空气动力学课件
合集下载
空气动力学基础ppt课件
30
2.1.7 连续性定理和伯努利定
理的应用
① 用文邱利管测流量
1 A1, v1 ,P1
2 A2, v2 ,P2
v1
v2
A2 A1
文邱利管测流量
v2 2 P1 P2 / 1 A22 / A12
1 2
v12
P1
1 2
v22
P2
31
无粘流动 沿物面法线方向速度一致
“附面层”
粘性流动 沿物面法线方向速度不一致
55
②附面层的特点
I. 附面层内沿物面法向方向压强不变且等于法线主 流压强。
P1
P2
只要测出附面层边界主流的静压,便可得到物面各点的静 压,它使理想流体的结论有了现实意义。
56
II. 附面层厚度随气流流经物面的距离增长而增厚。
B C’ C
A
75
●影响压差阻力的因素
总的来说,飞机压差阻力与迎风面积、形状和迎角有关。迎风面 积大,压差阻力大。迎角越大,压差阻力也越大。
压差阻力在飞机总阻力构成中所占比例较小。
76
③干扰阻力
飞机的各个部件,如机翼、机身、尾翼的单独阻力之和小于把 它们组合成一个整体所产生的阻力,这种由于各部件气流之间的 相互干扰而产生的额外阻力,称为干扰阻力。
质量守恒定律是连续性定理的基础。
22
●连续性定
理
1
A1,v1
2 A2,v2
单位时间内流过截面1的流体体积为 v1 A1
单位时间内流过截面1的流体质量为1 v1 A1
同理, 2v2A2
则根据质量守恒定律可得:
单位时 间内流
1 v1 A1 2 v2 A2 即 v1 A1 v2 过A截2 面C常数
2.1.7 连续性定理和伯努利定
理的应用
① 用文邱利管测流量
1 A1, v1 ,P1
2 A2, v2 ,P2
v1
v2
A2 A1
文邱利管测流量
v2 2 P1 P2 / 1 A22 / A12
1 2
v12
P1
1 2
v22
P2
31
无粘流动 沿物面法线方向速度一致
“附面层”
粘性流动 沿物面法线方向速度不一致
55
②附面层的特点
I. 附面层内沿物面法向方向压强不变且等于法线主 流压强。
P1
P2
只要测出附面层边界主流的静压,便可得到物面各点的静 压,它使理想流体的结论有了现实意义。
56
II. 附面层厚度随气流流经物面的距离增长而增厚。
B C’ C
A
75
●影响压差阻力的因素
总的来说,飞机压差阻力与迎风面积、形状和迎角有关。迎风面 积大,压差阻力大。迎角越大,压差阻力也越大。
压差阻力在飞机总阻力构成中所占比例较小。
76
③干扰阻力
飞机的各个部件,如机翼、机身、尾翼的单独阻力之和小于把 它们组合成一个整体所产生的阻力,这种由于各部件气流之间的 相互干扰而产生的额外阻力,称为干扰阻力。
质量守恒定律是连续性定理的基础。
22
●连续性定
理
1
A1,v1
2 A2,v2
单位时间内流过截面1的流体体积为 v1 A1
单位时间内流过截面1的流体质量为1 v1 A1
同理, 2v2A2
则根据质量守恒定律可得:
单位时 间内流
1 v1 A1 2 v2 A2 即 v1 A1 v2 过A截2 面C常数
空气动力学绪论PPT课件
27
0.3 空气动力学的发展进程
现代航空和喷气技术的迅速发展使飞行速度迅猛提高在 高速运动的情况下,必须把流体力学和热力学这两门学科 结合起来,才能正确认识和解决高速空气动力学中的问题。 1887-1896年间,奥地利科学家马赫在研究弹丸运动扰动 的传播时指出:在小于或大于声速的不同流动中,弹丸引 起的扰动传播特征是根本不同的。
高等数学计算方法大学物理理论力学绪论2学时第一章流体的基本属性和流体静力学6学时第二章流体运动学和动力学基础12学时第三章不可压缩无粘流体平面位流6学时第四章粘性流体动力学基础6学时第五章边界层理论及其近似6学时第六章可压缩高速流动基础14学时第七章高超音速流动基础4学时6学时总复习2学时陈再新刘福长鲍国华空气动力学航空工业出版社1993杨岞生俞守勤飞行器部件空气动力学航空工业出版社1987andersonjr
按速度范围分类:
低速空气动力学 (Low Aerodynamics) 亚音速空气动力学 (Subsonic Aerodynamics) 超音速空气动力学 (supersonic Aerodynamics) 高超音速空气动力学 (hypersonic Aerodynamics)
其它
36
37
38
39
21
0.3 空气动力学的发展进程
18世纪是流体力学的创建阶段。伯努利(Bernoulli) 在1738年发表“流体动力学”一书中,建立了不可压流体 的压强、高度和速度之间的关系,即伯努利公式;欧拉 (Euler)在1755年建立了理想不可压流体运动的基本方程 组,奠定了连续介质力学的基础。达朗贝尔 D'Alembert 提出著名的达朗贝尔原理:“达朗贝尔疑题”就是他在 1744年提出的。拉格朗日(Lagrange)改善了欧拉、达朗 贝尔方法,并发展了流体动力学的解析方法。关于研究气 流对物体的作用力,最早是牛顿(Newton)于1726年提出 关于流体对斜板的作用力公式,他实际上是在撞击理论的 基础上提出来的,没有考虑到流体的流动性.
0.3 空气动力学的发展进程
现代航空和喷气技术的迅速发展使飞行速度迅猛提高在 高速运动的情况下,必须把流体力学和热力学这两门学科 结合起来,才能正确认识和解决高速空气动力学中的问题。 1887-1896年间,奥地利科学家马赫在研究弹丸运动扰动 的传播时指出:在小于或大于声速的不同流动中,弹丸引 起的扰动传播特征是根本不同的。
高等数学计算方法大学物理理论力学绪论2学时第一章流体的基本属性和流体静力学6学时第二章流体运动学和动力学基础12学时第三章不可压缩无粘流体平面位流6学时第四章粘性流体动力学基础6学时第五章边界层理论及其近似6学时第六章可压缩高速流动基础14学时第七章高超音速流动基础4学时6学时总复习2学时陈再新刘福长鲍国华空气动力学航空工业出版社1993杨岞生俞守勤飞行器部件空气动力学航空工业出版社1987andersonjr
按速度范围分类:
低速空气动力学 (Low Aerodynamics) 亚音速空气动力学 (Subsonic Aerodynamics) 超音速空气动力学 (supersonic Aerodynamics) 高超音速空气动力学 (hypersonic Aerodynamics)
其它
36
37
38
39
21
0.3 空气动力学的发展进程
18世纪是流体力学的创建阶段。伯努利(Bernoulli) 在1738年发表“流体动力学”一书中,建立了不可压流体 的压强、高度和速度之间的关系,即伯努利公式;欧拉 (Euler)在1755年建立了理想不可压流体运动的基本方程 组,奠定了连续介质力学的基础。达朗贝尔 D'Alembert 提出著名的达朗贝尔原理:“达朗贝尔疑题”就是他在 1744年提出的。拉格朗日(Lagrange)改善了欧拉、达朗 贝尔方法,并发展了流体动力学的解析方法。关于研究气 流对物体的作用力,最早是牛顿(Newton)于1726年提出 关于流体对斜板的作用力公式,他实际上是在撞击理论的 基础上提出来的,没有考虑到流体的流动性.
《空气动力学》课件
未来挑战与机遇
环境保护需求
新能源利用
随着环境保护意识的提高,对空气污 染和气候变化的研究需求增加,这为 空气动力学带来了新的挑战和机遇。
新能源的利用涉及到流动、传热和燃 烧等多个方面,需要空气动力学与其 他学科合作,共同解决相关问题。
航空航天发展
航空航天领域的发展对空气动力学提 出了更高的要求,需要不断改进和完 善现有技术,以满足更高性能和安全 性的需求。
04
翼型与机翼空气动力学
翼型空气动力学
翼型概述
翼型分类
翼型是机翼的基本截面形状,具有特定的 弯度和厚度。
根据弯度和厚度的不同,翼型可分为超临 界、亚音速和超音速翼型等。
翼型设计
翼型与升力
翼型设计需考虑气动性能、结构强度和稳 定性等多个因素。
翼型通过产生升力使飞机得以升空。
机翼空气动力学
01
机翼结构
课程目标
掌握空气动力学的基本概 念和原理。
提高分析和解决实际问题 的能力。
了解空气动力学在各领域 的应用和发展趋势。
培养学生对空气动力学的 兴趣和热爱。
02
空气动力学基础
流体特性
01
02
03
04
连续性
流体被视为连续介质,由无数 微小粒子组成,彼此之间存在
相对运动。
可压缩性
流体的密度会随着压力和温度 的变化而变化。
《空气动力学》PPT课件
目 录
• 引言 • 空气动力学基础 • 流体动力学 • 翼型与机翼空气动力学 • 空气动力学应用 • 未来发展与挑战
01
引言
主题介绍
空气动力学:一门研 究空气运动规律和空 气与物体相互作用的 科学。
课件内容涵盖了基础 理论、应用实例和实 验演示等方面。
(精品)空气动力学(全套1082页PPT课件)
雷诺(OsborneReynolds, 1842~1921),英国工程师兼物理学家, 维多利亚大学(在曼彻斯特市)教授。
录像\第0章\turbulent_laminarcombo.avi
0.3 空气动力学的发展进程简介
1904年普朗特提出了边界层理论,是 现代流体力学的里程碑论文。
在1910年-1920年期间,其主要精力 转到低速翼型和机翼绕流问题,提出著 名的有限展长机翼的升力线理论和升力 面理论。
陆士嘉长期从事空气动力学和航空工程的 研究和教学工作,倡导漩涡、分离流和湍流 结构的研究。
0.3 空气动力学的发展进程简介
儒可夫斯基简介 儒可夫斯基(Joukowski,
1847~1921),俄国数学家和空气 动力学家,科学院院士。1868年毕 业于莫斯科大学物理系,1886年起 历任莫斯科大学和莫斯科高等技术 学校教授,直至1921去世,一直在 这两所学校工作。
0.3 空气动力学的发展进程简介
• 钱学森(1911-2009) 1938年,他在导师冯卡门指导下,获
得博士学位,1947年任麻省理工学院终 身教授,1955年回国。
钱学森的主要贡献集中在跨、超声速 空气动力学方面。1946年他在一篇重要 的学术论文中首创了Hypersonic(高超 声速)一词,并提出了高超声速相似律。
的建立,流体力学和空气动力学才逐步迈 入理性研究和持续发展的阶段。
0.3 空气动力学的发展进程简介
微积分问世后,流体成为数学家们应用微 积分的最佳领域。
1738年伯努利出版了“流体力学”一书, 将微积分方法引进流体力学中,建立了分 析流体力学的理论体系,提出无粘流动流 速和压强的关系式,即Bernoulli能量方程。
0.2 空气动力学的研究对象
录像\第0章\turbulent_laminarcombo.avi
0.3 空气动力学的发展进程简介
1904年普朗特提出了边界层理论,是 现代流体力学的里程碑论文。
在1910年-1920年期间,其主要精力 转到低速翼型和机翼绕流问题,提出著 名的有限展长机翼的升力线理论和升力 面理论。
陆士嘉长期从事空气动力学和航空工程的 研究和教学工作,倡导漩涡、分离流和湍流 结构的研究。
0.3 空气动力学的发展进程简介
儒可夫斯基简介 儒可夫斯基(Joukowski,
1847~1921),俄国数学家和空气 动力学家,科学院院士。1868年毕 业于莫斯科大学物理系,1886年起 历任莫斯科大学和莫斯科高等技术 学校教授,直至1921去世,一直在 这两所学校工作。
0.3 空气动力学的发展进程简介
• 钱学森(1911-2009) 1938年,他在导师冯卡门指导下,获
得博士学位,1947年任麻省理工学院终 身教授,1955年回国。
钱学森的主要贡献集中在跨、超声速 空气动力学方面。1946年他在一篇重要 的学术论文中首创了Hypersonic(高超 声速)一词,并提出了高超声速相似律。
的建立,流体力学和空气动力学才逐步迈 入理性研究和持续发展的阶段。
0.3 空气动力学的发展进程简介
微积分问世后,流体成为数学家们应用微 积分的最佳领域。
1738年伯努利出版了“流体力学”一书, 将微积分方法引进流体力学中,建立了分 析流体力学的理论体系,提出无粘流动流 速和压强的关系式,即Bernoulli能量方程。
0.2 空气动力学的研究对象
空气动力学基础 ppt课件
① 理想流体,不考虑流体粘性的影响。 ② 不可压流体,不考虑流体密度的变化,Ma<0.4。 ③ 绝热流体,不考虑流体温度的变化,Ma<0.4。
第二章 第 5 页
空气动力学基础
相对气流方向
自然风方向
运动方向
第二章 第 6 页
●空气动力学基础
只要相对气流速度相同,飞机产生的空气动力就相同。
第二章 第 7 页
●空气动力学基础
直流式风洞
第二章 第 8 页
回流式风洞
●空气动力学基础
第二章 第 9 页
●空气动力学基础
第二章 第 10 页
空气动力学基础
迎角就是相对气流方向与翼弦之间的夹角。
第二章 第 11 页
●空气动力学基础
第二章 第 12 页
●空气动力学基础
平飞中,可以通过机头高低判断迎角大小。而其他飞 行状态中,则不可以采用这种判断方式。
第二章 第 21 页
空气动力学基础
流体流过流管时,在同一时间流过流管任意截面的 流体质量相等。
质量守恒定律是连续性定理的基础。
第二章 第 22 页
●空气动力学基 础
1
A1,v1
2 A2,v2
单位时间内流过截面1的流体体积为 v 1 A 1
单位时间内流过截面1的流体质量为1 v1 A1
同理,单位时间内流过截面2的流体质量为 2 v2 A2
P0
—总压(全压),它是动压和静压之和。总压可以理解为, 气流速度减小到零之点的静压。
第二章 第 27 页
●空气动力学基础 同一流线: 总压保持不变。 动压越大,静压越小。 流速为零的静压即为总压。
第二章 第 28 页
●空气动力学基础 同一流管: 截面积大,流速小,压力大。 截面积小,流速大,压力小。
第二章 第 5 页
空气动力学基础
相对气流方向
自然风方向
运动方向
第二章 第 6 页
●空气动力学基础
只要相对气流速度相同,飞机产生的空气动力就相同。
第二章 第 7 页
●空气动力学基础
直流式风洞
第二章 第 8 页
回流式风洞
●空气动力学基础
第二章 第 9 页
●空气动力学基础
第二章 第 10 页
空气动力学基础
迎角就是相对气流方向与翼弦之间的夹角。
第二章 第 11 页
●空气动力学基础
第二章 第 12 页
●空气动力学基础
平飞中,可以通过机头高低判断迎角大小。而其他飞 行状态中,则不可以采用这种判断方式。
第二章 第 21 页
空气动力学基础
流体流过流管时,在同一时间流过流管任意截面的 流体质量相等。
质量守恒定律是连续性定理的基础。
第二章 第 22 页
●空气动力学基 础
1
A1,v1
2 A2,v2
单位时间内流过截面1的流体体积为 v 1 A 1
单位时间内流过截面1的流体质量为1 v1 A1
同理,单位时间内流过截面2的流体质量为 2 v2 A2
P0
—总压(全压),它是动压和静压之和。总压可以理解为, 气流速度减小到零之点的静压。
第二章 第 27 页
●空气动力学基础 同一流线: 总压保持不变。 动压越大,静压越小。 流速为零的静压即为总压。
第二章 第 28 页
●空气动力学基础 同一流管: 截面积大,流速小,压力大。 截面积小,流速大,压力小。
空气动力学课件
意义:在静止流体内的任一点上,作用在单位质量流体 上的质量力与静压强的合力相平衡
适用范围:可压缩、不可压缩流体
静止、相对静止状态流体
欧拉平衡微分方程 等压面 力函数
◆
压力差公式
1 p fy 0 y
1 p fx 0 x
1 p fz 0 z
上式中(1)×dx +(2)×dy +(3)×dz得
p p p dx dy dz f x dx f y dy f z dz x y z
等式左面为p=p(x,y,z)的全微分式,即dp
dp f x dx f y dy f z dz
压力差公式
表示在密度为 的流体中,空间点沿单位质量力的方向变 化分别是dx,dy,dz时,流体压强的变化为dp。
流体力学
流体静力学
流体静力学是研究流体处于平衡状态时的规律及其 在工程的应用。 平衡状态:绝对平衡 相对平衡
绝对平衡:流体相对于地球无相对运动,称为重力 场中的绝对平衡(绝对静止)。 相对平衡:流体相对于运动容器无相对运动,称为 相对平衡(相对静止)。 特点:各流体质点间不存在相对运动,流体表现不 出黏性作用。
欧拉平衡微分方程 等压面 力函数
等压面 在流体中压强相等的点组成的面
dp 0
微分形式的等压面方程
f x dx f y dy f z dz 0
性质:在静止流体中,作用于任意点的质量力垂直于 经过该点的等压面
写成矢量形式
f dl f x dx f y dy f z dz 0
例题2: 如图所示,电厂除氧器中的水温为110摄氏度,绝对压强 p0=232KPa,密度=950kg/m3.除氧气水面与给水泵入口的高 度差为20m,当地大气压为101 KPa,给水泵处于热备用状态,
空气动力学chapPPT课件
第5页/共111页
11.2 The Velocity Potential Equation(速度势方程)
STEP 1: VELOCITY POTENTIAL → CONTINUITY
V
ui
vj
i
j
x y
Flow is irrotational
u v
x
y
x-component y-component
steady irrotational
0
t
V 0 V
V
V
V
0
V u u v v 0 x x y y
Does a similar expression exist for compressible flows? Yes, but it is non-linear
infinite boundary condition:
u
x
V
v 0
y
wall boundary condition : 0
n
第9页/共111页
4) How to use?
Once φ is known, all the other value flow variables are directly
Linearized velocity potential equation
Critical Mach umber
Prandtl-Glauet Compressibilty correction
Improved compressibilty Correction
Drag-Divergence Mach number: Sound Barrier
(1
M
2
飞机的飞行原理--空气动力学基本知识 ppt课件
PPT课件 21
4、电离层(暖层、热层)
电离层位于中间层之上,顶界离地面大约 800公里。 电离层的特点: 1)空气温度随着高度的增加而急剧增加, 气温可以增加到400 ℃以上(最高可达1000 ℃ 以上)。 2)空气具有很大的导电性,空气已经被 电离,主要是带负电的电离子。 3)空气可以吸收、反射或折射无线电波。 4)空气极为稀薄,占整个大气的1/亿. 这层空气主要有人造卫星、宇宙飞船飞行。
PPT课件 16
对流层的特点: 1)气流随高度升高而降低 在对流层中.由于空气受热的直接来源不是太阳,而 是地面,太阳放射出的能量,大部分被地面吸收,空气是 被太阳晒热的地面而烤热的,所以越靠近地面,空气温度 就越高。在中纬度地区,随着高度的增加,空气温度从15 ℃降低到11公里高时的-56.5 ℃。 2)风向、风速经常变化 由于太阳对地面的照射程度不一,加之地球表面地形、 地貌的不同,地面各地区空气气温和密度不相同,气压也 不相等,即使同一地区,气温、气压也常会发生变化,使 大气产生对流现象,形成风,且风向、风速也会经常变化。 3)空气上下对流激烈 地面各处的温度不同,受热多的空气膨胀而上升,受 热少的空气冷却而下降,就形成了空气的上下对流。
PPT课件 17
4)有云、雨、雾、雪等天气现象 地球表面的海洋、江河中的水由于太阳照射而不断蒸 发,使大气中常常聚集着各种形态的水蒸气,在空中形成 了“积雨云”,随着季节的变化,就会形成云、雨、雾、 雪、雹和打雷、闪电等天气现象。 5)空气的组成成分一定 对流层中几乎包含了全部大气质量的3/4,主要是由于 地球引力作用的结果。 由于对流层具有以上特点,会给飞机的飞行带来很大 影响。在高空飞行时,气温低,容易引起飞机结冰,温度 变化还会引起飞机各金属部件收缩,改变机件间隙,甚至 影响飞机正常工作。上下对流空气会使飞机颠簸,既不便 于操纵,又使飞机受力增大。
4、电离层(暖层、热层)
电离层位于中间层之上,顶界离地面大约 800公里。 电离层的特点: 1)空气温度随着高度的增加而急剧增加, 气温可以增加到400 ℃以上(最高可达1000 ℃ 以上)。 2)空气具有很大的导电性,空气已经被 电离,主要是带负电的电离子。 3)空气可以吸收、反射或折射无线电波。 4)空气极为稀薄,占整个大气的1/亿. 这层空气主要有人造卫星、宇宙飞船飞行。
PPT课件 16
对流层的特点: 1)气流随高度升高而降低 在对流层中.由于空气受热的直接来源不是太阳,而 是地面,太阳放射出的能量,大部分被地面吸收,空气是 被太阳晒热的地面而烤热的,所以越靠近地面,空气温度 就越高。在中纬度地区,随着高度的增加,空气温度从15 ℃降低到11公里高时的-56.5 ℃。 2)风向、风速经常变化 由于太阳对地面的照射程度不一,加之地球表面地形、 地貌的不同,地面各地区空气气温和密度不相同,气压也 不相等,即使同一地区,气温、气压也常会发生变化,使 大气产生对流现象,形成风,且风向、风速也会经常变化。 3)空气上下对流激烈 地面各处的温度不同,受热多的空气膨胀而上升,受 热少的空气冷却而下降,就形成了空气的上下对流。
PPT课件 17
4)有云、雨、雾、雪等天气现象 地球表面的海洋、江河中的水由于太阳照射而不断蒸 发,使大气中常常聚集着各种形态的水蒸气,在空中形成 了“积雨云”,随着季节的变化,就会形成云、雨、雾、 雪、雹和打雷、闪电等天气现象。 5)空气的组成成分一定 对流层中几乎包含了全部大气质量的3/4,主要是由于 地球引力作用的结果。 由于对流层具有以上特点,会给飞机的飞行带来很大 影响。在高空飞行时,气温低,容易引起飞机结冰,温度 变化还会引起飞机各金属部件收缩,改变机件间隙,甚至 影响飞机正常工作。上下对流空气会使飞机颠簸,既不便 于操纵,又使飞机受力增大。
空气动力学课件.
差分网格
x
tn+1 tn tn-1 xj-1 xj
xj,tn
离散介质模型 离散自变量函数 空间区域 有限离散点集合 自变量连续变化区域 有限差分方程组 u u a 0, u x, 0 f x 一阶双曲型线性微分方程 t x n n n 1 n u u u u j j n 1 n 2 t u u t O t O t j j t t j t j
u0 j fj
0.2
空气动力学的研究对象
相对飞行原理(空气动力学实验原理)
当飞行器以某一速度在静止空气中运动时,飞行器与空气
的相对运动规律和相互作用力,与飞行器固定不动而让空 气以同样大小和相反方向的速度流过飞行器的情况是等效 的。
0.2
空气动力学的研究对象
相对飞行原理,为空气动力学的研究提供了便利。人们 在实验研究时,可以将飞行器模型固定不动,人工制造
17-20世纪理想流体力学的发展
莱布尼慈简介 莱布尼慈,德国著名的哲学家和数学家 (Leibniz,1646-1716)。1646年7月 生于莱比锡一个名门世家,其父亲是 一位哲学教授。莱布尼慈从小好学, 一生才华横溢,在许多领域做出不同 凡响的成就。在数学方面最大的成就 是发明了微积分,今天微积分中使用 的符号是莱布尼慈提出的。后来为了 与牛顿争发明权问题,他们之间进行 了一场著名的争吵。莱布尼慈自定发 明权时间1674年,牛顿1665-1666年。 这场争论使英国与欧洲大陆之间的数 学交流中断,严重影响了英国数学的 发展。
直匀气流流过模型,以便观察流动现象,测量模型受到 的空气动力,进行试验空气动力学研究。
在理论上,对飞行器空气绕流现象和受力情况进行分析
汽车空气动力学优秀课件
汽车空气动力学优秀
意大利菲亚特公司 多用风洞试验段
汽车空气动力学优秀
意大利平宁法里那 公司全尺寸风洞
汽车空气动力学优秀
汽车空气动力学优秀
汽车空气动力学优秀
汽车空气动力学优秀
(3)、回流型风洞和直流型风洞 通过试验段的气流经循环系统再返回试验段。这种 风洞因其能量可以回收,可使用较小功率的风扇。 而且可使气流的温度。湿度保持不变。但其结构较 复杂。
气流经试验段后不再回来,而是排放到外界称直流风 洞。设备简单,成本低,但需要较大的风扇,且空气 的温度和湿度受外界干扰较大,难以保证不变。有抽 风式和吸风式两种。
汽车空气动力学优秀
汽车空气动力学优秀
(4)、敞开喷口式、半敞开喷口式、封闭喷口式 试验段被围墙封闭,气流与围墙接触的风洞称为闭 式风洞。试验段局部有围墙,仍存在壁面效应的风 洞称为半敞式。试验段无墙壁风洞称开式风洞,无 壁面效应的影响。
第一章 绪论
§1节 汽车空气动力学的重要性
汽车空气动力学是研究空气流经汽车时的流动规律及 空气与汽车相互作用的一门科学。
作用在汽车上的空气力有三种:空气阻力、升力、 侧向力。作用在汽车上的力矩也有三种:纵倾力矩、 侧向力矩、横摆力矩。这些力和力矩称之为空气动 力六分力。
汽车空气动力学优秀
z y
x
汽车空气动力学优秀
作用在汽车上的所有空气力的合力集中点称为空气 动力中心,它与汽车重心并不总是重合。当二者偏 离时,便以此偏距为力臂而形成力矩。
汽车空气动力学优秀
汽车重心与气动中心
汽车空气动力学优秀
四、空气阻力与汽车基本尺寸的关系
汽车空气动力学优秀
车长与阻力的关系:车越长,阻力越小。
汽车空气动力学优秀
0空气动力学课件 共82页
基本原理
空气动力学、流体力学
无粘不可压流动
Bernoulli 方程、位流理论、基本解、K-J定理
无粘可压流动
热力学定律、等熵流动、激波理论、高速管流
第二部分课程结构(此处从略)
低速翼型理论
几何特点、K-J后缘条件、薄翼型理论
低速机翼气动特性
B-S定律、升力线(面)理论
钱学森(1911- )
流体介质的物理特性
连续介质假设 流体的密度、压强和温度 完全气体状态方程 压缩性、粘性和传热性 流体的模型化
连续介质假设
分子平均自由程 自由分子流/非连续流动 低密度流动 连续流动 continnum flow (l<<L) 连续介质假设
流体力学发展概述(1800- )
Osborne Reynolds (1842–1912)
Nikolai Y. Zhukovsky (1847 –1921) K-J theorem
流体力学发展概述(1800- )
Martin Wilhelm Kutta (1867-1944)
Ludwig Prandtl (1875 –1953)
u
n
流体的粘性
运动粘性系数 kinematic viscosity
适用于空气的萨特兰公式
0
T
1.5
28.185
28.185C TC
流体的粘性
空气粘柱实验模型 (卧式转盘)
n v
v
A
A
空气粘性实验
流体的粘性
流体的热传导特性
Fourier公式
dA 微团面积元的大小
dF dA一侧的法向力
空气动力学、流体力学
无粘不可压流动
Bernoulli 方程、位流理论、基本解、K-J定理
无粘可压流动
热力学定律、等熵流动、激波理论、高速管流
第二部分课程结构(此处从略)
低速翼型理论
几何特点、K-J后缘条件、薄翼型理论
低速机翼气动特性
B-S定律、升力线(面)理论
钱学森(1911- )
流体介质的物理特性
连续介质假设 流体的密度、压强和温度 完全气体状态方程 压缩性、粘性和传热性 流体的模型化
连续介质假设
分子平均自由程 自由分子流/非连续流动 低密度流动 连续流动 continnum flow (l<<L) 连续介质假设
流体力学发展概述(1800- )
Osborne Reynolds (1842–1912)
Nikolai Y. Zhukovsky (1847 –1921) K-J theorem
流体力学发展概述(1800- )
Martin Wilhelm Kutta (1867-1944)
Ludwig Prandtl (1875 –1953)
u
n
流体的粘性
运动粘性系数 kinematic viscosity
适用于空气的萨特兰公式
0
T
1.5
28.185
28.185C TC
流体的粘性
空气粘柱实验模型 (卧式转盘)
n v
v
A
A
空气粘性实验
流体的粘性
流体的热传导特性
Fourier公式
dA 微团面积元的大小
dF dA一侧的法向力
西工大空气动力学PPT课件第一章
3 气体的压缩性、粘性和热传导
压缩性(弹性)
在一定温度条件下,一定质量气体的 体积或密度随压强变化而变化的特性
度量气体压缩性大小用体积弹性模数E 各种物质的弹性模量是不同的,所以它们的压缩性也不同。
如水的弹性模量为 2.1×109 N / m2
−4 当压强增大一个大气压时密度变化 0.5 × 10
px = p y = pz = p
P
Px
dy
n
X o dx A
dz
结论 理想流体内一点处的压强与受压面 方位无关,方向垂直指向作用面。 压强仅是空间坐标的连续函数。
△ABC的面积ds
z C
Py
流体微团四面体和压强
2 流体的密度、压强和温度
完全气体的状态方程 分子是完全弹性的 忽略内聚力 忽略分子微粒的实有总体积
流动性弱
将固体、液体 和气体放在一 密闭的容器当 中,会有什么 现象?
1
连续介质假设
微观上:流体分子距离的存在以及分子运动的随机性使得 微观上:流体分子距离的存在以及分子运动的随机性使得 流体的各物理量在时间和空间上的分布都是不连续的。 流体的各物理量在时间和空间上的分布都是不连续的。
空气动力学研究对象(飞行器)的特 征尺寸远大于流体分子平均自由程
低层大气层
高温层:85~500Km
高层大气层
电离层
外层大气:>500Km
5 标准大气
大气的分层
•普通飞机主要在对流层和平流层飞行,约39Km左右。 •探测气球:44Km左右 •定点通讯卫星约35000Km •航天飞行器几百Km
5 标准大气
海平面上的标准值
Ta = 288.15 K pa = 101325 N / m 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空 气 动 力 学
绪论及基本概念、知识
空气与气体动力学的任务、研究方法及发展
流体力学
流体静力学 液体
水力学 理动 黏性流动
变化小
不可压缩低速 空气动力学 高度或低压影响
动力气象学 稀薄气体动力学
变化大 高速影响
气体动力学 亚/跨/超声速空气动力学 高超声速空气动力学 电磁流体动力学
直匀气流流过模型,以便观察流动现象,测量模型受到 的空气动力,进行试验空气动力学研究。
在理论上,对飞行器空气绕流现象和受力情况进行分析
研究时,可用固接在飞行器上的观察者所看到的绕流图 画进行研究,只要远前方气流速度V是常数,空气流过 物体的绕流图画就不随时间变化。
风
洞
机翼绕流流场
建筑物流场
钝头体噪声
音爆云 激波后气体 急剧膨胀降压降温 潮湿天气 气温低于露点 水汽凝结水珠 云雾
超音速 低压气流
局部正激波 斜激波
局部亚音气流 超音/亚音气流
压缩减速 膨胀加速 超音速气流 尾激波 压缩减速
音爆 激波面上声学能量高度集中,这些能量让人感受到短暂而极其强烈的爆炸声。
冲压发动机
亚燃冲压发动机 3<Ma<6
数值研究 数值仿真 CFD计算
计算机 数学模型 数值离散方法
流体力学问题
数值实验 数值模拟/分析
数学模型较准确如N-S方程较准确流动图谱及细节/耗时少/耗费省/便于优化设计及对比 模拟重复性好/条件易控制 机理不清楚的流动如空化/湍流/相变数学模型不准数值模拟可靠性、准确性差 非线性偏微粉方程数值离散方法数学理论尚未完备计算稳定性/收敛性/误差分析不足 受限于计算机运行速度、容量的发展 微分方程的有限差分离散及网格 连续介质模型 连续自变量函数 微分方程组
n un j 1 u j
xj+1
x
u O x x j
n
差分方程
1 un un j j
t
a
n un j 1 u j
x
O t , x 0
1 un un j j a
t n u j 1 u n j x
v2 理想不可压流体 p const 伯努利方程 2
假设 实际
库塔-儒科夫 儒可夫 L V 斯基定理
D 0 凯尔文定理 Dt
黏性
附面层 旋涡/涡量
Stokes定理
A
ndA c
环量从何而来?
翼型非对称附面层内涡量总和 即为导致升力的环量
飞行器气动部件及其空气动力学机理
基本任务:空气、气体的运动规律及其与固体之间相互作用力
航空、航天、汽车/列车、建筑/桥梁、叶轮机械(风机/汽轮机等)、
天气预报、船舶、体育运动、……
升力储备:爬升、机动飞行 气动效率:高升阻比 航空飞行器空气动力学 稳定性、操控性 空气流过飞行器外部时运动规律 表面压力及换热规律:材料、结构 飞行器升力及形成机理
空气/气体动力学的其他应用
鸟类/昆虫飞行及扑翼机
合力 升力 推力 均匀来流 合速度 扑动速度
机动性强 举升/推进/悬停/快速变向等动作集于一个扑翼系统 大升力 利用非定常机制,其升力远高于常规飞行器,能够在低雷诺数条件下飞行。
绕障碍物流动的卡门涡街
低Re数 绕流运动 周期性脱落 旋向相反 排列规则 双列线涡 即卡门涡街
诱导阻力 实际升力 有效迎角 翼尖尾涡 来流 下洗角 下洗速度 尾涡 内向侧力 翼梢小翼 阻挡气流上卷 削弱尾涡 下洗速度 诱导阻力 升力
升力 推力
升力 翼梢小翼 内向侧力 推力
激波
V1 a 1
V2 V1
V1 V2 0 激波阻力 Dsh m
后掠机翼 边条涡
17-20世纪理想流体力学的发展
微积分问世后,流体成为数学家们应用微积分的最佳领 域。 1738年Daniel Bernoulli出版了“流体力学”一书, 将微积分方法引进流体力学中,建立了分析流体力学的 理论体系,提出无粘流动流速和压强的关系式,即 Bernoulli能量方程。 1755年瑞士数学家欧拉建立了理想 不可压流体运动的微分方程组(欧拉方程)。六年后, 拉格朗日引入流函数的概念,建立了理想流体无旋运动 所满足的动力学条件,提出求解这类运动的复位势法。
飞机
17-20世纪理想流体力学的发展
牛顿简介
英国著名的数学家和物理学家(1643-1727)。 牛顿出生于英国林肯郡伍尔索普乡村,是一个 遗腹子,3岁母亲改嫁,将他留给外祖父母。 1661年进入剑桥三一学院学习,1665年大学毕 业,获得学士学位。1667年成为三一学院研究 员,次年获得文学硕士学位。1669年牛顿的数 学老师辞职,推举牛顿接替数学教授。1686年 完成“自然哲学之数学原理”,提出了流体运 动的内摩擦定律。1695年出任造币厂督办。 1701年辞去三一学院教职,1704年出版“光学 ”,晚年一直担任英国皇家学会主席,从事圣 经的研究。后人评价:牛顿是人类史上最伟大 的天才:在数学上,发明了微积分;在天文学 上,发现了万有引力定律,开辟了天文学的新 纪元;在力学上,总结了三大运动定律,建立 了牛顿力学体系;在光学上,发现了太阳光的 光谱,发明了反射式望远镜。
航空发动机主要部件及其作用
压气机/风扇:气体增压
燃烧室:气体加热
涡轮:气体膨胀
音障/音爆/音爆云
弱压缩波 正激波及阻力 斜激波
音障
楔型体 超音速运动
激波及激波阻力
阻力系数 消耗3/4功率
活塞发动机高速时螺旋桨效率低、桨尖易产生激波喷气发动机 降低波阻的超音速气动布局如后掠翼、面积率蜂腰机身等
塔科玛峡谷桥风毁事件及电线风鸣声 19米/秒的风流经边墙 风吹电线 卡门涡街
涡交替发放
上下逆向旋涡 带走动量方向相反
流体物体施加横向交变侧向力 物体流体施加横向交变气动力
桥梁振动
涡发放频率 桥梁结构的固有频率 辐射声波
共振破坏
压强脉动形成声波
龙卷风 积雨云中大范围分布的涡量
由下降气流带到地面 涡管拉细/涡量增强 地面气压急剧下降/风速急剧上升
u0 j fj
0.2
空气动力学的研究对象
相对飞行原理(空气动力学实验原理)
当飞行器以某一速度在静止空气中运动时,飞行器与空气
的相对运动规律和相互作用力,与飞行器固定不动而让空 气以同样大小和相反方向的速度流过飞行器的情况是等效 的。
0.2
空气动力学的研究对象
相对飞行原理,为空气动力学的研究提供了便利。人们 在实验研究时,可以将飞行器模型固定不动,人工制造
伯努利方程 动量守恒
DV p R Dt
忽略空气质量 定常流动 忽略黏性/理想流体 不可压流体
p
V 2
2
const
1 vx v y 1 vx vz Dvx 1 p 1 vx 2 Rx 2 V z x Dt x x x 3 y y x z 1 v y vz Dv y 1 vx v y 1 p 1 v y 2 Ry 2 V Dt x y x y y y 3 z z y Dvz 1 vx vz 1 vz v y 1 p 1 vz 2 Rz 2 V Dt x z x y y z z z z 3
森林空气动力学
树木风阻∝风速:种植方式避免风害 风阻树冠/树叶: 树叶在高速风中结构变形 种子传播:繁衍规律、仿生力学
建筑物空气动力学
高/矮建筑物间涡流:风速大于普通布局的3-4倍 建筑物迎背风面: 背风面低压吸力效应 斜屋顶:倾斜角较小吸力效应屋顶掀翻
车辆空气动力学
车型迎风阻力 占62% 拖曳涡涡阻 空气阻力下降10% 表面摩擦阻力 占9% 外部零件干扰阻力 占17% 油耗降低5% 内部气流阻力 占12%
空气阻力
体育中的空气动力学
旋转球
香蕉球 弧圈球
黏性
上表面流体流速高低压 下表面流体流速低高压
侧向力 马格努斯力
顺时针旋转圆柱 不对称分离 侧向力
研究方法
空气动力学基本理论 风洞/水洞/其他实验台架 模型 实物
学时1 基础性 应用性 开拓性
实验研究
结果真实/可靠//丰富 为理论分析/数值计算提供依据 尺寸/边界/测试仪器及方法限制 耗时/耗力/耗经费
差分网格
x
tn+1 tn tn-1 xj-1 xj
xj,tn
离散介质模型 离散自变量函数 空间区域 有限离散点集合 自变量连续变化区域 有限差分方程组 u u a 0, u x, 0 f x 一阶双曲型线性微分方程 t x n n n 1 n u u u u j j n 1 n 2 t u u t O t O t j j t t j t j
刚度
气流带走
可压缩性
热障 气动热力学
F16战斗机 Ma=2温度120℃铝合金 黑鸟SR-17侦察机 Ma=3温度370℃93%钛合金 航天飞机 Ma=36温度11000K硅瓷片防护瓦、烧蚀材料
化学反应
空气电离
等离子鞘套
等离子体振荡频率
黑障 气动热化学
无线电截止频率无线电信号屏蔽 常温常压 O2占20% N2占80%完全气体 P RT 2000K<T<4000K O22O 4000K<T<9000K N22N 9000K<T 原子电离OO++e- NN++e- O,N,阳离子O+, N+和自由电子的等离子体 分子密度低 大气稠密减速至一定程度 80km< 黑障区 < 54.8km 电离弱 温度低电离弱
绪论及基本概念、知识
空气与气体动力学的任务、研究方法及发展
流体力学
流体静力学 液体
水力学 理动 黏性流动
变化小
不可压缩低速 空气动力学 高度或低压影响
动力气象学 稀薄气体动力学
变化大 高速影响
气体动力学 亚/跨/超声速空气动力学 高超声速空气动力学 电磁流体动力学
直匀气流流过模型,以便观察流动现象,测量模型受到 的空气动力,进行试验空气动力学研究。
在理论上,对飞行器空气绕流现象和受力情况进行分析
研究时,可用固接在飞行器上的观察者所看到的绕流图 画进行研究,只要远前方气流速度V是常数,空气流过 物体的绕流图画就不随时间变化。
风
洞
机翼绕流流场
建筑物流场
钝头体噪声
音爆云 激波后气体 急剧膨胀降压降温 潮湿天气 气温低于露点 水汽凝结水珠 云雾
超音速 低压气流
局部正激波 斜激波
局部亚音气流 超音/亚音气流
压缩减速 膨胀加速 超音速气流 尾激波 压缩减速
音爆 激波面上声学能量高度集中,这些能量让人感受到短暂而极其强烈的爆炸声。
冲压发动机
亚燃冲压发动机 3<Ma<6
数值研究 数值仿真 CFD计算
计算机 数学模型 数值离散方法
流体力学问题
数值实验 数值模拟/分析
数学模型较准确如N-S方程较准确流动图谱及细节/耗时少/耗费省/便于优化设计及对比 模拟重复性好/条件易控制 机理不清楚的流动如空化/湍流/相变数学模型不准数值模拟可靠性、准确性差 非线性偏微粉方程数值离散方法数学理论尚未完备计算稳定性/收敛性/误差分析不足 受限于计算机运行速度、容量的发展 微分方程的有限差分离散及网格 连续介质模型 连续自变量函数 微分方程组
n un j 1 u j
xj+1
x
u O x x j
n
差分方程
1 un un j j
t
a
n un j 1 u j
x
O t , x 0
1 un un j j a
t n u j 1 u n j x
v2 理想不可压流体 p const 伯努利方程 2
假设 实际
库塔-儒科夫 儒可夫 L V 斯基定理
D 0 凯尔文定理 Dt
黏性
附面层 旋涡/涡量
Stokes定理
A
ndA c
环量从何而来?
翼型非对称附面层内涡量总和 即为导致升力的环量
飞行器气动部件及其空气动力学机理
基本任务:空气、气体的运动规律及其与固体之间相互作用力
航空、航天、汽车/列车、建筑/桥梁、叶轮机械(风机/汽轮机等)、
天气预报、船舶、体育运动、……
升力储备:爬升、机动飞行 气动效率:高升阻比 航空飞行器空气动力学 稳定性、操控性 空气流过飞行器外部时运动规律 表面压力及换热规律:材料、结构 飞行器升力及形成机理
空气/气体动力学的其他应用
鸟类/昆虫飞行及扑翼机
合力 升力 推力 均匀来流 合速度 扑动速度
机动性强 举升/推进/悬停/快速变向等动作集于一个扑翼系统 大升力 利用非定常机制,其升力远高于常规飞行器,能够在低雷诺数条件下飞行。
绕障碍物流动的卡门涡街
低Re数 绕流运动 周期性脱落 旋向相反 排列规则 双列线涡 即卡门涡街
诱导阻力 实际升力 有效迎角 翼尖尾涡 来流 下洗角 下洗速度 尾涡 内向侧力 翼梢小翼 阻挡气流上卷 削弱尾涡 下洗速度 诱导阻力 升力
升力 推力
升力 翼梢小翼 内向侧力 推力
激波
V1 a 1
V2 V1
V1 V2 0 激波阻力 Dsh m
后掠机翼 边条涡
17-20世纪理想流体力学的发展
微积分问世后,流体成为数学家们应用微积分的最佳领 域。 1738年Daniel Bernoulli出版了“流体力学”一书, 将微积分方法引进流体力学中,建立了分析流体力学的 理论体系,提出无粘流动流速和压强的关系式,即 Bernoulli能量方程。 1755年瑞士数学家欧拉建立了理想 不可压流体运动的微分方程组(欧拉方程)。六年后, 拉格朗日引入流函数的概念,建立了理想流体无旋运动 所满足的动力学条件,提出求解这类运动的复位势法。
飞机
17-20世纪理想流体力学的发展
牛顿简介
英国著名的数学家和物理学家(1643-1727)。 牛顿出生于英国林肯郡伍尔索普乡村,是一个 遗腹子,3岁母亲改嫁,将他留给外祖父母。 1661年进入剑桥三一学院学习,1665年大学毕 业,获得学士学位。1667年成为三一学院研究 员,次年获得文学硕士学位。1669年牛顿的数 学老师辞职,推举牛顿接替数学教授。1686年 完成“自然哲学之数学原理”,提出了流体运 动的内摩擦定律。1695年出任造币厂督办。 1701年辞去三一学院教职,1704年出版“光学 ”,晚年一直担任英国皇家学会主席,从事圣 经的研究。后人评价:牛顿是人类史上最伟大 的天才:在数学上,发明了微积分;在天文学 上,发现了万有引力定律,开辟了天文学的新 纪元;在力学上,总结了三大运动定律,建立 了牛顿力学体系;在光学上,发现了太阳光的 光谱,发明了反射式望远镜。
航空发动机主要部件及其作用
压气机/风扇:气体增压
燃烧室:气体加热
涡轮:气体膨胀
音障/音爆/音爆云
弱压缩波 正激波及阻力 斜激波
音障
楔型体 超音速运动
激波及激波阻力
阻力系数 消耗3/4功率
活塞发动机高速时螺旋桨效率低、桨尖易产生激波喷气发动机 降低波阻的超音速气动布局如后掠翼、面积率蜂腰机身等
塔科玛峡谷桥风毁事件及电线风鸣声 19米/秒的风流经边墙 风吹电线 卡门涡街
涡交替发放
上下逆向旋涡 带走动量方向相反
流体物体施加横向交变侧向力 物体流体施加横向交变气动力
桥梁振动
涡发放频率 桥梁结构的固有频率 辐射声波
共振破坏
压强脉动形成声波
龙卷风 积雨云中大范围分布的涡量
由下降气流带到地面 涡管拉细/涡量增强 地面气压急剧下降/风速急剧上升
u0 j fj
0.2
空气动力学的研究对象
相对飞行原理(空气动力学实验原理)
当飞行器以某一速度在静止空气中运动时,飞行器与空气
的相对运动规律和相互作用力,与飞行器固定不动而让空 气以同样大小和相反方向的速度流过飞行器的情况是等效 的。
0.2
空气动力学的研究对象
相对飞行原理,为空气动力学的研究提供了便利。人们 在实验研究时,可以将飞行器模型固定不动,人工制造
伯努利方程 动量守恒
DV p R Dt
忽略空气质量 定常流动 忽略黏性/理想流体 不可压流体
p
V 2
2
const
1 vx v y 1 vx vz Dvx 1 p 1 vx 2 Rx 2 V z x Dt x x x 3 y y x z 1 v y vz Dv y 1 vx v y 1 p 1 v y 2 Ry 2 V Dt x y x y y y 3 z z y Dvz 1 vx vz 1 vz v y 1 p 1 vz 2 Rz 2 V Dt x z x y y z z z z 3
森林空气动力学
树木风阻∝风速:种植方式避免风害 风阻树冠/树叶: 树叶在高速风中结构变形 种子传播:繁衍规律、仿生力学
建筑物空气动力学
高/矮建筑物间涡流:风速大于普通布局的3-4倍 建筑物迎背风面: 背风面低压吸力效应 斜屋顶:倾斜角较小吸力效应屋顶掀翻
车辆空气动力学
车型迎风阻力 占62% 拖曳涡涡阻 空气阻力下降10% 表面摩擦阻力 占9% 外部零件干扰阻力 占17% 油耗降低5% 内部气流阻力 占12%
空气阻力
体育中的空气动力学
旋转球
香蕉球 弧圈球
黏性
上表面流体流速高低压 下表面流体流速低高压
侧向力 马格努斯力
顺时针旋转圆柱 不对称分离 侧向力
研究方法
空气动力学基本理论 风洞/水洞/其他实验台架 模型 实物
学时1 基础性 应用性 开拓性
实验研究
结果真实/可靠//丰富 为理论分析/数值计算提供依据 尺寸/边界/测试仪器及方法限制 耗时/耗力/耗经费
差分网格
x
tn+1 tn tn-1 xj-1 xj
xj,tn
离散介质模型 离散自变量函数 空间区域 有限离散点集合 自变量连续变化区域 有限差分方程组 u u a 0, u x, 0 f x 一阶双曲型线性微分方程 t x n n n 1 n u u u u j j n 1 n 2 t u u t O t O t j j t t j t j
刚度
气流带走
可压缩性
热障 气动热力学
F16战斗机 Ma=2温度120℃铝合金 黑鸟SR-17侦察机 Ma=3温度370℃93%钛合金 航天飞机 Ma=36温度11000K硅瓷片防护瓦、烧蚀材料
化学反应
空气电离
等离子鞘套
等离子体振荡频率
黑障 气动热化学
无线电截止频率无线电信号屏蔽 常温常压 O2占20% N2占80%完全气体 P RT 2000K<T<4000K O22O 4000K<T<9000K N22N 9000K<T 原子电离OO++e- NN++e- O,N,阳离子O+, N+和自由电子的等离子体 分子密度低 大气稠密减速至一定程度 80km< 黑障区 < 54.8km 电离弱 温度低电离弱