数列通项、数列前n项和的求法例题+练习

合集下载

【精品提分练习】专题18 数列的通项公式及前n项和高考数学)母题题源系列(天津专版)

【精品提分练习】专题18 数列的通项公式及前n项和高考数学)母题题源系列(天津专版)

母题十八 数列的通项公式及前n 项和【母题原题1】【2018天津,文18】设{}n a 是等差数列,其前n 项和为()*Nn S n ∈;{}n b 是等比数列,公比大于0,其前n 项和为()*N nT n ∈.已知132435546,,,122b b b b a a b a a ==+=+=+.(Ⅰ)求n S 和n T ; (Ⅱ)若()124n n n n S T T T a b ++++=+,求正整数n 的值.【考点分析】本小题主要考查等差数列、等比数列的通项公式及前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力.满分13分.【答案】(Ⅰ)()12n n n S +=,21nn T =-;(Ⅱ)4. 【解析】试题分析:(I )由题意得到关于q 的方程,解方程可得2q =,则122112nn n T -==--.结合设等差数列{}n a 的公差为d .由435b a a =+,可得134a d +=.由5462b a a =+,可得131316a d +=,从而11,1a d ==,故n a n =,()12n n n S +∴=. (II )由(I ),有()()131122122222212n nn n T T T n n n +-+++=+++-=-=---.由()124n n n n S T T T a b ++++=+可得()1112222n n n n n n ++++--=+, 整理得2340n n --=,解得1n =-(舍),或4n =,n ∴的值为4【名师点睛】本小题主要考查等差数列、等比数列的通项公式及前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力. 【母题原题2】【2017天津,文18】已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列2{}n n a b 的前n 项和*()n ∈N .【答案】(1)32n a n =-.2n n b =.(2)2(34)216n n T n +=-+.由此可得32n a n =-.1212(12)4(62)2(34)21612n n n n n ++⨯-=---⨯=----.得2(34)216n n T n +=-+,所以,数列2{}n n a b 的前n 项和为2(34)216n n +-+.【母题原题3】【2016天津,文18】已知{}n a 是等比数列,前n 项和为()n S n *∈N ,且6123112,63S a a a -==.(Ⅰ)求{}n a 的通项公式;(Ⅱ)若对任意的,n n b *∈N 是2log n a 和21log n a +的等差中项,求数列(){}21nnb -的前2n 项和.【答案】(Ⅰ)12-=n n a ;(Ⅱ)22n .设数列})1{(2n n b -的前n 项和为n T ,则2212212221224232221222)(2)()()(n b b n b b b b b b b b b T n n n n n =+=+⋅⋅⋅++=+-+⋅⋅⋅++-++-=-.【考点】等差数列、等比数列及其前n 项和公式 【名师点睛】分组转化法求和的常见类型:(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.(2)通项公式为,,n n n b n a c n ⎧⎪=⎨⎪⎩为奇数,为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.【母题原题4】【2015天津,文18】已知{}n a 是各项均为正数的等比数列,{}n b 是等差数列,且112331,2a b b b a ==+=,5237a b -=.(I )求{}n a 和{}n b 的通项公式;(II )设*,n n n c a b n N =?,求数列{}n c 的前n 项和.【答案】(I )12,n n a n -*=∈N ,21,n b n n *=-∈N ;(II )()2323nn S n =-+【解析】试题分析:(I )列出关于q 与d 的方程组,通过解方程组求出q ,d ,即可确定通项;(II )用错位相减法求和.试题解析:(I )设{}n a 的公比为q ,{}n b 的公差为d ,由题意0q > ,由已知,有24232,310,q d q d ⎧-=⎨-=⎩ 消去d得42280,q q --= 解得2,2q d == ,所以{}n a 的通项公式为12,n n a n -*=∈N , {}n b 的通项公式【考点定位】本题主要考查等差、等比数列的通项公式及错位相减法求和,考查基本运算能力.【名师点睛】近几年高考试题中求数列通项的题目频频出现,尤其对等差、等比数列的通项考查较多,解决此类 问题要重视方程思想的应用.错位相减法求和也是高考考查频率较高的一类方法,从历年考试情况来看,这类问题,运算失误较多,应引起考生重视.【命题意图】 高考对本部分内容的考查基础知识为主,重点考查求数列的通项公式和数列求和问题. 【命题规律】 高考试题对该部分内容考查的主要角度有:其一求数列的通项公式,其二数列求和,其三证明数列成等差数列或成等比数列.【理科】【答题模板】解答本类题目,以2017年试题为例,一般考虑如下三步:第一步:求数列{}n b 的通项公式:本题从等比数列{}n b 入手,由于12b =,设公比为q ,表达出2b 和3b ,利用2312b b +=列方程求出q ,写出{}n b 的通项公式;第二步:求数列{}n a 的通项公式:借助第一步的结果,由于数列{}n a 成等差数列,设公差为d ,结合3411142,11b a a S b =-=,解方程组求出1a 和d ,写出数列{}n a 的通项公式.第三步:利用错位相减法求和: 列出数列221{}n n a b -的前n 项和n T ,两边同乘以4,两式相减后求和. 【文科】【答题模板】 解答本类题目,以2017年试题为例,一般考虑如下三步:第一步:求数列的通项公式 求数列}{2n n b a 的通项公式 第二步:选用恰当的方法求和 错位相减求和 第三步:下结论. 【方法总结】1.数列{}n a 中n a 与n S 的关系:a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.2. 等差数列(1)等差数列的有关概念①定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为*1(,n n a a d n N d +-=∈为常数).②等差中项:数列,,a A b 成等差数列的充要条件是2a bA +=,其中A 叫做,a b 的等差中项. (2)等差数列的有关公式①通项公式:1(1)n a a n d =+-. ②前n 项和公式:11()(1)22n n n a a n n S na d +-=+=. (3)等差数列的性质已知数列{}n a 是等差数列,n S 是其前n 项和.①通项公式的推广:*()(,)n m a a n m d n m N =+-∈.②若*(,,,)k l m n k l m n N +=+∈,则k l m n a a a a +=+.③若{}n a 的公差为d ,则{}n a 也是等差数列,公差为2d . ④若{}n b 是等差数列,则{}n n pa qb +也是等差数列. ⑤数列232,,n n n n n S S S S S --,…构成等差数列.(4). 妙设等差数列中的项若奇数个数成等差数列,可设中间三项为,,a d a a d -+;若偶数个数成等差数列,可设中间两项为,a d a d -+,其余各项再依据等差数列的定义进行对称设元. (5)等差数列的四种判断方法①定义法:*1(,n n a a d n N d +-=∈为常数⇔{}n a 是等差数列.②等差中项法:122n n n a a a ++=+ (n ∈N *)⇔{}n a 是等差数列. ③通项公式:n a pn q =+ (,p q 为常数)⇔ {}n a 是等差数列.④前n 项和公式:2n S An bn =+(A B 、 为常数)⇔ {}n a 是等差数列.3.等比数列(1)等比数列的有关概念 ①定义如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为*1(0,)n na q q n N a +=≠∈. ②等比中项如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔G 2=ab . “a ,G ,b 成等比数列”是“G 是a 与b 的等比中项”的充分不必要条件. (2)等比数列的有关公式①通项公式:11n n a a q -=.②前n 项和公式:111,1,(1),111n n n na q S a a q a q q q q =⎧⎪=--⎨=≠⎪--⎩;(3)等比数列的性质已知数列{}n a 是等比数列,n S 是其前n 项和.(m ,n ,p ,q ,r ,k ∈N *) ①若2m n p q r +=+=,则2m n p q r a a a a a ==; ②数列23,,,,m m k m k m k a a a a +++…仍是等比数列;③数列232,,n n n n n S S S S S --,…仍是等比数列(此时{a n }的公比1q ≠-). (4)等比数列的三种判定方法(1)定义:*1(0,)n na q q n N a +=≠∈⇔{}n a 是等比数列. (2)通项公式:1(n n a cq c q -=、均是不为零的常数,*)n N ∈ ⇔{}n a 是等比数列. (3)等比中项法:2*1212(0,)n n n n n n a a a a a a n N ++++=⋅⋅≠∈⇔{}n a 是等比数列.(5)求解等比数列的基本量常用的思想方法①方程的思想:等比数列的通项公式、前n 项和公式中联系着五个量:1,,,,n n a q n a S ,已知其中三个量,可以通过解方程(组)求出另外两个量;其中基本量是a 1与q ,在解题中根据已知条件建立关于a 1与q 的方程或者方程组,是解题的关键.②分类讨论思想:在应用等比数列前n 项和公式时,必须分类求和,当1q =时,1n S na =;当1q ≠时,1(1)1n n a q S q-=-;在判断等比数列单调性时,也必须对1a 与q 分类讨论.5.数列求和的常用方法(1)公式法:直接利用等差数列、等比数列的前n 项和公式求和 等差数列的前n 项和公式:S n =na 1+a n 2=na 1+nn -2d ;等比数列的前n 项和公式:S n =⎩⎨⎧na 1,q =1,a 1-a n q 1-q =a 1-q n1-q,q ≠1. (2)倒序相加法:如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.(4)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (5)分组转化求和法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和而后相加减.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,22222210099989721(10099)(9897)(21)5050n S =-+-++-=++++++=.1.【2018天津南开中学模拟】已知数列是首项的等差数列,设.(1)求证:是等比数列;(2)记,求数列的前项和;(3)在(2)的条件下,记,若对任意正整数,不等式恒成立,求整数的最大值.【答案】(1)证明见解析;(2);(3)11.【解析】分析:(1)运用等差数列的通项公式,可得公差,进而得到,再由对数的运算性质和等比数列的定义,即可得证;(2)利用裂项相消法求和即可;(3)根据题意,求得,设,判断其为单调递增,求得最小值,再(3)因为,则问题转化为对任意正整数使不等式恒成立.设,则.所以,故的最小值是/.由,得整数可取最大值为11.【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有用定义证明等比数列,对数的运算,裂项相消法求和,恒成立问题求有关参数的取值范围和最值问题,在解题的过程中,注意对公式的正确使用以及对问题的正确理解.2.【2018天津河西区模拟】已知数列的前项和为,数列是首项为,公差为的等差数列.(1)求数列的通项公式;(2)设数列满足,求数列的前项和.【答案】(1)(2)由等比数列的前项和公式可得结论.详解:(1)解:由题意得:,当时,,时,对上式也成立,∴.(2)解:,【名师点睛】已知数列前项和与第项关系,求数列通项公式,常用公式,将所给条件化为关于前项和的递推关系或是关于第项的递推关系,若满足等比数列或等差数列定义,用等比数列或等差数列通项公式求出数列的通项公式,否则适当变形构造等比或等数列求通项公式,在利用与通项的关系求的过程中,一定要注意的情况.3.【2018天津部分区二模】已知数列的奇数项依次成公比为2的等比数列,偶数项依次成公差为4的等差数列,数列的前项和为,且,.(1)求数列的通项公式;(2)令,求数列的前项和.【答案】(1);(2).【解析】分析:(I)设数列的奇数项的公比为,偶数项的公差为.由已知,,可得,为奇数时,,为偶数时,;(II)由(1)知.为偶数时,,为奇数时,.详解:(1)设数列的奇数项的公比为,偶数项的公差为.由已知,得.∵,∴,解得为奇数时,,.【名师点睛】本题考查数列的性质和综合运用,分类讨论思想,难度较大.解题时要认真审题,仔细解答.4.【2018天津部分区二模】已知数列为等比数列,数列为等差数列,且,,.(1)求数列,的通项公式;(2)设,数列的前项和为,证明:.【答案】(1)(2)【解析】分析:(1)设数列{a n}的公比为q,数列{b n}的公差为d,由题意得:1+d=1+q,q2=2(1+2d)﹣6,解得:d=q=2,即可.(2)证明:因为c n===,T n=.即可得.详解:(1)设数列的公比为,数列的公差为.由题意得,,解得,所以(2)证明:因为,所以【名师点睛】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.5.【2018天津河东区二模】已知等比数列满足条件,,.(1)求数列的通项公式;(2)数列满足,,求的前项和.【答案】(1)(2)【解析】分析:第一问首先利用等比数列的通项公式得到数列的首项和公比所满足的条件,从而求得相关的值,得到该数列的通项公式;第二问利用和与项的关系,得到,,再将时的情况进行验证,得到,,之后应用错位相减法对数列求和即可得结果.详解:(1)设的通项公式为,由已知,,由已知,,,综上,①②由①-②得到,【名师点睛】该题考查的是有关数列的通项公式与求和的问题,在求解的过程中,注意对等比数列的通项公式的应用,得到题中的数列的首项和公比所满足的条件,从而求得结果;再者就是利用和与项的关系求通项的时候,需要对首项进行验证,在应用错位相减法求和时,需要明确步骤应该怎么写.6.【2018天津河北区二模】已知等差数列{}中,=1,且,,成等比数列.(I)求数列{}的通项公式及前n项和;(II)设,求数列{}的前2n项和.【答案】(Ⅰ),(Ⅱ)【解析】分析:(Ⅰ)设等差数列{}的公差为d,由题意可求得,故可得数列的通项公式和前n项和公式.(Ⅱ)由(Ⅰ)可得,故选用分组求和的方法将数列{}的项分为计数项和偶数项两部分后再求和.详解:(I)设等差数列{}的公差为d,∵,且,,成等比数列,∴,即,解得或.∴数列{}的奇数项是以为首项,为公比的等比数列;偶数项是以8为首项,16为公比的等比数列.∴数列{}的前2n项的和.【名师点睛】(1)等差、等比数列的运算中,要注意五个量之间的关系,根据条件得到方程(或方程组),通过解方程(方程组)达到求解的目的.(2)数列求和应从通项入手,若通项符合等差数列或等比数列,则直接用公式求和;若通项不符合等差或等比数列,需要通过对通项变形,转化为等差或等比或可求数列前n项和的数列求解.当数列的通项中含有或的字样时,一般要分为n为奇数和n为偶数两种情况求解.7.【2018天津十二校二模】已知数列的前项和满足:,(为常数,,).(Ⅰ)求的通项公式;(Ⅱ)设,若数列为等比数列,求的值;(Ⅲ)在满足条件(Ⅱ)的情形下,.若数列的前项和为,且对任意满足,求实数的取值范围.【答案】(1);(2);(3).详解:(1)且数列是以为首项,为公比的等比数列(2)由得,因为数列为等比数列,所以,解得.(3)由(2)知【名师点睛】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2); (3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.8.【2018天津滨海新区七校模拟】已知数列{}n a 的前n 项和为n S ,满足21n n S a =- (*n N ∈),数列{}n b 满足()()111n n nb n b n n +-+=+ (*n N ∈),且11b =(1)证明数列n b n ⎧⎫⎨⎬⎩⎭为等差数列,并求数列{}n a 和{}n b 的通项公式;(2)若()()()()122141132log 32log n n n n n c a a -++=-++,求数列{}n c 的前n 项和2n T ;(3)若n n d a ={}n d 的前n 项和为n D ,对任意的*n N ∈,都有n n D nS a ≤-,求实数a 的取值范围.【答案】(1)12n n a -=, 2n b n =;(2)11343n -+;(3)0a ≤ 【解析】试题分析:(1)()()111n n nb n b n n +-+=+两边同除以()1n n +,得111n nb b n n+-=+,可求得n b .用公式11,2{,1n n n S S n a S n --≥==,统一成n a ,可求得n a .(2)由(1)12n n a -=,代入得n c ()11112123n n n -⎛⎫=-+ ⎪++⎝⎭,由并项求和可得2n T .(3)由(1)12n n d a n -==由错位相减法可求得n D ,代入可求.当2n ≥时, 21n n S a =-, -1-121n n S a =-, 两式相减得12n n a a -=,又1=1a ,所以12nn a a -=, 从而数列{}n a 为首项1=1a ,公比=2q 的等比数列,从而数列{}n a 的通项公式为12n n a -=.(2) ()()()41(2123n n c n n -⎛⎫+=⎪ ⎪++⎝⎭()11112123n n n -⎛⎫=-+ ⎪++⎝⎭ 2123212n n n T c c c c c -=++++=1111111135574143343n n n +--+--=-+++(3)由(1)得12n n d a n -==,()221112232122n n n D n n --=⨯+⨯+⨯+-+()()2311212223212122n n n n D n n n --=⨯+⨯+⨯+-+-+,所以21n a n ≤--恒成立,记21nn d n =--,所以()min n a d ≤,因为()()1+121121n nn n d d n n +⎡⎤-=-+----⎣⎦210n =->,从而数列{}n d 为递增数列 所以当=1n 时, n d 取最小值1=0d ,于是0a ≤.【名师点睛】本题考查知识较多,有递推公式求通项公式,及通项公式与前n 项和关系,裂项求和,并项求和,等差数列求和,错位相减法,数列与不等式交汇等,需要对数列基本知识,基本方法掌握非常好.9.【2018天津十二模拟一】已知等比数列{}n a 的前n 项和为n S ,满足4212a a -=,423+2S 3S S =,数列{}n b 满足()()111n n nb n b n n +-+=+, *n N ∈,且11b =. (1)求数列{}n a ,{}n b 的通项公式;(2)设()22log 212{2nn na n k n n c n k=-+==,, n T 为{}n c 的前n 项和,求2n T .【答案】(1)2n n a ∴=, 2n b n =;(2)21166899221n n nn -+-+⨯+. 【解析】试题分析:(1)由423+2S 3S S =,可推出432a a =, 2q =,结合4212a a -=,即可求出数列{}n a 的通项公式,再将()()111n n nb n b n n +-+=+两边同除以()1n n +得111n n b b n n +-=+,可推出数列n b n ⎧⎫⎨⎬⎩⎭为等差数列,从而可求出{}n b 的通项公式;(2)由(1)知()22log 2,212{2,22nn n n k n n c nn k =-+==,利用分组求和,裂项相消法及错位相减法即可求出2n T .1d =的等差数列∴=nb n n,从而数列{}n b 的通项公式为2n b n =. (2)由(1)知()()2211log 2,21,2122{{2,2,222nn n n n n k n k n n n n c c nnn k n k -=-=-++=⇒===∴21232n nT c c c c =++++135211*********22133521212222n n n n -⎛⎫⎡⎤=-+-++-+++++⎪⎢⎥-+⎝⎭⎣⎦【名师点睛】(1)分组转化法求和的常见类型主要有分段型(如,{ 2,n n n n a n =为奇数为偶数),符号型(如()21nn a n =- ),周期型 (如πsin 3n n a = );(2)用错位相减法求和的注意事项:①要善于识别题目类型,特别是等比数列公比为负数的情形;②在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;③在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.10.【2018天津十二模拟二】已知正项等比数列,等差数列满足,且是与的等比中项. (1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1);(2).【解析】试题分析:(1)根据,是与的等比中项列出关于公比 、公差的方程组,解方程组可得与的值,从而可得数列与的的通项公式;(2)由(1)可知,所以,对分奇数、偶数两种情况讨论,分别利用分组求和法,错位相减求和法,结合等差数列求和公式与等比数列求和公式求解即可. 试题解析:(1)设等比数列的公比为,等差数列的公差为由是与的等比中项可得:又,则:,解得或因为中各项均为正数,所以,进而.故.(2)设则②,由①-②得:,,因此,综上:.11.【2018天津部分区期末考】已知{}n a为等差数列,且24a=,其前8项和为52,{}n b是各项均为正数的等比数列,且满足124b b a+=,36b a=.(1)求数列{}n a和{}n b的通项公式;(2)令22l o gl o gn nnn nb aca b=+,数列{}n c的前n项和为n T,若对任意正整数n,都有2nT nλ-<成立,求实数λ的取值范围.【答案】(1)2n a n =+, 2nn b =;(2)3λ≥【解析】试题分析:(1)结合题意可求得等差数列的公差和等比数列的公比,由此可得数列的通项公式.(2)由(1)可得22224422n n n n n c n n n n +++=+=++ 11222n n ⎛⎫=+- ⎪+⎝⎭,利用裂项求和可得1123212n T n n n ⎛⎫=+-+ ⎪++⎝⎭,因此由题中的恒成立可得113212n n λ⎛⎫>-+ ⎪++⎝⎭对任意正整数n 恒成立,然后根据1132312n n ⎛⎫-+< ⎪++⎝⎭可得结果. 试题解析:(1)设等差数列{}n a 的公差为d , 由题意得114{82852a d a d +=+=,即1134{2713a d a d +=+=,解得13{1a d ==,所以()312n a n n =+-=+.1111111221324112n n n n n ⎛⎫=+⨯-+-++-+- ⎪-++⎝⎭1123212n n n ⎛⎫=+-+ ⎪++⎝⎭.所以1123212n T n n n ⎛⎫-=-+⎪++⎝⎭, 因为对任意正整数n ,都有2n T n λ-<成立, 即113212n n λ⎛⎫>-+⎪++⎝⎭对任意正整数n 恒成立, 又1132312n n ⎛⎫-+<⎪++⎝⎭, 所以3λ≥.故实数λ的取值范围为[)3,+∞.12.【2018天津一中期中考】设数列{}n a 的前n 项和为n S ,满足21234n n S na n n +=--, *n N ∈ ,且13a =.(Ⅰ)求2a 、3a 的值; (Ⅱ)求数列{}n a 的通项公式【答案】(Ⅰ)25a =, 37a =; (Ⅱ)见解析.【解析】分析:(Ⅰ)分别令1,2n n ==就可以求得25a =, 37a =. (Ⅱ)根据(Ⅰ)猜测21n a n =+,利用数学归纳可证明该猜测.②当1n k =+时,有()()123322232112222k k k k S kk a k k k k ++=++=++=+=++, 这说明当1n k =+时,猜想也成立,结合①②,由归纳原理知,对任意*n N ∈, 21n a n =+.【名师点睛】与自然数有关的问题,可以用数学归纳法,在归纳假设中,我们一般设当n k =时,命题()P k 成立,也可以假设0n n k ≤≤时,命题()P n 成立,然后再证明1n k =+, ()1P k +也成立.13.【2018天津滨海新区模拟】已知数列{}n a 的首项15a =前n 项和为n S ,且()*15n n S S n n N +=++∈ (I )证明数列{}1n a +是等比数列;(II )令()212.....nn f x a x a x a x =+++ 求函数()f x 在点1x =处的导数()1f '并比较()21f ' 与22313n n -的大小【答案】(1)见解析;(2)()21f ' > 22313n n -.【解析】试题分析:(1)先根据和项与通项关系得项递推关系,再根据题意变形为()1121n n a a ++=+,最后根据等比数列定义给以证明(2)先求导数得()1f ',根据分组求和法以及错位相消法化简()1f ',最后作差并利用二项式定理比较大小因为()212n n f x a x a x a x =+++所以()1122n n f x a a x na x -'=+++从而()1212n f a a na '=+++=()()()23212321321n n ⨯-+⨯-++⨯- =()232222n n +⨯++⨯-()12n +++=()()1131262n n n n ++-⋅-+由上()()()22123131212n f n n n --=-⋅'-()21221n n --=()()()121212121n n n n -⋅--+=12()()1221nn n ⎡⎤--+⎣⎦①当1n =时,①式=0所以()2212313f n n ='-; 当2n =时,①式=-120<所以()2212313f n n <'- 当3n ≥时, 10n ->又()011211nn n nn n n nC C C C -=+=++++ ≥ 2221n n +>+ 所以()()12210nn n ⎡⎤--+>⎣⎦即①0>从而()21f ' > 22313n n -. 14.【2018天津一中月考五】已知数列中,,.(1)求证:数列是等比数列; (2)求数列的前项和,并求满足的所有正整数.【答案】(1)证明见解析;(2)答案见解析.【解析】分析:(1)设,推导出,由此能证明数列是等比数列;(2)推导出,由,得,,从而由此能求出满足S n >0的所有正整数n 的值.由,得,所以,同理,当且仅当时,,综上,满足的所有正整数为和.【名师点睛】本题考查等比数列的证明,考查满足数列的前n项和的正整数的最大值的求法,考查等比数列、分组求和法等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.15.【2018天津耀华中学】等差数列的各项均为正数,,前项和为,为等比数列,,且,.()求与.()求数列的前项和.()若对任意正整数和任意恒成立,求实数的取值范围.【答案】(),()()【解析】试题分析:(1)由条件得,解方程即可;(2)利用错位相减即可得解;(3)由,利用裂项相消求和,只需即可.试题解析:()设公差为,公比为....(),∴,∴.∴,即恒成立,∴,则,∴.【名师点睛】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.。

数列专题训练包括通项公式求法和前n项和求法 的方法和习题

数列专题训练包括通项公式求法和前n项和求法 的方法和习题

数列专题1、数列的通项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++L ).2、等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;3、等差数列其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 4、等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 5、等比数列前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或 11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.常用数列不等式证明中的裂项形式:(1)(1111n n =-+n(n+1)1111()1k n k =-+n(n+k);(2) 211111()1211k k k <=---+2k (3)211111111(1)(1)1kk k k k k k k k-=<<=-++-- (4)1111(1)(2)2(1)(1)(2)n n n n n n n ⎡⎤=-⎢⎥+++++⎣⎦; (5)()()111!!1!n n n n =-++(6)=<<=1(1)n n >+)一.数列的通项公式的求法1.定义法:①等差数列通项公式;②等比数列通项公式。

例.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.解:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒∵0≠d , ∴d a =1………………………………①∵255a S = ∴211)4(2455d a d a +=⋅⨯+…………② 由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=2.公式法:已知n S (即12()n a a a f n +++=L )求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥。

数列常见题型总结经典

数列常见题型总结经典

高中数学《数列》常见、常考题型总结题型一数列通项公式的求法1.前n 项和法(知n S 求n a )⎩⎨⎧-=-11n n n S S S a )2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 变式:已知数列}{n a 的前n 项和n n S n 122-=,求数列|}{|n a 的前n 项和n T 练习:1234.n S 52.(1(2例1.例2.例3.3.(11-n q .(2例1、在数列}{n a 中111,1-+==n n a n n a a )2(≥n ,求数列的通项公式。

答案:12+=n a n 练习:1、在数列}{n a 中1111,1-+-==n n a n n a a )2(≥n ,求n n S a 与。

答案:)1(2+=n n a n2、求数列)2(1232,111≥+-==-n a n n a a n n 的通项公式。

4.形如sra pa a n n n +=--11型(取倒数法)例1.已知数列{}n a 中,21=a ,)2(1211≥+=--n a a a n n n ,求通项公式n a练习:1、若数列}{n a 中,11=a ,131+=+n n n a a a ,求通项公式n a .答案:231-=n a n2、若数列}{n a 中,11=a ,112--=-n n n n a a a a ,求通项公式n a .答案:121-=n a n5.形如0(,1≠+=+c d ca a n n ,其中a a =1)型(构造新的等比数列)(1)若c=1时,数列{n a }为等差数列;(2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造辅助数列来求. 方法如下:设,利用待定系数法求出A例126.(1)若例题.所以{=∴n b (2)若①若②若令n b 例1.在数列{}n a 中,521-=a ,且)(3211N n a a n n n ∈+-=--.求通项公式n a1、已知数列{}n a 中,211=a ,n n n a a 21(21+=-,求通项公式n a 。

等差数列前n项和典型例题

等差数列前n项和典型例题
„„„„„„„„12分
【误区警示】对解答本题时易犯错误的具体分析如下:
【即时训练】在等差数列{an}中,a1=50,d=-0.6. (1)从第几项起以后各项均小于零? (2)求此数列前n项和的最大值. 【解题提示】(1)实质上是解一个不等式,但要注意 n为正整数;(2)转化为求二次函数的最大值的问题.
数列,设其公差为D,前10项和为10S10+ 10 9 ·D=S100=10
2
D=-22,∴S110-S100=S10+(11-1)D
=100+10×(-22)=-120. ∴S110=-120+S100=-110. 练习:1、等差数列{an}的前n项和为Sn,已知S8=132,Sm=690, Sm-8=270(m>8),则m为( ) 2、等差数列{ n}的前m项和为30,前2m项和为100,前3m项和为(210)
a
知识点:等差数列前n项和的性质的应用 (1)项数(下标)的“等和”性质: Sn= n(a1 a n) n(a m a n m 1)
2 2
(2)项的个数的“奇偶”性质: 等差数列{an}中,公差为d:
①若共有2n项,则S2n=n(an+an+1);
S偶-S奇=nd;S偶∶S奇= an+1∶an;
故此数列的前110项之和为-110. 方法二:设Sn=An2+Bn 100A+10B=100 10000A+100B=10,解得A=-11/100,B=111/10,S110=-110
方法三:Sn=
n(a1 a n) n(a m a n m 1) . 2 2
方法四:数列S10,S20-S10,S30-S20,„,S100-S90,S110-S100成等差

数列求通项的七种方法及例题

数列求通项的七种方法及例题

数列求通项的七种方法及例题数列求通项的7种方法及例题:1. 已知首项和公比法:设数列{an}中,a1为首项,q为公比,则an = a1 × q^(n-1)。

例如:已知数列{an}中,a1=2,q=3,求a5。

答案:a5=2×3^4=2×81=1622. 已知前n项和法:设数列{an}中,Sn为前n项和,则an = S0 + S1 + S2 +···+ Sn-1 - (S1 + S2 +···+ Sn-1) = S0。

例如:已知数列{an}中,S2=6,S4=20,求a3。

答案:a3 = S2 - (S2 - S1) = 6 - (6 - 2) = 83. 等差数列的通项公式:设数列{an}为等差数列,d为公差,则an = a1 + (n-1)d。

例如:已知数列{an}为等差数列,a1=2,d=4,求a5。

答案:a5 = 2 + (5-1)4 = 184. 等比数列的通项公式:设数列{an}为等比数列,q为公比,则an = a1 ×q^(n-1)。

例如:已知数列{an}为等比数列,a1=2,q=3,求a5。

答案:a5=2×3^4=2×81=1625. 三项和平均数法:设数列{an}中,Sn = a1 + a2 + a3 +···+ an,则an = Sn/n。

例如:已知数列{an}中,S4=20,求a3。

答案:a3 = S4/4 = 20/4 = 56. 泰勒公式法:对于一般的数列,可以使用泰勒公式进行求通项。

例如:已知数列{an}中,a1=2,且当n→∞ 时,an → 0,求a4。

答案:使用泰勒公式,a4 = a1 + (n-1)(a2 - a1)/1! + (n-1)(n-2)(a3 -2a2 + a1)/2! + (n-1)(n-2)(n-3)(a4 - 3a3 + 3a2 - a1)/3! = 2 + 3(2 - 2)/1! + 3(3 - 2)(3 - 4)/2! + 3(3 - 2)(3 - 4)(3 - 5)/3! = 2 + 3(0)/1! + 3(1)(-1)/2! + 3(1)(-1)(-2)/3! = 2 - 3/2 - 3/4 + 3/6 = 2 - 1/87. 斐波那契数列法:斐波那契数列是一种特殊的数列,它的通项公式可以写作 an = an-1 + an-2。

数列通项、数列前n项和的求法例题+练习

数列通项、数列前n项和的求法例题+练习

通项公式和前n 项和一、新课讲解:求数列前N 项和的办法 1. 公式法(1)等差数列前n 项和:特此外,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中央项乘以项数.这个公式在许多时刻可以简化运算. (2)等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要留意对公比的评论辩论.(3)其他公式较罕有公式:1.)1(211+==∑=n n k S nk n 2.)12)(1(6112++==∑=n n n k S nk n3.213)]1(21[+==∑=n n k S n k n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和.[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.2. 错位相减法这种办法是在推导等比数列的前n 项和公式时所用的办法,这种办法重要用于求数列{a n ·b n }的前n 项和,个中{ a n }.{ b n }分离是等差数列和等比数列.[例3]乞降:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………① [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和.演习:求:S n =1+5x+9x 2+······+(4n -3)xn-1答案:当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n 当x ≠1时,S n = 1 1-x[4x(1-x n ) 1-x+1-(4n-3)x n ]3. 倒序相加法乞降这是推导等差数列的前n 项和公式时所用的办法,就是将一个数列倒过来分列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值 4. 分组法乞降有一类数列,既不是等差数列,也不是等比数列,若将这类数列恰当拆开,可分为几个等差.等比或罕有的数列,然后分离乞降,再将其归并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa an ,… 演习:求数列•••+•••),21(,,813,412,211nn 的前n 项和.5. 裂项法乞降这是分化与组合思惟在数列乞降中的具体运用. 裂项法的本质是将数列中的每项(通项)分化,然后从新组合,使之能消去一些项,最终达到乞降的目标. 通项分化(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+(裂项) ∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项乞降)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立演习:求63135115131+++之和.6. 归并法乞降针对一些特别的数列,将某些项归并在一路就具有某种特别的性质,是以,在求数列的和时,可将这些项放在一路先乞降,然后再求S n .[例12]求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. [例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.7. 运用数列的通项乞降先依据数列的构造及特点进行剖析,找出数列的通项及其特点,然后再运用数列的通项揭示的纪律来求数列的前n 项和,是一个重要的办法. [例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 演习:求5,55,555,…,的前n 项和.以上一个7种办法固然各有其特色,但总的原则是要擅长转变原数列的情势构造,使其能进行消项处理或能运用等差数列或等比数列的乞降公式以及其它已知的根本乞降公式来解决,只要很好地掌控这一纪律,就能使数列乞降化难为易,水到渠成.求数列通项公式的八种办法一.公式法(界说法)依据等差数列.等比数列的界说求通项 二.累加.累乘法1.累加法 实用于:1()n n a a f n +=+若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=双方分离相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 知足11211n n a a n a +=++=,,求数列{}n a 的通项公式. 解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =.例2 已知数列{}n a 知足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式.解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+双方除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 是以11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯,则21133.322n n n a n =⨯⨯+⨯-2.累乘法 实用于: 1()n n a f n a += 若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 双方分离相乘得,1111()nn k a a f k a +==⋅∏例3 已知数列{}n a 知足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式. 解:因为112(1)53n n n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯三.待定系数法 实用于1()n n a qa f n +=+剖析:经由过程凑配可转化为1121()[()]n n a f n a f n λλλ++=+; 解题根本步调: 1.肯定()f n2.设等比数列{}1()n a f n λ+,公比为2λ3.列出关系式1121()[()]n n a f n a f n λλλ++=+4.比较系数求1λ,2λ5.解得数列{}1()n a f n λ+的通项公式6.解得数列{}n a 的通项公式例4 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解法一:121(2),n n a a n -=+≥又{}112,1n a a +=∴+是首项为2,公比为2的等比数列12n n a ∴+=,即21n n a =-解法二:121(2),n n a a n -=+≥两式相减得112()(2)n n n n a a a a n +--=-≥,故数列{}1n n a a +-是首项为2,公比为2的等比数列,再用累加法的……例5 已知数列{}n a 知足1112431n n n a a a -+=+⋅=,,求数列{}n a 的通项公式. 解法一:设11123(3n n n n a a λλλ-++=+⋅),比较系数得124,2λλ=-=,则数列{}143n n a --⋅是首项为111435a --⋅=-,公比为2的等比数列, 所以114352n n n a ---⋅=-⋅,即114352n n n a --=⋅-⋅解法二: 双方同时除以13n +得:112243333n n n n a a ++=⋅+,下面解法略留意:例 6 已知数列{}n a 知足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式.解:设221(1)(1)2()n n a x n y n z a xn yn z ++++++=+++ 比较系数得3,10,18x y z ===,所以2213(1)10(1)182(31018)n n a n n a n n ++++++=+++ 由213110118131320a +⨯+⨯+=+=≠,得2310180n a n n +++≠则2123(1)10(1)18231018n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为认为21311011813132a +⨯+⨯+=+=首项,以2为公比的等比数列,是以2131018322n n a n n -+++=⨯,则42231018n n a n n +=---.留意:形如21 n n n a pa qa ++=+时将n a 作为()f n 求解剖析:原递推式可化为211()() n n n n a a p a a λλλ++++=++的情势,比较系数可求得λ,数列{}1n n a a λ++为等比数列.例7 已知数列{}n a 知足211256,1,2n n n a a a a a ++=-=-=,求数列{}n a 的通项公式. 解:设211(5)()n n n n a a a a λλλ++++=++比较系数得3λ=-或2λ=-,无妨取2λ=-,则21123(2)n n n n a a a a +++-=-,则{}12n n a a +-是首项为4,公比为3的等比数列11243n n n a a -+∴-=⋅,所以114352n n n a --=⋅-⋅四.迭代法例8 已知数列{}n a 知足3(1)2115nn n n a a a ++==,,求数列{}n a 的通项公式.解:因为3(1)21nn n n a a ++=,所以又15a =,所以数列{}n a 的通项公式为(1)123!25n n n n n a --⋅⋅=.注:本题还可分解运用累乘法和对数变换法求数列的通项公式. 五.变性转化法1.对数变换法 实用于指数关系的递推公式例9 已知数列{}n a 知足5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式.解:因为511237n n na a a +=⨯⨯=,,所以100n n a a +>>,. 双方取经常运用对数得1lg 5lg lg3lg 2n n a a n +=++ 设1lg (1)5(lg )n n a x n y a xn y ++++=++(同类型四) 比较系数得,lg3lg3lg 2,4164x y ==+ 由1lg3lg3lg 2lg3lg3lg 2lg 1lg 71041644164a +⨯++=+⨯++≠,得lg3lg3lg 2lg 04164n a n +++≠, 所以数列lg3lg3lg 2{lg }4164n a n +++是认为lg3lg3lg 2lg 74164+++首项,以5为公比的等比数列,则1lg3lg3lg 2lg3lg3lg 2lg (lg 7)541644164n n a n -+++=+++,是以11111111116164444111115161644445415151164lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)54164464[lg(7332)]5lg(332)lg(7332)lg(332)lg(732)n n n n n n n n n n a n --------=+++---=⋅⋅⋅-⋅⋅=⋅⋅⋅-⋅⋅=⋅⋅则11541515164732n n n n n a -----=⨯⨯.2.倒数变换法 实用于分式关系的递推公式,分子只有一项 例10 已知数列{}n a 知足112,12nn n a a a a +==+,求数列{}n a 的通项公式. 解:求倒数得11111111111,,22n n n n n n a a a a a a +++⎧⎫=+∴-=∴-⎨⎬⎩⎭为等差数列,首项111a =,公役为12,112(1),21n n n a a n ∴=+∴=+ 3.换元法 实用于含根式的递推关系 例11 已知数列{}n a知足111(14116n n a a a +=+=,,求数列{}n a 的通项公式.解:令n b =则21(1)24n n a b =-代入11(1416n n a a +=+得 即2214(3)n n b b +=+因为0n b =≥,则123n n b b +=+,即11322n n b b +=+, 可化为113(3)2n n b b +-=-,所所以{3}n b -认为13332b -===首项,认为21公比的等比数列,是以121132()()22n n n b ---==,则21()32n n b -=+,21()32n -=+,得2111()()3423n n n a =++.六.数学归纳法 经由过程首项和递推关系式求出数列的前n 项,猜出数列的通项公式,再用数学归纳法加以证实.例12 已知数列{}n a 知足11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式.解:由1228(1)(21)(23)n n n a a n n ++=+++及189a =,得由此可猜测22(21)1(21)n n a n +-=+,下面用数学归纳法证实这个结论. (1)当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立.(2)假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,则当1n k =+时, 由此可知,当1n k =+时等式也成立.依据(1),(2)可知,等式对任何*n N ∈都成立. 七.阶差法1.递推公式中既有n S ,又有n a 剖析:把已知关系经由过程11,1,2n nn S n a S S n -=⎧=⎨-≥⎩转化为数列{}n a 或n S 的递推关系,然后采取响应的办法求解.例13 已知数列{}n a 的各项均为正数,且前n 项和n S 知足1(1)(2)6n n n S a a =++,且249,,a a a 成等比数列,求数列{}n a 的通项公式. 解:∵对随意率性n N +∈有1(1)(2)6n n n S a a =++⑴ ∴当n=1时,11111(1)(2)6S a a a ==++,解得11a =或12a =当n ≥2时,1111(1)(2)6n n n S a a ---=++⑵ ⑴-⑵整顿得:11()(3)0n n n n a a a a --+--= ∵{}n a 各项均为正数,∴13n n a a --= 当11a =时,32n a n =-,此时2429a a a =成立当12a =时,31n a n =-,此时2429a a a =不成立,故12a =舍去 所以32n a n =-2.对无限递推数列例14 已知数列{}n a 知足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式.解:因为123123(1)(2)n n a a a a n a n -=++++-≥① 所以1123123(1)n n n a a a a n a na +-=++++-+② 用②式-①式得1.n n n a a na +-= 则1(1)(2)n n a n a n +=+≥ 故11(2)n na n n a +=+≥ 所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=③由123123(1)(2)n n a a a a n a n -=++++-≥,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=. 所以,{}n a 的通项公式为!.2n n a =八.不动点法不动点的界说:函数()f x 的界说域为D ,若消失0()f x x D ∈,使00()f x x =成立,则称0x 为()f x 的不动点或称00(,())x f x 为函数()f x 的不动点.剖析:由()f x x =求出不动点0x ,在递推公式双方同时减去0x ,在变形求解.类型一:形如1 n n a qa d +=+例 15 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解:递推关系是对应得递归函数为()21f x x =+,由()f x x =得,不动点为-1 ∴112(1)n n a a ++=+,…… 类型二:形如1n n n a a ba c a d+⋅+=⋅+剖析:递归函数为()a x bf x c x d⋅+=⋅+(1)如有两个相异的不动点p,q 时,将递归关系式双方分离减去不动点p,q,再将两式相除得11n nn n a p a pk a q a q++--=⋅--,个中a pck a qc-=-,∴111111()()()()n n n a q pq k a p pq a a p k a q -----=--- (2)如有两个雷同的不动点p,则将递归关系式双方减去不动点p,然后用1除,得111n n k a p a p +=+--,个中2ck a d=+.例16 已知数列{}n a 知足112124441n n n a a a a +-==+,,求数列{}n a 的通项公式.解:令212441x x x -=+,得2420240x x -+=,则1223x x ==,是函数2124()41x f x x -=+的两个不动点.因为112124224121242(41)13262132124321243(41)92793341n n n n n n n n n n n n n n a a a a a a a a a a a a a a ++---+--+--====----+---+.所以数列23n n a a ⎧⎫-⎨⎬-⎩⎭是认为112422343a a --==--首项,认为913公比的等比数列,故12132()39n n n a a --=-,则113132()19n n a -=+-.。

2022年高考数学一轮复习专题 专题49 求数列前n项和常用方法经典例题与练习(解析版)

2022年高考数学一轮复习专题 专题49 求数列前n项和常用方法经典例题与练习(解析版)

【详解】
(1)设等比数列an 的公比为 q,则 a3 a1q2 2q2 8 ,所以 q = 2 或 q 2 (舍),
所以 an a1qn1 2n , n N * .
(2)由(1)得 an
2n
,所以
Sn
a1
1 qn 1 q
2 1 2n
1 2
2n1 2 .
【点睛】
本题主要考查等比数列的通项公式及求和公式,熟记公式是求解的关键,侧重考查数学运算
an
a n-1
a a q n1
n
1
a a q
nm
n
m
3、前 n 项和
sn
(a1
an)n
2
sn
n
a1
n(n 1) 2
d
q=1 , Sn =na1;
q
1,Sn
=
a1(1-q 1-q
n
)
= a1-anq 1-q
4、中项
a、A、b 成等差数列 A= a+b ; 2
a、A、b 成等比数列 A b aA
①定义法: an q an1
②等差中项概念;anan2
an
2 1
(an
0)
③函数法:an cqn ( c,q 均为不为 0 的
常数,n N ),则数列an 是等比数列.
④数列{a n } 的前 n 项和形如
④数列{a n } 的前 n 项和形如 Sn an2 bn
Sn Aqn A ( A,q 均为不等于 0 的常
专题 49 求数列前 n 项和常用方法经典例题与练习(解析版) 等差数列与等比数列性质的比较
1、定义
2、通项 公式
等差数列性质
an+1-an =d(n 1) ; an -an-1=d(n 2)

数列通项公式和前n项和的求法

数列通项公式和前n项和的求法

数列通项公式和前n 项和的求法一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.解:设数列{}n a 公差为)0(>d d ∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒,∵0≠d , ∴d a =1①∵255a S = ∴211)4(2455d a d a +=⋅⨯+② 由①②得:531=a ,53=d , ∴n n a n 5353)1(53=⨯-+=二、累加法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。

例2 已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a解:由条件知:111)1(1121+-=+=+=-+n n n n n n a a n n分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之, 即)()()()(1342312--+⋅⋅⋅⋅⋅⋅+-+-+-n n a a a a a a a a)111()4131()3121()211(nn --+⋅⋅⋅⋅⋅⋅+-+-+-=所以n a a n 111-=-, 211=a ,nn a n 1231121-=-+=∴三、累乘法(逐商相乘法):把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。

例4. 已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。

解:由条件知11+=+n na a n n ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累乘之,即1342312-∙⋅⋅⋅⋅⋅⋅∙∙∙n n a a a a a a a a n n 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=n a a n 11=⇒又321=a ,na n 32=∴四、待定系数法:递推公式为q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。

数列 知识点总结及数列求和,通项公式的方法归纳(附例题)

数列 知识点总结及数列求和,通项公式的方法归纳(附例题)

⎩⎨⎧无穷数列有穷数列按项数 2221,21(1)2nn a a n a a n a n=⎧⎪=+=⎪⎨=-+⎪⎪=-⋅⎩n n n n n常数列:递增数列:按单调性递减数列:摆动数列:数 列数列的考查主要涉及数列的基本公式、基本性质、通项公式,递推公式、数列求和、数列极限、简单的数列不等式证明等.1.数列的有关概念:(1) 数列:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. (2) 从函数的观点看,数列可以看做是一个定义域为正整数集N +(或它的有限子集)的函数。

当自变量从小到大依次取值时对应的一列函数值。

由于自变量的值是离散的,所以数列的值是一群孤立的点。

(3) 通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.如: 221n a n =-。

(4) 递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,121n n a a -=+,其中121n n a a -=+是数列{}n a 的递推公式.再如: 121,2,a a ==12(2)n n n a a a n --=+>。

2.数列的表示方法:(1) 列举法:如1,3,5,7,9,… (2)图象法:用(n, a n )孤立点表示。

(3) 解析法:用通项公式表示。

(4)递推法:用递推公式表示。

3.数列的分类:按有界性M M M >Mn n n n +⎧≤∈⎪⎨⎪⎩有界数列:存在正数,总有项a 使得a ,n N 无界数列:对于任何正数,总有项a 使得a4.数列{a n }及前n 项和之间的关系:123n n S a a a a =++++ 11,(1),(2)n n n S n a S S n -=⎧=⎨-≥⎩等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差. 2.通项公式与前n 项和公式⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差.可变形为d m n a a m n )(-+= ⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列; ⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列. 5.常用性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}p a n +、{}n pa (p 是常数)都是等差数列;在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd 。

数列的通项公式及前n项和例题及练习

数列的通项公式及前n项和例题及练习

求数列的通项公式:•公式法:项公式。

•累加法:适用于:a n 1 a n f(n)1.等差数列a n是递减数列,且a2 a3 a4=48, a2 a3 a4=12,求数列的通2. 若在数列a n中,a13, a n 1 a n求通项a n。

练习:已知数列{a n}满足a n1 a n 2n, a1 1,求数列{a n}的通项公式。

三.累乘法:适用于: a n 1 f(n)a n3•在数列a n中,a1a n 1 2a n ( n N ),求通项a n。

练习:在数列a n中, a i 1,a n 1n--- a nn 1(n N ),求通项a n。

四、倒数变换法 适用于分式关系的递推公式,分子只有一项 4..设数列{a n }满足a 12, a . 1六、S n 与a n 之间的关系练习:设数列a n 的前n 项和S n =n 2 n 2,求a n 。

练习:已知数列{a n }满足a nia 1 1,求数列{a n }的通项公式。

五、待定系数法适用于a n 1 qa n f(n)5.已知数列{a n }中,a 1 1,a n1(n 2),求数列a n 的通项公式。

练习:已知数列{a n }满足a n 12a n4 3n1, a i 1,求数列a n 的通项公式。

6.设数列a n 的前n 项和S n =|a n3,求 a n 。

求数列的前n项和:、公式法1.求x x2的前n项和.分组法求和1 1 12 .求数列12,24,38,???,(n *),???的前n项和。

练习1:求数列的前n项和:1 1,- 4,丄7,a a13n 2 a练习2:求1 11 111111n个1 1之和.错位相减法3.求和:S n 1 3x 5x2 7x3(2n 1)x n 1四、倒序相加法求和练习:设f(x)= 一,求 f(- 5)+f(- 4)+ I 1 I f(6)的值。

2X42I 门1 1 1———练习2: 求 12 12 3练习:求数列2,昇 笋前n项的和.4.求 sin 21 sin 2 2 sin 2 3sin 288 sin 289 的值五、 裂项法求和 5.在数列{a n }中,a--- ,求数列{a n }的前n 项和。

数列求和方法(带例题和练习题)

数列求和方法(带例题和练习题)

数列的求和数列求和主要思路:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; 数列求和的常用方法一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 11123(1)2nn k S k n n n ===+++++=+∑… 4、2222211123(1)(21)6nn k S k n n n n ===++++=++∑5、 2333331(1)1232nn k n n S kn =+⎡⎤===++++=⎢⎥⎣⎦∑ 公式法求和注意事项(1)弄准求和项数n 的值;(2)等比数列公比q 未知时,运用前n 项和公式要分类。

例1.求和221-++++n xx x (0,2≠≥x n )二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 例2.求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S例3.求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 三、倒序相加法如果一个数列与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列前n 项和即可用倒序相加发,如等差数列的前n 项和就是此法推导的例4.求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值例4变式训练1:求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. 例4变式训练2: 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.例4变式训练3:在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.例5.已知数列{}n a 的通项公式321n n a n =+-,求数列{}n a 的前n 项和n S 。

高中数学-数列求通项公式方法汇总及经典练习(含答案)

高中数学-数列求通项公式方法汇总及经典练习(含答案)

高中数学-数列求通项公式方法汇总及经典练习(含答案)1、定义法:直接求首项和公差或公比。

2、公式法:1 (1) (2)n n nn S n a S S n -=⎧=⎨-≥⎩两种用途(列举),结果要验证能否写成统一的式子.例、数列{}n a 的各项都为正数,且满足()()2*14nna S n N +=∈,求数列的通项公式.解一:由()()2*14nna S n N +=∈得()()()221114411n n n n n aS S a a +++=-=---化简得()()1120n n n n a a a a +++--=,因为10,2n n n a a a +>∴-=,又()2111441S a a ==-得11a =,故{}n a 是以1为首项,2为公差的等差数列,所以21n a n =-.解二:由()()2*14nn a S n N +=∈,可得()11,12n n n a S S n -=-∴=--≥化简可得)211n S -=,即1=,又11S =,所以数列是首项为1,公差为1的等差数列,∴n =,从而2n S n =,所以121n n n a S S n -=-=-,又11a =也适合,故21n a n =-.练习:已知数列{a n }的前n 项和S n 满足120n n n a S S -+=(2n ≥),a 1=21,求n a . 答案:a n =⎪⎪⎩⎪⎪⎨⎧≥--=)2()1(21)1(21n n n n .扩展一:作差法例、在数列}{n a 中,11a =,212323(1)n a a a na n n ++++=-+,求n a .解:由212323(1)n a a a na n n ++++=-+,得2123123(1)(2)1n a a a n a n n -++++-=-+-,两式相减,得66n na n =-+,∴ 1 (=1)66 (2)n n a n n n⎧⎪=-⎨≥⎪⎩.练习(理):已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求n a .解:由123123(1)(2)n n a a a a n a n -=++++-≥,得1123123(1)n n n a a a a n a na +-=++++-+,两式相减,得1n n n a a na +-=,即11(2)n na n n a +=+≥,所以13222122![(1)43]2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=又由已知,得2122a a a =+,则211a a ==,代入上式,得!13452n n a n =⋅⋅⋅⋅⋅=, 所以,{}n a 的通项公式为 1 (1)! (2)2n n a n n =⎧⎪=⎨≥⎪⎩.扩展二、作商法例、在数列}{n a 中,11a =,对所有的2n ≥,都有2123n a a a a n ••••=,求n a .解:∵2123n a a a a n ••••=,∴21232(1)n a a a a n -••••=-,故当2n ≥时,两式相除,得22(1)n n a n =-, ∴221 (=1) (2)(1)n n a n n n ⎧⎪=⎨≥⎪-⎩.3、 叠加法:对于型如)(1n f a a n n =-+类的通项公式.例、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .答案:na n 14-=. 例、已知数列{}n a 满足112231n n n n a a ++=++-(*n N ∈),352a =,求通项n a .解:由112231n nn n aa ++=++-,两边同除以12n +,得()111131112222n n n n n n n a a n ++++-=-+≥,列出相加得121212121332323212212121-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=---n a a n n n n又由已知求得16a =,∴()*231n n n n N a n ∈=•++.练习:已知数列}a {n 满足3a 132a a 1nn 1n =+⋅+=+,,求数列}a {n 的通项公式.答案:1n 32n 31332a n nn -+=++--⋅=.4、叠乘法:一般地,对于型如1+n a =f (n)·n a 的类型例(理)、已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅121[2(11)5][2(21)5][2(11)5]3n n n n --=-+-++⨯⨯(1)1(1)(2)21122[(1)32]53325!n n n n n n n n n ---+-+++-=-⋅⋅⨯⨯⨯=⨯⨯⨯,所以数列{}n a 的通项公式为(1)12325!n n n n a n --=⨯⨯⨯.练习:在数列{a n }中,112a =,11(1n n n a a a n --=⋅+≥2),求n a . 答案:)1(1+=n n a n . 5、构造法:型如a n+1=pa n +f(n) (p 为常数且p ≠0, p ≠1)的数列(1)f(n)= q (q 为常数) 一般地,递推关系式a +1=pa n +q (p 、q 为常数,且p ≠0,p ≠1)等价与)1(11pqa p p q a n n --=--+,则{p q a n --1}为等比数列,从而可求n a .例、已知数列{}n a 满足112a =,132n n a a --=(2n ≥),求通项n a . 解:由132n n a a --=,得111(1)2n n a a --=--,又11210a -=≠,所以数列{1}n a -是首项为12,公比为12-的等比数列,∴11111(1)()1()22n nn a a -=---=+-. 练习:已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a . 答案:12-=n na .(2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++nn n n qa p q a q ,令nn n a b q =,则可转化为b n+1=pb n +q 的形式求解.例、已知数列{a n }中,a 1=65,1111()32n n n a a ++=+,求通项n a . 解:由条件,得2 n+1a n+1=32(2 n a n )+1,令b n =2 n a n ,则b n+1=32b n +1,b n+1-3=32(b n -3) 易得 b n =3)32(341+--n ,即2 n a n =3)32(341+--n , ∴ a n =n n 2332+-. 练习、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求通项n a .答案:31()222nn a n =-.(3) f(n)为等差数列,如1n n a Aa Bn C +=++型递推式,可构造等比数列.(选学,注重记忆方法)例、已知数列{}n a 满足11=a ,11212n n a a n -=+-(2n ≥),求.解:令n n b a An B =++,则n n a b An B =--,∴11(1)n n a b A n B --=---,代入已知条件, 得11[(1)]212n n b An B b A n B n ---=---+-,即11111(2)(1)2222n n b b A n A B -=++++-,令202A +=,1022A B +-=,解得A=-4,B=6,所以112n n b b -=,且46n n b a n =-+, ∴{}n b 是以3为首项、以12为公比的等比数列,故132n n b -=,故13462n n a n -=+-. 点拨:通过引入一些尚待确定的系数,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解. 练习:在数列{}a n 中,132a =,1263n n a a n --=-,求通项a n . 答案:a n nn -+=69912·().解:由1263n n a a n --=-,得111(63)22n n a a n -=+-,令11[(1)]2n n a An B a A n B -++=+-+,比较系数可得:A=-6,B=9,令n n b a An B =++,则有112n n b b -=,又1192b a A B ==++,∴{}n b 是首项为92,公比为12的等比数列,所以b n n =-92121(),故a n n n-+=69912·(). (4) f(n)为非等差数列,非等比数列法一、构造等差数列法例、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式.解:由条件可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,∴数列2n n n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为0,公差为1的等差数列,故21nnn a n λλ⎛⎫-=- ⎪⎝⎭,∴(1)2n n n a n λ=-+. 练习:在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n 。

数列前n项和的求法总结

数列前n项和的求法总结

数列前n 项和的求法总结核心提示:求数列的前n 项和要借助于通项公式,即先有通项公式,再在分析数列通项公式 的基础上,或分解为基本数列求和,或转化为基本数列求和。

当遇到具体问题时,要注意观 察数列的特点和规律,找到适合的方法解题。

-.公式法+ fi ff )n(n + L)(1) 等差数列前n 项和:S f'(2)等比数列前n 项和:H , 几 门"1 ;如〔1-旷〉耳工1时,$n = —丄 —1 ” .(3)其他公式:S'S n = I 2 + 22+ 32+ ...十 n 2= 十 l)(2n 十 1)61 2S n = I 3 + 23 + 33 + …+ n 3= |-n(n + 1)]例题1:求数列=1 — + 2 — + 3^ + *«»+ (n + —)2 4 8 ■- =+ 2+ 3 4-…,4nJ ^( — + 丄 + 】+ —) 2 4 8 Z+ 1)丄 2 2"— ------------- 十 -------------------2 1-12 □5 + 1)■ 14 ------- - —2点拨:这道题只要经过简单整理,就可以很明显的看出:这个数列可以分解成两个数列, 一个等差数列,一个等比数列,再分别运用公式求和,最后把两个数列的和再求和。

练习:K 在等差数列{%}中,已知厲公差为2,求数列{片}前11项利。

2“在数列{口」屮,已知—孑,餌—求数列化}前口项和°的前n 项和S2fl二.倒序相加法如果一个数列{a n},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。

我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。

例题1:设等差数列{a n},公差为d,求证:{a n}的前n项和S=n(a i+a n)/2解:S n=a i+a2+a3+...+a n ①倒序得: S = 3n+a n-l+a n-2 ------- &1 ②① + ②得:2S=(a i+a n)+(a 2+a n-i )+(a 3+a n-2)+ …+(a n+a i)^又-a i+a n=a2+a n-i =a3+a n-2=^ —=a n+a i2S=n(a2+a) S n=n(a i+a)/2点拨:由推导过程可看出,倒序相加法得以应用的原因是借助a计a n=a2+a n-i=a3+a n-2=—=a n+a i即与首末项等距的两项之和等于首末两项之和的这一等差数列的重要性质来实现的。

等比数列前n项和经典例题

等比数列前n项和经典例题

例 1:已知在等比数列{a n }中,公比 q <1.(1)若a 1+a 3=10,a 4+a 6=54,求S 5;(2)若 a 3=2,S 4=5S 2,求{a n }的通项公式. 解(1)⎩⎪⎨⎪⎧a 1+a 1q 2=10a 1q 3+a 1q 5=54,即⎩⎪⎨⎪⎧a 1(1+q 2)=10a 1q 3(1+q 2)=54.∵a 1≠0,1+q 2≠0, ∴两式相除得q 3=18. ∴q =12,a 1=8,∴S 5=8⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1251-12=312.(2)由已知得⎩⎪⎨⎪⎧a 1q 2=2 ①a 1(1-q 4)1-q=5×a 1(1-q 2)1-q ②,由②得1-q 4=5(1-q 2),(q 2-4)(q 2-1)=0,∵q <1,∴q =-1或q =-2.当q =-1时,代入①得a 1=2,通项公式为a n =2×(-1)n -1;当q =-2时,代入①得a 1=12,通项公式为a n =12×(-2)n -1.1-1.在等比数列{a n }中,S 3=72,S 6=632,求a n .解:若q =1,则S 6=2S 3,这与已知S 3=72,S 6=632是矛盾的,所以q ≠1.从而S 3=a 1(1-q 3)1-q=72,S 6=a 1(1-q 6)1-q=632.将上面两个等式的两边分别相除,得1+q 3=9, 所以q =2,由此可得a 1=12, 因此a n =12×2n -1=2n -2.例 2:在等比数列{a n }中,a 1a 3=36,a 2+a 4=60,S n >400,求 n 的范围.∵n ∈N *且必须为偶数,∴n ≥8.2-1.设等比数列{a n }的前 n 项和为 S n ,若 S 3+S 6=2S 9,求数列的公比 q.例3:求数列1,1+2,1+2+22,1+2+22+23,…,1+2+22+…+2n -1的前n 项和.思维突破:观察数列,发现每一项是一个等比数列的和, 为此先求出数列的通项,再将每一项拆成两部分分别求和.解:设数列为{a n },则 a n =1+2+22+…+2n -1=1-2n 1-2=2n -1, ∴S n =a 1+a 2+…+a n=(2-1)+(22-1)+…+(2n -1) =(2+22+…+2n )-n =2n +1-n -2.S n =a 1(1-q n )1-q =2(3n -1)2>400⇒3n>401,∴n ≥6, 当a 1=-2,q =-3时,S n =(-2)[(-3)n -1]-4>400⇒(-3)n >801,解:∵a 1a 3=a 21q 2=36,∴a 1q =±6 又∵a 2+a 4=a 1q (1+q 2)=60,且1+q 2>0, ∴a 1q >0,得a 1q =6,1+q 2=10.解得⎩⎪⎨⎪⎧a 1=2q =3或⎩⎪⎨⎪⎧a 1=-2q =-3.当a 1=2,q =3时,例 4:已知等比数列{a n }中,a 1=2,S 3=6,求 a 3 和 q.1.等比数列{a n }的各项都是正数,若 a 1=81,a 5=16,则它的前 5 项和是( 211 )2.等比数列{a n }中,a 3=7,前 3 项之和 S 3=21, 则公比 q 的值为(1 或-1/2 )3.在公比为整数的等比数列{a n }中,已知 a 1+a 4=18,a 2+a 3=12,那么 a 5+a 6+a 7+a 8 等于(480)5.在等比数列{a n }中,a 1+a 2=20,a 3+a 4=40,则 S 6=140例 1:已知等比数列前 n 项和为 48,前 2n 项和为 60.求前3n 项的和. 解法一:设数列为{a n }依题意可得 S n =48,S 2n =60.又∵在等比数列{a n }中, S n ,S 2n -S n ,S 3n -S 2n 成等比数列∴(S 2n -S n )2=S n ·(S 3n -S 2n ), (60-48)2=48·(S 3n -60),即S 3n =63. 解法二:∵S 2n ≠2S n ,∴q ≠1,由已知得⎩⎪⎨⎪⎧a 1(1-q n)1-q =48 ①a 1(1-q 2n )1-q=60 ②②①得,1+q n =54, 即q n =14 ③. 将③代入①得a 11-q=64, ∴S 3n =a 1(1-q 3n )1-q=64×⎝ ⎛⎭⎪⎫1-143=63.解:112+214+318+…+n 12n=(1+2+3+…+n )+⎝⎛⎭⎪⎫12+14+18+ (12)=n (n +1)2+1-⎝ ⎛⎭⎪⎫12n . 3-1.求数列112,214,318,4116,…,n 12n 的前n 项和.1-1.在等比数列{a n }中,a 1=-1,前 n 项和为 S n ,若例 2:在等比数列{a n }中,a 1+a n =66,a 2·a n -1=128,且前 n 项和 S n =126,求 n 及公比 q . 解:∵a 1a n =a 2a n -1=128, 又 a 1+a n =66,∴a 1、a n 是方程 x 2-66x +128=0 的两根, 解方程得 x 1=2,x 2=64,∴a 1=2,a n =64 或 a 1=64,a n =2,显然 q ≠1.若a 1=2,a n =64,由得2-64q =126-126q ,∴q =2,由a n =a 1q n -1得2n -1=32,∴n =6.若a 1=64,a n =2,同理可求得q =12,n =6. 综上所述,n 的值为6,公比q =2或12.例3..(2010 年广东)已知数列{a n }为等比数列,S n 是它的前 n31解析:设{a n }的公比为q ,则由等比数列的性质知,a 2·a 3=a 1·a 4=2a 1,即a 4=2.由a 4与2a 7的等差中项为54知,a 4+2a 7=2×54,∴a 7=14,∴q 3=a 7a 4=18,即a 1=16,q =12,∴S 5=31. 项和,若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )解:∵S 10S 5=3132,∴设S 10=31x ,S 5=32x ,且x ≠0.则S 10-S 5=31x -32x =-x . 又(S 10-S 5)2=S 5(S 15-S 10),∴S 15=(S 10-S 5)2S 5+S 10=(-x )232x +31x =99332x . ∴S 15S 10=99332x31x =993992.3132,求S 15S 10的值.S 10S 5=例 4:已知数列{a n }是等比数列,试判断该数列从第一项起依次 k 项的和组成的数列{b n }是否仍为等比数列.正解:设b n =a (n -1)k +1+a (n -1)k +2+…+a nk ,…,且数列{a n } 的公比为q . 则当q =1 时,b 1=b 2=…=b n =ka , ∴{b n }是公比为1 的等比数列.∴{b n }是公比为q k 的等比数列.当 q =-1 时,若k 为偶数,则b n =0,此时{b n }不能为等比 数列;若k 为奇数,则{b n }是公比为-1 的等比数列.例5. (2010 年辽宁)设{a n }是有正数组成的等比数列,S n 为其前 n 项和.已知 a 2a 4=1,S 3=7,则 S 5=( )解析:由a 2a 4=1可得a 21q 4=1,因此a 1=1q 2,又因为S 3=a 1(1+q +q 2)=7,联立两式有⎝ ⎛⎭⎪⎫1q +3⎝ ⎛⎭⎪⎫1q -2=0,所以q =12,所以S 5=4×⎝ ⎛⎭⎪⎫1-1251-12=314.当q ≠±1时,b n =a (n -1)k +1(1-q k )1-q ,b n +1b n=q k ,。

通项及前N项和的求法的方法总结(全)

通项及前N项和的求法的方法总结(全)

常见数列通项公式的求法1、 定义法若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或11-=n n q a a 中即可. 2、 累加法形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法.例1、数列{}n a 中已知111,23n n a a a n +=-=-, 求{}n a 的通项公式.练习1:已知数列{}n a 满足11322,.n n n a a n a a +=++=且求练习2:已知数列{}n a 中,111,32n n n a a a n +=-=-, 求{}n a 的通项公式.练习3:已知数列{}n a 满足11211,,2n n a a a n n +==++求求{}n a 的通项公式.3、 累乘法形如()1n n a f n a +=()1a 已知型的的递推公式均可用累乘法求通项公式.例2、已知数列{}n a 满足11,2,31n n n n a a a a n +==+求.练习1:数列{}n a 中已知1121,n n a n a a n++==, 求{}n a 的通项公式.练习2:设{}n a 是首项为1的正项数列,且2211(1)0n n n n n a na a a +++-+=,求{}n a 的通项公式.3、待定系数法(构造法)例3、已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .练习:已数列{}n a 中,11a =且111,____.2n n n a a a +=+=则 例4、已知数列{}n a 中,1113,33n n n a a a ++==+, 求{}n a 的通项公式.练习1:已知数列{}n a 中,113,22n n n a a a -=-=+,则=n a ________.练习2:已知数列{}n a 中,112,3433n n n a a a +==+⋅, 求{}n a 的通项公式.例5、已知数列{}n a 满足11162,1,n n n a a a ++=+=求.n a练习1:设数列{n a }满足n n n a a a 23,111+==+,则=n a ________.练习2:已知数列{}n a 中,111511,632n n n a a a ++⎛⎫==+ ⎪⎝⎭,求n a .4、利用n a 与n S 的关系如果给出条件是n a 与n S 的关系式,可利用111,2n n n an a S S n -=⎧=⎨-≥⎩求解.例6、已知数列{}n a 的前n 项和为322+-=n n S n ,求{}n a 的通项公式.练习1:已知数列{}n a 的前n 项和为2134n S n n =-+,求{}n a 的通项公式.练习2:若数列{}n a 的前n 项和为33,2n n S a =-求{}n a 的通项公式.5、倒数法例7、已知数列{}n a 满足1=1a ,1232nn n a a a +=+,求{}n a 的通项公式.练习:已知数列{}n a 中,113,,12nn na a a a +==+则n a ________.=例8、已知数列{}n a 满足1=1a ,11234n n n a a a --=+,求{}n a 的通项公式.练习:已知数列{}n a 中,1122,,31n n na a a a +==+则n a ________.=数列前n项和的求法总结一、公式法(1)等差数列前n项和: S n=n(a1+a n)2=na1+n(n+1)2d(2)等比数列前n项和: q=1时, S n=na1;q≠1时, S n=a1(1−q n)1−q(3)其他公式: S n=1+2+3+⋯+n=12n(n+1)S n=12+22+32+⋯+n2=16n(n+1)(2n+1)S n=13+23+33+⋯+n3=[12n(n+1)]2二、倒序相加法3、设等差数列{an },公差为d,求证:{an}的前n项和Sn=n(a1+an)/2三、裂项相消法4、求数列(n∈N*)的和四、错位相减法错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。

数列通项公式方法求前n项和例题讲解和方法总结

数列通项公式方法求前n项和例题讲解和方法总结

数列通项公式方法求前n项和例题讲解和方法总结数列的通项公式1.通项公式如果数列的第n项与项数n之间的函数关系可以用一个公式来表达,叫做数列的通项公式。

2.数列的递推公式(1)如果已知数列的第一项,且任一项与它的前一项之间的关系可以用一个公式来表示。

(2)递推公式是数列所特有的表示方法,它包含两部分,一是递推关系,二是初始条,二者缺一不可3.数列的前n项和与数列通项公式的关系数列的前n项之和,叫做数列的前n项和,用表示,即与通项的关系是4.求数列通项公式的常用方法有:(前6种常用,特别是2,5,6)1)、公式法,用等差数列或等比数列的定义求通项2)前n项和与的关系法,求解.(注意:求完后一定要考虑合并通项)3)、累(叠)加法:形如∴4).累(叠)乘法:形如∴5).待定系数法:形如a=pa+q(p≠1,pq≠0),(设a+k=p(a+k)构造新的等比数列)6)倒数法:形如(两边取倒,构造新数列,然后用待定系数法或是等差数列)7).对数变换法:形如,(然后用待定系数法或是等差数列)8).除幂构造法:形如(然后用待定系数法或是等差数列)9).归纳—猜想—证明”法直接求解或变形都比较困难时,先求出数列的前面几项,猜测出通项,然后用数学归纳法证明的方法就是“归纳—猜想—证明”法.递推数列问题成为高考命题的热点题型,对于由递推式所确定的数列通项公式问题,通常可对递推式的变形转化为等差数列或等比数列.下面将以常见的几种递推数列入手,谈谈此类数列的通项公式的求法.通项公式方法及典型例题1.前n项和与的关系法例1、已知下列两数列的前n项和sn的公式,求的通项公式。

(1)(1)Sn=2n2-3n;(2)解:(1)a1=S1=2-3=-1,当n≥2时,an=Sn-Sn-1=(2n2-3n)-[2(n-1)2-3(n-1)]=4n-5,由于a1也适合此等式,∴an=4n-5.(1),当时===3经验证也满足上式∴=3(2),当时,由于不适合于此等式。

复习小结:数列求和

复习小结:数列求和
小结:第(3)题用到数列求和的常见方法是:
1
2
3
n 1
(4)倒序求和法:通项公式的结构为“首尾相加相等”。
练习:
1:已知数列 a n 的通项为a n 求 a2
3 n 4,
a 5 a8 a 3 n 2 .
2:求 S 2 2 4 2 7 2 3 n 10.
小结: 1:数列求和的解题思路:
根据数列的通项公式的结构选择数列求和的方法。
2:数列求和的常见方法有: (1)公式法:适合于等差、等比数列或可转化为 这两种特殊数列的数列求和;
例题4:已知数列 a n 的通项公式为:
an
3 4n 1
2
.
求数列 a n 的前n 项和 S n . 小结:本题用到数列求和的常见方法是: (2)裂项法:
练习3:已知数列 a n 的通项为:
an
又bn
1 n 1

2 n 1

3 n 1

n n 1

2 a n a n 1
, 求数列 bn 的前n 项和 S n .
练习4:已知数列 a n 满足:
a1
1 2
a2
1 3
a3
1 n
an 2
n
求数列 a n 的前n 项和
Sn.
练 a 6 a 4 a 7 18
求 log 3 a1 log 3 a 2 log 3 a10 .
(2)在各项均为正数的等比数列 a n 中,若
a 2 a 2 n 9,
a 5 a 2 n 5 2 ( n 3),
2n
求 log 2 a1 log 2 a 3 log 2 a 2 n 1 .

求数列通项公式及前n项和常见方法

求数列通项公式及前n项和常见方法

数列求通项及前n 项和常见方法求n a一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列}a {n 是递增数列,前n 项和为n S ,且931a ,a ,a 成等比数列,255a S =.求数列}a {n 的通项公式注意:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。

二、累加法求形如a n -a n-1=f(n)(f(n)为等差或等比数列或其它可求和的数列)的数列通项,可用累加法,即令n=2,3,…n —1得到n —1个式子累加求得通项。

例2.已知数列{a n }中,a 1=1,对任意自然数n 都有11(1)n n a a n n -=++,求n a . 注意:累加法是反复利用递推关系得到n —1个式子累加求出通项,这种方法最终转化为求{f(n)}的前n —1项的和,要注意求和的技巧三、迭代法求形如1n n a qa d +=+(其中,q d 为常数)的数列通项,可反复利用递推关系迭代求出。

例3.已知数列{a n }满足a 1=1,且a n+1=3n a +1,求n a注意:因为运用迭代法解题时,一般数据繁多,迭代时要小心计算,应避免计算错误,导致走进死胡同四、公式法若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥-==-211n S S n S a n n n n ΛΛΛΛΛ求解。

例4.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式;注意:利用公式⎩⎨⎧≥-==-211n S S n S a n n n n ΛΛΛΛΛ求解时,要注意对n 分类讨论,但若能合写时一定要合并.五、累乘法 对形如1()n n a f n a +=的数列的通项,可用累乘法,即令n=2,3,…n —1得到n —1个式子累乘求得通项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通项公式和前n 项和一、新课讲授: 求数列前N 项和的方法 1. 公式法(1)等差数列前n 项和:11()(1)22n n n a a n n S na d ++==+ 特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+g,即前n 项和为中间项乘以项数。

这个公式在很多时候可以简化运算。

(2)等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要注意对公比的讨论。

(3)其他公式较常见公式:1、)1(211+==∑=n n k S nk n 2、)12)(1(6112++==∑=n n n k S nk n3、213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 练习:求:S n =1+5x+9x 2+······+(4n-3)x n-1答案:当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n当x ≠1时,S n = 1 1-x [ 4x(1-x n )1-x +1-(4n-3)x n ]3. 倒序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值4. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…练习:求数列•••+•••),21(,,813,412,211n n 的前n 项和。

5. 裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 [例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.[例11] 求证:οοοοοοοο1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设οοοοοο89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴οοοοοο89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1οοοοοοοοο-+-+-+- =)0tan 89(tan 1sin 1οοο-=οο1cot 1sin 1⋅=οο1sin 1cos 2 ∴ 原等式成立练习:求63135115131+++之和。

6. 合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.7.利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.[例15]求32111111111111个n ⋅⋅⋅+⋅⋅⋅+++之和.练习:求5,55,555,…,的前n项和。

以上一个7种方法虽然各有其特点,但总的原则是要善于改变原数列的形式结构,使其能进行消项处理或能使用等差数列或等比数列的求和公式以及其它已知的基本求和公式来解决,只要很好地把握这一规律,就能使数列求和化难为易,迎刃而解。

求数列通项公式的八种方法一、公式法(定义法)根据等差数列、等比数列的定义求通项 二、累加、累乘法1、累加法 适用于:1()n n a a f n +=+若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=L L两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L所以数列{}n a 的通项公式为2n a n =。

例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解法一:由1231n n n a a +=+⨯+得1231nn n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-L L L所以3 1.nn a n =+-解法二:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++L L L因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯- 2、累乘法 适用于: 1()n n a f n a +=若1()n n a f n a +=,则31212(1)(2)()n na a af f f n a a a +===L L ,,, 两边分别相乘得,1111()nn k a a f k a +==⋅∏例3 已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式。

解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯L L L L 所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯三、待定系数法 适用于1()n n a qa f n +=+分析:通过凑配可转化为1121()[()]n n a f n a f n λλλ++=+; 解题基本步骤: 1、确定()f n2、设等比数列{}1()n a f n λ+,公比为2λ3、列出关系式1121()[()]n n a f n a f n λλλ++=+4、比较系数求1λ,2λ5、解得数列{}1()n a f n λ+的通项公式6、解得数列{}n a 的通项公式例4 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。

解法一:121(2),n n a a n -=+≥Q 112(1)n n a a -∴+=+又{}112,1n a a +=∴+Q 是首项为2,公比为2的等比数列12n n a ∴+=,即21nn a =-解法二:121(2),n n a a n -=+≥Q 121n n a a +∴=+两式相减得112()(2)n n n n a a a a n +--=-≥,故数列{}1n n a a +-是首项为2,公比为2的等比数列,再用累加法的……例5 已知数列{}n a 满足1112431n n n a a a -+=+⋅=,,求数列{}n a 的通项公式。

相关文档
最新文档