《等差数列》(公开课)PPT课件

合集下载

等差数列前n项和(公开课)PPT课件

等差数列前n项和(公开课)PPT课件
几何等领域。
组合数学
等差数列的前n项和公式可以应 用于组合数学中,解决一些组合 问题,如计算组合数的公式等。
数列求和
等差数列的前n项和公式是数列 求和的一种重要方法,可以用于
解决等差数列的求和问题。
在物理中的应用
力学
在物理学中,等差数列的 前n项和公式可以应用于求 解一些力学问题,如计算 多自由度振动的周期等。
简化计算
等差数列的前n项和公式在日常生活 和科学研究中有着广泛的应用,如计 算存款利息、解决生产计划问题等。
对于一些较大的等差数列,使用前n 项和公式可以大大简化计算过程,提 高计算效率。
验证答案
使用前n项和公式可以快速验证一些 等差数列求和问题的答案,确保计算 的准确性。
实例解析
简单实例
例如,一个等差数列1, 4, 7, 10... ,使用前n项和公式可以快速求出
统计学
在统计学中,等差数列的 前n项和公式可以用于计算 平均值、中位数等统计指 标。
信号处理
在信号处理中,等差数列 的前n项和可以用于计算信 号的频谱、滤波等操作。
在计算机科学中的应用
数据结构
在计算机科学中,等差数列的前n项和公式可以应用于一些数据结 构的设计,如数组、链表等。
算法设计
等差数列的前n项和公式可以用于设计一些算法,如排序算法、查 找算法等。
详细描述
等差数列是一种特殊的数列,其中任意两个相邻的项之间的 差是一个固定的值,这个值被称为公差。等差数列的通项公 式为 a_n = a_1 + (n-1)d,其中 a_n 是第 n 项,a_1 是首项 ,d 是公差。
性质
总结词
等差数列具有一些重要的性质,包括对称性、中项性质和等差中项性质等。

等差数列课件ppt课件

等差数列课件ppt课件
等差数列课件 ppt
contents
目录
• 等差数列的定义 • 等差数列的性质 • 等差数列的通项公式 • 等差数列的求和公式 • 等差数列的应用 • 等差数列的习题与解析
01
CATALOGUE
等差数列的定义
等差数列的文字定义
总结词
等差数列是一种特殊的数列,其中任意两个相邻项的差是一 个常数。
详细描述
等差数列是一种有序的数字排列,其中任意两个相邻项之间 的差是一个固定的值,这个值被称为公差。在等差数列中, 首项和末项是固定的,而其他项则可以通过首项、末项和公 差进行计算。
等差数列的数学公式定义
总结词
等差数列的数学公式可以用来表 示任意一项的值。
详细描述
等差数列的数学公式是 a_n = a_1 + (n-1)d,其中 a_n 是第 n 项的值,a_1 是首项,d 是公差 ,n 是项数。这个公式可以帮助 我们快速计算出等差数列中的任 意一项。
04
CATALOGUE
等差数列的求和公式
公式推导
公式推导方法一
利用等差数列的性质,通过累加法推 导得出求和公式。
公式推导方法二
利用等差数列的通项公式,通过代数 运算推导得出求和公式。
公式应用
应用场景一
计算等差数列的和,例如计算 1+2+3+...+n的和。
应用场景二
解决与等差数列相关的实际问题,例 如计算存款的本金和利息之和。
,公差是多少?
进阶习题
进阶习题1
进阶习题2
题目:已知一个等差数列的前三项依次为 a-d, a, a+d,如果该数列的第2008项为 2008,那么它的第10项是什么?

等差数列前n项和(公开课)PPT课件

等差数列前n项和(公开课)PPT课件
数学建模
等差数列的前n项和公式也可以用于数学建模,例如在解决一 些实际问题时,可以利用等差数列的前n项和来建立数学模型 ,从而更好地理解和解决这些问题。
在物理中的应用
物理学中的等差数列
在物理学中,有些物理量呈等差数列 分布,例如光的波长、音阶的频率等 ,等差数列的前n项和公式可以用于 计算这些物理量的总和。
物理学中的级数求和
在物理学中,有些级数的求和问题可 以用等差数列的前n项和公式来解决 ,例如在求解一些物理问题的近似解 时,可以利用等差数列的前n项和来 简化计算。
在经济中的应用
金融投资
在金融投资中,有些投资组合的收益 呈等差数列分布,例如定期存款、基 金定投等,等差数列的前n项和公式 可以用于计算这些投资组合的总收益 。
CHAPTER 02
等差数列的前n项和公式
等差数列前n项和的定义
01
02
03
定义
等差数列的前n项和是指 从第一项到第n项的所有 项的和。
符号表示
记作Sn,其中S表示总和 ,n表示项数。
举例
对于等差数列2, 4, 6, ..., 2n,前n项和为Sn = 2 + 4 + 6 + ... + 2n。
等差数列前n项和(公开 课)ppt课件
汇报人:可编辑
2023-12-23
CONTENTS
目录
• 等差数列的概念 • 等差数列的前n项和公式 • 等差数列前n项和的特例 • 等差数列前n项和的应用 • 习题与解答
CHAPTER 01
等差数列的概念
等差数列的定义
等差数列是一种常见的数列,其 中任意两个相邻项的差是一个常
等差数列前n项和的公式推导
推导方法

4.2.1等差数列的概念PPT课件(人教版)

4.2.1等差数列的概念PPT课件(人教版)

an a1 (n 1)d
结论:等差数列的通项公式的一般情势:an=am+(n-m)d
练习
求下列等差数列的通项公式
(1)9,18,27,36,45,54,63,72...
(1)an=9+(n-1)×9=9n
(2)38,40,42,44,46,48...
(2)an=38+(n-1)×2=2n+36
ab
叫做a与b的等差中项。即 A
2
这个式子叫做这个数列的递推公式.
引入
请看下面几个问题中的数列.
1.北京天坛圜丘坛的地面由石板铺成,最中间是圆形的天心石,
环绕天心石的是9圈扇环形的石板,从内到外各圈的石板数依
次为
9,18,27,36,45,54,63,72,81.①
2.S,M,L,XL,XXL,L型号的女装上衣对应的尺码分别是
38,40,42,44,46,48.②
求an 的公差和首项;(2)求等差数列 8,5, 2, 的第20项.
解: (1)当n 2时,由an 5 2n, 得
an1 5 2(n 1) 7 2n.
于是, d an an1 (5 2n) (7 2n) 2.
当n 1时, a1 5 2 3.
练习
判断下列数列是否为等差数列,若是,求出首项和公差
(1) 1, 3, 5, 7, 9, 2, 4, 6, 8, 10
×
(2) 3,3,3,3,3,3
a1=3,公差 d=0 常数列
(3) 3x,6x,9x,12x,15x
a1=3x 公差 d= 3x
(4)95,82,69,56,43,30
a1=95 公差 d=-3

等差数列前n项和(公开课)PPT课件

等差数列前n项和(公开课)PPT课件
所以这个等差数列共有(a+d)×(n-2)/2 +10 =25。
04
第二题答案:16;解析:设等差数列的首项为a,公 差为d,根据题意有4a + 6d = 12,解得a+d=2,所 以这个等差数列共有(a+d)×(n-2)/2 +4 =16。
感谢您的观看
THANKS
习题答案与解析
进阶习题答案与解析
01
输标02入题
第一题答案:42;解析:设等差数列的首项为a,公 差为d,根据题意有5a + 10d = 25,解得a+d=5, 所以第6项到第10项的和为5a+35d=42。
03
第三题答案:25;解析:设等差数列的首项为a,公 差为d,根据题意有5a + 20d = 80,解得a+4d=8,
第二题答案:18;解析:设等差数列的首项为a,公差为d,根据题意有3a + 3d = 15,解得a+d=5,所以这个等差数列共有(a+d)×(n-2)/2 +3 =18。
习题答案与解析
• 第三题答案:30;解析:设等差数列的首项为a,公差为d,根据题意有5a + 45d = 200,解得a+d=5,所以这个等差数 列共有(a+d)×(n-2)/2 +10 =30。
公式5
$S_n - S_{n-1} = a_n$
公式6
$S_n = S_{n-1} + a_n$
公式之间的联系与区别
联系
公式1、2、3都是求等差数列前n项 和的基本公式,而公式4、5、6则是 基于这些基本公式的推导或变种。
区别
公式1和公式2形式较为简洁,而公式 3则更便于观察等差数列的对称性质。 公式4、5、6则更注重于相邻两项和 之间的关系,可以用于求解某些特定 问题。

小学奥数等差数列省公开课获奖课件说课比赛一等奖课件

小学奥数等差数列省公开课获奖课件说课比赛一等奖课件

例题
• 1、求等差数列3,5,7,9…..旳第10 项和第100项。
例题
例、电影院旳座位排列成扇形,第一排有60 个座位,后来每一排都比前一排多两个座位,共 有50排,请你算出第32排和第50排各有多少个 座位?
第一排:60 第二排:60+2X(2-1)=62 第n排: 60+2X(n-1)=2n+58 第32排:60+2X(32-1)=122 最终一排即第50排:60+2X(50-1)=158
+1 +1 +1 +1 +1 +1
(2)1, 2, 4, 8, 16, 32, 64,(128 ) …等比数列
×2 ×2 ×2 ×2 ×2 ×2
(3)1, 4, 9, 16,( 25 ),36,平…方数列
1×1 2×2 3×3
4×4
(4) 1,2,3 ,5,8, 13,21 ,( 34 )…斐波拉
契数列
第50项与倒数第50项旳和:50+51=101,
于是所求旳和是:
101 100 5050. 2
一、定义:
一般地,假如一种数列从第2项起,后一项与它旳前一项旳
差等于同一种常数,那麽这个数列就叫做等差数列。
这个常数叫做等差数列旳公差,公差一般用字母d表达。
公差 = 第二项-首项
例 1: 观察下列数列是否是等差数列:
2
例题
例、求首项为5,末项为155,项数是51旳等差数列旳和。 等差数列旳和 = (首项+末项)×项数÷2
解:(5+155)×51÷2 =160×51÷2 =80×51 =4080
例题
例、1+3+5+7+……+95+97+99 等差数列旳和 = (首项+末项)×项数÷2 解:1+3+5+7+……+95+97+99

等差数列的性质公开课PPT课件

等差数列的性质公开课PPT课件

};
(2
){an
2
};
(3
1 ){
an
};
(4){an
an1};
(5){a2k1}
第15页/共26页
第16页/共26页
【变式与拓展1】
1.已知等差数列{an}的前 3 项依次为 a-1,a+1, 2a+3, 则此数列的通项 an 为( B )
A.2n-5
B.2n-3
C.2n-1
D.2n+1
2.数列{an}为等差数列,a2 与 a6 的等差中项为 5,a3 与 a7 的等差中项为 7,则数列的通项 an 为___2_n_-__3_.
第17页/共26页
题型2 等差数列性质及应用 例2:在等差数列{an}中, (1)已知 a2+a3+a23+a24=48,求a13; (2)已知 a2+a3+a4+a5=34,a2·a5=52,求公差d.
自主解答:(1)根据已知条件 a2+a3+a23+a24=48, 得 4a13=48,∴a13=12. (2)由 a2+a3+a4+a5=34, 得 2(a2+a5)=34,即 a2+a5=17. 解aa22·+a5a=5=521,7, 得aa25= =41, 3 或aa52= =41.3, ∴d=a55- -2a2=13- 3 4=3 或 d=a55- -2a2=4-313=-3.
第25页/共26页
感谢您的观看!
第26页/共26页
C.2
D.1或2
解析:由于2b=a+c,则4b2-4ac=(a+ c)2-4ac=(a-c)2≥0,故选D.
答案:D
第23页/共26页
【例 3】
等差数列an的首项为
1,且an
从第
9
项开始各项均大于 25,求公差 d 的取值范围. 错解:设an的公差为 d,第 n 项为 an,则 a9

《等差数列课》课件

《等差数列课》课件
等差为负数的等差数列
当公差d<0时,数列为递减数列,通项公式为 $a_n = a_1 + (n1)d$。
特殊情况
当 $a_1 = 0$ 时,无论公差d取何值,数列均为非负数列。
03
等差数列的求和公式
等差数列求和公式的推导
公式推导
通过等差数列的性质,将等差数列的项进行分组求和,再利用等差 数列的性质简化求和过程,推导出等差数列的求和公式。
实例演示
以数列 3, 7, 11, 15, ... 为例,第 一项 $a_1 = 3$,公差 $d = 4$ ,代入公式得到通项 $a_n = 3 + (n-1) times 4 = 4n - 1$。
等差数列通项公式的应用
求任意项的值
根据通项公式,我们可以求出任意一 项的值,例如第10项 $a_{10} = a_1 + 9d$。
等差数列与函数
等差数列可以看作一种特殊的函数,其图像为直线。理解等差数 列与函数的关系有助于加深对两者概念的理解。
等差数列与几何
在几何学中,等差数列的概念可以应用于图形构造,如等分线段、 等分面积等。
等差数列与三角函数
等差数列的项可以表示为三角函数的值,这为解决一些数学问题提 供了新的思路。
等差数列在实际生活中的应用
等差为0的等差数列
01
对于公差为0的等差数列,其求和公式为Sn = n * a1。
等差为常数的等差数列
02
对于公差为常数的等差数列,可以利用等差数列求和公式进行
求解。
等差数列的变种
03
对于一些特殊的等差数列,如等比数列、等积数列等,需要采
用其他方法进行求解。
04
等差数列的综合应用

等差数列前n项和(公开课)PPT课件

等差数列前n项和(公开课)PPT课件
成立。
代数证明
利用等差数列的性质和代数方法 ,通过一系列的推导和变换,证
明前n项和公式的正确性。
图形证明
通过图形证明前n项和公式的正 确性。将等差数列的项表示为坐 标平面上的点,利用梯形的面积
公式推导出前n项和公式。
03
等差数列前n项和的性质
和的最小值和最大值
最小值
等差数列的前n项和的最小值出 现在首项小于0,公差小于0的情 况下,此时最小值为 S_n=a_1×n+d/2×n(n-1)。
等差数列的实例
01
自然数列:1, 2, 3, 4, ...
03
三角数列:1, 3, 6, 10, ...
02
偶数数列:2, 4, 6, 8, ...
04
等差数列的前n项和为Sn=n/2*(2a1+(n-1)d),其 中a1是第一项,d是公差。
02
等差数列的前n项和公式
前n项和公式的推导
1 2
3
最大值
等差数列的前n项和的最大值出 现在首项大于0,公差大于0的情 况下,此时最大值为 S_n=a_1×n+d/2×n(n-1)。
和的奇偶性
奇数项和
等差数列的奇数项和等于中间项乘 以项数,即S_n=(a_n+a_1)/2×n。
偶数项和
等差数列的偶数项和等于首尾两项的 和乘以项数再除以2,即 S_n=(a_1+a_n)×n/2。
统计学
在统计学中,等差数列的前n项和可 以用于描述一系列数据的分布特征 ,例如测量误差、概率分布等。
在经济中的应用
金融
等差数列的前n项和可以用于计算一 系列金融数据的累加值,例如股票价 格、债券收益、投资回报等。

《等差数列》PPT课件(公开课)

《等差数列》PPT课件(公开课)

13
练一练
在等差数列{an}中,
(1) 已知a4=10, a7=19,求a10.
(2) 已知a3=9, a9=3,求d与a12.
解:(1)由题意知,
a4=10=a1+3d 解得:
a1=1
a7=19=a1+6d
d=3
即等差数列的首项为1,公差为3 (2)由题意知,
a3=9=a1+2d 解得: a9=3=a1+8d
2
2
2
2
公差d= 1
2H
6
想一想
1、数列6,4,2,0,-2,-4…是否为等差数列?若是,则公差是多少?若
不是,说明理由?
公差是-2
2、常数列a,a,a,…是否为等差数列?若是,则公差是
多少?若不是,说明理由? 公差是0
3、数列0,1,0,1,0,1是否为等差数列?若是,则公差是多少?若不是,说明理 由?
不是
公差d是每一项(第2项起)与它的前一项的 差,防止把被减数与减数弄颠倒,而且公差可以 是正数,负数,也可以为0
H
7
通项公式的推导一 :
an-an-1=d
已知等差数列{an}的首项是a1,公差是d
a2-a1=d
a2=a1+d
a3-a2=d
a3=a2+d =(a1+d)+d =a1+2d
a4-a3=d a5呢? a9呢?
H
5
等差数列定义
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个 常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,通常用 字母d表示。
递推公式:an-an-1=d (d是常数,n≥2,n∈N*)

等差数列前n项和(公开课)PPT课件

等差数列前n项和(公开课)PPT课件

实例
总结词
等差数列的实例包括正整数序列、负数序列、斐波那契数列等。
详细描述
正整数序列1, 2, 3, ...是一个等差数列,其中首项a=1,公差d=1;负数序列-1, 2, -3, ...也是一个等差数列,其中首项a=-1,公差d=-1;斐波那契数列0, 1, 1, 2, 3, 5, ...也是一个等差数列,其中首项a=0,公差d=1。
01
求等差数列3, 6, 9, ..., 3n的前n项和。
进阶习题2
02
求等差数列-2, -4, -6, ..., -2n的前n项和。
进阶习题3
03
求等差数列5, 10, 15, ..., 5n的前n项和。
高阶习题
1 2
Байду номын сангаас
高阶习题1
求等差数列-3, -6, -9, ..., -3n的前n项和。
高阶习题2
总结词
等差数列是一种特殊的数列,其 中任意两个相邻项的差是一个常 数。
详细描述
等差数列通常表示为“an”,其 中a是首项,n是项数,d是公差 (任意两个相邻项的差)。
性质
总结词
等差数列的性质包括对称性、递增性、递减性等。
详细描述
等差数列的对称性是指任意一项与它的对称项相等,即a_n=a_(n+2m),其中 m是整数;递增性是指如果公差d>0,则数列是递增的;递减性是指如果公差 d<0,则数列是递减的。
PART 04
等差数列前n项和的变式 与拓展
REPORTING
变式公式
01
02
03
04
公式1
$S_n = frac{n}{2} (2a_1 + (n-1)d)$

《等差数列》课件(公开课)

《等差数列》课件(公开课)

等差数列的性质
前n项和
等差数列的前n项和可以通过求 和公式来计算。
通项公式
等差数列的通项公式可以帮助 我们快速计算任意项的值。
逆向思维
通过逆向思维,我们可以利用 等差数列的性质解决一些复杂 的问题。
等差数列的应用
1
数学中的应用
等差数列可以用于数学模型和方程的推导和解决。
2
物理中的应用
在物理学中,等差数列可以用于描述物体在等时间间隔内的运动。
同余数列
1 定义
同余数列是指等差数列的 项数与公差均为整数倍的 数列。
2 性质
同余数列具有一些特殊的 性质,在数论和密码学领 域有广泛的应用。
3 应用
同余数列的应用范围广泛, 涵盖了数据加密、随机数 生成等方面。
总结
等差数列的重要性
等差数列在数学和实际生活中起 着重要的作用,帮助我们解决问 题和规划未来。
《等差数列》PPT课件(公 开课)
欢迎来到《等差数列》的公开课!今天我们将深入探讨等差数列的定义、性 质、应用以及解题技巧,让我们一起开启这个数学世界的探索之旅吧!
什么是等差数列
定义
等差数列是指每一项与其前 一项之间的差都是相等的数 列。
表示方式
等差数列可以通过首项和公 差项称为项 数,公差表示相邻两项之间 的差。
3
生活中的应用
等差数列可以帮助我们规划时间、财务预算,甚至管理团队。
如何求解等差数列
求和公式的推导
我们将讲解等差数列求和公式 的推导过程,帮助你理解其原 理。
求出第n项
通过已知的首项和公差计算任 意项的值,我们将演示具体的 计算方法。
求出一般项
通过已知的首项和公差计算通 项公式,帮助你快速计算数列 的任意项。

等差数列名师大课堂获奖课件公开课一等奖课件省赛课获奖课件

等差数列名师大课堂获奖课件公开课一等奖课件省赛课获奖课件

8844.43米
高度(km) 1
2
3
45

减少6.5
9
温度(℃) 28 21.5 15 8.5 2

-24
(2) 28, 21.5, 15, 8.5, 2, …, -24.
你能根据规律在( ) 内填上适宜的数吗?
(1)1682,1758,1834,1910,1986,(2062). ( 2 ) 32, 25.5, 19, 12.5, 6, …, (-20). (3) 1,4,7,10,(13 ),16,… (4) 2, 0, -2, -4, -6,(-8 )…
在过去的三百 数年里,人们 分别在下列时 间里观察到了 哈雷慧星:
相差76
(1)1682,1758,1834,1910,1986,( 2062)
你能预测出下一次 的大致时间吗?
主持人问: 近来的时间什么时 候能够看到哈雷慧星?
天文学家陈丹说: 2062年左 右。
普通状况下,从地面 到10公里的高空,气 温随高度的变化而变 化符合一定的规律, 请你根据下表预计一 下珠穆朗玛峰峰顶的 温度。
练一练
1.课本第39页 1 2.-2与10的等差中项为—————— 3.在等差数列{an}中,已知a3=21 ,a8=36 ,求通项公
式an 。
课堂小结
本节课学习的重要内容: 1.等差数列的定义; 2.等差中项的定义; 3.求等差数列通项公式。
课外作业
课本第40页A组 第1题
解得 n 100
例2 在等差数列an中,已知a5 10, a12 31,求: 数列an 的通项公式。
解:由题意得:
a1 4d 10 a1 11d 来自1解得:a1 2, d 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可得: a2-a1=d a3-a2=d a4-a3=d
……
an-an-1=d
a2=a1+d a3=a2+d=a1+2d a4=a3+d=a1+3d
……
an=a1+(n-1)d
an-a1=(n-1)d,即 an=a1+(n-1)d
当n=1时,等式也成立。
.
7
例题讲解
例1(1)求等差数列8,5,2,…的第20项
-401= -5-4(n-1) 成立
解关于n的方程,得n=100 即-401是这个数列的第100项。
.
8
例2 在等差数列{an}中,已知a5=10, a12=31,求首项a1 与公差d. 解:由题意知, a5=10=a1+4d a12=31=a1+11d 解得: a1=-2 d=3
即等差数列的首项为-2,公差为3
.
13
课后作业
课本P19页,A组第7题
.
14
.
15
方法二
已知等差数列{an}的首项是a1,公差是d
累差迭加法
a2-a1=d a3-a2=d a4-a3=d
……
an-an-1=d
(1)式+(2)式+…+(n-1)式得:
(1) (2) (3)
(n-1)
an-a1=(n-1)d,即 an=a1+(n-1)d
所以:a12=a1+11d=11+11×(-1)=0
.
11
新概念
在等差数列a,A,b中,A与a,b有什么关系?
解: 依题得, A-a=b-A
所以, A=(a+b)/2
A为a,b的
等差中项
.
12
课堂小结
本节课主要学习:
一个定义: an-an-1=d(d是常数,n≥2, n∈N*) 一个公式:an=a1+(n-1)d 一种思想:方程思想 一个概念: A=a+b/2
多少?若不是,说明理由 公差是0
3、数列0,1,0,1,0,1是否为等差数列?若是,则公差是
多少?若不是,说明理由
不是
公差d是每一项(第2项起)与它的前一项的 差,防止把被减数与减数弄颠倒,而且公差可以 是正数,负数,也可以为0
.
6
通项公式
已知等差数列{an}的首项是a1,公差是d
由递推公式:an-an-1=d (d是常数,n≥2,n∈N*)
点评:利用通项公式转化成首项和公差
联立方程求解
.
9
题后点评
求通项公式的关键步骤:
求基本量a1和d :根据已知条件列方程,由 此解出a1和d ,再代入通项公式。
像这样根据已知量和未知量之间的关系,列出 方程求解的思想方法,称方程思想。 这是数学中的常用思想方法之一。
.
10
练一练
在等差数列{an}中,
①38,40,42,44,46,… 公差d=2
②25, 24 1 , 24, 23 1 , 23, 22 1 , 22, 21 1 , 21
2
2
2
2
公差d= 1
2.
5
想一想
1、数列6,4,2,0,-2,-4…是否为等差数列?若是,
则公差是多少?若不是,说明理由
公差是-2
2、常数列a,a,a,…是否为等差数列?若是,则公差是
.
16
(1) 已知a4=10, a7=19,求a1与d.
(2) 已知a3=9, a9=3,求d与a12.
解:(1)由题意知,
a4=10=a1+3d 解得:
a1=1
a7=19=a1+6d
d=3
即等差数列的首项为1,公差为3 (2)由题意知,
a3=9=a1+2d ห้องสมุดไป่ตู้得: a9=3=a1+8d
a1=11 d=-1
25, 24 1 , 24, 23 1 , 23, 22 1 , 22, 21 1 , 21
2
2
2
2
.
4
等差数列定义
一般地,如果一个数列从第2项起,每一项与它的前一项
的差等于同一个常数,那么这个数列就叫做等差数列。这 个常数叫做等差数列的公差,通常用字母d表示。
递推公式:an-an-1=d (d是常数,n≥2,n∈N*)
(2)-401是不是等差数列-5,-9,-13,…的项?如 果是,是第几项?
解:(1)由a1=8, d=5-8=-3, n=20,得
a20= 8 + (20-1) ×(-3)=-49
(2) 由a1=8, d=-9-(-5)=-4,
所以数列的通项公式为 an=-5-4(n-1) 由题意知,问是否存在正整数n,使得
(第一课时)
.
1
引入
请同学们仔细观察一下,看看以下 数列有什么共同特征?
.
2
引例一
1.一个剧场设置了20排座位,这个剧场从第1 排起各排的座位数组成数列:
38,40,42,44,46,…
.
3
引例二 匡威运动鞋(女)的尺码(鞋底长,单位是cm)
(2)全国统一鞋号中,成年女鞋的各种尺码 由大到小可排列为
相关文档
最新文档