原来的速度需要多长时间到? 答案:(1)30分钟;(2)24分钟
练习3:叔叔车回家,原计划按照40千米/时的速度行驶,行驶到路程的一半时发现之前的速度只有30千米/时,那么在后一半路程中,速度必须达到多少千米时才能准时到家?答案:60千米/小时
mathematics
例题讲解
mathematics
例题讲解
例题4:喜羊羊乘飞船从地球村到火星村,如果将速度提高五分之一,就可比预定时间提前半小时赶到;如果先按原速度行驶720万千米。再将速度提高三分之一,也可以比预定时间提前半小时到,请问地球村与火星村之间的路程是多少万千米?分析:画出线段图,结合正反比例解题.答案:2160万千米
练习1:小红帽去姥姥家,途中要经过上坡、平路和下坡各一段,路程比是3:2:1,已知小红帽在三种路段上走的速度比为3:4:5,且在平路上行走的时间是10分钟,那么小红帽去姥姥家路上一共花了多少分钟?答案:34分钟
学而思行程问题-火车过桥
为追及问题,找路程差和速度差,题目中路程差为两车的车长之和。
5
咨询电话:85513391 10、 ★★★有两列同方向行驶的火车,快车每秒行 30 米,慢车每秒行 22 米。 如果从两车头对齐开始算,则行 24 秒后快车超过慢车;如果从两车尾对齐开始 算,则行 28 秒后快车超过慢车,那么,两车长分别是多少?如果两车相对行驶, 两车从车头重叠起到车尾相离需要经过多少时间?
100
车的路程
人和车同向而行,人和车头相遇,画图时人和车头对齐(红色部分),
车完全超过人,人和车尾相遇,画图时人和车尾对齐(绿色部分)
ቤተ መጻሕፍቲ ባይዱ
车比人多走一个车长,走的时间都为 10 秒,
解法一:人走的路程:2×10=20(米)
车走的路程:20+100=120(米)
火车的速度:120÷10=12(米/秒)
解法二:车比人共多走一个车长,即多走 100 米,走了 10 秒钟
?
180
先求出第 1 棵树到第 61 棵树之间的路程,
车的路程
第 1 棵树到第 61 棵树之间的间隔共 61-1=60(个)
每两棵树间隔 2 米,路程为 60×2=120(米)
火车走的路程:120+180=300(米)
火车的速度: 300÷15=20(米/秒)
单位转换:20 米/秒=20×60=1200 米/分钟
7
咨询电话:85513391 如图所示。火车与甲同向,经过甲时火车比甲多走一个车长,时间为 8 秒,火车
的速度用 车 表示,甲乙速度相同,都用 人 表示,火车长用 L 表示
火车超过甲时,火车比人多走的路程:
L=8× 车 -8× 人
火车经过乙时,火车与乙相向而行,人共走一个车长:L=7× 车 +7× 人
三年级学而思 行程问题
一艘船在逆水中的速度为15千米/小时,水流速度为3千米/小时。问该船逆流而 上需要多少时间才能行驶60千米?
05
相对速度问题
相对速度问题的定义
相对速度问题是指两个物体在相对运 动中,由于参照物的不同而产生的速 度变化的问题。
在相对速度问题中,我们需要考虑两 个物体的速度、方向和相对位置,以 确定它们之间的相对运动关系。
例题2
甲、乙两车同时从A、B两地出发,同向而行,甲车的速度为80千米/小时,乙车的速度为 60千米/小时,甲车追上乙车时,两车共行驶了多少小时?
例题3
甲、乙两车从同一地点同时出发,沿同一路线追赶前面的丙车,甲车的速度为120千米/ 小时,乙车的速度为100千米/小时,丙车的速度为90千米/小时,最终甲车追上了丙车, 问此时乙车距离丙车多远?
相对速度问题的实例解析
甲乙两车相向而行,甲车的速度为50km/h,乙车的速度为 30km/h,两车相遇时,它们的相对速度是多少?
甲乙两车同向而行,甲车的速度为50km/h,乙车的速度为 30km/h,两车相距10km时,乙车追上甲车需要多少时间?
THANKS
感谢观看
பைடு நூலகம்
得出结论
根据解的合理性得出结论,解 决实际问题。
追及问题的实例解析
示例1
甲、乙两辆汽车在同一直线上同向行驶,甲车的速度为60 km/h,乙车的速度 为40 km/h,乙车从甲车后面驶来,两车相距100 km,问乙车需要多少时间 才能追上甲车?
示例2
甲、乙两辆汽车在同一直线上相向而行,甲车的速度为50 km/h,乙车的速度 为30 km/h,两车相距20 km,问两车相遇需要多少时间?
建立数学模型
根据运动场景和已知条件,建立速度、时间 、路程之间的数学关系式。
数学广角(行程问题)ppt
• 专题3
简介篇
专题1
专题2 专题3
• 张强老师沿江乘船顺流而下前往A 港口,途中不慎将一袋宝石(宝石 会沉入水中)和一个空酒葫芦(葫 芦会随水漂流)掉入江中,到达A 港时,他将草帽丢入江中(草帽也 会随水漂流),并下船去集市上买 了一块表和一套潜水服,返回船上 时正好中午12点。他立刻乘船继 续沿江向下航行,并13点追上之 前掉入江中的酒葫芦。14点时有 追上自己的草帽,于是立刻返航, 回到A港时17点?
能力提升
两地相距196千米, 甲、乙两辆汽车同时 从两地相对开出, 7/3小相遇,甲、乙 的速度比是4:3,甲 、乙两车每小时各行 多少千米?
• 解:先根据”相遇路程÷ 相遇时间=速度和“求出甲 、乙两辆汽车每小时共行 的千米数,再根据”甲、 乙的速度比是4:3“,把两 辆汽车每小时共行的千米 数按4:3进行分配,分别 求出甲乙两辆汽车每小时 各行的千米数。
训练3
甲乙两辆
甲、乙两辆汽车同时 从东、西两地相向开 出,甲车每小时行56 千米,乙车每小时行 48千米,两车在距离 中点32千米处相遇。 东、西两地相距多少 千米?
• 解:要求东西两地相距多少千米, 必须知道两辆汽车每小时共行多少 千米及相遇时间。现在已经知道两 辆汽车每小时共行56+48=104(千 米),再根据“两辆汽车在距离中 点32千米处相遇”,可以知道相遇 时甲比乙一共多行32 ×2=64(千 米),甲车每小时比乙车多行5648=8(千米)64 ÷8=8(小时) 辆汽车8小时相遇,根据“速度和 相遇时间=相遇路程”求出两地相 的千米数。即:104 ×8=832(千米 答:东西两地相距的千米数是832千 米。
TEXT
问题:
ADD YOUR TITLE
行程问题辅导讲义 解析版讲解
一.没一般行程问题D10–002一辆货车以每小时65千米的速度前进,一辆客车在它后面1500米,以每小时80千米速度同向行驶,客车超过货车前1分钟,两车相距__米。
题说:南京市第三届“兴趣杯”少年数学邀请赛初赛C卷第9题答案:250(米)解析:要求客车超过火车前1分钟两车相距多少米,只需求两车行驶1分钟所产生的路程差即可,但是要注意的问题是要先进行单位换算:(80-65)×160=0.25(千米)=250(米)D10–003 两辆汽车同时从某地出发到同一目的地,路程165千米,甲车比乙车早到0.8小时,当甲车到达目的地时,乙车离目的地24千米。
甲车行驶全程用了多少小时?题说:第一届《小数报》数学竞赛第二试第4题答案:4.7小时解析:根据题意可知乙行驶24千米所用时间是0.8小时,所以乙的速度是24÷0.8=30千米/小时,乙行驶全程所用时间是165÷30=5.5小时,甲行驶全程所用时间是5.5-0.8=4.7小时。
D10–006一个人从县城骑车去乡办厂。
他从县城骑车出发,用30分钟时间行完了一半路程。
然后,他加快了速度,每分钟比原来多行50米。
又骑了20分钟后,他从路旁的里程标志牌上知道,必须再骑2千米才能赶到乡办厂,求县城到乡办厂之间的总路程。
题说:第五届《小数报》数学竞赛决赛第2题答案:18000(米)解析:由题意可知此人10分钟所行驶的路程是50×20+2000=3000米,从而求出此人的速度:3000÷10=300米/分钟,那么县城到乡办厂之间的总路程是300×30×2=18000米。
D10–007小明每天早晨6:50从家出发,7:20到校。
老师要求他明天提早6分钟到校。
如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。
问:小明家距学校多远?题说:第六届《小数报》数学竞赛初赛第1题答案:3000(米)解析:小明24分钟比原来多行驶25×24=600米,那么它行驶的正常速度是600÷6=100米/分钟,所以小明家距学校100×30=3000米。
学而思行程专题第1~4讲
学习目标本讲主要通过例题加深对行程问题的三个基本数量关系的理解。
在历年小升初与各类小学竞赛试卷中,行程问题的试题占的比值是相当大的,所以学好行程问题不但对于应对小升初考试和各类数学竞赛有着举足轻重的关键性作用,而且也为初中阶段的学习打下良好的基础。
我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题. 行程问题主要涉及时间 (t)、速度 (v)和路程 (.s)这三个基本量,它们之间的关系如下: 路程 = 速度×时间 可简记为:s vt = 速度 = 路程÷时间 可简记为:/v s t = 时间 = 路程÷速度 可简记为:/t s v = 路程一定,速度与时间成反比 速度一定,路程与时间成正比 时间一定,路程与速度成正比显然,知道其中的两个量就可以求出第三个量.【例 1】 一段路程分为上坡、平路、下坡三段,各段路程的长度之比是 1:2:3,某人走这三段路所用的时间之比是 4:5:6,已知他上坡时每小时行2.5千米,路程全长为 20千米,此人走完全程需多少时间?【例 2】甲、乙两地相距60千米,自行车队 8点整从甲地出发到乙地去,前一半时间每分钟行 1千米,后一半时间每分钟行0.8千米。
自行车队到达乙地的时间是几点几分几秒?【例3】某人上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟,已知下山的速度是上山速度的1.5倍,如果上山用了3 时50分钟,那么下山用多少时间?【例4】汽车以72千米/时的速度从甲地到乙地,到达后立即以48千米/时的速度返回甲地,求该车的平均速度。
【例5】甲、乙两车往返于A、B两地之间,甲车去时的速度为60千米/时,返回时的速度为40千米/时,乙车往返的速度都是50千米/时,求甲、乙两车往返一次所用的时间比.【例6】从甲地到乙地全部是山路,其中上山路程是下山路程的23,一辆汽车上山速度是下山速度的一半,从甲地到乙地共行7时,这辆汽车从乙地返回甲地需要多少时间?【例7】一辆车从甲地行往乙地,如果把车速提高20%,那么可以比原定时间提前1 小时到达;如果以原速度行驶100千米后再将车速提高30%,那么也比原定时间提前 1 小时到达,求甲、乙两地的距离。
学而思初一数学秋季班第6讲.含参一元一次方程的解法.尖子班.教师版
解方程满分晋级阶梯漫画释义6含参一元一次 方程的解法方程4级 方程中的设元 方程3级含参一元一次方程的解法方程2级 二元一次方程组的 概念及基本解法题型切片(四个) 对应题目题型目标 复杂一元一次方程 例1;例2;练习1; 同解一元一次方程 例3;例8;练习2; 含参一元一次方程 例4;例5;练习3;练习4 绝对值方程例6;例7;练习5;练习6对于复杂的一元一次方程,在求解过程中通常会采用一些特殊的求解方法,需要同学们掌握,如:解一元一次方程中()ax bx a b x +=+的应用.【引例】 解方程:111123452345x x x x +++=+++. 【解析】 法一:1111111123452345x ⎛⎫+++=+++ ⎪⎝⎭,所以1x =;法二:111102345x x x x ----+++=,1111()(1)02345x +++-=,所以1x =.【点评】 注意传递给学生两种解决此类问题的思路.【例1】 ⑴解方程:2152234x x +--=.(西城期末) ⑵解方程:1123(23)(32)11191313x x x -+-+=【解析】 ⑴ 去分母(方程两边同乘以12),得 4(21)3(52)24x x +--=.去括号,得 8415624x x +-+=. 移项,得 8152446x x -=--. 合并同类项,得 714x -=. 系数化为1,得 2x =-.∴ 原方程的解是 2x =-.⑵ 原方程可变为111(23)(23)(23)0111913x x x ---+-=,即111(23)0111319x ⎛⎫+--= ⎪⎝⎭, 又1110111319+-≠,所以230x -=,即32x =. 点评:若0ab =,则0a =或0b =.复杂一元一次方程思路导航题型切片【例2】 解方程:2009122320092010x xx+++=⨯⨯⨯【解析】 1112009122320092010x ⎛⎫+++= ⎪⨯⨯⨯⎝⎭,1120092010x ⎛⎫-= ⎪⎝⎭即200920092010x =, 故2010x =.若两个一元一次方程的解有等量关系,先分别求出这两个方程的解,再通过数量关系列等式. 两个解的数量关系有很多种,比如相等、互为相反数、多几倍等等.【引例】 当m =________时,方程5443x x +=-的解和方程2(1)2(2)x m m +-=-的解相同.(北京四中期中考试)【解析】 法一:方程5443x x +=-的解为7x =-,方程2(1)2(2)x m m +-=-的解为362m x -=.由题意解相同,所以3672m --=,解得83m =-. 法二:方程5443x x +=-的解为7x =-,把7x =-代入2(1)2(2)x m m +-=-中,求得83m =-.【点评】同解方程问题,先分别求出这两个方程的解,再让解相等,或求出一个方程的解,把解代入另一个方程.【例3】 ⑴已知:关于x 的方程42x k -=与()322x k +=的解相同,求k 的值及相同的解.(石景山期末)⑵若关于x 的方程5342x x =-和12524ax ax x -=+有相同的解,求a 的值. ⑶若()40k m x ++=和(2)10k m x --=是关于x 的同解方程,求2km-的值.【解析】 ⑴ 22643k k +-=,解得6k =,2x ∴= ⑵ 方程5342x x =-的解为8x =-,把8x =-代入12524a x ax x -=+中,求得12a =.⑶ 法一:方程()40k m x ++=的解为4x k m-=+,方程(2)10k m x --=的解为12x k m =-,所以412k m k m -=+-,所以3m k =,所以523k m -=-. 法二:方程(2)10k m x --=等号两边乘以4-得(48)40m k x -+=,故同解一元一次方程思路导航48k m m k +=-,523k m -=-.当方程的系数用字母表示时,这样的方程称为含字母系数的方程,含字母系数的方程总能化成ax b =的形式,方程ax b =的解根据a b ,的取值范围分类讨论.① 当0a ≠时,方程有唯一解bx a=.② 当0a =且0b =时,方程有无数个解,解是任意数. ③ 当0a =且0b ≠时,方程无解.【引例】 当a ,b 时,方程1ax x b +=-有唯一解;当a ,b 时,方程1ax x b +=-无解;当a ,b 时,方程1ax x b +=-有无穷多个解. 【解析】 1a b ≠,为任意数;11a b =≠-,;11a b ==-,. 【例4】 ⑴ 已知:关于x 的方程32ax x b +=-有无数多个解,试求2011()5aba b x x a b a b+-=-++ 的解.⑵ 若a 、b 为定值,关于x 的一元一次方程2236kx a x bk+--=,无论k 为何值时,它的解总是1x =,求23a b +的值.(北师大附中期中)【解析】 ⑴ 原方程整理为(2)3a x b -=--,因为当20a -=且30b --=该方程有无数多组解,所以23a b ==-,,故把23a b ==-,代入2011()5aba b x x a b a b+-=-++得610x x --=, 解得107x =-.⑵ 方程2236kx a x bk+--=可化为:(41)212k x a bk -++=,由该方程总有解1x =可知41212k a bk -++=,即(4)132b k a +=-,又k 为任意值,故401320b a +=⎧⎨-=⎩,231a b +=.【例5】 解关于x 的方程()()134m x n x m -=-【解析】 去分母,化简可得:(43)43m x mn m -=-当34m ≠时,方程的解为4343mn mx m -=-;当34m =,34n =时,解为任意值;思路导航含参一元一次方程当34m =,34n ≠时,方程无解.绝对值符号中含有未知数的方程叫绝对值方程,解绝对值方程的基本方法是:去掉绝对值符号,把绝对值方程转化为一般的方程求解1.形如ax b c +=的方程,可分如下三种情况讨论: ⑴0c <,则方程无解;⑵0c =,则根据绝对值的定义可知,0ax b +=; ⑶0c >,则根据绝对值的定义可知,ax b c +=±. 2.形如ax b cx d +=+型的绝对值方程的解法:首先根据绝对值的定义得出,()ax b cx d +=±+,且0cx d +≥;分别解方程ax b cx d +=+和()ax b cx d +=-+,然后将得出的解代入0cx d +≥检验即可. 3.含多重绝对值符号的绝对值方程的解法:主要方法是根据定义,逐层去掉绝对值.【引例】 解绝对值方程:15x -=【解析】 15x -=可知,15x -=或15x -=-,故6x =或4x =-.【例6】 若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,下列选项正确的是( )A .m n k <<B .m n k ≤≤C .m n k >>D .m n k ≥≥【解析】 C .【例7】 解绝对值方程:⑴ 4812x +=⑵ 4329x x +=+⑶ 方程125x x -++=的解是 .(北京四中期中)【解析】 ⑴由4812x +=可知,4812x +=±,故1x =或5x =-.⑵方程4329x x +=+可化为,43(29)x x +=±+,且290x +≥,解方程4329x x +=+可得,3x =;解方程43(29)x x +=-+可得,2x =-,代入检验可知,3x =,2x =-均满足题意.⑶法一:1x -与2x +的零点分别是1x =和2x =-.由“零点分段法”,分情况讨论: 若2x <-,则原方程可化为(1)25x x ---+=(),解得32x =-<-,满足题意,故3x =-是原方程的解;若21x -≤≤,则原方程可化为(1)25x x --++=(),无解;若1x >,则原方程可化为(1)25x x -++=(),解得21x =>,满足题意,故2x =也思路导航绝对值方程是方程的解.综上:方程125x x -++=的解为3x =-或2x =. 法二:用绝对值的几何意义画数轴即可解决.【选讲题】【例8】 已知:333n x m n p ++-=与2321m x m np --+=-都是关于x 的一元一次方程,且它们的解互为相反数,求关于x 的方程115x p -+=的解.(人大附中期中练习)【解析】 由题意可知,312211n n m m +==-⎧⎧⇒⎨⎨-==⎩⎩,故题中的两个方程变为1x p +=和42x p -=,由上述两个方程的解互为相反数可知,114205p p p -++=⇒=-,故方程115x p -+=变为1111655x x --=⇒-=,从而可知,5x =-或7x =.训练1. 方程3x a b x b c x c a c a b ------++=中,若11100abc a b c≠++≠,则x = . 【解析】 .x a b c =++训练2. 解关于x 方程:4x a b c x b c d x a c d x a b dd a b c------------+++=【解析】 原方程可变()()()()0x a b c d x a b c d x a b c d x a b c d d a b c -+++-+++-+++-++++++=也就是1111[()]0x a b c d a b c d ⎛⎫+++-+++= ⎪⎝⎭当11110a b c d +++=时,原方程有无穷多个解; 当11110a b c d+++≠时,原方程的解为:x a b c d =+++.训练3. 已知关于x 的方程1(1)12x k -=-的解与351148x k x +--=的解相同,求k 的值.【解析】 由 1(1)12x k -=-得 122x k -=- 12x k -=- 12x k =-+ 由351148x k x +--=得()()23518x k x +--=62518x k x +-+= 72x k =-∵两个方程的解相同, ∴1272k k -+=- ∴2k =.训练4. ⑴ 方程158x x -++=的解是 .⑵ 解绝对值方程:35162x x ---= 【解析】 ⑴2x =或6x =-.⑵35162x x ---=或6-,即3572x x -=-或3552x x -=+ 当70x -≥时(即7x ≥),3502x ->,3572x x -=-化为3572x x -=-,解得9x =-.当50x +≥时(5x -≥),若还有3502x -≥(即53x ≥),3552x x -=+,解得15x =.当50x +≥时(5x -≥),若还有3502x -<(即5<3x ),3552x x -=--,解得1x =-.检验这三个解9x =-(舍去),故15x =,1x =-.复杂一元一次方程 巩固练习【练习1】 解方程:0.130.41200.20.5x x +--=【解析】 10x =-. (提示:含有小数的一元一次方程在求解过程中通常是先将小数化成整数)两个一元一次方程解的关系问题 巩固练习【练习2】 已知关于x 的方程3242a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦与3151128x a x +--=有相同的解,求a 的值及方程的解.【解析】 把a 当常数,方程3242a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦的解为37x a =,方程3151128x a x +--=的解为27221a x -=, 故3272721a a -=,解得2711a =,所以8177x =.(同解方程问题)含字母系数的一元一次方程 巩固练习【练习3】 已知关于x 的方程2(1)(5)3a x a x b -=-+无解,那么a = ,b .【解析】 2253ax a x ax b -=-+,即(35)23a x a b -=+,故350a -=且230a b +≠,即53a =,复习巩固109b ≠-. 【练习4】 如果关于x 的方程2(3)15(23)326kx x +++=有无数个解,求k 值. 【解析】 原方程整理得(410)0k x -=,由方程有无数个解得4100k -=,52k =.绝对值方程 巩固练习【练习5】 解方程:3548x -+=【解析】 3548x -+=或8-(舍),即354x -=,所以354x -=或4-,即39x =或31x =,故3x =或13x =.【练习6】 方程147x x -++=的解是 .2x =或5x =-.每个人的成功都有秘诀,那你知道爱因斯坦的成功公式是什么?数学史第十三种品格:公平不要羡慕别人的生活,别人不见得比你活得好,世间是公平的,每个人都有自己的欢乐和痛苦。
行程问题6变速问题
变速变道问题属于行程中的综合题,用到了比例、分步、分段处理等多种处理问题等解题方法。
对于这种分段变速问题,利用算术方法、折线图法和方程方法解题各有特点。
算术方法对于运动过程的把握非常细致,但必须一步一步来;折线图则显得非常直观,每一次相遇点的位置也易于确定;方程的优点在于无需考虑得非常仔细,只需要知道变速点就可以列出等量关系式,把大量的推理过程转化成了计算.行程问题常用的解题方法有⑴公式法即根据常用的行程问题的公式进行求解,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式;有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件;⑵图示法在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具.示意图包括线段图和折线图.图示法即画出行程的大概过程,重点在折返、相遇、追及的地点.另外在多次相遇、追及问题中,画图分析往往也是最有效的解题方法;⑶比例法行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值.更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题;⑷分段法在非匀速即分段变速的行程问题中,公式不能直接适用.这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来;⑸方程法在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解.模块一、变速问题【例1】小红和小强同时从家里出发相向而行。
小红每分走 52 米,小强每分走 70 米,二人在途中的 A 处相遇。
若小红提前 4 分出发,且速度不变,小强每分走 90 米,则两人仍在 A 处相遇。
小红和小强两人的家相距多少米?【例2】甲、乙两人沿 400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
2017二年级学而思秋季数学超常班讲义第六讲
蜗牛爬井第六讲【例题分析】第6天;可以先考虑特殊的最后一天,蚂蚁爬5米刚好爬到井口,不再滑下,那么它在前几天一共向上移动了205-=15米;它每天爬上5米,又滑下2米,相当于每天只移动了52-=3米,之前爬了153÷=5天,所以第51+=6天爬到井口.一只蚂蚁从一口20米深的枯井底部往上爬,它每天往上爬5米后,就会滑下2米,像这样爬,这只蚂蚁第几天刚好爬到井口?【例题分析】第7天;水缸打水和蜗牛爬井一样,可以先考虑最后一天,这天早上工作人员刚好第一次将水缸装满,那么在此之前水缸里一共有水295-=24桶.每天打回5桶水,又用掉1桶水,则相当于每天往缸里增加51-=4桶水,需要244÷=6天,则第61+=7天第一次把水缸装满.有一口空水缸,需要29桶水才能刚好装满.工作人员每天早上会打回5桶水倒入缸中,傍晚又会用掉缸里1桶水,那么工作人员第几天才能第一次让水缸装满水?【例题分析】第6天;先考虑最后一天,水缸刚好第一次装满,那么在此之前水缸里一共有水216-=15桶.每天倒入6桶水,又用掉3桶水,则相当于每天往缸里增加63-=3桶水,需要153÷=5天,则第51+=6天才能第一次将水缸装满.【例题分析】32米;树懒每天向上爬6米,晚上滑下2米,每天树懒只向上移动了62-=4米.树懒第8天才到顶端,那么前7天共移动了47⨯=28米,再加上第8天的4米,树一共高284+=32米.树懒爬树,它从树底端开始,每天白天向上爬6米,晚上睡觉时滑下2米,第8天爬了4米后终于爬到了树顶端.请问这棵树高多少米?一个空水缸装满水需要21桶,婷婷每天早上向缸里倒入6桶水,晚上又用掉缸里3桶水,婷婷第几天才能第一次将水缸装满?【例题分析】31个;洋洋每次装5个桃子,又吃掉1个,相当于每次只装了514-=个桃子,7次后一共装了7428⨯=个桃子,最后又装3个桃子筐就满了.那么这个筐装满能装28331+=个桃子.【例题分析】18米;小猴爬的最高的位置,是第8次往上爬,还没有滑下来时的位置.小猴每次向上爬4米,然后滑下2米,相当于每次只向上移动了422-=米,第7次时爬到了2714⨯=米的位置,第8次时再往上爬4米到了最高位置,即14418+=米.【例题分析】6米;小丑第8天爬了4米爬到了树顶, 说明前817-=天小丑共向上移动了25421-=米,每天移动了2173÷=米.每次滑下3米,那么每次向上爬336+=米.一个小丑从一棵25米高的树底往上爬,每次向上爬若干米,接着又滑下3米,第8次爬了4米爬到树顶,那么小丑每次向上爬了几米呢?小猴爬竹杆,每次先向上爬4米,接着滑下2米.小猴从竹杆底端开始,共爬了8次,那么小猴最高时爬到了多少米高的位置?洋洋往一个空筐里装桃子,她每次往筐里装5个桃子,然后偷吃掉1个,像这样,第8次装了3个就把筐装满了,那么这个筐装满能装多少个桃子?【例题分析】4米;小蜗牛第6天爬了5米到井口,也就说明前5天一共向上移动了1055-=米,每天移动了551÷=米. 每天白天向上爬5米,则每天夜里会滑下514-=米.【例题分析】42桶;梦梦每天白天打回6桶水,晚上又用掉2桶,相当于每天水缸会增加624-=桶水,30624-=桶,2446÷=天,即第7天打6桶水时,水缸刚好第一次装满.此时梦梦一共打了6742⨯=桶水.一个空水缸,装满需要30桶水,梦梦每天白天会打回6桶水倒入水缸,晚上又会用掉水缸里的2桶水,那么到水缸刚好第一次装满时,梦梦一共打了多少桶水呢?一个空水缸,装满需要33桶水,洋洋每天白天会打回7桶水倒入水缸,晚上又会用掉水缸里的几桶水,第七天洋洋打回3桶水后水缸刚好第一次装满,那么洋洋每天晚上用掉了几桶水呢?小蜗牛从10米深的井底往上爬,每天白天向上爬5米,每天夜里又滑下若干米,第6天爬了5米爬到井口,那么小蜗牛每天夜里滑下了几米呢?【例题分析】64步;舞者先前进4步再后退2步,这样跳一次实际只向前移动了422-=步,24420-= 步,20210÷=次,即第11次时前进4步刚好跳到了另一头.前10次每一次跳了426+=步,这个人一共跳了610464⨯+=步.一位舞者沿一条直线前进4步,接着后退2步,像这样从舞台的一头跳到另一头.舞台的两头相距24步,这个人一共跳了多少步?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
速度变化的行程'问题
【例1】甲、乙两车分别从A、B两地同时出
发相向而行,6小时后相遇在C点,如果甲
车速度不变,乙'车每小时多行5千米,且两
车还从A、B两地同时出发相向而行,则相
遇地点距C点12千米,如果乙车速度不变,
甲车每小时多行5千米,且两车还从A、B 两地同时出发相向而行,而相遇地点距C点16千米,甲车原来每小时行多少千米?
【例2】甲、乙二人分别从A、B两地同时出发相向而行,5小时后相遇在C点,如果甲速度不变,乙每小时多行4千米,且甲、乙还从A、B两地同时出发相向而行,则相遇点D距C点10千米,如果乙速度不变,甲每小时多行3千米,且甲、乙还从A、B两地同时出发相向而行,则相遇点B距C点5千米,间:甲原来的速度是每小时多少千米?
【例3】小红和小强同时从家里出发相向而行,小红每分走52米,小强每分走70米,二人在途中的A处相遇,若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇,小红和小强两人的家相距多少米?
【例4】甲、乙两车分别从A、B两地同时出发,相向而行,6小时相遇,如果甲早出发2小时,甲乙相遇时,甲已经走过AB 的中点后还走了 144千米,如果乙早出发2 小时,甲乙相遇时,甲还差48千米才到AB的中点,求甲、乙两人的速度差。
【例5】甲、乙二人在同一条椭圆形跑道上作特殊训练,他们同时以同一地出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈,跑第一圈时,乙的速度是甲的速度
的2
3
,甲跑第二圈的速度比第一圈提高了
1
3
,乙跑第二圈的速度提高了
1
5
,已知沿跑道看从甲
乙两人第二次相遇点到第一次相遇点的最短路程是190米,问这条跑道长多少米?
与数论有关的行程问题与行程杂题(上)
【例1】甲乙二人从相距60千米的两地同时相向而行,6时后相遇,如果两人的速度各增加1千米/时,那么相遇的地点距前一次相遇的地点 1 千米,问:甲乙二人的速度各是多少?
【例2】甲、乙两车分别从A、B两地同时相向开出,4时后两车相遇,然后各自继续行驶3小时,此时甲车距B地10千米,乙车距A地80千米。
问:甲车到达B地时,乙车还要经过多少时间才能到达A地?
【例3】环形跑道长为 400米,甲的速度为3米/秒,乙的速度为4米/秒,丙的速度为5米/秒,三人同时从A点顺时针跑动,问再过多长时间三人第一次同时到达同一地点。
【例4】环形跑道长 400米,甲的速度为3米/秒,乙的速度为4米/秒,丙的速度为5米/秒,三人同时从A点顺时针跑动,问再过多久时间三人第一次同时到达A点。
【例5】甲乙二人分别从A、B两地同时出发相向而行,第一次在距A地40千米处相遇,二人到达目的地后立即返回,在距B地20千米处第二次相遇,间第2008次相遇地点距A地有多远?
与数论有关的行程问题与行程杂题(下)
【例1】甲、乙两名运动员在周长 400米的环形跑道上进行10000米长跑比赛,两人从同一起跑线同时起跑,甲每分跑400米,乙每分跑360米,当甲比乙领先整整一圈时,两人同时加速,
乙的速度比原来快1
4
,甲每分比原来多跑 18米,并且都以这样的速度保持到终点. 问:甲、
乙两人谁先到达终点?
【例2】如图,正方形ABCD是一条环形公路。
已知汽车在AB上时速是90千米,在BC上的时速是 120千米,在 CD上的时速是60千米,在DA 上的时速是80千米。
从CD上一点P,同时反向各发出一辆汽车,它们将在AB中点相遇。
如果从PC的中点M,同时反向各发出一辆汽车,它们将在AB上一点N相遇,问A至N的距离除以N至B的距离所得到的商是多少?
【例3】如图,8时10分,有甲、乙两人以相同的速度分别从相距60米的A、B两地顺时针方向沿长方形ABCD的边走向D点。
甲8时20分到D点后,丙、丁两人立即以相同速度从D点出发,丙由D向A走去,8时24分与乙在B点相遇;丁由D向C走去,8时30分在F点被
乙追上。
问三角形BEF 的面积为多少平方米?
【例4】在一个沙漠地带,汽车每天行驶200千米,每辆汽车载运可行驶24天的汽油,现有甲、乙两辆汽车同时从某地出发,并在完成任务后,沿原路返回,为了让甲车尽可能开出更远的距离,乙车在行驶一段路程后,仅留下自己返回出发地的汽油,将其他的油给甲车,求甲车所能开行的最远距离.
【例5】沙漠中A、B两地相距800千米。
甲、乙、丙三入同时从A地出发前往B地,每人携带了 12天的给养(食物和水),每人每天可以行进50千米。
为了让甲顺利到达B地,乙、丙可将给养给甲,但甲所带给养不能超过12天,且乙、丙还必须返回到A地。
现规定不允许在途中放给养。
问甲是否能顺利到达B地?。