第十四章 整式的乘法与因式分解word专题训练(八) 乘法公式的变形
八年级数学上册第十四章整式的乘法与因式分解知识点题库(带答案)
八年级数学上册第十四章整式的乘法与因式分解知识点题库单选题1、要使多项式(x+p)(x−q)不含x的一次项,则p与q的关系是()A.相等B.互为相反数C.互为倒数D.乘积为−1答案:A分析:计算乘积得到多项式,因为不含x的一次项,所以一次项的系数等于0,由此得到p-q=0,所以p与q 相等.解:(x+p)(x−q)=x2+(p−q)x−pq∵乘积的多项式不含x的一次项∴p-q=0∴p=q故选择A.小提示:此题考查整式乘法的运用,注意不含的项即是该项的系数等于0.2、下列分解因式正确的是()A.a3−a=a(a2−1)B.x3+4x2y+4xy2=x(x+2y)2C.−x2+4xy−4y2=−(x+2y)2D.16x2+16x+4=(4x+2)2答案:B分析:根据分解因式的方法进行分解,同时分解到不能再分解为止;A、a3−a=a(a2−1)=a(a+1)(a−1),故该选项错误;B、x3+4x2y+4xy2=x(x2+4xy+4y2)=x(x+2y)2,故该选项正确;C、−x2+4xy−4y2=−(x2−4xy+4y2)=−(x−2y)2,故该选项错误;D、16x2+16x+4=4(4x2+4x+1)=4(2x+1)2,故该选项错误;故选:B.小提示:本题考查了因式分解,解决问题的关键是掌握因式分解的几种方法,注意因式分解要分解到不能再分解为止;3、若x 2+ax =(x +12)2+b ,则a ,b 的值为( ) A .a =1,b =14B .a =1,b =﹣14 C .a =2,b =12D .a =0,b =﹣12答案:B分析:根据完全平方公式把等式右边部分展开,再比较各项系数,即可求解.解:∵x 2+ax =(x +12)2+b =x 2+x +14+b , ∴a =1,14+b =0, ∴a =1,b =﹣14,故选B .小提示:本题主要考查完全平方公式,熟练掌握完全平方公式是解题的关键.4、下列因式分解正确的是( )A .a 4b ﹣6a 3b +9a 2b =a 2b (a 2﹣6a +9)B .x 2﹣x +14=(x ﹣12)2C .x 2﹣2x +4=(x ﹣2)2D .x 2﹣4=(x +4)(x ﹣4)答案:B分析:直接利用提取公因式法以及公式法分解因式进而判断即可.解:A 、a 4b ﹣6a 3b +9a 2b =a 2b (a 2﹣6a +9)=a 2b (a ﹣3)2,故此选项错误;B 、x 2﹣x +14=(x ﹣12)2,故此选项正确;C 、x 2﹣2x +4,无法运用完全平方公式分解因式,故此选项错误;D 、x 2﹣4=(x +2)(x ﹣2),故此选项错误;故选:B .小提示:本题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法进行解题.5、如下列试题,嘉淇的得分是()姓名:嘉淇得分:将下列各式分解因式(每题20分,共计100分)①2xy−4xyz=2xy(1−2z);②−3x−6x2=−3x(1−2x);③a2+2a+1=a(a+2);④m2−4n2= (m−2n)2;⑤−2x2+2y2=−2(x+y)(x−y)A.40分B.60分C.80分D.100分答案:A分析:根据提公因式法及公式法分解即可.①2xy−4xyz=2xy(1−2z),故该项正确;②−3x−6x2=−3x(1+2x),故该项错误;③a2+2a+1=(a+1)2,故该项错误;④m2−4n2=(m+2n)(m−2n),故该项错误;⑤−2x2+2y2=−2(x+y)(x−y),故该项正确;正确的有:①与⑤共2道题,得40分,故选:A.小提示:此题考查分解因式,将多项式写成整式乘积的形式,叫做将多项式分解因式,分解因式的方法:提公因式法、公式法,根据每道题的特点选择恰当的分解方法是解题的关键.6、在下列各式中,一定能用平方差公式因式分解的是().A.−a2−9B.a2−9C.a2−4b D.a2+9答案:B分析:直接利用平方差公式:a2−b2=(a+b)(a−b),进而分解因式判断即可.A、−a2−9,无法分解因式,故此选项不合题意;B、a2−9=(a+3)(a−3),能用平方差公式分解,故此选项符合题意;C、a2−4b,无法分解因式,故此选项不合题意;D、a2+9,无法分解因式,故此选项不合题意.故选B.小提示:此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.7、若2a+3b−3=0,则4a×23b的值为()A.23B.24C.25D.26答案:A分析:先利用已知条件2a+3b−3=0,得2a+3b=3,再利用同底数幂的乘法运算法则和幂的乘方将原式变形得出答案.解:∵2a+3b−3=0,∴2a+3b=3,∵4a×23b=(22)a×23b=22×a×23b=22a+3b,∴原式=4a×23b=(22)a×23b=22×a×23b=22a+3b=23,故选:A.小提示:本题主要考查了同底数幂的乘法运算和幂的乘方,正确将原式变形是解题关键.8、下列因式分解正确的是()A.a2+b2=(a+b)2B.a2+2ab+b2=(a−b)2C.a2−a=a(a+1)D.a2−b2=(a+b)(a−b)答案:D分析:根据因式分解的方法,逐项分解即可.A. a2+b2,不能因式分解,故该选项不正确,不符合题意;B. a2+2ab+b2=(a+b)2故该选项不正确,不符合题意;C. a2−a=a(a−1),故该选项不正确,不符合题意;D. a2−b2=(a+b)(a−b),故该选项正确,符合题意.故选D.小提示:本题考查了因式分解,掌握因式分解的方法是解题的关键.9、计算(x+1)(x+2)的结果为( )A.x2+2B.x2+3x+2C.x2+3x+3D.x2+2x+2答案:B解:原式=x2+2x+x+2=x2+3x+2.故选B.10、已知2n=a,3n=b,12n=c,那么a、b、c之间满足的等量关系是()A.c=ab B.c=ab3C.c=a3b D.c=a2b答案:D分析:直接利用积的乘方、幂的乘方运算法则将原式变形得出答案.A选项:ab=2n⋅3n=6n≠12n,即c≠ab,A错误;B选项:ab3=2n⋅(3n)3=2n⋅33n=2n⋅27n=54n≠12n,即c≠ab3,B错误;C选项:a3b=(2n)3⋅3n=8n⋅3n=24n≠12n,即c≠a3b,C错误;D选项:a2b=(2n)2⋅3n=4n⋅3n=12n=c,D正确.故选:D.小提示:本题主要考查了积的乘方运算,幂的乘方运算,正确将原式变形是解题关键.填空题11、计算:(√5-2)2018(√5+2)2019的结果是_____.答案:√5+2分析:逆用积的乘方运算法则以及平方差公式即可求得答案.(√5-2)2018(√5+2)2019=(√5-2)2018×(√5+2)2018×(√5+2)=[(√5-2)×(√5+2)]2018×(√5+2)=(5-4)2018×(√5+2)=√5+2,故答案为√5+2.小提示:本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.12、若|a|=2,且(a−2)0=1,则2a的值为_______.答案:1##0.254分析:根据绝对值的意义得出a=±2,根据(a−2)0=1,得出a−2≠0,求出a的值,即可得出答案.解:∵|a|=2,∴a=±2,∵(a−2)0=1,∴a−2≠0,即a≠2,∴a=−2,∴2a=2−2=1.4.所以答案是:14小提示:本题主要考查了绝对值的意义,零指数幂有意义的条件,根据题意求出a=−2,是解题的关键.13、已知x−y=3,xy=10,则(x+y)2=______.答案:49分析:根据(x+y)2=(x-y)2+4xy即可代入求解.解:(x+y)2=(x-y)2+4xy=9+40=49.所以答案是:49.小提示:本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.14、分解因式:am+an−bm−bn=_________________答案:(m+n)(a−b)分析:利用分组分解法和提取公因式法进行分解因式即可得.解:原式=(am+an)−(bm+bn)=a(m+n)−b(m+n)=(m+n)(a−b),所以答案是:(m+n)(a−b).小提示:本题考查了因式分解,熟练掌握因式分解的方法是解题关键.15、若x−y−3=0,则代数式x2−y2−6y的值等于______.答案:9分析:先计算x-y的值,再将所求代数式利用平方差公式分解前两项后,将x-y的值代入化简计算,再代入计算即可求解.解:∵x−y−3=0,∴x−y=3,∴x2−y2−6y=(x+y)(x−y)−6y=3(x+y)−6y=3x+3y−6y=3(x−y)=9所以答案是:9.小提示:本题主要考查因式分解的应用,通过平方差公式分解因式后整体代入是解题的关键.解答题16、化简:3(a﹣2)(a+2)﹣(a﹣1)2.答案:2a2+2a-13分析:根据平方差公式和完全平方公式去括号,再计算加减法.解:3(a﹣2)(a+2)﹣(a﹣1)2=3(a2-4)-(a2-2a+1)=3a2-12-a2+2a-1=2a2+2a-13.小提示:此题考查了整式的乘法计算公式,整式的混合运算,正确掌握平方差公式和完全平方公式的计算法则是解题的关键.17、爱动脑筋的小明在学习《幂的运算》时发现:若a m=a n(a>0,且a≠1,m、n都是正整数),则m= n,例如:若5m=54,则m=4.小明将这个发现与老师分享,并得到老师确认是正确的,请您和小明一起用这个正确的发现解决下面的问题:(1)如果2×4x×32x=236,求x的值;(2)如果3x+2+3x+1=108,求x的值.答案:(1)x=5(2)x=2分析:(1)利用幂的乘方的法则及同底数幂的乘法的法则对式子进行整理,从而可求解;(2)利用同底数幂的乘法的法则及幂的乘方的法则对式子进行整理,即可求解.(1)因为2×4x×32x=236,所以2×22x×25x=236,即21+7x=236,所以1+7x=36,解得:x=5;(2)因为3x+2+3x+1=108,所以3×3x+1+3x+1=4×27,4×3x+1=4×33,即3x+1=33,所以x+1=3,解得:x=2.小提示:本题主要考查幂的乘方,同底数幂的乘法,解答的关键是对相应的运算法则的掌握与运用.18、阅读:已知a、b、c为△ABC的三边长,且满足a2c2−b2c2=a4−b4,试判断△ABC的形状.答案:(1)③,忽略了a2−b2=0的情况;(2)见解析分析:(1)根据题意可直接进行求解;(2)由因式分解及勾股定理逆定理可直接进行求解.解:(1)由题意可得:从第③步开始错误,错的原因为:忽略了a2−b2=0的情况;故答案为③;忽略了a2−b2=0的情况;(2)正确的写法为:c2(a2−b2)=(a2+b2)(a2−b2)c2(a2−b2)−(a2+b2)(a2−b2)=0(a2−b2)[c2−(a2+b2)]=0当a2−b2=0时,a=b;当a2−b2≠0时,a2+b2=c2;所以△ABC是直角三角形或等腰三角形或等腰直角三角形.小提示:本题主要考查勾股定理逆定理及因式分解,熟练掌握勾股定理逆定理及因式分解是解题的关键.解析:解:因为a2c2−b2c2=a4−b4,①所以c2(a2−b2)=(a2−b2)(a2+b2)②所以c2=a2+b2③所以△ABC是直角三角形④请据上述解题回答下列问题:(1)上述解题过程,从第______步(该步的序号)开始出现错误,错的原因为______;(2)请你将正确的解答过程写下来.。
【精选】北师大版八年级上册数学 整式的乘法与因式分解专题练习(word版
一、八年级数学整式的乘法与因式分解解答题压轴题(难)1.因式分解是多项式理论的中心内容之一,是代数中一种重要的恒等变形,它是学习数学和科学技术不可缺少的基础知识.在初中阶段,它是分式中研究约分、通分、分式的化简和计算的基础;利用因式分解的知识,有时可使某些数值计算简便.因式分解的方法很多,请根据提示完成下面的因式分解并利用这个因式分解解决提出的问题.(1)填空: ①()242221144x x x x ⎡⎤+=++-=⎢⎥⎣⎦( )22x -=( )( ) ②()()242116=644⎡⎤+++-⎢⎥⎣⎦=( )( )=( )⨯ ( ) (2)解决问题,计算:4444116844115744⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭ 【答案】(1)①212x +,221122x x x x ⎛⎫⎛⎫++-+ ⎪ ⎪⎝⎭⎝⎭,,②26,26,2211666622⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭,,42.530.5,;(2)14541 【解析】【分析】(1)根据完全平方公式和平方差公式计算可得;(2)利用前面所得规律变形即可.【详解】(1)()242221144x x x x ⎡⎤+=++-⎢⎥⎣⎦ 22212x x ⎛⎫=+- ⎪⎝⎭ 221122x x x x ⎛⎫⎛⎫=++-+ ⎪⎪⎝⎭⎝⎭ ()2422211666624⎡⎤+=++-⎢⎥⎣⎦ 2211666622⎛⎫⎛⎫=+++- ⎪⎪⎝⎭⎝⎭42.530.5=⨯ 故答案为:①212x +,221122x x x x ⎛⎫⎛⎫++-+ ⎪ ⎪⎝⎭⎝⎭,,②26,26,2211666622⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭,,42.530.5,; (2)4444116844115744⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭=⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭ 2222222211116666888822221111555577772222⎛⎫⎛⎫⎛⎫⎛⎫++-+++-+ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫++-+++-+ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ 42.530.372.556.530.520.556.542.5⨯⨯⨯=⨯⨯⨯ 14541= 【点睛】本题考查了因式分解的应用;熟练掌握完全平方公式和平方差公式是解题的关键.2.利用我们学过的知识,可以导出下面这个等式:()()()12222222a b c ab bc ac a b b c c a ⎡⎤++---=-+-+-⎣⎦. 该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美. (1)请你展开右边检验这个等式的正确性;(2)利用上面的式子计算:222201820192020201820192019202020182020++-⨯-⨯-⨯.【答案】(1)见解析;(2)3.【解析】【分析】(1)根据完全平方公式和合并同类项的方法可以将等式右边的式子进行化简,从而可以得出结论;(2)根据题目中的等式可以求得所求式子的值.【详解】解:(1)12[(a-b )2+(b-c )2+(c-a )2] =12(a 2-2ab+b 2+b 2-2bc+c 2+a 2-2ac+c 2) =12×(2a 2+2b 2+2c 2-2ab-2bc-2ac ) =a 2+b 2+c 2-ab-bc-ac ,故a 2+b 2+c 2-ab-bc-ac=12[(a-b )2+(b-c )2+(c-a )2]正确; (2)20182+20192+20202-2018×2019-2019×2020-2018×2020=12×[(2018-2019)2+(2019-2020)2+(2020-2018)2] =12×(1+1+4) =12×6 =3.【点睛】本题考查因式分解的应用,解答本题的关键是明确题意,熟练掌握完全平方公式并能灵活运用.3.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、十字相乘法等等,其中十字相乘法在高中应用较多.十字相乘法:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如图),如:将式子232x x ++和223x x +-分解因式,如图:()()23212x x x x ++=++;()()223123x x x x +-=-+.请你仿照以上方法,探索解决下列问题:(1)分解因式:2712y y ;(2)分解因式:2321x x --.【答案】(1)(x ﹣3)(x ﹣4);(2)(x ﹣1)(3x+1).【解析】【分析】(1)将1分成1乘以1,12分成-3乘以-4,交叉相乘的结果为-7,即可得到答案; (2)将3分成1乘以3,-1分成-1乘以1,由此得到分解因式的结果.【详解】(1)y 2﹣7y+12=(x ﹣3)(x ﹣4);(2)3x 2﹣2x ﹣1=(x ﹣1)(3x+1).【点睛】此题考查十字相乘法分解因式,将二次项系数及常数项分解成两个因数相乘,交叉相乘的结果相加得到一次项的系数,能准确分解因数是解题的关键.4.(1)填空:()()a b a b -+= ;22()()a b a ab b -++= ;3223()()a b a a b ab b -+++= .(2)猜想:1221()(...)n n n n a b a a b ab b -----++++= (其中n 为正整数,且2n ≥).(3)利用(2)猜想的结论计算:98732222...222-+-+-+.【答案】(1)22a b -,33a b -,44a b -;(2)n n a b -;(3)342.【解析】试题分析:(1)根据平方差公式与多项式乘以多项式的运算法则运算即可;(2)根据(1)的规律可得结果;(3)原式变形后,利用(2)得出的规律计算即可得到结果.试题解析:(1)()()a b a b -+=22a b -;3223()()a b a a b ab b -+++=33a b -;3223()()a b a a b ab b -+++=44a b -;故答案为22a b -,33a b -,44a b -;(2)由(1)的规律可得:原式=n n a b -,故答案为n n a b -;(3)令98732222...222S =-+-+-+,∴987321222...2221S -=-+-+-+-=98732[2(1)](222...2221)3---+-+-+-÷=10(21)3(10241)3341-÷=-÷=,∴S=342.考点:1.平方差公式;2.规律型.5.(1)阅读下列文字与例题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法例如:()()()()()()am an bm bn am bm an bn m a b n a b a b m n +++=+++=+++=++.22222221(21)(1)(1)(1)x y y x y y x y x y x y ---=-++=-+=++--.试用上述方法分解因式222a ab ac bc b ++++=(2)利用分解因式说明:22(5)(1)n n +--能被12整除.【答案】(1)()()a b a b c +++;(2)证明见解析.【解析】【分析】(1)a 2+2ab+ac+bc+b 2可以进行分组变成(a 2+2ab+b 2)+(ac+bc ),则前边括号内的三项可以利用完全平方公式分解,后边的三项可以提公因式,然后再利用提公因式法即可分解.(2)先利用平方差公式将22(5)(1)n n +--进行因式分解,之后即可得出答案.【详解】(1)原式=()()222a ab bac bc ++++=()()2a b c a b +++=()()a b a b c +++(2)22(5)(1)n n +--=[][](5)+(1)(5)(1)n n n n +-+--=()624n +=()122n +∴ 22(5)(1)n n +--能被12整除.【点睛】本题考查分组分解的因式分解方法,做题时先分析题中给的例子是解题关键.6.一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”.例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”.(1)直接写出:最小的“和平数”是 ,最大的“和平数”是 ;(2)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”求证:任意的一组“相关和平数”之和是1111的倍数.(3)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;【答案】(1)1001,9999;(2)见详解;(3)2754和4848【解析】【分析】(1)根据和平数的定义,即可得到结论;(2)设任意的两个“相关和平数”为abcd ,badc (a ,b ,c ,d 分别取0,1,2,…,9且a≠0,b≠0),于是得到abcd badc +=1100(a+b )+11(c+d )=1111(a+b ),即可得到结论.(3)设这个“和平数”为abcd ,于是得到d=2a ,a+b=c+d ,b+c=12k ,求得2c+a=12k ,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去);①、当a=2,d=4时,2(c+1)=12k ,得到c=5则b=7;②、当a=4,d=8时,得到c=4则b=8,于是得到结论;【详解】解:(1)由题意得,最小的“和平数”1001,最大的“和平数”9999,故答案为:1001,9999;(2)设任意的两个“相关和平数”为abcd ,badc (a ,b ,c ,d 分别取0,1,2,…,9且a ≠0,b ≠0),则abcd badc +=1100(a+b )+11(c+d )=1111(a+b );即两个“相关和平数”之和是1111的倍数.(3)设这个“和平数”为abcd ,则d=2a ,a+b=c+d ,b+c=12k ,∴2c+a=12k ,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去),①当a=2,d=4时,2(c+1)=12k ,可知c+1=6k 且a+b=c+d ,∴c=5则b=7,②当a=4,d=8时,2(c+2)=12k ,可知c+2=6k 且a+b=c+d ,∴c=4则b=8,综上所述,这个数为:2754和4848.【点睛】本题考查了因式分解的应用,正确的理解新概念和平数”是解题的关键.7.探究阅读材料:“若x 满足()()806030x x --=,求()()228060x x -+-的值” 解:设()80x a -=,()60x b -=,则()()806030x x ab --==,()()806020a b x x +=-+-=,所以()()22228060x x a b -+-=+()22220230340a b ab =+-=-⨯=.解决问题:(1)若x 满足()()451520x x --=-,求()()224515x x -+-的值. (2)若x 满足()()22202020184040x x -+-=,求()()20202018x x --的值. (3)如图,正方形ABCD 的边长为x ,20AE =,30CG =,长方形EFGD 的面积是700,四边形NGDH 和MEDQ 都是正方形,PQDH 是长方形,求图中阴影部分的面积(结果必须是一个具体的数值).【答案】(1)940;(2)2018;(3)2900【解析】【分析】(1)根据材料提供的方法进探究,设(45-x )=a ,(x-15)=b ,则有()()451520x x ab --==-,()()4515=30a b x x +=-+-,据此即可求出()()224515x x -+-的值; (2)(2020-x )=m ,( x-2018)=n ,则()()2222202020184040,2x x m n m n -+-=+=+=,则可求出()()20202018x x --的值; (3)根据题意知S 四EFGD =(x-20)(x-30)=700,知S 正MEDQ =(x-20)2,S 正DHNG =(x-30)2,S 四PQDN =(x-20)(x-30)=700,设x-20=a ,30-x=b ,则有-ab=700,据此即可求出阴影部分的面积.【详解】解:(1)设(45-x )=a ,(x-15)=b ,则有()()451520x x ab --==-,()()4515=30a b x x +=-+-∴()()()()2222224515=230220940x x a b a b ab -+-+=+-=-⨯-=;(2)(2020-x )=m ,( x-2018)=n ,则()()2222202020184040,2x x m n m n -+-=+=+=∴()()20202018x x --=-()()20202018x x -- ()()222+-44040-201822m n m n mn +-===∴()()20202018x x --=-mn=2018;(3)根据题意知S 四EFGD =(x-20)(x-30)=700,S 正MEDQ =(x-20)2,S 正DHNG =(x-30)2,S 四PQDN =(x-20)(x-30)=700设x-20=a ,30-x=b ,∴-ab=700,∴()()()()222222302021027001500x x a b a b ab -+-=+=+-=-⨯-=∴S 阴影=1500+700+700=2900故答案为:(1)940;(2)2018;(3)2900【点睛】本题考查完全平方公式,换元法等知识,解题的关键是学会利用换元法解决问题,熟练掌握完全平方公式.8.(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b )2=a 2+2ab+b 2,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式: .(2)利用(1)中得到的结论,解决下面的问题:若a+b+c =10,ab+ac+bc =35,则a 2+b 2+c 2= .(3)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张宽、长分别为a 、b 的长方形纸片拼出一个面积为(2a+b )(a+2b )长方形,则x+y+z = .(知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x 的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式: .【答案】(1)(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc ;(2)30;(3)9;(4)x 3﹣x =(x+1)(x ﹣1)x【分析】(1)依据正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,可得等式;(2)依据a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc,进行计算即可;(3)依据所拼图形的面积为:xa2+yb2+zab,而(2a+b)(a+2b)=2a2+4ab+ab+2b2=2a2+5b2+2ab,即可得到x,y,z的值.(4)根据原几何体的体积=新几何体的体积,列式可得结论.【详解】(1)由图2得:正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∵a+b+c=10,ab+ac+bc=35,∴102=a2+b2+c2+2×35,∴a2+b2+c2=100﹣70=30,故答案为:30;(3)由题意得:(2a+b)(a+2b)=xa2+yb2+zab,∴2a2+5ab+2b2=xa2+yb2+zab,∴225xyz=⎧⎪=⎨⎪=⎩,∴x+y+z=9,故答案为:9;(4)∵原几何体的体积=x3﹣1×1•x=x3﹣x,新几何体的体积=(x+1)(x﹣1)x,∴x3﹣x=(x+1)(x﹣1)x.故答案为:x3﹣x=(x+1)(x﹣1)x.【点睛】本题主要考查的是整式的混合运算,利用直接法和间接法分别求得几何图形的体积或面积,然后根据它们的体积或面积相等列出等式是解题的关键.9.由多项式的乘法:(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左使用,即可得到用“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b).实例分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).(1)尝试分解因式:x2+6x+8;(2)应用请用上述方法解方程:x2-3x-4=0.【答案】(1) (x+2)(x+4);(2) x=4或x=-1.【分析】(1)类比题干因式分解方法求解可得;(2)利用十字相乘法将左边因式分解后求解可得.【详解】(1)原式=(x+2)(x +4);(2)x 2-3x -4=(x -4)(x +1)=0,所以x -4=0或x +1=0,即x =4或x =-1.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.10.(探究)如图①,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,有阴影部分沿虚线剪开,拼成图②的长方形(1)请你分别表示出这两个图形中阴影部分的面积(2)比较两图的阴影部分面积,可以得到乘法公式 (用字母表示)(应用)请应用这个公式完成下列各题①已知22412m n -=,24m n +=,则2m n -的值为②计算:(2)(2)a b c a b c +--+(拓展)①()()()()24832(21)21212121+1+++++结果的个位数字为 ②计算:222222221009998974321-+-++-+-【答案】[探究](1)a 2﹣b 2;(a +b )(a ﹣b );(2)(a +b )(a ﹣b )=a 2﹣b 2;[应用]①3;②4a 2﹣b 2+2bc ﹣c 2;[拓展]①6;②5050.【解析】【分析】[探究](1)由面积公式可得答案;(2)公式由(1)直接可得;[应用]①用平方差公式分解4m 2﹣n 2,将已知值代入可求解;②将三项恰当组分成两组,先用平方差,再用完全平方公式展开后合并同类项即可;[拓展]①将原式乘以(2﹣1),就可以反复运用平方差公式化简,最后按照循环规律可得解;②将原式从左向右依次两项一组,运用平方差公式分解,化为100+99+98+…+4+3+2+1,从而可得答案.【详解】(1)图①按照正方形面积公式可得:a2﹣b2;图②按照长方形面积公式可得:(a+b)(a﹣b).故答案为:a2﹣b2;(a+b)(a﹣b).(2)令(1)中两式相等可得:(a+b)(a﹣b)=a2﹣b2故答案为:(a+b)(a﹣b)=a2﹣b2.【应用】①∵4m2﹣n2=12,2m+n=4,4m2﹣n2=(2m+n)(2m﹣n),∴(2m﹣n)=12÷4=3.故答案为:3.②(2a+b﹣c)(2a﹣b+c)=[2a+(b﹣c)][2a﹣(b﹣c)]=4a2﹣(b﹣c)2=4a2﹣b2+2bc﹣c2【拓展】①原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1)+1=(22﹣1)(22+1)(24+1)(28+1)…(232+1)+1=(24﹣1)(24+1)(28+1)…(232+1)+1=(28﹣1)(28+1)…(232+1)+1=(216﹣1)…(232+1)+1=264﹣1+1=264.∵2的正整数次方的尾数为2,4,8,6循环,64÷4=16.故答案为:6.②原式=(100+99)(100﹣99)+(98+97)(98﹣97)+…+(4+3)(4﹣3)+(2+1)(2﹣1)=100+99+98+97+…+4+3+2+1=5050.【点睛】本题考查了平方差公式的几何背景及其应用与拓展,计算具有一定的难度,属于中档题.。
人教版八年级数学上册第十四章《整式乘法与因式分解》测试带答案解析
人教版八年级数学上册第十四章《整式乘法与因式分解》测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.计算3325a a 的结果是( ) A .610aB .910aC .37aD .67a2.下列运算正确的是( ) A .22a a a ⋅=B .824a a a ÷=C .()2242a b a b =D .()325a a =3.下列计算正确的是( ) A .623a a a ÷=B .()326a a =C .248a a a ⋅=D .532a a a -=4.下列计算结果正确的是( ) A .()336a a =B .632a a a ÷=C .()248ab ab =D .()2222a b a ab b +=++5.下列计算正确的是( ) A .25611a a a += B .()235326b b b -⋅= C .623623b a a ÷=D .()()22339b a a b a b +-=-6.已知实数m ,n 满足222+=+m n mn ,则2(23)(2)(2)-++-m n m n m n 的最大值为( ) A .24B .443C .163D .4-7.已知()()2221x x x +--=,则2243x x -+的值为( ) A .13B .8C .-3D .58.若2022202020222022202320222021-=⨯⨯n ,则n 的值是( ) A .2023B .2022C .2021D .20209.如图是一个运算程序的示意图,若开始输入的x 值为81,我们看到第一次输出的结果为27.第二次输出的结果为9,…,第2022次输出的结果为( )A .1B .3C .9D .2710.下列等式从左到右的变形,其中属于因式分解的是( ) A .2221(1)--=-x x x B .22221(1)x y xy xy ++=+ C .2(3)(3)9x x x +-=-D .32822(41)a a a a -=-11.有一台特殊功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数1x ,只显示不运算,接着再输入整数2x 后则显示12x x -的结果.比如依次输入1,2,则输出的结果是121-=;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.有如下结论:①依次输入1,2,3,4,则最后输出的结果是2;②若将1,2,3,4这4个整数任意地一个一个输入,全部输入完毕后显示的结果的最大值是4;③若将1,2,3,4这4个整数任意地一个一个地输入,全部输入完毕后显示的结果的最小值是0;④若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k ,若k 的最大值为10,那么k 的最小值是6.上述结论中,正确的个数是( ) A .1个B .2个C .3个D .4个12.在数学中为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”,如记1nk k =∑=1+2+3+…+(n ﹣1)+n ,()3n k x k =+∑=(x +3)+(x +4)+…+(x +n );已知()3nk x x k =⎡+⎤⎣⎦∑=9x 2+mx ,则m 的值是( ) A .45B .63C .54D .不确定二、填空题13.分解因式:216x y xy -=______.14.因式分解:322242m m n mn -+=________. 15.因式分解:32312x xy -=_________.16.已知2223,15a b b c a b c -=-=++=,则ab bc ca ++的值等于________.三、解答题 17.分解因式: (1)22a ab a ++; (2)()()222m n m n +-+18.化简:()()()482x y x y xy xy xy +---÷.19.先化简,再求值:(1)(1)(2)x x x x +-++,其中12x =. 20.先化简,再求值:22()()(2)34x y x y x y y y ⎡⎤+----÷⎣⎦,其中20201x y ==-,.21.已知有理数a ,b ,c 满足()222434|41|02aa cbc b +-+--+--=∣∣,试求313242n n n a b c +++-的值.22.先化简,再求值()()()22x y x y xy xy x +-+-÷,其中11,2x y ==. 23.已知x +1x =3,求下列各式的值:(1)(x ﹣1x)2;(2)x 4+41x . 24.阅读材料:若2222440m mn n n -+-+=,求m ,n 的值.解:∵2222440m mn n n -+-+=,∴()()2222440m mn n n n -++-+=,∴22()(2)0m n n -+-=,∴2()0m n -=,2(2)0n -=,∴2n =,2m =. 根据你的观察,探究下面的问题:(1)已知22228160x y xy y +-++=,则x =________,y =________;(2)已知ABC 的三边长a 、b 、c 都是正整数,且满足22248180a b a b +--+=,求ABC 的周长.25.如图,长为40,宽为x 的大长方形被分割为9小块,除阴影A ,B 两块外,其余7块是形状、大小完全相同的小长方形,其较短一边长为y .(1)分别用含x,y的代数式表示阴影A,B两块的周长,并计算阴影A,B两块的周长和.(2)分别用含x,y的代数式表示阴影A,B两块的面积,并计算阴影A,B的面积差.(3)当y取何值时,阴影A与阴影B的面积差不会随着x的变化而变化,并求出这个值.参考答案:1.A【分析】直接利用单项式乘以单项式运算法则计算得出答案. 【详解】解:6332510a a a =⋅, 故选:A .【点睛】此题主要考查了单项式乘以单项式,正确掌握相关运算法则是解题关键. 2.C【分析】根据同底数幂乘除法、积的乘方和幂的乘方法则进行计算,即可作出判断. 【详解】A :23a a a ⨯=,故A 错误,不符题意; B :826a a a ÷=,故B 错误,不符题意; C :()2242a b a b =,故C 正确,符合题意; D :()326a a =,故B 错误,不符题意; 故选:C.【点睛】此题考查了同底数幂乘除法、积的乘方和幂的乘方运算,熟练掌握运算法则是解本题的关键. 3.B【分析】根据同底数幂的除法法则对A 进行判断;根据幂的乘方法则对B 进行判断;根据同底数幂的乘法法则对C 进行判断;根据合并同类项对D 进行判断. 【详解】A. 624a a a ÷=,所以此项不正确; B. ()326a a =,所以此项正确;C. 246a a a ⋅=,所以此项不正确;D. 53a a -,不能合并,,所以此项不正确; 故选B .【点睛】本题考查了同底数幂的除法:am ÷an =am -n (m 、n 为正整数,m >n ).也考查了同底数幂的乘法、幂的乘方与积的乘方以及合并同类项. 4.D【分析】分别利用幂的乘方法则,同底数幂的除法,积的乘方法则,完全平方公式分别求出即可.【详解】A .()339a a =,故此选项计算错误,不符合题意;B .633a a a ÷=,故此选项计算错误,不符合题意;C .()2428ab a b =,故此选项计算错误,不符合题意;D .()2222a b a ab b +=++,故此选项计算正确,符合题意; 故选:D .【点睛】本题考查幂的乘方法则,同底数幂的除法,积的乘方法则,完全平方公式,熟练掌握相关计算法则是解答本题的关键.幂的乘方,底数不变,指数相乘;同底数幂相除,底数不变,指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;222()2a b a ab b +=++与222()2a b a ab b -=-+都叫做完全平方公式,为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式. 5.D【分析】根据合并同类项法则、同底数幂的乘除法、平方差公式计算即可求解. 【详解】A. 5611a a a +=,计算错误,本选项不符合题意;B. ()235326b b b -⋅=-,计算错误,本选项不符合题意;C. 6622362b b a a÷=,计算错误,本选项不符合题意;B. ()()22339b a a b a b +-=-,计算正确,本选项符合题意;故选:D .【点睛】本题考查整式的混合运算,解题的关键是熟练掌握合并同类项法则、同底数幂的乘除法、平方差公式计算法则. 6.B【分析】先将所求式子化简为107mn -,然后根据()22220m n m n mn +++=≥及222+=+m n mn 求出23mn ≥-,进而可得答案.【详解】解:2(23)(2)(2)-++-m n m n m n 222241294m mn n m n =-++- 225125m mn n =-+()5212mn mn =+- 107mn =-;∵()22220m n m n mn +++=≥,222+=+m n mn , ∴220mn mn ++≥, ∴32mn ≥-, ∴23mn ≥-,∴441073mn -≤, ∴2(23)(2)(2)-++-m n m n m n 的最大值为443, 故选:B .【点睛】本题考查了完全平方公式、平方差公式的应用,不等式的性质,正确对所求式子化简并求出mn 的取值范围是解题的关键. 7.A【分析】先化简已知的式子,再整体代入求值即可. 【详解】∵()()2221x x x +--= ∴225x x -=∴222432(2)313x x x x -+=-+= 故选:A .【点睛】本题考查平方差公式、代数式求值,利用整体思想是解题的关键. 8.D【分析】原式先提取公因式,再运用平方差公式进行计算即可. 【详解】解:2022202020222022- =202022022(20221)- =20202022(20221)(20221)+- =2020202220232021⨯⨯∵2022202020222022202320222021-=⨯⨯n ∴2020202220232021202320222021n ⨯⨯=⨯⨯ ∴202020222022n = ∴2020n =. 故选:D .【点睛】本题主要考查了整式的运算,熟练掌握平方差公式是解答本题的关键. 9.A【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案. 【详解】解:第1次,181273⨯=,第2次,12793⨯=,第3次,1933⨯=,第4次,1313⨯=,第5次,123+=,第6次,1313⨯=,⋯,依此类推,从第3次开始以3,1循环,(20222)21010-÷=,∴第2022次输出的结果为1.故选:A .【点睛】本题考查了求代数式的值,能根据求出的结果得出规律是解此题的关键. 10.B【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 【详解】解:2221(1)x x x -+=-,故A 不符合题意; 22221(1)x y xy xy ++=+,故B 符合题意;2(3)(3)9x x x +-=-是整式乘法,故C 不符合题意;32822(41)2(21)(21)a a a a a a a -=-=+-,故D 不符合题意;故选:B【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式,注意因式分解与整式乘法的区别. 11.D【分析】根据输入数据与输出结果的规则进行计算,判断①②③;只有三个数字时,当最后输入最大数时得到的结果取最大值,当最先输入最大数时得到的结果取最小值,由此通过计算判断④.【详解】解:根据题意,依次输入1,2,3,4时,1211-=-=, 1322-=-=,2422-=-=,故①正确;按照1,3,4,2的顺序输入时,1322-=-=, 2422-=-=,220-=,为最小值,故③正确; 按照1,3,2,4的顺序输入时,1322-=-=,220-=,0444-=-=,为最大值,故②正确;若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k , k 的最大值为10, 设b 为较大数字,当1a =时,2110a b b --=-=, 解得11b =,故此时任意输入后得到的最小数是:11128--=,设b 为较大数字,当2b a >>时,2210a b a b --=--=, 则210a b --=-,即8b a -= 故此时任意输入后得到的最小数是:2826b a --=-=,综上可知,k 的最小值是6,故④正确; 故选D .【点睛】此题考查绝对值有关的问题,解题的关键是要有试验观察和分情况讨论的能力. 12.B【分析】根据条件和新定义列出方程,化简即可得出答案.【详解】解:根据题意得:x (x +3)+x (x +4)+…+x (x +n )=x (9x +m ), ∴x (x +3+x +4+…+x +n )=x (9x +m ), ∴x [(n ﹣3+1)x +(31)(3)2n n -++]=x (9x +m ),∴n ﹣2=9,m =(31)(3)2n n -++,∴n =11,m =63. 故选:B .【点睛】本题考查了新定义,根据条件和新定义列出方程是解题的关键. 13.(16)xy x -【分析】利用提公因式法进行分解即可. 【详解】解:216(16)x y xy xy x -=-, 故答案为:(16)xy x -.【点睛】本题考查了因式分解-提公因式法,解题的关键是熟练掌握因式分解-提公因式法. 14.()22m m n -【分析】首先提取公因式2m ,再利用完全平方公式即可分解因式. 【详解】解:322242m m n mn -+()2222m m mn n =-+ ()22m m n =-故答案为:()22m m n -【点睛】本题考查了提公因式法和公式法分解因式,熟练掌握和运用分解因式的方法是解决本题的关键.15.()()322x x y x y +-【分析】先提取公因式3x ,然后根据平方差公式因式分解即可求解.【详解】解:原式=()()()2234322x x y x x y x y -=+-.故答案为:()()322x x y x y +-.【点睛】本题考查了因式分解,正确的计算是解题的关键.16.225- 【分析】利用完全平方公式求出(a −b ),(b −c ),(a −c )的平方和,然后代入数据计算即可求解.【详解】解:∵35a b b c -=-=, ∴65a c -=()()()2225425a b b c a c -+-+-= ∴()()222542225a b c ab bc ac ++-++=, ∵2221a b c ++=,∴()27125ab bc ac -++=, ∴225ab bc ca ++=-, 故答案为:225- 【点睛】本题考查了完全平方公式,解题的关键是分别把35a b -=,35b c -=,相加凑出,65a c -=三个式子两边平方后相加,化简求解. 17.(1)()2.a a b ++(2)()32.m m n +【分析】(1)提取公因式a 即可;(2)按照平方差公式进行因式分解即可.【详解】(1)解:22a ab a ++()2.a a b =++(2)()()222m n m n +-+()()22m n m n m n m n =++++--()32.m m n =+【点睛】本题考查的是多项式的因式分解,掌握“提公因式法与公式法分解因式”是解本题的关键.18.222x y -+【分析】根据整式的混合运算法则计算即可.【详解】解:原式()()2222224222x y xy xy x y x y =---÷=---=-+【点睛】本题考查整式的混合运算,熟练掌握该知识点是解题关键.19.12x + ;2 【分析】先利用平方差公式,单项式与多项式乘法化简,然后代入12x =即可求解. 【详解】(1)(1)(2)x x x x +-++2212x x x =-++ 12x =+ 当12x =时, 原式12x =+11222=+⨯=. 【点睛】本题考查了整式的化简求值,正确地把代数式化简是解题的关键.20.2,2022x y -【分析】根据平方差公式,完全平方公式,先计算括号内的,然后根据多项式除以单项式进行计算,最后将20201x y ==-,代入即可求解.【详解】解:原式=()222224434x y x xy y y y --+--÷()2484xy y y =-÷2x y =-.当20201x y ==-,时,原式=2020-2×(-1)=2022.【点睛】本题考查了整式的化简求值,掌握平方差公式,完全平方公式,多项式除以单项式是解题的关键.21.34-【分析】根据非负数的性质求出a ,b ,c 的值,然后代入计算即可. 【详解】解:由题得:22043404102a cbc a b ⎧⎪+-=⎪--=⎨⎪⎪--=⎩, 解得:4141a b c =⎧⎪⎪=⎨⎪=-⎪⎩, 所以313242n n n a b c +++-()3242311414n n n +++⎛⎫=⨯-- ⎪⎝⎭31114144n +⎛⎫=⨯⨯- ⎪⎝⎭34=-. 【点睛】本题考查了非负数的性质,解三元一次方程,积的乘方法则的逆用等知识,利用代入法或加减法把解三元一次方程组的问题转化为解二元一次方程组的问题是解题的关键.22.x 2-2y ,0【分析】首先运用平方差公式计算,再运用单项式乘以多项式计算,最后合并同类项,即可化简,然后把x 、y 值代入计算即可.【详解】解:()()()22x y x y xy xy x +-+-÷=x 2-y 2+y 2-2y=x 2-2y当x =1,y =12时,原式=12-2×12=0.【点睛】本题考查整式化简求值,熟练掌握整式混合运算法则是解题的关键.23.(1)5(2)47【分析】(1)由21()x x +=22112x x x x +⋅⋅+、21()x x -=22112x x x x -⋅⋅+,进而得到21()x x+﹣4x •1x即可解答; (2)由21()x x -=2212x x -+可得221x x +=7,又2221()x x +=4412x x ++,进而得到441x x+=2221()x x +﹣2即可解答. (1)解:∵21()x x +=22112x x x x +⋅⋅+∴21()x x -=22112x x x x -⋅⋅+=2211124x x x x x x+⋅+-⋅=21()x x +﹣4x •1x=32﹣4=5. (2)解:∵21()x x -=2212x x -+,∴221x x +=21()x x -+2=5+2=7,∵2221()x x +=4412x x++,∴441x x +=2221()x x +﹣2=49﹣2=47. 【点睛】本题主要考查通过对完全平方公式的变形求值.熟练掌握完全平方公式并能灵活运用是解答本题的关键.24.(1)-4,-4;(2)ABC 的周长为9.【分析】(1)利用完全平方公式配方,再根据非负数的性质即可得出x 和y 的值;(2)利用完全平方公式配方,再根据非负数的性质即可得出a 和b 的值,从而得出c 的取值范围,根据c 为整数即可得出c 的值,从而求得三角形的周长.【详解】解:(1)由22228160x y xy y +-++=得222)((2816)0x xy y y y -+++=+,22()(4)0x y y -++=,∴0x y -=,40y +=,∴4x y ==-,故答案为:-4,-4;(2)由22248180a b a b +--+=得:222428160a a b b -++-+=,222(1)(4)0a b -+-=,∴a -1=0,b -4=0,∴a =1,b =4,∴3<c <5,∵△ABC 的三边长a 、b 、c 都是正整数,∴c =4,∴ABC 的周长为9.【点睛】本题主要考查了配方法的应用及偶次方的非负性,同时考查了三角形的三边关系,本题难度中等.25.(1)阴影A 的周长为:21480x y -+,∴阴影B 的周长为:21680x y +-,则其周长和为:42x y +;(2)阴影A 的面积为:240120412x y xy y --+,阴影B 的面积为:2416016xy y y -+,阴影A ,B 的面积差为:2404084x y xy y +-- ; (3)当y =5时,阴影A 与阴影B 的面积差不会随着x 的变化而变化,这个值是100.【分析】(1)由图可知阴影A 的长为(404y -),宽为(3x y -),阴影B 的长为4y ,宽为()404x y --⎡⎤⎣⎦,从而可求解;(2)结合(1),利用长方形的面积公式进行求解即可;(3)根据题意,使含x 的项提公因式x ,再令另一个因式的系数为0,从而可求解.(1)解:(1)由题意得:阴影A 的长为(404y -),宽为(3x y -),∴阴影A 的周长为:()()()240432404321480y x y y x y x y -+-=-+-=-+⎡⎤⎣⎦∵阴影B 的长为4y ,宽为()404404x y x y --=-+⎡⎤⎣⎦,∴阴影B 的周长为:()()240424042168044y y x y x y x y +-+=+-+=+-⎡⎤⎣⎦,∴其周长和为:()()214802168042x y x y x y -+++-=+;(2)∵阴影A 的长为(404y -),宽为(3x y -),∴阴影A 的面积为:()()2404340120412y x y x y xy y --=--+. ∵阴影B 的长为4y ,宽为404x y -+,∴阴影B 的面积为:()24404416016y x y xy y y -+=-+, ∴阴影A ,B 的面积差为:()()22240120412416016404084x y xy y xy y y x y xy y --+--+=+--.(3)∵阴影A 与阴影B 的面积差不会随着x 的变化而变化,阴影A ,B 的面积差()22404084408404x y xy y y x y y =+--=-+-.∴当4080y -=,即5y =时,阴影A 与阴影B 的面积差不会随着x 的变化而变化.此时:阴影A ,B 的面积差()2408540545100x =-⨯+⨯-⨯=.【点睛】本题主要考查列代数式,代数式求值,与某个字母无关型问题,解答的关键是根据图表示出两个长方形的长与宽.。
八年级数学上册第十四章整式的乘法与因式分解知识点归纳总结(精华版)(带答案)
八年级数学上册第十四章整式的乘法与因式分解知识点归纳总结(精华版)单选题1、若(2020×2020×…×2020⏟ 共2020个)×(2020+2020+⋯+2020⏟ 共2020个)=2020n ,则n =( )A .2022B .2021C .2020D .2019 答案:A分析:2020个2020相乘,可以写成20202020,2020个2020相加,可以写成2020×2020=20202,计算即可得到答案.∵2020×2020×⋯×2020=20202020⏟ 2020,2020+2020+⋯+2020⏟ 2020=2020×2020=20202,∴原式左边=20202020×20202=20202022, 即2020n =20202022, ∴n =2022. 故选:A .小提示:本题考查了乘方的意义,以及同底数幂的乘法运算.注意:求n 个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂.2、如图,阶梯型平面图形的面积可以表示为( )A .ad +bcB .ad +c (b −d )C .ab −cdD .c (b −d )+d (a −c ) 答案:B分析:把阶梯型的图形看成是两个长方形的面积之和或面积之差即可求解.解:S 阶梯型=bc +(a ﹣c )d 或S 阶梯型=ab ﹣(a ﹣c )(b ﹣d ) 或S 阶梯型=ad +c (b ﹣d ), 故选:B .小提示:本题主要考查列代数式,整式的混合运算,解答的关键是把所求的面积看作是两个长方形的面积之和或面积之差.3、将多项式x ﹣x3因式分解正确的是( )A .x (x2﹣1)B .x (1﹣x2)C .x (x+1)(x ﹣1)D .x (1+x )(1﹣x ) 答案:D分析:直接提取公因式x ,然后再利用平方差公式分解因式即可得出答案. x ﹣x 3=x (1﹣x 2) =x (1﹣x )(1+x ). 故选D .小提示:本题主要考查了提取公因式法以及公式法分解因式,正确应用公式法是解题关键. 4、已知、为实数,且√a −12+ b 2+4=4b ,则a 2015•b 2016的值是( ) A .12B .−12C .2D .﹣2答案:C分析:已知等式整理后,利用非负数的性质求出与的值,利用同底数幂的乘法及积的乘方运算法则变形后,代入计算即可求出值.已知等式整理得:√a −12+ (b −2)2=0,∴a =12,b =2, 即ab =1,则原式=(ab)2015•b故选:C.小提示:本题考查了实数的非负性,同底数幂的乘法,积的乘方,活用实数的非负性,确定字母的值,逆用同底数幂的乘法,积的乘方,进行巧妙的算式变形,是解题的关键.5、如图,在长方形ABCD中,横向阴影部分是长方形,纵向阴影部分是平行四边形,依照图中标注的数据,计算空白部分的面积,其面积是()A.bc−ab+ac+c2B.ab−bc−ac+c2C.a2+ab+bc−ac D.b2+bc+a2−ab答案:B分析:矩形面积减去阴影部分面积,求出空白部分面积即可.空白部分的面积为(a−c)(b−c)=ab−ac−bc+c2.故选B.小提示:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.6、小阳同学在学习了“设计自己的运算程序”综合与实践课后,设计了如图所示的运算程序,若开始输入m的值为2,则最后输出的结果y是()A.2B.3C.4D.8答案:D分析:把m=2代入运算程序中计算,如小于或等于7则把其结果再代入运算程序中计算,如大于7则直接输出结果.解:当m=2时,=22-1=3<7,当m=3时,m2-1=32-1=8>7,则y=8.故选:D.小提示:此题考查了代数式求值,以及有理数的混合运算,弄清题中的运算程序是解本题的关键.7、2×(3+1)(32+1)(34+1)(38+1)(316+1)的计算结果的个位数字是()A.8B.6C.2D.0答案:D分析:先将2变形为(3−1),再根据平方差公式求出结果,根据规律得出答案即可.解:(3−1)(3+1)(32+1)(34+1)…(316+1)=(32−1)(32+1)(34+1)…(316+1)=(34−1)(34+1)…(316+1)=332−1∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…∴3n的个位是以指数1到4为一个周期,幂的个位数字重复出现,∵32÷4=8,故332与34的个位数字相同即为1,∴332−1的个位数字为0,∴2×(3+1)(32+1)(34+1)(38+1)(316+1)的个位数字是0.故选:D.小提示:本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键.8、若x2+ax=(x+1)2+b,则a,b的值为()2A .a =1,b =14B .a =1,b =﹣14C .a =2,b =12D .a =0,b =﹣12 答案:B分析:根据完全平方公式把等式右边部分展开,再比较各项系数,即可求解. 解:∵x 2+ax =(x +12)2+b =x 2+x +14+b ,∴a =1,14+b =0,∴a =1,b =﹣14,故选B .小提示:本题主要考查完全平方公式,熟练掌握完全平方公式是解题的关键.9、如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A .2a+bB .4a+bC .a+2bD .a+3b 答案:A分析:4张边长为a 的正方形卡片的面积为4a 2,4张边长分别为a 、b 的矩形卡片的面积为4ab ,1张边长为b 的正方形卡片面积为b 2,9张卡片拼成一个正方形的总面积=4a 2+4ab+b 2=(2a+b)2,所以该正方形的边长为:2a+b .设拼成后大正方形的边长为x , ∴4a 2+4ab+b 2=x 2,∴(2a+b)2=x 2,∴该正方形的边长为:2a+b. 故选A.小提示:本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长. 10、下列计算正确的是( )A .m +m =m 2B .2(m −n )=2m −nC .(m +2n)2=m 2+4n 2D .(m +3)(m −3)=m 2−9 答案:D分析:根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定. 解:A.m +m =2m ,故该选项错误,不符合题意; B.2(m −n )=2m −2n ,故该选项错误,不符合题意; C.(m +2n)2=m 2+4mn +4n 2,故该选项错误,不符合题意; D.(m +3)(m −3)=m 2−9,故该选项正确,符合题意; 故选:D .小提示:本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键. 填空题11、阅读下面材料:一个含有多个字母的式子中,如果任意交换两个字母的位置,式子的值都不变,这样的式子就叫做对称式.例如:a+b+c ,abc ,a 2+b 2,…含有两个字母a ,b 的对称式的基本对称式是a+b 和ab ,像a 2+b 2,(a+2)(b+2)等对称式都可以用a+b ,ab 表示,例如:a 2+b 2=(a+b )2﹣2ab .请根据以上材料解决下列问题: (1)式子①a 2b 2②a 2﹣b 2③1a+1b中,属于对称式的是_______(填序号);(2)已知(x+a )(x+b )=x 2+mx+n . ①若m =−2,n =12,求对称式ba +ab 的值; ②若n =﹣4,直接写出对称式a 4+1a 2+b 4+1b 2的最小值.答案:(1)①③;(2)①b a +ab =6;②a 4+1a 2+b 4+1b 2的最小值为172.分析:(1)根据对称式的定义进行判断;(2)①先得到a+b =﹣2,ab =12,再变形得到b a +ab =a 2+b 2ab =(a+b)2−2abab,然后利用整体代入的方法计算;②根据分式的性质变形得到a 4+1a 2+b 4+1b 2=a 2+1a 2+b 2+1b 2,再利用完全平方公式变形得到(a+b )2﹣2ab+(a+b)2−2aba 2b 2,所以原式=1716m 2+172,然后根据非负数的性质可确定a 4+1a 2+b 4+1b 2的最小值.解:(1)式子①a 2b 2②a 2﹣b 2③1a+1b中,属于对称式的是 ①③.故答案为①③;(2)∵x 2+(a+b )x+ab =x 2+mx+n ∴a+b =m ,ab =n . ①a+b =﹣2,ab =12,b a+ab =a 2+b 2ab=(a+b)2−2abab=(−2)2−2×1212=6;②a 4+1a 2+b 4+1b 2=a 2+1a 2+b 2+1b 2=(a+b )2﹣2ab+(a+b)2−2aba 2b 2=m 2+8+m 2+816=1716m 2+172, ∵1716m 2≥0, ∴a 4+1a 2+b 4+1b 2的最小值为172.小提示:本题主要考查完全平方公式,关键是根据题目所给的定义及完全平方公式进行求解即可.12、平面直角坐标系中,已知点A 的坐标为(m ,3).若将点A 先向下平移2个单位,再向左平移1个单位后得到点B(1,n),则m +n =_______. 答案:3分析:先写出点A 向下平移2个单位后的坐标,再写出向左平移1个单位后的坐标.即可求出m 、n ,最后代入m +n 即可.点A 向下平移2个单位后的坐标为(m ,3−2),即(m ,1).再向左平移1个单位后的坐标为(m −1,1).∴{m−1=11=n ,即{m=2n=1.∴m+n=2+1=3.所以答案是:3.小提示:本题考查坐标的平移变换以及代数式求值.根据坐标的平移变换求出m、n的值是解答本题的关键.13、若a+b=1,则a2−b2+2b−2=________.答案:-1分析:将原式变形为(a+b)(a−b)+2b−2,再将a+b=1代入求值即可.解:a2−b2+2b−2=(a+b)(a−b)+2b−2将a+b=1代入,原式=a−b+2b−2=a+b−2=1-2=-1所以答案是:-1.小提示:本题考查了代数式求值,其中解题的关键是利用平方差公式将原式变形为(a+b)(a−b)+2b−2.14、已知a+b=4,a−b=2,则a2−b2的值为__________.答案:8分析:根据平方差公式直接计算即可求解.解:∵a+b=4,a−b=2,∴a2−b2=(a+b)(a−b)=4×2=8所以答案是:8小提示:本题考查了因式分解的应用,掌握平方差公式是解题的关键.15、若a2−b2=−116,a+b=−14,则a−b的值为______.答案:14分析:由平方差公式进行因式分解,再代入计算,即可得到答案.解:∵a2−b2=(a+b)(a−b)=−116,∵a+b=−14,∴a−b=−116÷(−14)=14.故答案是:14.小提示:本题考查了公式法因式分解,解题的关键是熟练掌握因式分解的方法.解答题16、分解因式:2x3−2x2y+8y−8x答案:2(x−y)(x−2)(x+2)分析:先分组,然后利用提公因式法和平方差公式因式分解即可.解:2x3−2x2y+8y−8x=2x2(x−y)+8(y−x)=2x2(x−y)−8(x−y)=2(x−y)(x2−4)=2(x−y)(x−2)(x+2).小提示:此题考查的是因式分解,掌握利用分组分解法、提公因式法和公式法因式分解是解题关键.17、小邢同学在计算(x+a)(x+b)中的“b”看成了“6”,算的结果为x2+3x−18,而且小颖同学在计算(x+a)(x+b)时将“+a”看成了“−a”,算的结果为x2−x−12.(1)求出a、b的值;(2)计算出(x+a)(x+b)的正确结果,答案:(1)a=-3,b=-4(2)x2-7x+12分析:(1)根据题意得出(x+a)(x+6)=x2+(6+a)x+6a=x2+3x-18,(x﹣a)(x+b)=x2+(﹣a+b)x﹣ab=x2-x﹣12,得出6+a=3,﹣a+b=-1,求出a、b即可;(2)把a、b的值代入,再根据多项式乘以多项式法则求出即可.(1)根据题意得:(x+a)(x+6)=x2+(6+a)x+6a=x2+3x-18,(x﹣a)(x+b)=x2+(﹣a+b)x﹣ab=x2−x−12,所以6+a=3,﹣a+b=-1,解得:a=-3,b=-4;(2)当a=-3,b=-4时,(x+a)(x+b)=(x-3)(x-4)=x2-7x+12.小提示:本题考查了多项式乘以多项式法则和解方程,能正确运用多项式乘以多项式法则进行计算是解此题的关键.18、我们知道形如x2+(a+b)x+ab的二次三项式可以分解因式为(x+a)(x+b),所以x2+6x−7=x2+ [7+(−1)]x+7×(−1)=(x+7)[x+(−1)]=(x+7)(x−1).但小白在学习中发现,对于x2+6x−7还可以使用以下方法分解因式.x2+6x−7=x2+6x+9−7−9=(x+3)2−16=(x+3)2−42=(x+3+4)(x+3−4)=(x+7)(x−1).这种在二次三项式x2+6x−7中先加上9,使它与x2+6x的和成为一个完全平方式,再减去9,整个式子的值不变,从而可以进一步使用平方差公式继续分解因式了.(1)请使用小白发现的方法把x2−8x+7分解因式;(2)填空:x2−10xy+9y2=x2−10xy+________+9y2−________=(x−5y)2−16y2=(x−5y)2−(________)2=[(x−5y)+________][(x−5y)−________]=(x−y)(x−________);(3)请用两种不同方法分解因式x2+12mx−13m2.答案:(1)(x−1)(x−7);(2)25y2;25y2;4y;4y;4y;9y;(3)(x+13m)(x−m)分析:(1)在x2−8x+7上加16减去16,仿照小白的解法解答;(2)在原多项式上加25y2再减去25y2,仿照小白的解法解答;(3)将−13m2分解为13m与(-m)的乘积,仿照例题解答;在原多项式上加36m2再减去36m2仿照小白的解法解答.(1)解:x2−8x+7=x2−8x+16+7−16=(x−4)2−9=(x−4)2−32=(x−4+3)(x−4−3)=(x−1)(x−7);(2)解:x2−10xy+9y2=x2−10xy+25y2+9y2−25y2=(x−5y)2−16y2=(x−5y)2−(4y)2=[(x−5y)+4y][(x−5y)−4y]=(x-y)(x-9y)所以答案是:25y2;25y2;4y;4y;4y;9y;(3)解法1:原式=x2+[13m+(−m)]x+13m⋅(−m)=(x+13m)(x−m).解法2:原式=x2+12mx+36m2−13m2−36m2=(x+6m)2−49m2=[(x+6m)+7m][(x+6m)−7m]=(x+13m)(x−m).小提示:此题考查多项式的因式分解,读懂例题及小白的解法,掌握完全平方公式、平方差公式的结构特征是解题的关键.。
第十四章整式的乘法与因式分解-题型
第十四章整式的乘法与因式分解14.1整式的乘法题型一:整式乘法与整式加减的综合例1:计算:(1)(a+b)(a-2b)-(a+2b)(a-b)(2)5x(x2+2x+1)-(2x+3)(x-5)变式训练:(1)(x+3)(x+4)-x(x+2)-5 (2)(3a-2b)(b-3a)-(2a-b)(3a+b)题型二:整式乘法与方程的综合例2:解方程(3x-2)(2x-3)=(6x+5)(x-1)变式训练:解方程2x(x-1)-(x+1)(2x-5)=12题型三:整式乘法与表达不等式的综合例3:解不等式(3x+4)(3x-4)>9(x-2)(x+3)变式训练:解不等式(2x-1)÷(2x-1)>(2x+5)(2x-5)-2题型四:整式的化简求值例4:先化简,再求值(-2a4x2+4a3x3 -a2x4)÷(-a2x3),其中a=,x=-4.。
变式训练:已知2x-y=10,求代数式[(x2+y2)-(x-y)2+2y(x-y)]÷4y的值。
题型五:整式乘法的实际应用例5:西红柿丰收了,为了方便运输,小红的爸爸把一根长方形为a cm,宽为 a cm的长方形铁板做成了一个有底无盖的盒子。
在长方形铁板的四个角上各截去一个边长为b cm的小正方形(2b<a),然后沿虚线折起即可,如图14-1所示,现在要将盒子的外部表面贴上彩色花纸,小花任务至少需要彩色纸花的面积实际就是小盒子外部的表面积,可以用以下两种方法求得:①直接法,小盒子外部表面的面积=四个侧面的面积+底面的面积=2[(a-2b)b+(a-2b)b]+(a-2b)(a-2b);②间接法,小盒子外部表面的面积=原长方形的面积-四个小正方形的面积=a·a-4b2 。
请你就是一下这两种方法的结果是否一样。
变式训练:如图所示,有正方形卡片A类、B类和长方形卡片C类各若干张,若干要拼一个长为(a+2b),宽为(a+b)的大长方形,那么需要C类卡片多少张?题型六:逆用幂的运算法则例6:已知2x=m,2y=n,2z=mn,求证x+y=z变式训练:已知10m=5,10n=6,求102m+3n的值。
第14章 整式的乘法与因式分解(提优卷)学生版-2024-2025学年八年级数学上册真题汇编章节复习
2024-2025学年人教版数学八年级上册章节真题汇编检测卷(提优)第14章整式的乘法与因式分解考试时间:120分钟试卷满分:100分难度系数:0.54姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023春•金沙县期末)下列从左到右的变形,是因式分解的是()A.(3﹣x)(3+x)=9﹣x2B.a2+2a+1=a(a+2)+1C.a3+2a2+a=a(a2+2a)D.m3﹣mn2=m(m+n)(m﹣n)2.(2分)(2023春•城关区校级期中)下列各式从左到右,是因式分解的是()A.(y﹣1)(y+1)=y2﹣1B.x2y+xy2﹣1=xy(x+y)﹣1C.(x﹣2)(x﹣3)=(3﹣x)(2﹣x)D.x2﹣4x+4=(x﹣2)23.(2分)(2023春•衢江区期末)如(x+m)与(x+4)的乘积中不含x的一次项,则m的值为()A.﹣4 B.4 C.0 D.14.(2分)(2022秋•黄冈期末)若(a2+b2+1)(a2+b2﹣1)=35,则a2+b2=()A.3 B.6 C.±3 D.±65.(2分)(2023春•成县期末)下列各式中,从左到右的变形是因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣4x+4=x(x﹣4)+4C.(x+3)(x﹣4)=x2﹣x﹣12 D.x2﹣4=(x+2)(x﹣2)6.(2分)(2022秋•城关区校级期末)若a m=4,a n=7,则a m+n的值为()A.3 B.11 C.28 D.无法计算7.(2分)(2023春•连平县期末)下面四个整式中,不能表示图中(图中图形均为长方形)阴影部分面积的是()A.﹣x2+5x B.x(x+3)+6C.3(x+2)+x2D.(x+3)(x+2)﹣2x8.(2分)(2023•东莞市校级一模)已知3m=2,3n=5,则32m+n=()A.B.10 C.9 D.209.(2分)(2022秋•鼓楼区校级期末)若二次三项式ax2+bx+c=(a1x+c1)(a2x+c2),则当a>0,b<0,c >0时,c1,c2的符号为()A.c1>0,c2>0 B.c1<0,c2<0 C.c1>0,c2<0 D.c1,c2同号10.(2分)(2023•安徽模拟)若实数a、b满足a2+b2=1,则ab+a+3b的最小值为()A.﹣3 B.﹣2 C.1 D.3评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•建昌县期末)分解因式:mn2+6mn+9m=.12.(2分)(2023春•高港区期中)若x2+mx+16是完全平方式,则m的值是.13.(2分)(2023春•福山区期中)如图1.将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若纸盒的容积为4a2b,则图2中纸盒底部长方形的周长为.(2023春•兴化市期末)已知二次三项式x2+mx+9能用完全平方公式分解因式,则m的值为.14.(2分)(2023春•靖江市期末)若(x+2)(x2﹣ax+5)的乘积中不含x的一次项,则a=.(2分)15.16.(2分)(2023春•江都区期中)若3x=4,3y=5,则3x﹣y=.17.(2分)(2022秋•夏邑县期末)若x2+2(m﹣3)x+16是完全平方式,则m的值为.18.(2分)(2022秋•番禺区期末)若(x﹣1)(x+2)=x2+ax﹣2,则a=.19.(2分)(2023春•达川区校级期末)多项式x2+mx+6因式分解得(x﹣2)(x+n),则m=.20.(2分)(2021秋•卢龙县校级期末)计算:15(24+1)(28+1)(216+1)(232+1)=.评卷人得分三.解答题(共8小题,满分60分)21.(6分)(2023春•永定区期末)分解因式:(1)﹣2x3+8xy2 (2)3a2﹣12a+1222.(6分)(2022秋•魏都区校级期末)通常,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.例如:如图1是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图2的形状拼成一个正方形.请解答下列问题:(1)图2中阴影部分的正方形的边长是.(2)请用两种不同的方法求图2中阴影部分的面积:方法1:;方法2:.(3)观察图2,请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是.(4)根据(3)中的等量关系解决如下问题:若x+y=6,xy=,则(x﹣y)2=.23.(8分)(2022秋•陕州区期末)如图,有一块长(3a+b)米,宽(2a+b)米的长方形广场,园林部门要对阴影区域进行绿化,空白区域进行广场硬化,阴影部分是边长为(a+b)米的正方形.(1)计算广场上需要硬化部分的面积;(2)若a=30,b=10,求硬化部分的面积.24.(8分)(2022秋•射洪市期末)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是.A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下面试题:已知x2﹣4y2=12,x+2y=4,求x和y的值;25.(8分)(2023春•金水区校级期中)(1)已知2x+5y﹣3=0,试求4x×32y的值.(2)已知2m=3,2n=5,求24m+2n的值.26.(8分)(2022春•阳谷县期中)阅读,学习和解题.(1)阅读和学习下面的材料:比较355,444,533的大小.分析:小刚同学发现55,44,33都是11的倍数,于是把这三个数都转化为指数为11的幂,然后通过比较底数的方法,比较了这三个数的大小.解法如下:解:∵355=(35)11=24311,444=(44)11=25611,533=(53)11=12511,∴533<355<444.学习以上解题思路和方法,然后完成下题:比较34040,43030,52020的大小.(2)阅读和学习下面的材料:已知a m=3,a n=5,求a3m+2n的值.分析:小刚同学发现,这些已知的和所求的幂的底数都相同,于是逆用同底数幂和幂的乘方公式,完成题目的解答.解法如下:解:∵a3m=(a m)3=33=27,a2n=(a n)2=52=25,∴a3m+2n=a3m•a2n=27×25=675.学习以上解题思路和方法,然后完成下题:已知a m=2,a n=3,求a2m+3n的值.(3)计算:(﹣16)505×(﹣0.5)2021.27.(8分)(2022秋•怀柔区期末)小柔在进行因式分解时发现一个现象,一个关于x的多项式x2+ax+b若能分解成两个一次整式相乘的形式(x+p)(x+q),则当x+p=0或x+q=0时原多项式的值为0,因此定义x=﹣p和x=﹣q为多项式x2+ax+b的0值,﹣p和﹣q的平均值为轴值.例:x2﹣2x+3=(x﹣3)(x+1),x﹣3=0或x+1=0时x2﹣2x+3=0,则x=3和x=﹣1为x2﹣2x+3的0值,3和﹣1的平均值1为x2﹣2x+3的轴值.(1)x2﹣4的0值为,轴值为;(2)若x2+ax+4的0值只有一个,则a=,此时0值与轴值相等;(3)x2﹣bx(b>0)的0值为x1,x2(x1<x2),轴值为m,则x1=,若x2﹣6x+m的0值与轴值相等,则b=.28.(8分)(2021秋•定西期末)我们在课堂上学习了运用提取公因式法、公式法等分解因式的方法,但单一运用这些方法分解某些多项式的因式时往往无法分解.例如:a2+6ab+9b2﹣1,通过观察可知,多项式的前三项符合完全平方公式,通过变形后可以与第四项结合再运用平方差公式分解因式,解题过程如下:a2+6ab+9b2﹣1=(a+3b)2﹣1=(a+3b+1)(a+3b﹣1),我们把这种分解因式的方法叫做分组分解法.利用这种分解因式的方法解答下列各题:(1)分解因式:x2﹣y2﹣2x+1;(2)若△ABC三边a、b、c满足a2﹣2bc+2ac﹣ab=0,试判断△ABC的形状,并说明理由.。
人教版八年级上册数学 第十四章整式的乘法与因式分解试卷(含答案)
人教版八年级上册数学第十四章整式的乘法与因式分解一、单选题1.下列各式,能用平方差公式计算的是()A.(a-2b)(-a+2b)B.(a-2b)(-a-2b)C.(a-1)(a+2)D.(a-2b)(2a+b)2.下列各式中,从左到右的变形是因式分解的是( )A.6x7=3x2⋅2x5B.3x+3y−5=3(x+y)−5C.4x2+4x=4x(x+1)D.(x+1)(x−1)=x2−13.下列运算正确的是()A.a2+a3=a5B.(﹣2a3)2=4a6C.a6÷a3=a2D.(a+2b)2=a2+2ab+b24.在多项式16x2+1添加一个单项式,使得到的多项式能运用完全平方公式分解因式,则下列表述正确的是()嘉琪:添加±8x,16x2+1±8x=(4x±1)2陌陌:添加64x4,64x4+16x2+1=(8x2+1)2嘟嘟:添加−1,16x2+1−1=16x2=(4x)2A.嘉琪和陌陌的做法正确B.嘉琪和嘟嘟的做法正确C.陌陌和嘟嘟的做法正确D.三位同学的做法都不正确5.如图1,将一张长方形纸板的四角各剪去一个边长为a的小正方形(阴影部分),制成如图2的无盖纸盒,若该纸盒的容积为2a2b,则图2中纸盒底部长方形的周长为()A.4a+2b B.2ab C.6a+2b D.4ab6.若x2−kxy+9y2是一个完全平方式,则k的值为()A.3B.6C.±81D.±67.已知a m=2,a n=12,a2m+3n的值为( )A.6B.12C.2D.112b2,则m,n的值分别为()8.已知8a3b m÷28a n+1b2=27A.m=4,n=3B.m=4,n=2C.m=2,n=2D.m=2,n=39.下列有四个结论,其中正确的是()①若(x−1)x+1=1,则x只能是2;②若(x−1)(x2+ax+1)的运算结果中不含x2项,则a=1③若a+b=10,ab=16,则a−b=6④若4x=a,8y=b,则22x−3y可表示为abA.①②③④B.②③④C.①③④D.②④10.已知m=2b+2022,n=b2+2023,则m和n的大小关系中正确的是() A.m>n B.m≥n C.m<n D.m≤n二、填空题11.因式分解:xy−3y=.12.计算:(1)x3⋅x5=;(2)a5÷a2=;(3)[−(−a)2]3=;(4)(−3ab3)3=;(5)(−0.125)2021×82022=;(6)(a−b)2⋅(b−a)3=.13.若x m=4,x n=9,则x2m−n=.14.如果a,b是长方形的长和宽,且(a+b)2=16,(a−b)2=4,则长方形面积是.15.若(2x2+mx−8)(x2−3x+n)的展开式中不含x2和x3项,则m=,n=.16.已知2x-3y-2=0,则(10x)2÷(10y)3=.17.如图,两个正方形的边长分别为a和b,已知a+b=10,ab=22,那么阴影部分的面积是.三、解答题18.计算:(1)a2•(﹣a4)+2(a2)3(2)(2x﹣1)(2x+1)﹣(x﹣6)(4x+3)(3)(2x﹣3y)2+2(y+3x)(3x﹣y)(4)(a﹣2b+3)(a+2b+3)(5)(x−3y−2)2(6)(2m+3n)(2m﹣n)﹣2n(2m﹣n)19.先化简,再求值:[(x−2y)2−(x−y)(x+y)−2y2]÷y,其中x=−1,y=−2.20.如图,在某一禁毒基地的建设中,准备在一个长为6a米,宽为5b米的长方形草坪上修建两条宽分别为a和b米的通道.(1)剩余草坪的面积是多少平方米?(2)若a=1,b=3,则剩余草坪的面积是多少平方米?21.观察以下等式:(x+1)(x2−x+1)=x3+1(x+3)(x2−3x+9)=x3+27(x+6)(x2−6x+36)=x3+216(1)按以上等式的规律,填空:(a+b)()=a3+b3(2)利用多项式的乘法法则,证明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2−xy+y2)−(x−y)(x2+xy+y2)22.如图,甲长方形的两边长分别为m+1、m+7;乙长方形的两边长分别为m+2、m+4(其中m为正整数).(1)设图中的甲长方形的面积为S1,乙长方形的面积为S2,试比较S1与S2的大小;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S与图中的甲长方形面积S1的差(即S−S1)是一个常数,请求出这个常数.23.阅读材料:若m2−2mn+2n2−8n+16=0,求m、n的值.解:m2−2mn+2n2−8n+16=0,∴(m2−2mn+n2)+(n2−8n+16)=0,∴(m−n)2+(n−4)2=0.∵(m−n)2≥0,(n−4)2≥0,∴(m−n)2=0,(n−4)2=0,∴m=4,n=4.根据你的观察,探究下面的问题:(1)a2+b2−4a+4=0,则a=______;b=______.(2)已知△ABC的三边长a、b、c都是正整数,且a2+b2−2a−6b+10=0,求c的值.24.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)用两种方法表示图②中的阴影部分的面积;(2)观察图②请你写出三个代数式(m+n)2、(m−n)2、4mn之间的等量关系式.(3)请运用(2)中的关系式计算:若x+y=−6,xy=2.75,求(x−y)2的值.参考答案:1.B2.C3.B4.A5.A6.D7.B8.B9.D10.D11.y(x−3)12.x8a3−a6−27a3b9−8(b−a)513.16914.315. 6 1316.10017.1718.(1)a6(2)21x+17(3)22x2−12xy+7y2(4)a2+6a+9−4b2(5)x2−6xy+9y2−4x+12y+4(6)4m2−n219.−4x+3y,−2.20.(1)剩余草坪的面积是20ab平方米;(2)若a=1,b=3,则剩余草坪的面积是60平方米.21.(1)a2−ab+b2(3)2y322.(1)S1>S2(2)S−S1=923.(1)2,0(2)c=324.(1)S阴影=(m−n)2或S阴影=(m+n)2−4mn(2)(m−n)2=(m+n)2−4mn(3)25。
《第14章整式的乘法与因式分解》单元测试题(含答案).doc
(第10题图)第十四章 整式的乘法与因式分解一、选择题1.下列各式由左边到右边的变形为因式分解的是( )A.a 2-b 2+1=(a+b)(a-b)+1B.m 2-4m+4=(m-2)2C.(x+3)(x-3)=x 2-9D.t 2+3t-16=(t+4)(t-4)+3t2.分解因式:x 3-x,结果为( )A.x(x 2-1)B.x(x-1)2C.x(x+1)2D.x(x+1)(x-1)3.下列因式分解正确的是( )A.16m 2-4=(4m+2)(4m-2)B.m 4-1=(m 2+1)(m 2-1)C.m 2-6m+9=(m-3)2D.1-a 2=(a+1)(a-1)4.下列多项式能因式分解的是( )A.m 2+n B .m 2-m+1 C .m 2-2m+1 D .m 2-n5.计算(2x 3y )2的结果是( )A .4x 6y 2B .8x 6y 2C .4x 5y 2D .8x 5y 26.已知a+b=3,ab=2,计算:a 2b+ab 2等于( )A .5B .6C .9D .17、下列运算中结果正确的是( )A 、633·x x x =;B 、422523x x x =+;C 、532)(x x =;D 、222()x y x y +=+.8、ab 减去22b ab a +-等于 ( )。
A 、222b ab a ++;B 、222b ab a +--;C 、222b ab a -+-;D 、222b ab a ++-9、已知x 2+kxy+64y 2是一个完全式,则k 的值是( )A 、8B 、±8C 、16D 、±1610、如下图(1),边长为a 的大正方形中一个边长为b小正方形,小明将图(1)的阴影部分拼成了一个矩形,如图(2)。
这一过程可以验证( )A 、a 2+b 2-2ab=(a -b)2 ;B 、a 2+b 2+2ab=(a+b)2 ;C 、2a 2-3ab+b 2=(2a -b)(a -b) ;D 、a 2-b 2=(a+b) (a -b)二、填空题11.若单项式-3x 4a-b y 2与3x 3y a+b 是同类项,则这两个单项式的积为 . 图1 图212.已知(x-1)(x+2)=ax2+bx+c,则代数式4a-2b+c的值为.13.若16b2+a2+m是完全平方式,则m= .14.分解因式:x3﹣x= .15.因式分解:43a﹣122a+9a= .16、若4x2+kx+25=(2x-5)2,那么k的值是三、解答题17.(8分)因式分解:(1)3a2-27b2; (2)x2-8(x-2).18. (10分)计算:(1)已知a+b=3,ab=-2,求a2+b2和a2-ab+b2的值;(2)已知(x+y)2=1,(x-y)2=49,求x2+y2和xy的值;(3)已知a-b=1,a2+b2=25,求ab的值.19.已知一个长方形的周长为20,其长为a,宽为b,且a,b满足a2-2ab+b2-4a+4b+4=0,求a,b的值.20、李老师给学生出了一道题:当a=0.35,b= -0.28时,求3323323a ab a b a a b a b a-+++--的值.题目出完后,小聪说:“老师给76336310的条件a=0.35,b= -0.28是多余的.”小明说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?21、如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)•展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+_____a3b+_____a2b2+______ab3+b4答案BDCCA BACDD11.-9x 6y 412.013.±8ab14.x (x+1)(x ﹣1).15.a 2(23)a -16.-20;17.解 (1)3a 2-27b 2=3(a 2-9b 2)=3(a+3b)(a-3b);(2)x 2-8(x-2)=x 2-8x+16=(x-4)2.18 (1)a 2+b 2=(a+b)2-2ab=32-2×(-2)=13;a 2-ab+b 2=(a+b)2-3ab=32-3×(-2)=15.(2)∵(x+y)2=x 2+y 2+2xy=1,(x-y)2=x 2+y 2-2xy=49,即解得(3)∵a-b=1,∴(a-b)2=a 2+b 2-2ab=1.∵a 2+b 2=25,∴25-2ab=1,解得ab=12.19.解 ∵长方形的周长为20,其长为a,宽为b,∴a+b=20÷2=10.∵a 2-2ab+b 2-4a+4b+4=0,∴(a-b)2-4(a-b)+4=0.∴(a-b-2)2=0.∴a-b-2=0,由此得方程组解得 20.原式=332(7310)(66)(33)0a a b a b +-+-++-=,合并得结果为0,与a 、b 的取值无关,所以小明说的有道理.21.4;6;4;。
八年级上册数学 整式的乘法与因式分解专题练习(word版
八年级上册数学整式的乘法与因式分解专题练习(word版一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.多项式x2﹣4xy﹣2y+x+4y2分解因式后有一个因式是x﹣2y,另一个因式是()A.x+2y+1 B.x+2y﹣1 C.x﹣2y+1 D.x﹣2y﹣1【答案】C【解析】【分析】首先将原式重新分组,进而利用完全平方公式以及提取公因式法分解因式得出答案.【详解】解:x2﹣4xy﹣2y+x+4y2=(x2﹣4xy+4y2)+(x﹣2y)=(x﹣2y)2+(x﹣2y)=(x﹣2y)(x﹣2y+1).故选:C.【点睛】此题考察多项式的因式分解,项数多需用分组分解法,在分组后得到两项中含有公因式(x-2y),将其当成整体提出,进而得到答案.2.已知a与b互为相反数且都不为零,n为正整数,则下列两数互为相反数的是( ) A.a2n-1与-b2n-1 B.a2n-1与b2n-1 C.a2n与b2n D.a n与b n【答案】B【解析】已知a与b互为相反数且都不为零,可得a、b的同奇次幂互为相反数,同偶次幂相等,由此可得选项A、C相等,选项B互为相反数,选项D可能相等,也可能互为相反数,故选B.3.把多项式(3a-4b)(7a-8b)+(11a-12b)(8b-7a)分解因式的结果( )A.8(7a-8b)(a-b)B.2(7a-8b)2C.8(7a-8b)(b-a)D.-2(7a-8b)【答案】C【解析】把(3a-4b)(7a-8b)+(11a-12b)(8b-7a)运用提取公因式法因式分解即可得(3a-4b)(7a-8b)+(11a-12b)(8b-7a)=(7a-8b)(3a-4b-11a+12b)=(7a-8b)(-8a+8b)=8(7a-8b)(b-a).故选C.4.已知48可以被在0~10之间的两个整数整除,则这两个数是()21A .1、3B .3、5C .6、8D .7、9【答案】D【解析】 248-1=(224+1)(224-1)= (224+1)(212+1)(212-1)= (224+1)(212+1)(26+1)(26-1)=(224+1)(212+1)(26+1)(23+1) (23-1) , 23+1=9, 23-1=7,所以这两个数是7、9.故选D.点睛:平方差公式:a 2-b 2=(a +b )(a -b ).5.化简()22x 的结果是( )A .x 4B .2x 2C .4x 2D .4x 【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.6.如图所示的是用4个全等的小长方形与1个小正方形密铺而成的正方形图案,已知该图案的面积为144,小正方形的面积为4,若分别用x 、y (x y >)表示小长方形的长和宽,则下列关系式中错误的是( )A .22100x y +=B .2x y -=C .12x y +=D .35xy =【答案】A【解析】【分析】 由正方形的面积公式可求x +y =12,x ﹣y =2,可求x =7,y =5,即可求解.【详解】由题意可得:(x +y )2=144,(x ﹣y )2=4,∴x +y =12,x ﹣y =2,故B 、C 选项不符合题意;∴x =7,y =5,∴xy =35,故D 选项不符合题意;∴x 2+y 2=84≠100,故选项A 符合题意. 故选A .本题考查了完全平方公式的几何背景,解答本题需结合图形,利用等式的变形来解决问题.7.若x 2+2(m+1)x+25是一个完全平方式,那么m 的值( )A .4 或-6B .4C .6 或4D .-6【答案】A【解析】【详解】解:∵x 2+2(m+1)x+25是一个完全平方式,∴△=b 2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m 2+2m-24=0,解得m 1=4,m 2=-6,所以m 的值为4或-6.故选A.8.把228a -分解因式,结果正确的是( )A .22(4)a -B .22(2)a -C .2(2)(2)a a +-D .22(2)a +【答案】C【解析】【分析】先提公因式2,然后再利用平方差公式进行分解即可.【详解】 228a -=22(4)a -=2(2)(2)a a +-,故选C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.9.下列等式从左到右的变形,属于因式分解的是( )A .x 2+2x ﹣1=(x ﹣1)2B .x 2+4x+4=(x+2)2C .(a+b )(a ﹣b )=a 2﹣b 2D .ax 2﹣a=a (x 2﹣1)【答案】B【解析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A 选项,从左到右变形错误,不符合题意,B 选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C 选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D 选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.10.不论x ,y 为何有理数,x 2+y 2﹣10x+8y+45的值均为( )A .正数B .零C .负数D .非负数【答案】A【解析】【详解】因为x 2+y 2-10x +8y +45=()()225440x y -+++>, 所以x 2+y 2-10x +8y +45的值为正数,故选A.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.因式分解:225101a a -+=______________【答案】()251a -【解析】根据完全平方公式()2222a ab b a b ±+=±进行因式分解为:225101a a -+=()251a -. 故答案为:()251a -.12.在实数范围内因式分解:22967x y xy --=__________.【答案】11933xy xy ⎛⎫+--- ⎪ ⎪⎝⎭⎝⎭【解析】【分析】将原多项式提取9,然后拆项分组为222189399x y xy ⎛⎫-+- ⎪⎝⎭,利用完全平方公式将前一组分解后,再利用平方差公式继续在实数范围内分解.【详解】解:22967x y xy -- 2227=939x y xy ⎛⎫-- ⎪⎝⎭ 222117=9+3999x y xy ⎛⎫--- ⎪⎝⎭ 218=939xy ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦11=933xy xy ⎛---+ ⎝⎭⎝⎭=9xy xy ⎛ ⎝⎭⎝⎭故答案为:11933xy xy ⎛+--- ⎝⎭⎝⎭【点睛】本题考查在实数范围内因式分解,利用分组分解法将原多项式“三一”分组后采用公式法因式分解,注意在实数范围内因式分解是指系数可以是根式.13.如果实数a ,b 满足a +b =6,ab =8,那么a 2+b 2=_____.【答案】20【解析】【分析】【详解】∵6,a b +=∴222()236,a b a ab b +=++=∵ab=8,∴22a b +=36-2ab=36-2×8=20.【点睛】本题考查了完全平方公式的变形应用,熟练进行完全平方公式的变形是解题的关键.14.若a 2+a-1=0,则a 3+2a 2+2014的值是___________.【答案】2015【解析】【分析】根据a 2+a-1=0可得a 2+a=1,对a 3+2a 2+2014进行变形,整体代入即可.【详解】∵a2+a-1=0∴a2+a=1a3+2a2+2014=a(a2+a)+a2+2014=a+a2+2014=2015故答案为2015【点睛】本题考查的是多项式的乘法,整体代入法是解答的关键.15.因式分解:214y y++=______【答案】212y⎛⎫+⎪⎝⎭【解析】根据完全平方公式()2222a ab b a b±+=±进行因式分解为:2222111124222y y y y y⎛⎫⎛⎫++=+⨯+=+⎪ ⎪⎝⎭⎝⎭.故答案为:212y⎛⎫+⎪⎝⎭.16.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).【答案】ab【解析】【分析】【详解】设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,12122{2x x ax x b+=-=解得,122{4a bxa bx+=-=②的大正方形中未被小正方形覆盖部分的面积=(2a b+)2-4×(4a b-)2=ab.故答案为ab.17.分解因式2242xy xy x++=___________【答案】22(1)x y+【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】原式=2x(y2+2y+1)=2x(y+1)2,故答案为2x(y+1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6= .【答案】a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6.【解析】【分析】通过观察可以看出(a+b)6的展开式为6次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为1、6、15、20、15、6、1.【详解】通过观察可以看出(a+b)6的展开式为6次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为1、6、15、20、15、6、1.所以(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6.19.已知2x+3y-5=0,则9x•27y的值为______.【答案】243【解析】【分析】先将9x•27y变形为32x+3y,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x⋅27y=32x⋅33y=32x+3y=35=243.故答案为:243.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练的掌握同底数幂乘法的概念和运算法则.20.分解因式:x2﹣1=____.【答案】(x+1)(x﹣1).【解析】试题解析:x2﹣1=(x+1)(x﹣1).考点:因式分解﹣运用公式法.。
八年级数学上册第十四章整式的乘法与因式分解知识点归纳超级精简版(带答案)
八年级数学上册第十四章整式的乘法与因式分解知识点归纳超级精简版单选题1、如果(x﹣2)(x+3)=x2+mx+n,那么m,n的值分别是()A.5,6B.1,﹣6C.﹣1,6D.5,﹣6答案:B分析:已知等式左边利用多项式乘以多项式法则计算,再根据多项式相等的条件即可求出m与n的值.解:∵(x−2)(x+3)=x2+x−6=x2+mx+n,∴m=1,n=−6.故选:B.小提示:本题考查了多项式乘以多项式,解题的关键是熟练掌握多项式乘以多项式法则.2、已知(x-2021)2+(x-2023)2=50,则(x-2022)2的值为()A.24B.23C.22D.无法确定答案:A分析:先变形为[(x-2022)+1]2+[(x-2022)-1]2=50,然后利用完全平方公式展开即可得到(x-2022)2的值.解:∵(x-2021)2+(x-2023)2=50,∴[(x-2022)+1]2+[(x-2022)-1]2=50,∴(x-2022)2+2(x-2022)+1+(x-2022)2-2(x-2022)+1=50,∴(x-2022)2=24.故选:A.小提示:此题考查了完全平方公式的运用,解题的关键是能根据完全平方公式灵活变形.3、不论x、y为什么实数,代数式x2+y2+2x−4y+7的值().A.可为任何实数B.不小于7C.不小于2D.可能为负数答案:C分析:要把代数式x2+y2+2x−4y+7进行拆分重组凑完全平方式,来判断其值的范围.具体如下:x 2+y 2+2x −4y +7=(x 2+2x +1)+(y 2−4y +4)+2=(x +1)2+(y−2)2+2, ∵(x +1)2≥0,(y−2)2≥0, ∴(x +1)2+(y−2)2+2≥2, ∴x 2+y 2+2x −4y +7≥2.故选:C .小提示:主要利用拆分重组的方法凑完全平方式,把未知数都凑成完全平方式,就能判断该代数式的值的范围.要求掌握完全平方公式,并会熟练运用.4、若M =√20212×20232+4044×2022−202243,则( )A .M <−1B .M =1C .−1<M <1D .M >1答案:B分析:根据完全平方公式化简根号内的算式,即可求解.解:∵ 20212×20232+4044×2022−20224=((2022+1)×(2022−1))2+2022×2×2022−(20222)2=(20222−1)2+2×2022×2022−(20222)2=20224−2×20222+1−(20222)2+2×20222=1,∴M =√13=1,故选:B.小提示:本题考查了求一个数的立方根,完全平方公式与平方差公式,正确的计算是解题的关键.5、计算(﹣4a 2+12a 3b )÷(﹣4a 2)的结果是( )A .1﹣3abB .﹣3abC .1+3abD .﹣1﹣3ab答案:A分析:直接利用整式的除法运算法则计算得出答案.(-4a 2+12a 3b )÷(-4a 2)=1-3ab .故选A .小提示:此题主要考查了整式的除法,正确掌握运算法则是解题关键.6、分解因式4x2﹣y2的结果是()A.(4x+y)(4x﹣y)B.4(x+y)(x﹣y)C.(2x+y)(2x﹣y)D.2(x+y)(x﹣y)答案:C分析:按照平方差公式进行因式分解即可.解:4x2﹣y2=(2x+y)(2x﹣y).故选:C.小提示:此题主要考查了公式法分解因式,正确应用公式是解题关键.7、66是63的()A.2倍B.36倍C.3倍D.216倍答案:D分析:把问题转化为同底数幂的除法计算即可.∵66÷63=63=216,故选D.小提示:本题考查了同底数幂的除法,熟练掌握运算法则是解题的关键.8、若(b﹣c)2=4(1﹣b)(c﹣1),则b+c的值是()A.﹣1B.0C.1D.2答案:D分析:先将等式的右边展开并移项到左边,然后再根据完全平方公式可以分解因式,即可得到b+c的值.解:∵(b﹣c)2=4(1﹣b)(c﹣1),∴b2﹣2bc+c2=4c﹣4﹣4bc+4b,∴(b2+2bc+c2)﹣4(b+c)+4=0,∴(b+c)2﹣4(b+c)+4=0,∴(b+c﹣2)2=0,∴b+c=2,故选:D.小提示:本题考查因式分解的应用,掌握运用完全平方公式进行因式分解是解答本题的关键.9、已知(x-m)(x+n)=x2-3x-4,则m-n的值为( )A.1B.-3C.-2D.3答案:D分析:把原式的左边利用多项式乘多项式展开,合并后与右边对照即可得到m-n的值.(x-m)(x+n)=x2+nx-mx-mn=x2+(n-m)x-mn,∵(x-m)(x+n)=x2-3x-4,∴n-m=-3,则m-n=3,故选D.小提示:此题考查了多项式乘多项式,熟练掌握法则是解本题的关键.10、计算:(a⋅a3)2=a2⋅(a3)2=a2⋅a6=a8,其中,第一步运算的依据是()A.同底数幂的乘法法则B.幂的乘方法则C.乘法分配律D.积的乘方法则答案:D分析:根据题意可知,第一步运算的依据是积的乘方法则:积的乘方,等于每个因式乘方的积.解:计算:(a⋅a3)2=a2⋅(a3)2=a2⋅a6=a8,其中,第一步运算的依据是积的乘方法则.故选:D.小提示:本题主要考查幂的运算,关键是熟练掌握幂的运算法则是解题的关键.填空题11、已知有甲、乙两个长方形,它们的边长如图所示(0<m<0.5),甲、乙的面积分别为S1,S2.则S1与S2的大小关系为:S1___________ S2;(用“>”、“<”、“=”填空)答案:<分析:利用多项式乘多项式求出长方形的面积,两者作差,即可比较S 1与S 2的大小.解:由题意可知:S 1=(m +1)(m +7)=m 2+8m +7,S 2=(m +2)(m +4)=m 2+6m +8∴S 1−S 2=2m −1∵0<m <0.5,∴−1<2m −1<0,即S 1<S 2.所以答案是:<小提示:本题考查多项式乘多项式,以及不等式的性质,解题的关键是求出S 1−S 2=2m −1,并利用m 的取值范围确定S 1<S 2.12、已知a 2−6a +√b −2=−9,且√c 3=−1,则3a −2b +c 的算术平方根是________.答案:2分析:先对已知等式进行变形,再利用偶次方和算术平方根的非负性求出a 、b 的值,然后利用立方根求出c 的值,最后代入求值,计算算术平方根即可得.a 2−6a +√b −2=−9,a 2−6a +9+√b −2=0,(a −3)2+√b −2=0,则{a −3=0b −2=0 ,解得{a =3b =2, 由√c 3=−1得:c =−1,则3a −2b +c 的算术平方根是√3a −2b +c =√3×3−2×2+(−1)=√4=2,所以答案是:2.小提示:本题考查了偶次方和算术平方根的非负性、算术平方根与立方根、完全平方公式,熟练掌握算术平方根与立方根的性质是解题关键.13、已知长方形的面积为4a 2-4b 2,如果它的一边长为a +b ,则它的周长为______.答案:10a -6b分析:直接利用提公因式法和公式法因式分解得到另一边长,进而得出答案.∵4a2−4b2=4(a2−b2)=4(a+b)(a−b),长方形的一边长为a+b∴长方形的另一边长为4(a+b)=4a+4b∴该长方形的周长为:(4a-4b+a+b)×2=10a-6b,所以答案是:10a-6b小提示:本题主要考查因式分解,掌握利用公式分解因式是解题关键.14、计算:(a−b)3⋅(b−a)4=______.(结果用幂的形式表示)答案:(a−b)7##−(b−a)7分析:本题首先转化为同底数,然后根据同底数幂的乘法计算法则即可得出答案.(a−b)3⋅(b−a)4=(a−b)3⋅(a−b)4=(a−b)7所以答案是:(a−b)7小提示:本题主要考查的就是同底数幂的乘法计算法则,属于基础题型.互为相反数的两个数的偶数次幂相等是解决这个问题的关键.15、计算:(x+3)(x+5)=_____.答案:x2+8x+15分析:根据多项式与多项式相乘的法则计算.解:(x+3)(x+5)=x2+5x+3x+15=x2+8x+15所以答案是:x2+8x+15.小提示:本题考查了多项式乘多项式.解题的关键在于熟练掌握多项式乘多项式的运算法则.解答题16、常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2−4y2−2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了。
人教版数学八年级上册暑假预习 第十四章《整式的乘法与因式分解》知识梳理附全章节练习题(图片版)
暑假预习人教版数学八年级上册第十四章《整式的乘法与因式分解》知识梳理知识结构图:一、整式的有关概念1.整式整式是单项式与多项式的统称.2.单项式单项式是指由数字或字母的乘积组成的式子;单项式中的数字因数叫做单项式的系数;单项式中所有字母指数的和叫做单项式的次数.3.多项式几个单项式的和叫做多项式;多项式中,每一个单项式叫做多项式的项,其中不含字母的项叫做常数项;多项式中次数最高项的次数就是这个多项式的次数.二、整数指数幂的运算1、同底数幂乘法:同底数幂相乘,底数不变,指数相加。
2、同底数幂除法:同底数幂相除,底数不变,指数相减。
3、幂的乘方:幂的乘方,底数不变,指数相乘。
4、积的乘方:积的乘方等于各因式乘方的积。
注:(1)任何一个不等于零的数的零指数幂都等于1;(2)任何一个不等于零的数的-p(p为正整数)指数幂,等于这个数的p指数幂的倒数。
(3)科学记数法:或绝对值小于1的数可记成的形式,其中,n是正整数,n等于原数中第一个有效数字前面的零的个数(包括小数点前面的一个零)。
三、同类项与合并同类项1.所含字母相同,并且相同字母的指数也分别相同的单项式叫做同类项.2.把多项式中的同类项合并成一项叫做合并同类项,合并的法则是系数相加,所得的结果作为合并后的系数,字母和字母的指数不变.四、求代数式的值1.一般地,用数值代替代数式里的字母,按照代数式指明的运算关系计算出的结果就叫做代数式的值.2.求代数式的值的基本步骤:(1)代入:一般情况下,先对代数式进行化简,再将数值代入;(2)计算:按代数式指明的运算关系计算出结果.五、整式的运算1.整式的加减(1)整式的加减实质就是合并同类项;(2)整式加减的步骤:有括号,先去括号;有同类项,再合并同类项.注意去括号时,如果括号前面是负号,括号里各项的符号要变号.2.整式的乘除(1)整式的乘法①单项式与单项式相乘:把系数、同底数幂分别相乘,作为积的因式,只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.②单项式与多项式相乘:m(a+b+c)=ma+mb+mc.③多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb.(2)整式的除法①单项式除以单项式:把系数、同底数幂相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.②多项式除以单项式:(a+b)÷m=a÷m+b÷m.3.乘法公式(1)平方差公式:(a+b)(a-b)=a2-b2;(2)完全平方公式:(a±b)2=a2±2ab+b2.六、因式分解1.因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解.2.因式分解的方法(1)提公因式法公因式的确定:第一,确定系数(取各项整数系数的最大公约数);第二,确定字母或因式底数(取各项的相同字母);第三,确定字母或因式的指数(取各相同字母的最低次幂).(2)运用公式法①运用平方差公式:.②运用完全平方公式:.(3)十字相乘: .3.分解因式的技巧:(1) 因式分解时,有公因式要先提公因式,然后考虑其他方法;(2)因式分解时,有时项数较多时,看看分组分解法是否更简洁.同步练习。
北师大版八年级上册数学 整式的乘法与因式分解单元测试卷 (word版,含解析)
∴(a﹣4)2+(c﹣8)2=0,
∴a﹣4=0,c﹣8=0,
∴a=4,c=8,b=a﹣8=4﹣8=﹣4,
43;c的值是8.
3.阅读下列因式分解的过程,再回答所提出的问题:
.
(1)上述分解因式的方法是______________法.
4.一个四位正整数m各个数位上的数字互不相同且都不为0,四位数m的前两位数字之和为5,后两位数字之和为11,称这样的四位数m为“半期数”;把四位数m的各位上的数字依次轮换后得到新的四位数m′,设m′= ,在m′的所有可能的情况中,当|b+2c﹣a﹣d|最小时,称此时的m′是m的“伴随数”,并规定F(m′)=a2+c2﹣2bd;例如:m=2365,则m′为:3652,6523,5236,因为|6+10﹣3﹣2|=11,|5+4﹣6﹣3|=0,|2+6﹣5﹣6|=3,0最小,所以6523叫做2365的“伴随数”,F(5236)=52+32﹣2×2×6=10.
(2)根据题目中的等式可以求得所求式子的值.
【详解】
解:(1) [(a-b)2+(b-c)2+(c-a)2]
= (a2-2ab+b2+b2-2bc+c2+a2-2ac+c2)
= ×(2a2+2b2+2c2-2ab-2bc-2ac)
=a2+b2+c2-ab-bc-ac,
故a2+b2+c2-ab-bc-ac= [(a-b)2+(b-c)2+(c-a)2]正确;
即xy的值是9.
(2)∵a2+b2﹣10a﹣12b+61=0,
2022-2023学年人教版八年级数学上册《第14章整式乘法与因式分解》解答专项练习题(附答案)
2022-2023学年人教版八年级数学上册《第14章整式乘法与因式分解》解答专项练习题(附答案)1.因式分解:(1)(x+3y)2﹣x﹣3y;(2)(a2+4)2﹣16a2.2.因式分解:(1)ax2﹣4ax+4a;(2)x2(m﹣n)+y2(n﹣m);(3)(x+2)(x+4)﹣3;(4)9(a+b)2﹣(a﹣b)2.3.计算:(1)(x2y)3•(﹣2xy3)2;(2)(x n y3n)2+(x2y6)n;(3)(x2y3)4+(﹣x)8•(y6)2;(4)a•a2•a3+(﹣2a3)2﹣(﹣a)6.4.计算:a•a2•a3+(﹣2a3)2﹣(2a4)2÷a2.5.规定a*b=3a×3b,求:(1)求1*2;(2)若2*(x+1)=81,求x的值.6.(1)已知:4m=5,8n=3,计算22m+3n的值.(2)已知:3x+5y=8,求8x•32y的值.7.回答下列问题:(1)计算:①(x+2)(x+3);②(x+8)(x﹣10);③(x﹣7)(x﹣9).(2)由(1)的结果,直接写出下列计算的结果:①(x+1)(x+4)=;②(x﹣6)(x﹣3)=;③(x+10)(x﹣15)=;(3)总结公式:(x+a)(x+b)=.(4)已知a,b,n均为整数,且(x+a)(x+b)=x2+nx+8,求n的所有可能值.8.【初试锋芒】若x+y=8,x2+y2=40,求xy的值;【再展风采】已知4a2+b2=57,ab=6,求2a+b的值;【尽显才华】若(20﹣x)(x﹣30)=10,则(20﹣x)2+(x﹣30)2的值是.9.定义:如果2m=n(m,n为正数),那么我们把m叫做n的D数,记作m=D(n).(1)根据D数的定义,填空:D(2)=,D(16)=.(2)D数有如下运算性质:D(s•t)=D(s)+D(t),D()=D(q)﹣D(p),其中q>p.根据运算性质,计算:①若D(a)=1,求D(a3);②若已知D(3)=2a﹣b,D(5)=a+c,试求D(30),的值(用含a、b、c的代数式表示).10.用乘法公式计算:(1)20212﹣2023×2019;(2)(2x+y+z)(2x﹣y﹣z).11.已知x+y=﹣5,xy=﹣3.(1)求x2+y2的值;(2)求(x﹣y)2的值.12.已知ab=1,因为(a+b)2=a2+2ab+b2=a2+b2+2①(a﹣b)2=a2﹣2ab+b2=a2+b2﹣2②所以由①得a2+b2=(a+b)2﹣2.由②得a2+b2=(a﹣b)2+2.试根据上面公式的变形解答下列问题:(1)已知a﹣b=2,ab=1,则下列等式成立的是.①a2+b2=6;②a4+b4=38;③(a+b)2=8.(2)已知a+b=2,ab=1.①求代数式a2+b2的值;②求代数式a4+b4的值;③猜想代数式a2n+b2n(n为正整数)的值,直接写出答案,不必说明理由.13.阅读材料:若x满足(9﹣x)(x﹣4)=4,求(4﹣x)2+(x﹣9)2的值.设9﹣x=a,x﹣4=b,则(9﹣x)(x﹣4)=ab=4,a+b=(9﹣x)+(x﹣4)=5,∴(4﹣x)2+(x﹣9)2=(9﹣x)2+(x﹣4)2=a2+b2=(a+b)2﹣2ab=52﹣2×4=17.请仿照上面的方法求解下面问题:已知m满足(2m﹣5)2+(4﹣2m)2=5.(1)求(5﹣2m)(4﹣2m)的值;(2)求4m﹣9的值.14.如图,在一个边长为2a+b的大正方形纸片中,剪去一个长为2a+b、宽为a﹣b的长方形和一个边长为a﹣b的小正方形.(1)用含a、b的式子表示阴影部分的面积;(结果化为最简)(2)当a=5,b=2时,求阴影部分的面积.15.乘法公式的探究及应用:数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B 种纸片是边长为b的正方形,C种纸片是长为b、宽为a的长方形.并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法表示图2大正方形的面积.方法1:;方法2:;(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的数量关系:;(3)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=21,求ab的值;②已知(2022﹣a)2+(a﹣2020)2=10,求(2022﹣a)(a﹣2020)的值.16.计算:|(2x+y)(2x﹣y)﹣5x(x+2y)+(x+2y)2|÷(﹣3y).17.【观察发现】从边长为a的正方形中剪掉一个边长为b的正方形(如图①),然后将剩余部分剪开并拼成一个长方形(如图②).【归纳结论】(1)上述操作,能验证的等式是;(直接写结果)【问题解决】(2)利用(1)中的结论,计算:.18.阅读下列解答过程:已知二次三项式x2﹣4x+m有一个因式是x+3,求另一个因式及m的值.解:设另一个因式为x+a则x2﹣4x+m=(x+3)(x+a)=x2+ax+3x+3a=x2+(a+3)x+3a,∴,∴,∴另一个因式为x﹣7,m的值为﹣21.请依照以上方法解答下面问题:已知二次三项式x2+5x+k有一个因式是x﹣2,求另一个因式及k的值.19.小红准备完成题目:计算(x2x+2)(x2﹣x).她发现第一个因式的一次项系数被墨水遮挡住了.(1)她把被遮住的一次项系数猜成3,请你完成计算:(x2+3x+2)(x2﹣x);(2)老师说:“你猜错了,这个题目的正确答案是不含三次项的.”请通过计算说明原题中被遮住的一次项系数是多少?20.阅读理解:若x满足(30﹣x)(x﹣10)=160,求(30﹣x)2+(x﹣10)2的值.解:设30﹣x=a,x﹣10=b,则(30﹣x)(x﹣10)=ab=160,a+b=(30﹣x)+(x﹣10)=20,(30﹣x)2+(x﹣10)2=a2+b2=(a+b)2﹣2ab=202﹣2×160=80解决问题:(1)若x满足(2020﹣x)(x﹣2016)=2,则(2020﹣x)2+(x﹣2016)2=;(2)若x满足(x﹣2022)2+(x﹣2018)2=202,求(x﹣2022)(x﹣2018)的值;(3)如图,在长方形ABCD中,AB=16,BC=12,点E.F是BC、CD上的点,且BE =DF=x,分别以FC、CE为边在长方形ABCD外侧作正方形CFGH和CEMN,若长方形CEPF的面积为100平方单位,则图中阴影部分的面积和为平方单位.21.下面是某同学对多项式(x2﹣2x﹣1)(x2﹣2x+3)+4进行因式分解的过程,解:设x2﹣2x=y原式=(y﹣1)(y+3)+4(第一步)=y2+2y+1(第二步)=(y+1)2(第三步)=(x2﹣2x+1)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了.A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?(填“彻底”或者“不彻底”)若不彻底.请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2﹣4x)(x2﹣4x+8)+16进行因式分解.22.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2﹣2xy+y2﹣16;(2)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.参考答案1.解:(1)原式=(x+3y)2﹣(x+3y)=(x+3y)(x+3y﹣1);(2)原式=(a2+4)2﹣(4a)2=(a2+4+4a)(a2+4﹣4a)=(a+2)2(a﹣2)2.2.解:(1)原式=a(x2﹣4x+4)=a(x﹣2)2;(2)原式=x2(m﹣n)﹣y2(m﹣n)=(m﹣n)(x2﹣y2)=(m﹣n)(x+y)(x﹣y);(3)原式=x2+6x+8﹣3=x2+6x+5=(x+1)(x+5);(4)原式=[3(a+b)+(a﹣b)][3(a+b)﹣(a﹣b]=(4a+2b)(2a+4b)=4(2a+b)(a+2b).3.解:(1)原式=x6y3•4x2y6=4x8y9;(2)原式=x2n y6n+x2n y6n=2x2n y6n;(3)原式=x8y12+x8y12=2x8y12;(4)原式=a6+4a6﹣a6=4a6.4.解:a•a2•a3+(﹣2a3)2﹣(2a4)2÷a2=a6+4a6﹣4a8÷a2=a6+4a6﹣4a6=a6.5.解:(1)∵a*b=3a×3b,∴1*2=31×32=3×9=27;(2)∵2*(x+1)=81,∴32×3x+1=34,则2+x+1=4,解得:x=1.6.解:(1)∵4m=22m=5,8n=23n=3,∴22m+3n=22m•23n=5×3=15;(2)∵3x+5y=8,∴8x•32y=23x•25y=23x+5y=28=256.7.解:(1)①(x+2)(x+3)=x2+2x+3x+6=x2+5x+6,②原式=x2﹣10x+8x﹣80=x2﹣2x﹣80.③原式=x2﹣9x﹣7x+63.(2)①原式=x2+4x+x+4=x2+5x+4.②原式=x2﹣3x﹣6x+18=x2﹣9x+18.③原式=x2﹣15x+10x﹣150=x2﹣5x﹣150.故答案为:①x2+5x+4.②x2﹣9x+18.③x2﹣5x﹣150.(3)由(2)得:(x+a)(x+b)=x2+(a+b)x+ab,故答案为:x2+(a+b)x+ab,(4)∵(x+a)(x+b)=x2+nx+8,∴n=a+b,8=ab.∵8=1×8=(﹣1)×(﹣8)=2×4=(﹣2)×(﹣4).∴n=1+8=9或n=﹣1+(﹣8)=﹣9或n=2=4=6或n=﹣2+(﹣4)=﹣6.∴n=±6或n=±9.8.解:(1)x+y=8,x2+y2=40,xy=[(x+y)2﹣x2﹣y2]×=(82﹣40)×=12;(2)4a2+b2=57,ab=6,(2a+b)2=4a2+b2+4ab=81,∴2a+b=±9;(3)设a=20﹣x,b=x﹣30,则(20﹣x)(x﹣30)=ab=10,a+b=(20﹣x)+(x﹣30)=﹣10,所以(20﹣x)2+(x﹣30)2=a2+b2=(a+b)2﹣2ab=(﹣10)2﹣2×10=80.9.解:(1)∵21=2,∴D(2)=1,∵24=16,∴D(16)=4,故答案为:1,4;(2)①∵D(a)=1,∴D(a3)=D(a•a•a)=D(a)+D(a)+D(a)=3;②∵D(2)=1,D(3)=2a﹣b,D(5)=a+c,∴D(30)=D(2×3×5)=D(2)+D(3)+D(5)=1+2a﹣b+a+c=3a﹣b+c+1,∴=D(25)﹣D(12)=2D(5)﹣2D(2)﹣D(3)=2(a+c)﹣2×1﹣(2a﹣b)=b+2c﹣2.10.解:(1)20212﹣2023×2019=20212﹣(2021+2)×(2021﹣2)=20212﹣20212+4=4;(2)(2x+y+z)(2x﹣y﹣z)=[2x+(y+z)][2x﹣(y+z)]=4x2﹣(y+z)2=4x2﹣y2﹣2yz+z2.11.解:(1)∵x+y=﹣5,xy=﹣3,∴x2+y2=(x+y)2﹣2xy=(﹣5)2﹣2×(﹣3)=25+6=31;(2)∵xy=﹣3,x2+y2=31,∴(x﹣y)2=x2+y2﹣2xy=31﹣2×(﹣3)=37.12.解:(1)①a2+b2=(a﹣b)2+2ab=22+2×1=6,故该选项正确;②a4+b4=(a2+b2)2﹣2a2b2=62﹣2(ab)2=36﹣2×12=34,故该选项错误;③(a+b)2=(a﹣b)2+4ab=22+4×1=8,故该选项正确.故答案为:①③;(2)①a2+b2=(a+b)2﹣2ab=22﹣2×1=2;②a4+b4=(a2+b2)2﹣2a2b2=22﹣2(ab)2=22﹣2×12=2;③∵①②的答案都是2,∴猜想:a2n+b2n=2.13.解:设2m﹣5=x,4﹣2m=y,∴(5﹣2m)(4﹣2m)=﹣xy,4m﹣9=2m﹣5﹣(4﹣2m)=x﹣y,2m﹣5+4﹣2m=x+y=﹣1,(1)∵(2m﹣5)2+(4﹣2m)2=5.∴x2+y2=5,∴(x+y)2=x2+2xy+y2,∴1=5+2xy,∴xy=﹣2,∴(5﹣2m)(4﹣2m)=﹣xy=2.(2)∵(x﹣y)2=x2+y2﹣2xy,∴(x﹣y)2=5+4=9,∴x﹣y=±3.14.解:(1)阴影部分的面积为:(2a+b)2﹣(2a+b)(a﹣b)﹣(a﹣b)2=4a2+4ab+b2﹣(2a2﹣2ab+ab﹣b2)﹣(a2﹣2ab+b2)=4a2+4ab+b2﹣2a2+2ab﹣ab+b2﹣a2+2ab﹣b2=a2+7ab+b2;(2)当a=5,b=2时,原式=25+7×5×2+4=99,即阴影部分的面积为99.15.解:(1)方法1:大正方形的边长为(a+b),∴S=(a+b)2;方法2:大正方形=各个部分相加之和,∴S=a2+2ab+b2.故答案为:(a+b)2,a2+2ab+b2.(2)由图2可得总面积减掉两个小矩形面积等于两个正方形面积之和,即(a+b)2﹣2ab=a2+b2.故答案为:(a+b)2=a2+b2+2ab.(3)①∵a+b=5,∴(a+b)2=25,a2+b2=21,∴2ab=(a+b)2﹣(a2+b2)=25﹣21=4,∴ab=2.②设m=2022﹣a,n=a﹣2020,则m+n=2,m2+n2=(2022﹣a)2+(a﹣2020)2=10,由(m+n)2=m2+n2+2mn得,4=10+2mn,∴mn=﹣3,(2022﹣a)(a﹣2020)=mn=﹣3,即(2022﹣a)(a﹣2020)的值为﹣3.16.解:原式=|4x2﹣y2﹣5x2﹣10xy+x2+4xy+4y2|÷(﹣3y)=|3y2﹣6xy|÷(﹣3y)当3y2﹣6xy>0时,原式=(3y2﹣6xy)÷(﹣3y)=﹣y+2x;当3y2﹣6xy<0时,原式=(﹣3y2+6xy)÷(﹣3y)=y﹣2x.17.解:(1)图①阴影部分的面积可以看作两个正方形的面积差,即a2﹣b2,图②是长为a+b,宽为a﹣b的长方形,因此面积为(a+b)(a﹣b),所以有(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b)=a2﹣b2;(2)原式=(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)(1﹣)(1+)=××××××…××××=×=.18.解:设另一个因式为(x+m),由题意,得:x2+5x+k=(x﹣2)(x+m),则x2+5x+k=x2+(m﹣2)x﹣2m,∴,解得,∴另一个因式为x﹣7,k的值为﹣14.19.解:(1)(x2+3x+2)(x2﹣x)=x4﹣x3+3x3﹣3x2+2x2﹣2x=x4+2x3﹣x2﹣2x;(2)(x2+□x+2)(x2﹣x)=x4﹣x3+□x3﹣□x2+2x2﹣2x,∵这个题目的正确答案是不含三次项,∴﹣1+□=0,∴□=1,∴原题中被遮住的一次项系数是1.20.解:(1)设2020﹣x=a,x﹣2016=b,则(2020﹣x)(x﹣2016)=ab=2,a+b=(2020﹣x)+(x﹣2016)=4,(2020﹣x)2+(x﹣2016)2=a2+b2=(a+b)2﹣2ab=42﹣2×2=12;故答案为:12;(2)设x﹣2022=a,x﹣2018=b,则(x﹣2022)2+(x﹣2018)2=a2+b2=202,a﹣b=(x﹣2022)﹣(x﹣2018)=﹣4,(x﹣2022)(x﹣2018)=ab=﹣[(a﹣b)2﹣(a2+b2)]=[(﹣4)2﹣202]=93;(3)根据题意可得,CF=CD﹣DF=16﹣x,CE=BC﹣BE=12﹣x,(16﹣x)(12﹣x)=100,设16﹣x=a,12﹣x=b,则(16﹣x)(12﹣x)=ab=100,a﹣b=(16﹣x)﹣(12﹣x)=4,S阴=(16﹣x)2+(12﹣x)2=a2+b2=(a﹣b)2+2ab=42+2×100=216.图中阴影部分的面积和为216平方单位.故答案为:216.21.解:(1)运用了两数和的完全平方公式,故选:C;(2)原式=[(x﹣1)2]2=(x﹣1)4,故答案为:不彻底,(x﹣1)4;(3)设x2﹣4x=y,原式=y(y+8)+16=y2+8y+16=(y+4)2=(x2﹣4x+4)2=(x﹣2)4,即(x2﹣4x)(x2﹣4x+8)+16=(x﹣2)4.22.解:(1)x2﹣2xy+y2﹣16=(x﹣y)2﹣42=(x﹣y+4)(x﹣y﹣4);(2)∵a2﹣ab﹣ac+bc=0∴a(a﹣b)﹣c(a﹣b)=0,∴(a﹣b)(a﹣c)=0,∴a=b或a=c,∴△ABC的形状是等腰三角形.。
八年级数学上册第十四章整式的乘法与因式分解微专题整式的乘法公式的综合运用同步精练新版新人教版
微专题 整式的乘法公式的综合运用一、平方差公式的常见变形1. 位置变化:(a +b )(-b +a )=__a 2-b 2__;符号变化:(-a -b )(a -b )=__b 2-a 2__; 系数变化:(3a +2b )(3a -2b )=__9a 2-4b 2__;指数变化:(a 3+b 2)(a 3-b 2)=__a 6-b 4__;项数变化:(a +2b -c )(a -2b +c )=__a 2-4b 2-c 2+4bc __;连用变化:(a +b )(a -b )(a 2+b 2)=a 4-b 4.二、完全平方公式的常见变形2.a 2+b 2=(a +b )2-2ab =(a -b )2+__2ab __;(a +b )2+(a -b )2=__2a 2+2b 2__;(a +b )2-(a -b )2=__4ab __.三、乘法公式的整体思想3.(2017·铁岭)已知(x +y )2=25,(x -y )2=16,求xy 的值.【解题过程】解:xy =94. 四、乘法公式的综合运用4.计算:(1)(x -3)(x +3)(x 2+9);【解题过程】解:x 4-81(2)(2x +3)2(2x -3)2.【解题过程】解:16x 4-72x 2+815.计算:(1)(x -y +z )(x +y -z ) ;解:x 2-y 2-z 2+2yz ;(2)(a +b +c )(a -b -c ).解:a 2-b 2-2bc -c 2.五、乘法公式的实际应用6.如图,某市有一块长为(3a +b )米,宽为(2a +b )米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.(导学号:58024269)【解题过程】解:(3a +b )(2a +b )-(a +b )2=5a 2+3ab ,当a =3,b =2时,原式=63.7.如图,小刚家有一块“L”形的菜地,要把这块菜地按图示那样分成面积相等的梯形,种上不同的蔬菜,这两个梯形的上底都是x m ,下底都是y m ,高都是(y -x )m ,当x =20m ,y =30m 时,请你帮小刚家算一算菜地的面积.(导学号:58024270)【解题过程】解:由题意得菜地的面积为2×12(x +y )(y -x )=y 2-x 2. 当x =20,y =30时, y 2-x 2=302-202=900-400=500m 2.。
人教版八年级数学上册第十四章《整式的乘法与因式分解》 测试题(含答案)
人教版八年级数学上册第十四章《整式的乘法与因式分解》测试题(含答案)一、单选题1.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )A .a 2﹣b 2=(a +b )(a ﹣b )B .(a +b )2=a 2+2ab +b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .a 2+ab =a (a +b )2.在下列运算中,正确的是()A .236x x x ⋅=B .23x x x +=C .326()x x =D .933x x x ÷= 3.下列等式中,从左到右的变形是因式分解的是( )A .229(3)x x -=-B .22(1)21x x x +=++C .24(2)(2)x x x -=+-D .221x x x ⎛⎫+=+ ⎪⎝⎭4.已知23m m -的值为5,那么代数式2203026m m -+的值是( )A .2030B .2020C .2010D .20005.下列计算正确的是( )A .224a a a +=B .3252⋅=a a aC .235(2)312⋅=a a aD .21333⎛⎫+= ⎪⎝⎭a a a 6.如果25m m +=,那么代数式()()222m m m -++的值为( )A .-6B .-1C .9D .147.若多项式2(5)2x a x ++-中不含x 的一次项,则a 的值为( )A .0B .5C .5-D .5或5-8.若关于x 的多项式(x 2+2x +4)(x +k )展开后不含有一次项,则实数k 的值为( ) A .﹣1 B .2 C .3 D .﹣29.下列各式中,运算正确的是( )A .325a a a +=B .()()235a a a -⋅-= C .()325a a = D .325a a a ⋅= 10.下列算式中不能利用平方差公式计算的是( )A .()()x y x y +-B .()()x y x y ---C .()()x y x y --+D .()()x y y x +-二、填空题 11.若表示一种新的运算,其运算法则为2a bc d =+-,则的结果为________.12.如果二次三项式x 2+3x +a 是一个完全平方式,那么常数a 的值是 ___.13.已知a 是方程x 2-5x +1=0的一个根,则a 4+a -4的个位数字为_____.14.若多项式2(1)16x m x --+能用完全平方公式进行因式分解,则m =________.15.若2224(3)ax x b mx ++=-,则=a ________.16.因式分解:(1)22x y -+=___________;(2)222x xy y -+=___________;(3)24a a -=___________;(4)265m m -+=___________.17.若2x +3y ﹣2=0,则4x •8y =___.18.在实数范围内分解因式221x x +-=___.三、解答题19.先化简,再求值:x 2(﹣x +2)﹣(﹣x +1)(x 2+x ﹣3),其中x 满足2x 2+3=4x .20.((教材呈现)下图是华师版八年级上册数学教材第49页B 组的第12题和第13题.(例题讲解)老师讲解了第12题的两种方法:(方法运用)请你任选第12题的解法之一,解答教材第49页B 组的第13题.(拓展)如图,在ABC 中,90ACB ∠=︒,分别以AC 、BC 为边向其外部作正方形ACDE 和正方形BCFG .若6AC BC +=,正方形ACDE 和正方形BCFG 的面积和为18,求ABC 的面积.21.计算:(59x 3y )•(﹣3xy 2)3•(12x )2.22.33x y x y .23.先化简,再求值:()2232()()a b ab b b a b b a --÷++-,其中12021a =-,2021b =.24.某校“数学社团”活动中,小亮对多项式进行因式分解,m 2-mn +2m -2n =(m 2-mn )+(2m -2n )=m (m -n )+2(m -n ) =(m -n )(m +2).以上分解因式的方法叫做“分组分解法”,请你在小亮解法的启发下,解决下面问题:(1)因式分解a 3-3a 2-9a +27;(2)因式分解x 2+4y 2-4xy -16;(3)已知a ,b ,c 是ABC 的三边,且满足222a ab c ac bc -+=-,判断ABC 的形状并说明理由.参考答案1.A【详解】解:大正方形的面积﹣小正方形的面积=a 2﹣b 2,矩形的面积=(a +b )(a ﹣b ),故a 2﹣b 2=(a +b )(a ﹣b ),故选:A .2.C【详解】解:A 、235x x x ,故错误,不符合题意;B . 2x x +不是同类项,不能合并,故错误,不符合题意;C . 326()x x =,故正确,符合题意;D . 936x x x ÷=,故错误,不符合题意;3.C【详解】解:A 、29(3)(3)x x x -=+-,则原等式不成立,此项不符题意;B 、22(1)21x x x +=++等式的右边不是乘积的形式,则此项不符题意;C 、24(2)(2)x x x -=+-是因式分解,此项符合题意;D 、221x x x ⎛⎫+=+ ⎪⎝⎭等式右边中的2x 不是整式,则此项不符题意; 4.B【详解】解:∵2220302620302(3)m m m m -+=--,把235m m -=代入,原式=2030252020-⨯=,故选B .5.C【详解】A. ∵2a 和2a 是同类项,∵22242a a a a +=≠,故选项A 错误;B. 532522a a a a ⋅≠=,故选项B 错误;C. 52323(32)3412a a a a a ⋅==,故选项C 正确;D. 2213333a a a a a ⎛⎫+=+⎭≠ ⎪⎝,故选项D 错误. 6.D【详解】解:()()222m m m -++, 22244m m m m =-+++,2224m m =++,由25m m +=得:22210m m +=,则原式10414=+=,故选:D .7.C【详解】解:∵多项式2(5)2x a x ++-中不含x 的一次项,∵5+a =0,解得a =-5,故选:C .8.D【详解】解:(x 2+2x +4)(x +k )=x 3+kx 2+2x 2+2kx +4x +4k=x 3+(k +2)x 2+(2k +4)x +4k ,∵关于x 的多项式乘多项式(x 2+2x +4)(x +k )的结果中不含有x 的一次项, ∵2k +4=0,解得,k =−2,9.D【详解】A .3a 和2a 不是同类项,不能合并,此选项错误;B .2355()()()a a a a -⋅-=-=-,此选项错误;C . ()326a a =,此选项错误; D .235a a a ⋅=,此选项正确,故选:D .10.C【详解】解:A 、()()22x y x y x y +-=-,故A 不符合题意;B 、()()22()x y x y y x ---=--,故B 不符合题意;C 、()()x y x y --+不能利用平方差公式计算,故C 符合题意;D 、()()22x y y x y x +-=-,故D 不符合题意;11.223m m n +【详解】解:由题意得,=2222(2)3m m n n m -+-,=223243m m n m +-=223m m n +,故答案为:223m m n +.12.94【详解】解:∵二次三项式x 2+3x +a 是一个完全平方式,∵x 2+3x +a =x 2+2•x •32+(32)2, ∵a =94, 故答案为:94. 13.7【详解】解:由题意可得:2510a a ,0a ≠, ∵15a a +=, ∵22211223a a a a ⎛⎫+=+-= ⎪⎝⎭, ∵24242112527a a a a ⎛⎫+=+-= ⎪⎝⎭, ∵个位数字是7;故答案是7.14.9或-7或9【详解】解:∵多项式x 2-(m -1)x +16能用完全平方公式进行因式分解, ∵m -1=±8,解得:m =9或m =-7,故答案为:9或-715.16【详解】解:∵222(3)9=6mx x x m m --+,2224(3)ax x b mx ++=- ∵m 2=a ;-6m =24∵m =-4,a =16故答案为:1616.()()y x y x +- 2()x y - (4)a a - (1)(5)m m -- 【详解】解:(1)2222()()y x x y x x y y -++=--=(2)2222()x xy y x y -+=-(3)24(4)a a a a -=-(4)265(1)(5)m m m m -+=--故答案为()()y x y x +-,2()x y -,(4)a a -,(1)(5)m m -- 17.4【详解】解:48x y ⋅=()()2323232=2222x x x yy x +⋅=⋅, ∵x +3y -2=0,∵x +3y =2,∵原式=22=4,故答案为:4.18.(11x x ++【详解】解:原式=2212x x ++-2(1)2x =+-(11x x =+++,故答案为(11x x +++.19.2x 2-4x +3;原式=0.【详解】x 2(﹣x +2)﹣(﹣x +1)(x 2+x ﹣3)=﹣x 3+2x 2﹣(﹣x 3-x 2+3x + x 2+x ﹣3)=﹣x 3+2x 2+x 3+x 2-3x - x 2-x +3=2x 2-4x +3∵2x 2+3=4x∵2x 2-4x +3=0∵原式=0.20.【方法运用】见解析;【拓展】92【详解】【方法运用】∵(a -b )2= a 2+b 2-2ab∵2ab = a 2+b 2-(a -b )2.∵a -b =1,a 2+b 2=25,∵2ab = 25-1=24.∵ab =12.【拓展】由题意,得AC 2+BC 2=18.∵(AC +BC )2=62,AC 2+2AC •BC +BC 2=36. ∵2AC •BC =36﹣(AC 2+BC 2)=36﹣18=18. ∵AC •BC =9.∵S ∵ABC =12AC •BC =92. 21.87154x y - 【详解】 (59x 3y )•(﹣3xy 2)3•(12x )2 ()233332251392x x x y y ⎛⎫=-⨯⨯⋅⋅⋅⋅⋅ ⎪⎝⎭ 87154x y =- 22.2269x y y -+-【详解】解:33x y x y33x y x y 223x y2269x y y =-+-23.2ab -,2【详解】解:原式=223222÷-÷-÷+-a b b ab b b b b a=22222--+-a ab b b a=2ab -, 当12021a =-,2021b =时,原式=1220212021⎛⎫-⨯-⨯ ⎪⎝⎭=2. 24.(1)(a +3)(a -3)2;(2)(x -2y -4)(x -2y +4) ;(3)等腰三角形,见解析 【详解】解:(1)a 3-3a 2-9a +27=a 2(a -3)-9(a -3)=(a 2-9)(a -3) =(a -3)(a +3)(a -3) =(a +3)(a -3)2;(2)x 2+4y 2-4xy -16=(x 2-4xy +4y 2)-16=(x -2y )2-42=(x -2y -4)(x -2y +4);(3)∵ABC 是等腰三角形,理由如下:∵222a ab c ac bc -+=-,∵2220a ac c ab bc -+-+=,∵()()20a c b a c ---=,∵()()0a c a c b ---=,∵a ,b ,c 是∵ABC 的三边,∵a -c -b <0.∵a -c =0,∵a =c ,∵∵ABC 是等腰三角形.。
人教版初中八年级数学上册第十四章《整式的乘法与因式分解》经典习题(含答案解析)
一、选择题1.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解D解析:D【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式判断即可.将多项式×多项式变得多项式,是乘法运算.【详解】解:①2(2)(1)2x x x x +-=+-,从左到右的变形是整式的乘法;②4(14)x xy x y -=-,从左到右的变形是因式分解;所以①是乘法运算,②因式分解.故选:D .【点睛】此题考查了因式分解与乘法运算的定义的认识,解题的关键是掌握因式分解及乘法运算的定义.2.如表,已知表格中竖直、水平、对角线上的三个数的和都相等,则m +n =( )A .1B .2C .5D .7D 解析:D【分析】 由题意竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),即可解出n =5,从而求出m 值即可.【详解】解:由题意得竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),整理得n =5,则有m ﹣3+4=﹣3+1+5,解得m =2,∴m +n =5+2=7,故选:D .【点睛】此题主要考查列一元一次方程解决实际问题,理解题意,找出等量关系是解题关键. 3.已知3a b -=、4b c -=、5c d -=,则()()a c d b --的值为( )A .7B .9C .-63D .12C 解析:C【分析】由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,然后整体代入求解即可.【详解】解:由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,∴()()()7963a c d b --=⨯-=-;故选C .【点睛】本题主要考查求代数式的值,关键是根据题意利用整体思想进行求解.4.下列多项式中,不能用完全平方公式分解因式的是( )A .214m m ++ B .222x xy y -+- C .221449x xy y -++D .22193x x -+ C 解析:C【分析】直接利用完全平方公式分解因式得出答案.【详解】 A 、222111(44)(2)444m m m m m ++=++=+能用完全平方公式分解因式,不符合题意; B 、222222(2)()x xy y x xy y x y -+-=--+=--能用完全平方公式分解因式,不符合题意;C 、221449x xy y -++不能用完全平方公式分解因式,符合题意;D 、2222111(69)(3)9399x x x x x -+=-+=-能用完全平方公式分解因式,不符合题意; 故选:C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握完全平方公式是解本题的关键. 5.下列运算正确的是( )A .3m ·4m =12mB .m 6÷m 2= m 3(m≠0)C .236(3)27m m -=D .(2m+1)(m-1)=2m 2-m-1D解析:D【分析】利用同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式的运算法则计算即可判断.【详解】A 、 347·m m m =,该选项错误;B 、624m m m ÷=,该选项错误;C 、236(3)27m m -=-,该选项错误;D 、(()221)121m m m m +-=--,该选项正确; 故选:D .【点睛】本题考查了同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式,熟练掌握运算法则是解题的关键.6.已知552a =,443b =,334c =,则a ,b ,c 的大小关系是( )A .a b c >>B .b c a >>C .c a b >>D .a c b >> B解析:B【分析】由552a =,443b =,334c =,比较5432,3,4的大小即可.【详解】解:∵555112=(2)a =,444113(3)b == ,333114(4)c == ,435342>> , ∴411311511(3)(4)(2)>>,即b c a >>,故选B .【点睛】本题考查了幂的乘方的逆运算及数的大小的比较,解题的关键是熟练掌握幂的乘方运算法则.7.下列计算正确的是( )A .()222x y x y +=+B .()32626m m =C .()2224x x -=-D .()()2111x x x +-=- D 解析:D【分析】根据完全平方公式,平方差公式和积的乘方公式分别判断即可.【详解】A. ()2222x y x xy y +=++,故原选项错误;B.()32628m m =,故原选项错误;C.()22244x x x -=-+,故原选项错误;D. ()()2111x x x +-=-,故选项正确.故选:D .【点睛】本题考查完全平方公式,平方差公式和积的乘方公式.熟记公式是解题关键.8.下列各多项式中,能用平方差公式分解因式的是( )A .21x -+B .21x +C .21x --D .221x x -+ A 解析:A【分析】根据平方差公式:两个数平方的差,等于这两个数的和与差的平方解答.【详解】A 、21x -+,能用平方差公式分解因式;B 、21x +,不能用平方差公式分解因式;C 、21x --,不能用平方差公式分解因式;D 、221x x -+,不能用平方差公式分解因式;故选:A .【点睛】此题考查平方差公式:22()()a b a b a b -=+-,掌握公式中多项式的特点是解题的关键.9.若()()()248(21)2121211A =+++++,则A 的末位数字是( )A .4B .2C .5D .6D 解析:D【分析】在原式前面加(2-1),利用平方差公式计算得到结果,根据2的乘方的计算结果的规律得到答案.【详解】 ()()()248(21)2121211A =+++++=()()()248(21)(21)2121211-+++++=()()()2248(21)2121211-++++=()()448(21)21211-+++ =()88(21)211-++ =162,∵2的末位数字是2,22的末位数字是4,32的末位数字是8,42的末位数字是6,52的末位数字是2,,∴每4次为一个循环,∵1644÷=,∴162的末位数字与42的末位数字相同,即末位数字是6,故选:D .【点睛】此题考查利用平方差公式进行有理数的简便运算,数字类规律的探究,根据2的乘方末位数字的规律得到答案是解题的关键.10.下列各式计算正确的是( )A .5210a a a =B .()428=a aC .()236a b a b =D .358a a a += B解析:B【分析】根据同底数幂相乘、幂的乘方、积的乘方、合并同类项法则逐一计算即可判断.【详解】解:A 、a 5•a 2=a 7,此选项计算错误,故不符合题意;B 、(a 2)4=a 8,此选项计算正确,符合题意;C 、(a 3b )2=a 6b 2,此选项计算错误,故不符合题意;D 、a 3与a 5不能合并,此选项计算错误,故不符合题意.故选:B .【点睛】本题主要考查幂的运算,合并同类项,解题的关键是熟练掌握同底数幂相乘、幂的乘方与积的乘方的运算法则. 二、填空题11.因式分解()()26x mx x p x q +-=++,其中m 、p 、q 都为整数,则m 的最大值是______.5【分析】根据整式的乘法和因式分解的逆运算关系按多项式乘以多项式法则把式子变形然后根据pq 的关系判断即可【详解】解:∵(x +p)(x +q)=x2+(p+q )x+pq=x2+mx-6∴p+q=mpq=解析:5【分析】根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.【详解】解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx-6∴p+q=m ,pq=-6,∴pq=1×(-6)=(-1)×6=(-2)×3=2×(-3)=-6,∴m=-5或5或1或-1,∴m 的最大值为5,故答案为:5.【点睛】此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.12.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式()35f x mx nx =++,当3x =时,多项式的值为()32735f m n =++,若()36f =,则()3f -的值为__________.4【分析】由得到整体代入求出结果【详解】解:∵∴即∴故答案是:4【点睛】本题考查代数式求值解题的关键是掌握整体代入求值的思想解析:4【分析】由()36f =得到2731m n +=,整体代入()32735f m n -=--+求出结果.【详解】解:∵()36f =,∴27356m n ++=,即2731m n +=,∴()()327352735154f m n m n -=--+=-++=-+=.故答案是:4.【点睛】本题考查代数式求值,解题的关键是掌握整体代入求值的思想.13.因式分解269x y xy y -+-=______.-y (x-3)2【分析】提公因式-y 再利用完全平方公式进行因式分解即可;【详解】解:-x2y+6xy-9y=-y (x2-6x+9)=-y (x-3)2故答案为:-y (x-3)2;【点睛】本题考查了因式解析:-y (x-3)2【分析】提公因式-y ,再利用完全平方公式进行因式分解即可;【详解】解:-x 2y+6xy-9y=-y (x 2-6x+9)=-y (x-3)2,故答案为:-y (x-3)2;【点睛】本题考查了因式分解的方法,掌握提公因式法、公式法是正确解答的关键.14.若26x x m ++为完全平方式,则m =____.9【分析】完全平方式可以写为首末两个数的平方则中间项为x 和积的2倍即可解得m 的值【详解】解:根据题意是完全平方式且6>0可写成则中间项为x 和积的2倍故∴m=9故答案填:9【点睛】本题是完全平方公式的【分析】 完全平方式可以写为首末两个数的平方()2x m +,则中间项为x 和m 积的2倍,即可解得m 的值.【详解】解:根据题意,26x x m ++是完全平方式,且6>0,可写成()2x m +,则中间项为x 和m 积的2倍,故62x x m =,∴m =9,故答案填:9.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意中间项的符号,避免漏解.15.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是:__________;(请选择正确的一个)A .2222()a ab b a b -+=-B .22()()a b a b a b -=+-C .2()a ab a a b +=+(2)应用:利用所选(1)中等式两边的等量关系,完成下面题目:若46x y +=,45x y -=,则221664x y -+的值为__________.B ;【分析】(1)先求出图1中剩余部分的面积为a2-b2再求出图2中图形的面积即可列得等式;(2)利用平方差公式分解因式后代入求值即可【详解】(1)图1中边长为a 的正方形的面积为:a2边长为b 的正方解析:B ; 94(1)先求出图1中剩余部分的面积为a 2-b 2,再求出图2中图形的面积即可列得等式; (2)利用平方差公式分解因式后代入求值即可.【详解】(1)图1中,边长为a 的正方形的面积为:a 2,边长为b 的正方形的面积为:b 2,∴图1中剩余部分面积为:a 2-b 2,图2中长方形的长为:a+b ,长方形的宽为:a-b ,∴图2长方形的面积为:(a+b )(a-b ),故选:B ;(2)∵46x y +=,45x y -=,∴221664x y -+=(4)(4)64x y x y +-+=6564⨯+=94,故答案为:94.【点睛】此题考查几何图形中平方差公式的应用,利用平方差公式进行计算,掌握平方差计算公式是解题的关键.16.如图所示,在这个运算程序当中,若开始输入的x 是2,则经过2021次输出的结果是________.4【分析】根据第一次输出的结果是1第二次输出的结果是6…总结出每次输出的结果的规律求出2021次输出的结果是多少即可【详解】解:把x=2代入得:2÷2=1把x=1代入得:1+5=6把x=6代入得:6解析:4【分析】根据第一次输出的结果是1,第二次输出的结果是6,…,总结出每次输出的结果的规律,求出2021次输出的结果是多少即可.【详解】解:把x=2代入得:2÷2=1,把x=1代入得:1+5=6,把x=6代入得:6÷2=3,把x=3代入得:3+5=8,把x=8代入得:8÷2=4,把x=4代入得:4÷2=2,把x=2代入得:2÷2=1,以此类推,∵2021÷6=336…5,∴经过2021次输出的结果是4.故答案为:4.【点睛】本题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.17.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第6个图形需要黑色棋子的个数是______,第n 个图形需要的黑色棋子的个数是______.(n 为正整数)【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3第二个图形需要黑色棋子的个数为3×4-4第三个图形需要黑色棋子的个数为4×5-5依此类推可得第n 个图形需要黑色棋子的个数为计算可得答案解析:()2n n +【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3,第二个图形需要黑色棋子的个数为3×4-4,第三个图形需要黑色棋子的个数为4×5-5,依此类推可得第n 个图形需要黑色棋子的个数为()()()122n n n ++-+,计算可得答案.【详解】解:观察图形可得:第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋子2×3-3个,第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子3×4-4个,第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子4×5-5个,按照这样的规律下去:则第n 个图形需要黑色棋子的个数是()()()()1222n n n n n ++-+=+,∴当n=6时,()26848n n +=⨯=;故答案为48;()2n n +.【点睛】本题主要考查图形规律及整式乘法的应用,关键是根据图形得到一般规律,然后问题可求解.18.若2249x mxy y -+是一个完全平方式,则m =______【分析】利用完全平方公式的结构特征判断即可确定出m 的值【详解】∵是一个完全平方式∴故答案为:【点睛】本题考查了完全平方公式的简单应用明确完全平方公式的基本形式是解题的关键解析:12±【分析】利用完全平方公式的结构特征判断即可确定出m 的值.【详解】∵2249x mxy y -+是一个完全平方式,∴22312m =±⨯⨯=±.故答案为:12±.【点睛】本题考查了完全平方公式的简单应用,明确完全平方公式的基本形式是解题的关键. 19.计算:32(2)a b -=________.【分析】积的乘方等于积中每个因式分别乘方再把所得的幂相乘根据法则计算即可【详解】=故答案为:【点睛】此题考查积的乘方:等于积中每个因式分别乘方再把所得的幂相乘解析:624a b【分析】积的乘方等于积中每个因式分别乘方,再把所得的幂相乘,根据法则计算即可.【详解】32(2)a b -=624a b ,故答案为:624a b .【点睛】此题考查积的乘方:等于积中每个因式分别乘方,再把所得的幂相乘.20.已知22m mn -=,25mn n -=,则22325m mn n +-=________.31【分析】由然后把代入求解即可【详解】解:由题意得:∴把代入得:原式=;故答案为31【点睛】本题主要考查代数式的值及整式的加减关键是对于所求代数式进行拆分然后整体代入求解即可解析:31【分析】由()()222232535m mn n m mn mn n+-=-+-,然后把22m mn -=,25mn n -=,代入求解即可.【详解】解:由题意得: ()()222232535m mn n m mn mn n +-=-+-,∴把22m mn -=,25mn n -=代入得:原式=325531⨯+⨯=;故答案为31.【点睛】本题主要考查代数式的值及整式的加减,关键是对于所求代数式进行拆分,然后整体代入求解即可. 三、解答题21.(1)因式分解:()222224x y x y +- (2)计算:()()()233323a b a b a b a b ⎡⎤----++÷-⎣⎦解析:(1)()()22x y x y -+;(2)9a【分析】 (1)先用平方差公式进行因式分解,然后再用完全平方公式进行因式分解;(2)整式的混合运算,注意先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的.【详解】解:(1)()222224x y x y +- =()()222222x y xyx y xy +-++ =()()22x y x y -+(2)()()()233323a b a b a b a b ⎡⎤----++÷-⎣⎦=()222296923a ab b b a a b ⎡⎤++--÷-⎣⎦ =2222(96+9)23a ab b b a a b ++-÷-=2(186)23a ab a b +÷-=933a b b +-=9a【点睛】本题考查因式分解和整式的混合运算,掌握运算法则正确计算是解题关键.22.图1是一个长为2a 、宽为2b 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于________.(2)观察图2,请你写出下列三个代数式2()a b +,2()a b -,ab 之间的等量关系为________.(3)运用你所得到的公式,计算:若m 、n 为实数,且3=-mn ,4m n -=,试求m n +的值.(4)如图3,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设8AB =,两正方形的面积和1226S S +=,求图中阴影部分面积.解析:(1)44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)2或2-;(4)192. 【分析】(1)直接写出边长:长边减短边=a-b ,进而可得周长; (2)根据阴影正方形的面积=大正方形的面积-4个长方形的面积解答,或利用大正方形的面积=阴影方形的面积+4个长方形的面积解答,或利用4个长方形的面积=大正方形的面积-阴影方形的面积解答;(3)根据22()()4a b a b ab +=-+求解即可;(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,然后把8x y +=的两边平方求解即可.【详解】解:(1)由图可知,阴影部分正方形的边长为:a-b ,∴阴影部分的正方形的周长等于44a b -或者4()a b -,故答案为:44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或(22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)∵3=-mn ,4m n -=,∴222()()444(3)16124m n m n mn +=-+=+⨯-=-=,∴2m n +=±,∴m n +的值为2或2-.(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,而8x y AB +==, 而12S xy =阴影部分, ∵8x y +=,∴22264x xy y ++=,又∴2226x y +=,∴238xy =,∴13819242S xy ===阴影部分, 即,阴影部分的面积为192. 【点睛】本题主要考查完全平方公式的几何背景,利用图形的面积是解决此题的关键,利用数形结合的思想,注意观察图形.23.阅读下面材料,完成任务.多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++ 请用以上方法解决下列问题:(计算过程要有竖式)(1)计算:()()3223102x x x x +--÷- (2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值.解析:(1)()()3222310245x x x x x x +--÷-=++;(2)0a =,8b =;1a =,4b =;2a =,0b =【分析】(1)直接利用竖式计算即可;(2)竖式计算,根据整除的意义,利用对应项的系数对应倍数求得答案即可.【详解】解:(1)列竖式如下:()()3222310245x x x x x x +--÷-=++ (2)列竖式如下:∵多项式43225x x ax b +++能被二项式2x +整除∴余式()420b a +-=∵a ,b 均为自然数∴0a =,8b =;1a =,4b =;2a =,0b =【点睛】此题考查利用竖式计算整式的除法,解题时要注意同类项的对应.24.材料:数学兴趣一小组的同学对完全平方公式进行研究:因2()0a b -≥,将左边展开得到2220a ab b -+≥,移项可得222a b ab +≥.(当且仅当a b =时,取“=”)数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数m ,n ,都存在2m n mn +≥m n =时,取“=”)并进一步发现,两个非负数m ,n 的和一定存在着个最小值.根据材料,解答下列问题:(1)22(3)(4)x y +≥________(0x >,0y >);221x x ⎛⎫+≥ ⎪⎝⎭________(0x >);(2)求312(0)4x x x+>的最小值; (3)已知2x >,当x 为何值时,代数式43201036x x ++-有最小值?并求出这个最小值.解析:(1)24xy ,2;(2)6;(3)83x =,最小值为2020 【分析】(1)根据阅读材料可得结论; (2)根据阅读材料介绍的方法即可得出结论;(3)把已知代数式变形为4(36)201636x x -++-,再利用阅读材料介绍的方法即可得出结论.【详解】解:(1)∵0x >,0y >∴22(3)(4)x y +≥23424x y xy ⨯⨯=∵0x > ∴221x x ⎛⎫+≥ ⎪⎝⎭122x x ⨯⨯= 故答案为:24xy ,2(2)∵0x >时,12x ,34x 均为正数,∴31264x x +≥= ∴3124x x+的最小值是6 (3)当2x >时,3x ,36x -,436x -均为正数 ∴43201036x x ++-4(36)2016201636x x =-++≥-2016=2020= 当43636x x -=-时,即8433x =或(舍去)时,有最小值, ∴当83x =时,代数式43201036x x ++-的最小值是2020.【点睛】此题主要考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.25.已知2,3x y a a ==,求23x y a +的值解析:108【分析】首先根据已知条件可得a 2x 、a 3y 的值,然后利用同底数幂的乘法运算法则求出代数式的值.【详解】 解:2,3x y a a ==,∴()()23232323108x y xy a a a +=⨯=⨯=. 【点睛】 本题主要考查了幂的乘方和同底数幂的乘法,利用性质转化为已知条件的形式是解题的关键.26.因式分解:(1)322242a a b ab -+(2)4481x y -解析:(1)22()a a b -;(2)22((3)(3)9)x y x y x y +-+.【分析】(1)先提公因式2a ,再利用完全平方公式进行分解222a ab b -+,即可得出结果;(2)原多项式先利用平方差公式分解为2222(9)(9)x y x y +-,再次利用平方差公式对229x y -进行分解即可.【详解】解:(1)322242a a b ab -+222(2)a a ab b =-+22()a a b =-,(2)4481x y -2222(9)(9)x y x y =+-22(93(3))()x y x y x y =+-+.【点睛】本题考查了因式分解,掌握因式分解的基本方法并能结合多项式的特点准确分解是解题的关键.27.如果2()()41x m x n x x ++=+-.①填空:m n +=______,mn =______.②根据①的结果,求下列代数式的值:(1)225m mn n ++;(2)2()m n -.解析:①4,−1;②(1)13;(2)20【分析】①据多项式乘多项式的运算法则求解即可;②根据完全平方公式计算即可.【详解】①∵(x +m )(x +n )=x 2+(m +n )x +mn =x 2+4x−1,∴m +n =4,mn =−1.故答案为:4,−1;②(1)m 2+5mn +n 2=(m +n )2+3mn =42+3×(−1)=16−3=13;(2)(m−n )2=(m +n )2−4mn =42−4×(−1)=16+4=20.【点睛】本题主要考查了完全平方公式以及多项式乘多项式,熟记相关公式与运算法则是解答本题的关键.28.如图,在长8cm ,宽5cm 的长方形塑料板的四个角剪去4个边长为 cm x 的小正方形,按折痕做一个无盖的长方体盒子,求盒子的容积(塑料板的厚度忽略不计).解析:()32342640cm x x x -+ 【分析】这个盒子的容积=边长为8-2x,5-2x 的长方形的底面积乘高 x ,把相关数值代入即可.【详解】解:由题意,得()()8252x x x --()24016104x x x x =--+()242640x x x =-+3242640x x x =-+,答:盒子的容积是()32342640cm x x x -+.【点睛】本题主要考查单项式乘多项式,多项式乘多项式,解决本题的关键是找到表示长方体容积的等量关系.。
人教版数学八年级上册:14 整式的乘法与因式分解 专题练习(附答案)
第十四章《整式的乘法与因式分解》专题练习目录专题1幂的运算性质的应用 (1)专题2 整式的运算及化简求值 (2)专题3 完全平方公式的变形 (4)专题4 乘法公式的应用 (5)专题5 因式分解 (6)第十四章整式的乘法与因式分解专题练习专题1幂的运算性质的应用类型1直接利用幂的运算性质进行计算1.计算:(1)a·a4=;(2)(a5)2=;(3)(-a4)3=;(4)(2y2)3=;(5)(ab3)2=;(6)(-a2b3c)3=;(7)(a2)3·a4=;(8)(-3a)2·a3=;(9)(a n b m+4)3=;(10)(-a m)5·a n=.2.计算:(1)(-a2)3+(-a3)2-a2·a3;(2)a·a2·a3+(a3)2-(2a2)3;(3)-(-x2)3·(-x2)2-x·(-x3)3;(4)(-2x2)3+(-3x3)2+(x2)2·x2;(5)(-2x2y)3-(-2x3y)2+6x6y3+2x6y2.类型2逆用幂的运算性质3.已知a x=-2,a y=3.求:(1)a x+y的值;(2)a3x的值;(3)a3x+2y的值.4.计算:0.1252 019×(-82 020).5.已知2a=m,2b=n,3a=p(a,b都是正整数),用含m,n或p的式子表示下列各式:(1)4a+b;(2)6a.专题2整式的运算及化简求值类型1整式的化简1.计算:(1)(-2a2)·(3ab2-5ab3)+8a3b2;(2)(3x-1)(2x+1);(3)(2x+5y)(3x-2y)-2x(x-3y);(4)(x-1)(x2+x+1).2.计算:(1)21x2y4÷3x2y3;(2)(8x3y3z)÷(-2xy2);(3)a 2n +2b 3c÷2a n b 2; (4)-9x 6÷13x 2÷(-x 2).3.计算:(1)(-2a 2b 3)·(-ab)2÷4a 3b 5; (2)(-5a 2b 4c 2)2÷(-ab 2c)3.4.计算:(1)[x(x 2y 2-xy)-y(x 2-x 3y)]÷x 2y ; (2)(23a 4b 7-19a 2b 6)÷(-16ab 3)2. 5.计算:(1)(-76a 3b)·65abc ; (2)(-x)5÷(-x)-2÷(-x)3;(3)6mn 2·(2-13mn 4)+(-12mn 3)2; (4)5x(x 2+2x +1)-(2x +3)(x -5).类型2 直接代入进行化简求值 6.先化简,再求值:(1)(1+x)(1-x)+x(x +2)-1,其中x =12;(2)(a +b)(a -2b)-(a +2b)(a -b),其中a =-2,b =23;(3)(x +7)(x -6)-(x -2)(x +1),其中x =2 0180.(4)(2a +3b)(3a -2b)-5a(b +1)-6a 2,其中a =-12,b =2.类型3 利用整体带入进行化简求值7.先化简,再求值:(2+a)(2-a)+a(a -5b)+3a 5b 3÷(-a 2b)2,其中ab =-12.8.若x2+4x-4=0,求3(x-1)(x-3)-6(x+1)(x-1)的值.专题3 完全平方公式的变形教材母题:已知a +b =5,ab =3,求a 2+b 2的值.解:∵a +b =5,ab =3,∴(a +b)2=25,即a 2+2ab +b 2=25. ∴a 2+b 2=25-2ab =25-6=19.【变式1】若a +b =3,a 2+b 2=7,则ab =( )A .2B .1C .-2D .-1【变式2】已知实数a ,b 满足a +b =2,ab =34,则a -b =( )A .1B .-52C .±1D .±52【变式3】已知a 2+b 2=13,(a -b)2=1,则(a +b)2= .【变式4】阅读下列材料并解答后面的问题:利用完全平方公式(a±b)2=a 2±2ab +b 2,通过配方可对a 2+b 2进行适当的变形,如a 2+b 2=(a +b)2-2ab 或a 2+b 2=(a -b)2+2ab.(1)若|x -y -5|+(xy -6)2=0,则x 2+y 2的值为 ; (2)已知a -b =2,ab =3,求a 4+b 4的值. 解题技巧:(1)a 2+b 2的变形:(1)a 2+b 2=(a +b)2-2ab ;(2)a 2+b 2=(a -b)2+2ab ;(3)a 2+b 2=12[(a +b)2+(a -b)2].(2)ab 的变形:(1)ab =12[(a +b)2-(a 2+b 2)];(2)ab =12[(a 2+b 2)-(a -b)2];(3)ab =14[(a +b)2-(a -b)2].(3)(a±b)2的变形:(1)(a +b)2=(a -b)2+4ab ; (2)(a -b)2=(a +b)2-4ab.练习:1.已知a ,b 都是正数,a -b =1,ab =2,则a +b =( )A .-3B .3C .±3D .92.已知x 2+y 2=25,x +y =7.(1)求xy 的值; (2)若y >x ,求x -y 的值.3.已知(m -53)(m -47)=24,求(m -53)2+(m -47)2的值.4.(1)请同学们观察用硬纸片拼成的图形(如图),根据图形的面积关系,写出一个代数恒等式;(2)根据(1)题中的等量关系,解决如下问题: ①若m +n =8,mn =12,求m -n 的值;②已知(2m +n)2=13,(2m -n)2=5,请利用上述等式求mn.专题4乘法公式的应用类型1直接运用乘法公式计算求值1.计算:(1)(2x+5y)2;(2)(3m-n)(-3m-n);(3)(x+2y)(x2-4y2)(x-2y);(4)(3x-2y)2(3x+2y)2.2.先化简,再求值:(1)(3+x)(3-x)+(x+1)2,其中x=2;(2)(2m+1)(2m-1)-(m-1)2+(2m)3÷(-8m),其中m满足m2+m-2=0;(3)(x+2y)2-(x-2y)2-(x+2y)(x-2y)-4y2,其中x=-2,y=1 2.类型2 运用乘法公式进行简便计算 3.用简便方法计算:(1)2 0192-2 018×2 020; (2)50120×491920;(3)2012-401; (4)(2+1)(22+1)(24+1)+1.专题5 因式分解类型1 运用提公因式法因式分解 1.分解因式:(1)3ab 2+a 2b = ; (2)2a 2-4a = ;(3)m(5-m)+2(m -5)= ; (4)5x(x -2y)3-20y(2y -x)3= . 类型2 运用公式法因式分解 2.分解因式:(1)4x 2-25= ; (2)a 2+4a +4= . 3.因式分解:(1)(2x+3)2-(x-1)2;(2)(x-1)2-6(x-1)+9.类型3先提公因式后运用公式法因式分解4.分解因式:(1)x2y-9y=;(2)ax3-axy2=.5.因式分解:(1)-4x3+8x2-4x;(2)3m(2x-y)2-3mn2.类型5运用特殊方法因式分解方法1十字相乘法阅读理解:由多项式乘法:(x+p)(x+q)=x2+(p+q)x+pq,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(p+q)x+pq=(x+p)(x+q),示例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).问题解决:分解因式:(1)x2+5x+4=;(2)x2-6x+8=;(3)x2+2x-3=;(4)x2-6x-7=.拓展训练:分解因式:(1)2x2+3x+1=;(2)3x2-5x+2=.方法2分组分解法【阅读材料】分解因式:mx+nx+my+ny=(mx+nx)+(my+ny)=x(m+n)+y(m+n)=(m+n)(x+y).以上分解因式的方法称为分组分解法.对于四项多项式的分组,可以是“二、二分组(如此例)”,也可以是“三、一(或一、三)分组”.根据以上阅读材料解决问题:【跟着学】分解因式:a3-b3+a2b-ab2=(a3+)-(b3+)=a2( )-(a+b)=(a+b)=.【我也可以】分解因式:4x2-2x-y2-y.拓展训练:已知a,b,c为△ABC的三边,若a2+b2+2c2-2ac-2bc=0,试判断△ABC 的形状.参考答案:专题1幂的运算性质的应用1.(1)a5;(2)a10;(3)-a12;(4)8y6;(5)a2b6;(6)-a6b9c3;(7)a10;(8)9a5;(9)a3n b3m+12;(10)-a5m+n.2.(1)(-a2)3+(-a3)2-a2·a3;解:原式=-a6+a6-a5=-a5.(2)a·a2·a3+(a3)2-(2a2)3;解:原式=a6+a6-8a6=-6a6.(3)-(-x2)3·(-x2)2-x·(-x3)3;解:原式=x6·x4+x10=2x10.(4)(-2x2)3+(-3x3)2+(x2)2·x2;解:原式=-8x6+9x6+x6=2x6.(5)(-2x2y)3-(-2x3y)2+6x6y3+2x6y2.解:原式=-8x6y3-4x6y2+6x6y3+2x6y2=-2x6y3-2x6y2.3.解:(1)a x+y=a x·a y=-2×3=-6.(2)a3x=(a x)3=(-2)3=-8.(3)a3x+2y=(a3x)·(a2y)=(a x)3·(a y)2=(-2)3·32=-8×9=-72.4.解:原式=(18)2 019×(-82 019×8) =(18)2 019×(-82 019)×8 =-(18×8)2 019×8 =-1×8=-8.5.解:(1)4a +b =4a ·4b=(22)a ·(22)b=(2a )2·(2b )2=m 2n 2.(2)6a =(2×3)a=2a ×3a=mp.专题2 整式的运算及化简求值1.(1)(-2a 2)·(3ab 2-5ab 3)+8a 3b 2;解:原式=-6a 3b 2+10a 3b 3+8a 3b 2=2a 3b 2+10a 3b 3.(2)(3x -1)(2x +1);解:原式=6x 2+3x -2x -1=6x 2+x -1.(3)(2x +5y)(3x -2y)-2x(x -3y);解:原式=6x 2+11xy -10y 2-2x 2+6xy=4x 2+17xy -10y 2.(4)(x -1)(x 2+x +1).解:原式=x 3+x 2+x -x 2-x -1=x 3-1.2.(1)21x 2y 4÷3x 2y 3;解:原式=(21÷3)·x 2-2·y 4-3=7y.(2)(8x 3y 3z)÷(-2xy 2);解:原式=[8÷(-2)]·(x 3÷x)·(y 3÷y 2)·z=-4x 2yz.(3)a 2n +2b 3c÷2a n b 2;解:原式=(1÷2)·(a 2n +2÷a n )·(b 3÷b 2)·c=12a n +2bc. (4)-9x 6÷13x 2÷(-x 2). 解:原式=[-9÷13÷(-1)]·(x 6÷x 2÷x 2)=27x 2.3.(1)(-2a 2b 3)·(-ab)2÷4a 3b 5;解:原式=(-2a 2b 3)·a 2b 2÷4a 3b 5=(-2a 4b 5)÷4a 3b 5=-12a.(2)(-5a 2b 4c 2)2÷(-ab 2c)3.解:原式=25a 4b 8c 4÷(-a 3b 6c 3)=-25ab 2c.4.(1)[x(x 2y 2-xy)-y(x 2-x 3y)]÷x 2y ;解:原式=(x 3y 2-x 2y -x 2y +x 3y 2)÷x 2y=(2x 3y 2-2x 2y)÷x 2y=2xy -2.(2)(23a 4b 7-19a 2b 6)÷(-16ab 3)2.解:原式=(23a 4b 7-19a 2b 6)÷136a 2b 6=23a 4b 7÷136a 2b 6-19a 2b 6÷136a 2b 6=24a 2b -4.5.(1)(-76a 3b)·65abc ;解:原式=-75a 3+1b 1+1c=-75a 4b 2c.(2)(-x)5÷(-x)-2÷(-x)3;解:原式=(-x)5-(-2)-3=(-x)4=x 4.(3)6mn 2·(2-13mn 4)+(-12mn 3)2; 解:原式=12mn 2-2m 2n 6+14m 2n 6 =12mn 2-74m 2n 6. (4)5x(x 2+2x +1)-(2x +3)(x -5).解:原式=5x 3+10x 2+5x -(2x 2-7x -15)=5x 3+10x 2+5x -2x 2+7x +15=5x 3+8x 2+12x +15.6.(1)(1+x)(1-x)+x(x +2)-1,其中x =12; 解:原式=1-x +x -x 2+x 2+2x -1=2x.当x =12时,原式=2×12=1. (2)(a +b)(a -2b)-(a +2b)(a -b),其中a =-2,b =23; 解:原式=a 2-ab -2b 2-(a 2+ab -2b 2)=a 2-ab -2b 2-a 2-ab +2b 2=-2ab.当a =-2,b =23时,原式=(-2)×(-2)×23=83. (3)(x +7)(x -6)-(x -2)(x +1),其中x =2 0180.解:原式=x 2-6x +7x -42-x 2-x +2x +2=2x -40. 由题意知x =1.原式=2-40=-38.(4)(2a +3b)(3a -2b)-5a(b +1)-6a 2,其中a =-12,b =2. 解:原式=6a 2+5ab -6b 2-5ab -5a -6a 2=-6b 2-5a.当a =-12,b =2时, 原式=-6×22-5×(-12) =-24+52=-2112. 7.解:原式=4-2a +2a -a 2+a 2-5ab +3a 5b 3÷a 4b 2=4-2ab.当ab =-12时,原式=4-2×(-12)=5. 8.解:原式=3x 2-12x +9-6x 2+6=-3x 2-12x +15=-3(x 2+4x)+15.∵x 2+4x -4=0,∴x 2+4x =4.∴原式=-3×4+15=3.专题3完全平方公式的变形【变式1】B【变式2】C【变式3】25.【变式4】(1)37;(2)解:a2+b2=(a-b)2+2ab=4+6=10,a4+b4=(a2+b2)2-2a2b2=102-2×32=82. 1.B2.解:(1)xy=12[(x+y)2-(x2+y2)]=12×(72-25)=12.(2)(x-y)2=(x+y)2-4xy=72-4×12=1.∵y>x,∴x-y<0.∴x-y=-1.3.解:(m-53)2+(m-47)2=[(m-53)-(m-47)]2+2(m-53)(m-47)=(-6)2+48=84.4.解:(1)(a+b)2-(a-b)2=4ab.(2)①∵(m-n)2=(m+n)2-4mn=82-4×12=16,∴m-n=4或-4.②∵(2m+n)2-(2m-n)2=4×(2m·n)=8mn,∴8mn=13-5=8.∴mn=1.专题4乘法公式的应用1.(1)(2x+5y)2;解:原式=4x2+20xy+25y2.(2)(3m-n)(-3m-n);解:原式=n2-9m2.(3)(x+2y)(x2-4y2)(x-2y);解:原式=[(x+2y)(x-2y)](x2-4y2)=(x2-4y2)(x2-4y2)=x4-8x2y2+16y4.(4)(3x-2y)2(3x+2y)2.解:原式=[(3x-2y)(3x+2y)]2=(9x2-4y2)2=81x4-72x2y2+16y4.2.(1)(3+x)(3-x)+(x+1)2,其中x=2;解:原式=9-x2+x2+2x+1=2x+10.当x=2时,原式=2×2+10=14.(2)(2m+1)(2m-1)-(m-1)2+(2m)3÷(-8m),其中m满足m2+m-2=0;解:原式=4m2-1-(m2-2m+1)+8m3÷(-8m)=4m2-1-m2+2m-1-m2=2m2+2m-2=2(m2+m-1).∵m2+m-2=0,∴m2+m=2.∴原式=2×(2-1)=2.(3)(x+2y)2-(x-2y)2-(x+2y)(x-2y)-4y2,其中x=-2,y=1 2.解:原式=(x2+4xy+4y2)-(x2-4xy+4y2)-(x2-4y2)-4y2=x2+4xy+4y2-x2+4xy-4y2-x2+4y2-4y2=-x2+8xy.当x =-2,y =12时, 原式=-(-2)2+8×(-2)×12=-12. 3.(1)2 0192-2 018×2 020;解:原式=2 0192-(2 019-1)×(2 019+1) =2 0192-(2 0192-1)=1.(2)50120×491920; 解:原式=(50+120)×(50-120) =502-(120)2 =2 500-1400=2 499399400. (3)2012-401;解:原式=(200+1)2-401=2002+2×200×1+12-401=40 000.(4)(2+1)(22+1)(24+1)+1.解:原式=(2-1)(2+1)(22+1)(24+1)+1 =(22-1)(22+1)(24+1)+1=(24-1)(24+1)+1=28-1+1=256.专题5因式分解1.(1)ab(3b+a);(2)2a(a-2);(3)(m-2)(5-m);(4)5(x-2y)3(x+4y).2.分解因式:(1)4x2-25=(2x+5)(2x-5);(2)a2+4a+4=(a+2)2.3.(1)(2x+3)2-(x-1)2;解:原式=(2x+3+x-1)(2x+3-x+1)=(3x+2)(x+4).(2)(x-1)2-6(x-1)+9.解:原式=(x-4)2.4.(1)y(x+3)(x-3);(2)ax(x+y)(x-y).5.(1)-4x3+8x2-4x;解:原式=-4x(x2-2x+1)=-4x(x-1)2.(2)3m(2x-y)2-3mn2.解:原式=3m(2x-y+n)(2x-y-n).类型5方法1十字相乘法(1)(x+1)(x+4);(2)(x-2)(x-4);(3)(x+3)(x-1);(4)(x-7)(x+1).拓展训练:(1)(2x+1)(x+1);(2)(x-1)(3x-2).方法2分组分解法【跟着学】a3-b3+a2b-ab2=(a3+a2b)-(b3+ab2)=a2(a+b)-b2(a+b)=(a2-b2)(a+b)=(a-b)(a+b)2.【我也可以】解:原式=(4x2-y2)-(2x+y)=(2x-y)(2x+y)-(2x+y)=(2x+y)(2x-y-1).拓展训练:解:∵a2+b2+2c2-2ac-2bc=0,∴a2+c2-2ac+b2+c2-2bc=0,即(a-c)2+(b-c)2=0.∴a-c=0且b-c=0,即a=c且b=c.∴a=b=c.∴△ABC是等边三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题训练(八) 乘法公式的变形
乘法公式在整式运算中非常重要,我们除了要熟悉公式的基本特征,掌握其基本运用外,还要关注公式的变形使用,近几年的中考中常有这方面的试题.
基本公式:(1)(a +b)(a -b)=a 2-b 2;
(2)(a±b)2=a 2±2ab +b 2.
利用乘法公式进行计算时,常把a 2+b 2,ab ,a±b 等作为整体.因此,对乘法公式常作以下变形:
1.a 2+b 2的变形:
(1)a 2+b 2=(a +b)2-2ab ;
(2)a 2+b 2=(a -b)2+2ab ;
(3)a 2+b 2=12
[(a +b)2+(a -b)2]. 2.ab 的变形:
(1)ab =12
[(a +b)2-(a 2+b 2)]; (2)ab =12
[(a 2+b 2)-(a -b)2]; (3)ab =14
[(a +b)2-(a -b)2]. 3.a±b 的变形:
(1)a±b =(a 2-b 2)÷(a ∓b);
(2)a +b =±(a -b )2+4ab ;
(3)a -b =±(a +b )2-4ab.
► 类型一 求两数的平方和
1.若m+n=2,mn=1,则m2+n2=________.2.已知x-y=3,xy=8,则x2+y2=________. 3.已知(x+y)2=25,(x-y)2=9,求x2+y2的值.
4.已知a+b=3,ab=-12, 求下列各式的值:(1)a2+b2;
(2)a2-ab+b2.
►类型二求两数的积
5.若(m-n)2=16,(m+n)2=4,则mn的值为()
A.6 B.3 C.-6 D.-3
6.如图8-ZT-1,长方形ABCD的周长是20 cm,以AB,AD为边向外作正方形ABEF 和正方形ADGH.若正方形ABEF和正方形ADGH的面积之和为68 cm2,则长方形ABCD的面积是________cm2.
图8-ZT-1
►类型三求两数的和或差
7.若(2a+3b)2=(2a-3b)2+A,则A为()
A.24ab B.-24ab C.12ab D.-12ab
8.若a,b是正数,a-b=1,ab=2,则a+b的值为()
A.-3 B.3 C.±3 D.9
9.已知a2-b2=16,a+b=8,则a-b=________.
10.已知a+b=3,ab=-12,求(a-b)2的值.
教师详解详析
1.2
2.[答案] 25
[解析] x 2+y 2=()
x -y 2
+2xy =32+16=25. 3.解:x 2+y 2=12[(x +y)2+(x -y)2]=12
×(25+9)=17. 4.[解析] 第(1)小题可以采取添加2ab 项,构造完全平方式的方法,a 2+b 2=a 2+2ab +b 2-2ab =(a +b)2-2ab ,从而整体代入求值;第(2)小题可利用第(1)小题的结论解题.
解:(1)a 2+b 2=(a +b)2-2ab =32-2×(-12)=9+24=33.
(2)a 2-ab +b 2=(a 2+b 2)-ab =33-(-12)=33+12=45.
5.[解析] D mn =14[(m +n)2-(m -n)2]=14
×(4-16)=-3.故选D. 6.[答案] 16
[解析] 设AB =a ,BC =b ,则a +b =10,a 2+b 2=68,所以ab =12[(a +b)2-(a 2+b 2)]=12
×(102-68)=16.
7.A
8.[解析] B 由a -b =1得(a -b)2=1①.又由ab =2得(a +b)2=(a -b)2+4ab =9②,所以a +b =±3.因为a ,b 是正数,所以a +b =3.故选B.
9.2
10.[解析] 可将(a -b)2展开为a 2-2ab +b 2=a 2+2ab +b 2-4ab =(a +b)2-4ab ,然后整体代入求值.
解:(a -b)2=a 2-2ab +b 2
=(a +b)2-4ab
=32-4×(-12)=57.。