无粘结预应力钢绞线安装示意图

无粘结预应力钢绞线安装示意图

图无粘结预应力钢绞线安装示意图

预应力施工工艺及注意事项

桥面负弯矩张拉施工工艺 一、桥面负弯矩后张法张拉工艺原理 在混凝土结构施工时,按设计要求预留出相应的预应力孔道,待构件混凝土的强度、弹性模量、龄期达到设计规定的要求时,穿入预应力钢绞线,用张拉机具进行张拉,并用锚具把张拉后的预应力钢绞线锚固在构件的端部。预应力筋的张拉力主要靠构件端部的锚具传给混凝土,使其产生压应力。张拉锚固后,在预留孔道内注入水泥浆,使预应力钢绞线不被锈蚀,并与构件形成整体,增加了构件刚度,有效的控制了构件的抗裂度。 二、施工准备 (1)钢绞线的准备 预应力钢束采用标准强度为fpk=1860MPa的φ低松驰高强度预应力钢绞线,弹性模量Ep=×105MPa,钢绞线运至现场后须底部垫方木,上面覆盖雨布,防止钢绞线锈蚀,降低钢绞线强度与延伸率。 (2)锚具的准备 桥面负弯矩张拉采用夹片式圆形锚具,锚具与夹片须配套使用。25m梁板锚具型号为M15-5,30m梁板锚具型号为M15-6。施工前对进场锚具按规范要求进行进场检验,未经检验或者检验不合格者不得用于施工现场。 ①工作锚具:张拉时与锚垫板产生反作用力,承载工作夹片对抗钢绞线拉力,张拉完毕后永久性留在梁体中。工具锚:比工作锚具半径要大,厚实。张拉时承载工具夹片对钢绞线进行张拉,张拉完毕后可以取下,重复使用。 ②工作夹片:一般由两片夹片组成,张拉时与工作锚具共同受力,张拉完毕便留在锚具上,为永久性使用材料。工具夹片:一般由三片夹片组成,张拉时与工具锚共同受力,张拉完毕后可以取下,可重复使用。 (3)张拉机具的准备 桥面负弯矩张拉采用27t液压式千斤顶及其配套的油泵、油表,完全能够满足计算的控制吨位的要求。张拉用的千斤顶与压力表应配套标定、配套使用。根据油顶、油表的校准证书,计算所需张拉力对应的油表读数,作为张拉力控制依

预应力钢绞线要求规范

预应力钢绞线规 预应力钢绞线规 预应力砼连续梁结构整体性好、大跨度,减少桥面伸缩缝个数,在高速公路和城市快速路工程中得到广泛应用。本文就几座预应力砼连续梁桥谈一下长束预应力质量控制的几个关键因素。 一、预应力钢绞线安装 预应力钢束的孔道位置、钢绞线是否发生缠绞现象是质量控制的关键。孔道位置不准确,改变了结构受力状态,如果曲线孔道标高变化段不圆顺还会增大预应力孔道摩阻损失,因此孔道位置准确与否直接关系到施工的预应力度能否与设计的预应力度相吻合,对结构安全和工程使用阶段是否会产生裂缝都有很深的影响。多根钢绞线如果缠绞在一起,拉时各根钢绞线受力不均匀,增大了钢绞线之间的摩阻,造成预应力损失加大。 实际施工中很多施工单位并不重视这些细部工作,固定钢束的井字架位置不准确或不按照规和设计规定的间距布设,必然造成钢束位置与设计不符、有的还会在曲线变化段产生急弯(半径太小)或孔道局部偏差过大。目前仍有小部分队伍使用人工进行穿束,尤其对多根钢绞线的长束重量很大,人工穿束费时费力,容易造成工人转动钢束穿进,使钢绞线互相缠绞在一起。市某快速干道(高架桥)工程四标段共有九联连续梁,施工时固定钢束用的井字架间距为1米,梁高1.6米,因此竖弯变化量不大,间距满足要求,但是施工时由于工人工作不认

真使井子架坐标不准确,并且采用人工穿束,束长在100米到120米不等。拉时发现大部分钢束的伸长值与理论伸长值不符(有的比理论值少11%),拉过程中经常听到部钢束缠绞在一起后被拉开的声音,当时立即对设备进行检定,在设备没有问题的情况下设计单位、监理单位和施工单位开始对问题进行分析,其中钢绞线计算伸长值时采用实测弹性模量,μ、κ取值按规推荐值。设计单位对结构进行重新验算,最后确定在保证拉力的情况下,伸长值误差保证在12%以,无疑降低了结构安全系数。 二、预应力钢绞线拉 1、拉控制应力与伸长值 拉控制应力能否达到设计规定值直接影响预应力效果,因此拉控制应力是拉中质量控制的重点,拉控制应力必须达到设计规定值,但是不能超过设计规定的最大拉控制应力。预应力值过大,超过设计值过多,虽然结构抗裂性较好,但因抗裂度过高,预应力筋在承受使用荷载时经常处于过高的应力状态,与结构出现裂缝时的荷载接近,往往在破坏前没有明显的预兆,将严重危害结构的使用安全。因此为了准确把握预应力的施加情况,以应力控制方法拉时必须以伸长值进行校核。因此能够提供准确的理论伸长值显得尤为重要,必须对《公路桥涵施工技术规》(JTJ041-2000)中理论伸长值的计算有个正确理解:①预应力孔道坐标符合设计要求、曲线孔道圆顺的情况下,孔道局部偏差和预应力筋与孔道壁间的摩擦系数对理论伸长值大小的影响不大,均可按照规取中值。②钢绞线的弹性模量Ep取值对理论伸长值大小

预应力钢绞线发展现状及分析

Metallurgical Engineering 冶金工程, 2020, 7(1), 22-27 Published Online March 2020 in Hans. https://www.360docs.net/doc/406571178.html,/journal/meng https://https://www.360docs.net/doc/406571178.html,/10.12677/meng.2020.71004 Status Quo and Development Trend of Prestressed Steel Strand Dong Liu, Jiyuan Wang, Wenzhong Wang, Shanglin Lv National Construction Steel Quality Supervision and Test Centre, Central Research Institute of Building and Construction Co., Ltd., MCC, Beijing Received: Feb. 13th, 2020; accepted: Feb. 27th, 2020; published: Mar. 5th, 2020 Abstract With the rapid development of prestressed concrete engineering technology in China, the pre-stressed steel strand industry has continued to progress. This article introduces the development present situation of prestressed steel strand industry, elaborates the related question combining with the domestic situation, and analyzes its trend. Keywords Prestressed Steel Strand, Status Quo, Development Trend 预应力钢绞线发展现状及分析 刘冬,王纪元,王文中,吕尚霖 中冶建筑研究总院有限公司,国家建筑钢材质量监督检验中心,北京 Email: liudong@https://www.360docs.net/doc/406571178.html, 收稿日期:2020年2月13日;录用日期:2020年2月27日;发布日期:2020年3月5日 摘要 随着我国预应力混凝土工程技术的快速发展,预应力钢绞线行业持续进步,本文介绍了预应力钢绞线行业的发展现状,并结合国内情况阐述了相关问题,进行了趋势分析。 关键词 预应力钢绞线,现状,发展趋势

预应力混凝土用钢绞线GB

预应力混凝土用钢绞线GB/T5224-2003 结构公称直径 (mm) 公称截面 积 (mm2) 允许 偏 差 (mm) 强度 级别 (Mpa) 整根钢绞线 的最大负 荷 (KN) 规定非比例 延伸力 F p0.2/(KN) 最大力总伸长率 (L0≥500mm) Agt/% 每 1000m 理论重 量 (kg) 1000h松 弛率%不 大于 初始负荷 为70%公 称最大负 荷 不小于 1×7标准 型 9.50 54.8 +0.30 -0.15 1860 10291.8 3.5 432 2.5 1960 107 96.30 1860 138 124 582 11.10 74.20 1960 145 131 12.70 98.70 +0.40 -0.20 1860 184 166 775 1960 193 174 1720 241 217 1101 1860 260 234 1960 274 247 15.70 150+0.40 -0.20 1770 266239 1178 1860 279 251 1720 327 294 1500 17.80 191 1860 353 318 模拔 型 12.70 112 +0.40 -0.20 1860 209 178 890 15.20165 1820 300 270 1295 18.00 223 1820 300 255 1750 说明: 本标准是 GB/T 5224-1995标准的修改版,对应国际标准ISO 6934-4:1991《预应力混凝土用钢 第4部分钢纹线》。本标准与ISO 6934-4:1991的一致性程度为非等效,主要差异如下: —增加了品种、强度级别,调整了规格; —取消了I级松弛钢绞线; —提高了屈强比; —增加了附录A疲劳试验和附录B偏斜拉伸试验; —取消了1X19结构钢绞线。 本标准代替GB/T 5224-1995《预应力混凝土用钢绞线》。 本标准与GB/T 5224-1995标准相比主要变化如下: —增加了品种、规格、强度级别;

年预应力钢绞线张拉施工方案

箱梁预应力施工方案 一、工程概况 (一)目的 编制箱梁预应力施工作业指导书的目的就是为了更好的指导施工生产,使现场作业人员能够规范施工。 (二)编制依据 《客运专线铁路桥涵工程施工质量验收暂行标准》 《客运专线铁路桥涵工程施工技术指南》 《京沪铁路客运专线施工图设计文件》 (三)适用范围 本施工方案适用于罗而庄特大桥、玉符河特大桥、红石岭特大桥、井字坡特大桥的连续箱梁后张法预应力工程施工。 二、施工部署及施工方案 (一)、施工材料 1、材料检验及张拉设备校验 1).预应力钢绞线检验:采用高强度低松驰绞线¢15.24mm,标准强度fpk=1860MPa。表面质量、直径检查:从每批中抽取3盘进行外观检查,表面不得有润滑剂,允许有轻微浮锈但不得锈蚀成可见麻坑。钢绞线内不得有折断、横裂和相互交叉的钢丝。 2).钢绞线力学性能检验:抽取外观检查合格的钢绞

线进行钢绞线极限应力、破断拉力、弹性模量等力学性能检验。 3).张拉设备校验:千斤顶与压力表配套校验,确定张拉力与压力表读数之间关系曲线。考虑到可能出现压力表损坏情况,千斤顶与压力表进行交叉检验,每台千斤顶均有与4只压力表相关的张拉力与表读数关系曲线。 4).锚具及夹具检验:抽取10%进行外观检查,不得有裂纹、伤痕。抽取3%的锚具夹具,进行磁力探伤、洛氏硬度、锚固性能等试验。 2 预应力筋施工 1).钢绞线的下料与编束 钢绞线采用(GB/T 5224)Φ15.24mm低松弛高强预应力钢绞线。钢绞线的下料用砂轮切割机切割,不得采用电弧切割。钢绞线切割时,在每端离切口30~50mm处用铁丝绑扎。 钢绞线的盘重大、盘卷小、弹力大、为了防止在下料过程中钢绞线紊乱并弹出伤人,事先制作一个简易的铁笼,下料时,将钢绞线盘卷在铁笼内,从盘卷中央逐步抽出,以策安全。 钢绞线编束用20号铁丝绑扎,铁丝扣向里,间距1~1.5m。编束时应先将钢绞线理顺,并使各根钢绞线松紧一致。绑好后的钢绞线束编号挂牌堆放。 2).预应力筋穿入孔道

无粘结预应力钢绞线

无粘结预应力钢绞线 1范围 本标准规定了无粘结预应力钢绞线产品的标记、要求、测试方法、检测规则以及标志、包装、运输、贮存。 2规范性引用文件 下列文件中的条款通过本标准的引用而称为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T5224-2003 预应力混凝土用钢绞线 GB11116 高密度聚乙烯树脂 GB/T1040 塑料拉伸试验方法 GB/T9341 塑料弯曲试验方法 JG3007-1993 无粘结预应力筋专用防腐润滑脂 3术语、定义和符号 3.1术语和定义 下列术语和定义适用于本标准。 3.1.1无粘结预应力钢绞线 Unbonded prestressing steel strand 用防腐润滑脂和护套涂包的钢绞线。 3.1.2 无粘结预应力筋 Unbonded tendons 采用无粘结预应力钢绞线的预应力筋,这种预应力筋与其周围混凝土之间可永久地相

对滑动。 3.1.3防腐润滑脂 corrosion-reistant and lubricating grease 适用于无粘结预应力筋的专用防腐润滑脂,该润滑脂是用脂肪酸混合金属皂将深度精制的矿物润滑稠化而成,并加入了多种添加剂,具有防锈防蚀性能。 3.1.4护套 sheathing 包裹在钢绞线和防腐润滑脂外的塑料套管。用以保护预应力钢绞线不受腐蚀,并防止与周围混凝土之间发生粘结。 3.2符号 下列符号适用于本标准。 W1-每米长无粘结预应力钢绞线的质量,单位为克每米(g/m); W2-每米长无粘结预应力钢绞线去除油脂后的钢绞线和护套的质量,单位为克每米(g/m); W3-每米长无粘结预应力钢绞线中油脂的质量,单位为克每米(g/m), μ-无粘结预应力筋中钢绞线与护套内壁之间的摩擦系数; k-无粘结预应力筋每米长度局部偏差的摩擦系数; F1-张拉端拉力,单位千牛(KN); F2-固定端拉力,单位千牛(KN); θ-从张拉端至计算截面无粘结预应力筋曲线段所包的圆心角,单位为弧度(rad); χ-从张拉端至计算截面无粘结预应力筋的长度,单位为米(m)。 4标记 4.1标记内容

预应力混凝土用钢绞线

一.目的 检测预应力混凝土用钢丝的性能指标,指导检测人员按规程正确操作,保证检测结果科学准确。 二.检测参数及执行标准 表面质量、尺寸、每米质量、拉伸试验。 执行标准: GB/T228 金属拉伸试验方法 GB/T238 金属线材反复弯曲试样方法 GB/T239 金属线材扭转试验方法 GB/T2103 钢丝验收、包装、标志及质量证明书的一般规定 GB/T10120-1996 金属应力松弛试验方法 GB/T17505 钢及钢产品交货一般技术要求 YB/T146 预应力钢丝及钢绞线用热轧盘条 YB/T170 制丝用非合金钢盘条 三.适用范围 适用于工业与民用建筑的预应力混凝土用钢丝。 四.职责 检测人员必须认真执行国家标准,按操作规程做好检测工作,整理数据记录,编制报告,并给出等级结果的判定。 五.样本大小及抽样方法 1、表面:逐盘。 2、外观尺寸:逐盘。

3、消除应力钢丝伸直性:每盘1根,每根1米。 4、抗拉强度:每盘1根。 5、规定非比例伸长应力:每批3根。 6、最大力下总伸长率:每批3根。 7、断后伸长率:每盘1根。 8、弯曲:每盘1根。 9、扭转:每盘1根。 10、断面收缩率:每盘1根。 11、镦头强度:每批3根。 12、应力松弛性能:每合同批不小于1根。 取样部位:在每(任一)盘中任意一端截取。 六.仪器设备 60吨试验机 七.环境条件 试验一般在室温10℃~35℃范围内进行。 八.试验步骤及数据处理 1.表面检验:表面质量用目视检查。 2.外形尺寸检验:①钢丝直径应用分度值为0.01mm的量具测量,在任何部位同一截面两个垂直方向上测量②螺旋肋钢丝的导程,刻痕钢丝的刻痕长度、节距应沿钢丝轴线方向测量,螺旋肋钢丝的肋宽应在螺旋肋法向上测量③每米质量测量:钢丝单位质量应采用如下方法:取3根长度不小于500mm的钢丝,每根钢丝长度测量精确至1mm,称量每根钢丝的质量,

14-16缓粘结预应力技术及其工程应用定稿

14 产品与技术 Building Structure We learn we go 缓粘结预应力技术及其工程应用(一) 吴转琴,李佩勋,尚仁杰,范蕴蕴,张利军/中冶建筑研究总院有限公司 [摘要] 缓粘结预应力技术是在克服有粘结和无粘结预应力的缺点,并继承其优点的基础上发展起来的一项预应力技术。介绍了缓粘结预应力的技术特点和技术关键、我国的发展现状以及相关规范编制情况等,通过8个典型工程介绍了该项技术在混凝土结构工程中的应用情况。 [关键词] 缓粘结预应力;有粘结预应力;无粘结预应力;预应力混凝土;胶粘结 0 引言 缓粘结预应力技术是在有粘结和无粘结之后发展起来的一种新的预应力技术[1],具有无粘结预应力技术施工方便、造价低和有粘结预应力技术结构延性好、抗震性能优等特点。日本在1987年开始研制缓粘结预应力筋,并于1996年开始应用于桥梁的横向预应力部位,2001年应用在桥梁的纵向预应力部位。我国铁路桥梁也在20世纪90年代中期开始研究采用缓凝砂浆作为胶粘剂[2-4]的缓粘结预应力技术。2002年前后,中冶集团建筑研究总院[5-7]和天津市建筑科学研究院[8] 独自开始用环氧树脂作为胶粘剂研制缓粘结预应力筋。2006年中冶集团建筑研究总院缓粘结预应力钢绞线生产线研制成功[9],并在工程中应用,2008年相关行业标准立项并开始编制,2009年被列为住房和城乡建设部新技术推广项目。 1 缓粘结预应力技术特点 缓粘结预应力筋构造见图1,在预应力筋的外侧、外包护套内部包裹一定厚度的特殊胶凝材料,其前期相当于无粘结的防腐油脂,具有一定流动性及对钢材有良好的附着性。经挤压涂包工艺将预应力筋及外包护套内的空隙填充并紧密封裹,随时间推移胶凝材料逐渐固化,与预应力筋、外包护套之间产生粘结力。外包高强护套材料表面通过机械压成如波纹管状的波纹,当胶凝材料完全固化后,通过缓粘结粘合剂凹凸不平的压痕与周围混凝土咬合,预应力筋不能在混凝土中自由滑动,缓粘结预应力便产生有粘结预应力筋的力学效果。同时,它具有无粘结预应力技术简便宜行的施工优点,克服有粘结施工工艺复杂、预应力节点使用条件受限的弊端,因此,缓粘结预应力技术具有广泛的应用前景。从缓粘结预应力混凝土的咬合锚固原理可以看出,缓粘结预应力技术的关键有2点:首先是可以控制固化时间的缓粘结粘合剂,使预应力筋前期像无粘结筋一样可以自由滑动和张拉;其次是缓粘结钢绞线外包护套的压痕,只有通过压痕才可以使钢绞线与混凝土紧密咬合,可靠粘结,达到有粘结预应力的粘结效果和力学性能。 《混凝土结构设计规范》(GB50010—2002)对预应力 混凝土框架梁抗震提出要求:宜采用有粘结预应力技术,主要是为了提高结构延性和抗震能力,缓粘结预应力混凝土结构如果可以达到有粘结预应力混凝土结构的粘结能力和延性,就可在许多情况下替代有粘结预应力技术,避免有粘结预应力混凝土框架梁施工和构造的困难。 B-B 图1 缓粘结预应力筋示意图(A-A 凹痕断面;B-B 凸肋断面) 2 缓粘结预应力技术相关标准 随着国内缓粘结预应力技术研究的不断深入,该项技术已趋向成熟,国内已有多项工程采用,工程各方迫切需要规范缓粘结预应力筋的产品技术参数以及缓粘结预应力混凝土结构设计、施工和验收的标准。结合缓粘结预应力技术的研发和推广应用,中冶建筑研究总院和中国京冶工程技术有限公司先后于2007年和2008年在住房和城乡建设部申请了缓粘结预应力技术的三项标准《缓粘结预应力混凝土结构技术规程》、《缓粘结预应力钢绞线用胶粘剂》及《缓粘结预应力钢绞线》主编工作。目前,2项产品标准已经完成了征求意见稿,技术规程完成了初稿。 《缓粘结预应力钢绞线用胶粘剂》规定了缓粘结预应力钢绞线专用粘合剂的术语定义、型号及标记、技术要求、试验方法、检验规定、标志、包装、贮存和运输。特别对粘合剂的张拉适用期和固化时间给出了明确的定义,对固化后粘合剂的弯折强度、抗压强度和拉剪强度给出了规定,根据目前研究成果,粘合剂的弯折强度可以达到20MPa ,抗压强度可以达到50MPa ,拉剪强度可以达到10MPa 。 《缓粘结预应力钢绞线》规定了缓粘结预应力钢绞线的术语与定义、产品标记、技术要求、生产工艺、试验方法、检验规则以及包装、标志、运输、贮存等。特别是给出了缓粘结预应力钢绞线外包护套肋痕深度的要求、缓粘结胶粘剂涂层的数量要求等,目前生产的缓粘结钢绞线肋痕深度达到1.5mm ,缓粘结粘合剂在涂塑前的外径达到19.5mm ,最薄

预应力用材、钢绞线、锚夹具、波纹管A卷汇总

江苏省建设工程质量检测人员岗位合格证考核试卷 预应力用材、钢绞线、锚夹具、波纹管(A卷) (满分100分,时间80分钟) 姓名考试号单位 一、单项选择题(每题1分,共计40分) 1、对1×7结构钢绞线,测量最大力总伸长率时,原始标距应。 A、≥300mm B、≥400mm C、≥500mm D、≥800mm 2、预应力混凝土用钢绞线,其规定非比例伸长应力Rp0.2应不小于公称抗拉强度的。 A、80% B、90% C、75% D、85% 3、标记为“预应力钢绞线1×7-15.20-1860-GB/T5224-2003”的钢绞线的性能结果数值应进行修约,现行标准中规定Rm的修约间隔为MPa。 A、1 B、5 C、10 D、50 4、GB/T 21073-2007 环氧涂层七丝钢绞线规定填充型环氧涂层钢绞线,固化后的涂层厚度应在mm之间,涂装型环氧涂层钢绞线,固化后的涂层厚度应在mm之间。 A、0.38~0.65 0.65~1.14 B、0.38~1.140.65~1.15 C、0.38~1.000.65~2.00 D、0.38~1.140.65~1.14 5、依GB/T 52234-2003 预应力混凝土用钢绞线,其标记为: 1X7-15.20-1860-GB/T 5224-2003 表示。: A、公称直径为15.20 mm,强度级别为1860MPa的七根钢丝捻制的标准型钢纹线 B、公称直径为15.24 mm,强度级别为1860MPa的七根钢丝捻制的标准型钢纹线 C、公称直径为15.20 mm,强度级别为1570MPa的七根钢丝捻制的标准型钢纹线 D、公称直径为15.24 mm,强度级别为1570MPa的七根钢丝捻制的标准型钢纹线 6、一组三根钢绞线,直径Φ15.20,强度等级1860MPa,拉伸试验时,实测屈服荷载分别为261kN、258kN、257kN。破断荷载分别为270kN、260kN、261kN,实测最大力总伸长率分别为 4.2%、 3.7%、 3.6%,计算其屈服强度分别为,,。 A 1860 MPa、1840 MPa、1840 MPa; B 1864 MPa、1843 MPa、1836 MPa;

无粘结筋及张拉配套

目录 第一章无粘结筋布置 (1) 第二章无粘结筋及张拉配套锚固系统 (2) 第三章无粘结预应力楼板施工顺序 (3) 第四章无粘结筋的下料及铺放 (4) 第五章模板安装与拆除 (5) 第六章混凝土浇筑 (6) 第七章张拉与封端 (7) 第八章标准层施工进度计划 (8) 第九章技术要求 (9)

第一章无粘结筋布置 该工程楼盖框架柱以内无粘结筋呈双向布置,形成双向板,无粘结筋多为曲线形状,楼板四周为悬挑板,无粘结筋有曲线型、直线型两种,此部分除配有预应力底筋外,尚有部分无粘结面筋,以承受负弯矩,板配筋详见图4-1-1(图中除注明直束外,其余均为曲束)。框架连续梁内配有7Uφj15无粘结钢绞线,暗梁内配3Uφj15无粘结钢绞线,见图4-1-2。

第二章无粘结筋及张拉配套锚固系统 1.预应力筋用φj15低松弛高强度钢绞线,极限强度达l860MPa,无粘结筋用量约90t。预应力筋张拉端用QM夹片锚具(图4-1-3),固定端用挤压锚具(图4-l-4)。 2.张拉设备采用YC一20D型千斤顶,ZB4—500型电动油泵及前卡千斤顶。预应力张拉吨位用量程60MPa精度1.5级的压力表控制。使用前由国家工程质量检测中心在油泵、千斤顶和压力表配套的条件下逐套标定。

第三章无粘结预应力楼板施工顺序 放线下料→固定端挤压→修补盘放→铺筋验收→混凝土浇筑养护→张拉→封端拆模。

第四章无粘结筋的下料及铺放 l.下料长度的计算:预应力筋分一端张拉和两端张拉两种。 一端张拉时(图4-1-5): L总=L1+L2+L3 两端张拉时: L总=L1+2L2 式中L1—对直线筋,两端承压板之间的长度;对曲线筋,.根据反弯点位置分解为多段单波抛物线,分段计算,然后累加; L2—张拉端预留长度,对一般千斤顶为700mm,对前卡千斤顶为250mm; L3—由挤压锚具型号确定,一般情况下为100mm。 2.无粘结筋的下料组装:采用砂轮切割机下料,固定端组装用YCJ一600千斤顶。 3.无粘结筋的铺设固定:板内绑扎非预应力底筋后,开始铺设无粘结预应力底筋,最后铺设非预应力面筋及无粘结面筋。 双向连续平板中,无粘结筋大都是沿两个方向曲线布置,互相穿插,施工操作较困难,铺设前根据双向钢绞线各交点的标高,编出无粘结筋的铺设顺序图,标高低的先放,高的后放。板内无粘结筋用φl2钢筋制成各种标高的支架固定,在反弯点位置及中间每隔1.5m设1个支架。 梁内无粘结筋在支座处可直接用铅丝绑在非预应力筋骨架上,在中点及反弯点位置沿梁宽方向每隔1m用φ12钢筋焊在梁箍筋上,无粘结筋从此筋上通过并绑扎牢固。 预应力筋的净保护层在梁中为40mm,在板中为20mm。水电预埋管铺设时要避免移动预应力筋的垂直位置。 张拉端的承压板用铁钉固定在端部模板上,以保持张拉作用力与承压板面垂直。

预应力钢绞线后张法施工技术

预应力钢绞线后法施工技术 一、预制场地选择2 1、预制场位置2 2、预制场的面积2 3、预制场的布置2 二、钢绞线的技术标准2 1、技术要求2 2、钢绞线的验收与检测3 三、锚具、夹具和连接器要求5 1、锚固能力5 2、分级拉5 3、自锚能力5 4、锚具性能5 5、进场验收规定5 四、锚具与千斤的配套选择6 1、DM型锚具6 4、QM型锚具7 5、OVM型锚具7 6、YM型锚具8 7、XYM型锚具8 8、 TM型锚具8 9、 STM型锚具9 10、BUPC无粘结预应力筋拉锚固体系9 五、后法预应力梁拉前的准备工作9 1、管道摩阻力和锚口损失9 2、千斤顶配套校验9 3、单质材料试验9 4、锚具检查9 5、钢绞线(钢丝束)理论伸长值的计算10 6、管道清理10 7、锚固率试验10 8、拉工艺审查11 六、梁后法的拉11 1、拉前对梁砼强度的检验11 2、穿束前后的检查11 3、拉顺序11 4、拉方式11 5、拉程序11 七、后法预应力梁拉现场施工原始记录12 后法预应力梁拉现场施工原始记录表12 八、 OVM锚具拉注意事顶13 1、工具夹片锚和工作锚夹片13 2、锚固回油13

3、限位板14 4、曲线管道拉14 5、锚具、千斤顶安装14 6、钢绞线切割14 7、OVM锚特点14 8、管道压浆14 9、拉人员条件15 10、滑丝、断丝15 九、YCW型千斤顶使用时注意事项15 十、后法拉孔道压浆16 后预应力筋制作安装允许偏差17 预应力孔道压浆现场施工原始记录18 钢绞线检验报告19 锚具、夹片硬检验报告20 一、预制场地选择 1、预制场位置 地理与地形条件;雨季与洪水期是否影响;冻胀的影响;运输、安装方法,达到预制、运输、安装方便,安全。 2、预制场的面积 预制梁数量;模板选择;工期;存梁面积;安装方法。 3、预制场的布置 考虑钢筋作业、砼拌和运输;预制件吊装、运输路线。 二、钢绞线的技术标准 1、技术要求 1)捻制预应力钢绞线的钢丝应符合GB/T5223中相应条款的规定,钢绞线应

预应力钢绞线规范

预应力钢绞线规范 预应力钢绞线规范 预应力砼连续梁结构整体性好、大跨度,减少桥面伸缩缝个数,在高速公路和城市快速路工程中得到广泛应用。本文就几座预应力砼连续梁桥谈一下长束预应力质量控制的几个关键因素。 一、预应力钢绞线安装 预应力钢束的孔道位置、钢绞线是否发生缠绞现象是质量控制的关键。孔道位置不准确,改变了结构受力状态,如果曲线孔道标高变化段不圆顺还会增大预应力孔道摩阻损失,因此孔道位置准确与否直接关系到施工的预应力度能否与设计的预应力度相吻合,对结构安全和工程使用阶段是否会产生裂缝都有很深的影响。多根钢绞线如果缠绞在一起,张拉时各根钢绞线受力不均匀,增大了钢绞线之间的摩阻,造成预应力损失加大。 实际施工中很多施工单位并不重视这些细部工作,固定钢束的井字架位置不准确或不按照规范和设计规定的间距布设,必然造成钢束位置与设计不符、有的还会在曲线变化段产生急弯(半径太小)或孔道局部偏差过大。目前仍有小部分队伍使用人工进行穿束,尤其对多根钢绞线的长束重量很大,人工穿束费时费力,容易造成工人转动钢束穿进,使钢绞线互相缠绞在一起。沈阳市某快速干道(高架桥)工程四标段共有九联连续梁,施工时固定钢束用的井字架间距为1米,梁高1.6米,因此竖弯变化量不大,间距满足要求,但是施工时由于工人

工作不认真使井子架坐标不准确,并且采用人工穿束,束长在100米到120米不等。张拉时发现大部分钢束的伸长值与理论伸长值不符(有的比理论值少11%),张拉过程中经常听到内部钢束缠绞在一起后被拉开的声音,当时立即对设备进行检定,在设备没有问题的情况下设计单位、监理单位和施工单位开始对问题进行分析,其中钢绞线计算伸长值时采用实测弹性模量,μ、κ取值按规范推荐值。设计单位对结构进行重新验算,最后确定在保证张拉力的情况下,伸长值误差保证在12%以内,无疑降低了结构安全系数。 二、预应力钢绞线张拉 1、张拉控制应力与伸长值 张拉控制应力能否达到设计规定值直接影响预应力效果,因此张拉控制应力是张拉中质量控制的重点,张拉控制应力必须达到设计规定值,但是不能超过设计规定的最大张拉控制应力。预应力值过大,超过设计值过多,虽然结构抗裂性较好,但因抗裂度过高,预应力筋在承受使用荷载时经常处于过高的应力状态,与结构出现裂缝时的荷载接近,往往在破坏前没有明显的预兆,将严重危害结构的使用安全。因此为了准确把握预应力的施加情况,以应力控制方法张拉时必须以伸长值进行校核。因此能够提供准确的理论伸长值显得尤为重要,必须对《公路桥涵施工技术规范》(JTJ041-2000)中理论伸长值的计算有个正确理解:①预应力孔道坐标符合设计要求、曲线孔道圆顺的情况下,孔道局部偏差和预应力筋与孔道壁间的摩擦系数对理论伸长值大小的影响不大,均可按照规范取中值。②钢绞线的弹性模量Ep取

现浇混凝土后张法缓粘结预应力施工工法

缓粘结预应力施工工法 XX建设集团有限公司 1.前言 缓粘结预应力是继有粘结预应力、无粘结预应力后的第三代预应力技术,她摒弃了有粘结预应力施工复杂、孔道灌浆质量难以保证、张拉端做法困难的缺点,以及无粘结预应力在抗震及主要承受动荷载的结构体系中的不足,经过材料、结构、机械等多种专业的科学工作者研发数年推出的最新的预应力技术。本文通过对鄂尔多斯机场改扩建工程新航站楼工程大跨度缓粘结预应力梁和大平台大跨度缓粘结预应力梁板施工经验进行总结,形成了现浇混凝土后张法缓粘结预应力施工工法。 2.特点 2.1施工简便。 2.2与混凝土粘结锚固性能良好、质量容易保证,从而可以替代有粘结及无粘结预应力产品。 2.3缓粘结预应力技术是处在无粘结预应力技术与有粘结预应力技术间的一种新的预应力技术,它既具有无粘结预应力的布索自由、使用方便、无需孔道的设置和压浆的优点,又具有有粘结预应力技术在后期使用上的特点和安全性的一种新预应力工艺。 2.4预应力钢绞线和护套之间填充有需经过一定期限才可以凝固的粘结剂层,护套外表面具有竹节状凸起。缓粘结预应力筋在布筋和张拉阶段预应力筋与混凝土间可以滑动,当时间到达一定期限,如根据需要,时间可以在2个月到1年之间,粘结剂层开始凝固,从而将预应力筋和混凝土之间完全粘结,受力过程中具有有粘结预应力结构的优点,能够限制裂缝宽度、提高延性。 2.5由于无需灌浆因而也显著减少污染物(砂浆)的排放。 3.适用范围 适用于大跨度、大空间的建筑工程,如大跨度的混凝土梁、大偏心的框架柱、大柱网的混凝土楼板、大悬臂梁、转换梁或转换板、抗拔桩、基础地梁、地下室

底板等混凝土结构中的各种构件。 4.工艺原理 缓粘结预应力是在预应力筋的外侧、外包护套内部包裹一定厚度的特殊胶凝材料,其前期相当于无粘结的防腐油脂,具有一定流动性及对钢材良好的附着性,经挤压涂包工艺将预应力筋及外包护套内的空隙填充并紧密封裹,随时间推移胶凝材料逐渐固化,与预应力筋、外包护套之间产生粘结力。外包高强护套材料表面通过机械压有如波纹管状的波纹,当胶凝材料完全固化后,缓粘结预应力便产生有粘结预应力筋的力学效果。缓粘结预应力筋结构示意图: 5.施工工艺流程及施工要点 5.1施工工艺流程:缓粘结预应力梁的施工步骤与无粘结预应力梁基本相同。以梁内缓粘结预应力筋为例,整个过程如下:加工缓粘结预应力筋、锚具、承压板、螺旋筋、定位筋→支设梁底模板→绑扎梁普通钢筋→在梁箍筋上定好缓粘结钢绞线的分布间距及高度→布置定位筋→铺设缓粘结预应力筋→安装张拉端穴模、承压板及螺旋筋,并用绑丝将张拉端组合件同模板固定→调整缓粘结预应力筋曲线→检查缓粘结预应力筋有无破损、如有修补→浇筑混凝土→清理张拉端承压板前砼→安装锚具,砼达到设计强度时且在缓粘结剂合理的施工周期内进行张拉→张拉完毕后进行切筋、张拉端锚具防腐处理。详见下图:

预应力钢绞线安装

预应力混凝土连续梁质量控制的几个关键因素 发布日期:2008-02-29 所属类别:施工技术 -------------------------------------------------------------------------------- 一、预应力钢绞线安装 预应力钢束的孔道位臵、钢绞线是否发生缠绞现象是质量控制的关键。孔道位臵不准确,改变了结构受力状态,如果曲线孔道标高变化段不圆顺还会增大预应力孔道摩阻损失,因此孔道位臵准确与否直接关系到施工的预应力度能否与设计的预应力度相吻合,对结构安全和工程使用阶段是否会产生裂缝都有很深的影响。多根钢绞线如果缠绞在一起,张拉时各根钢绞线受力不均匀,增大了钢绞线之间的摩阻,造成预应力损失加大。 实际施工中很多施工单位并不重视这些细部工作,固定钢束的井字架位臵不准确或不按照规范和设计规定的间距布设,必然造成钢束位臵与设计不符、有的还会在曲线变化段产生急弯(半径太小)或孔道局部偏差过大。目前仍有小部分队伍使用人工进行穿束,尤其对多根钢绞线的长束重量很大,人工穿束费时费力,容易造成工人转动钢束穿进,使钢绞线互相缠绞在一起。沈阳市某快速干道(高架桥)工程四标段共有九联连续梁,施工时固定钢束用的井字架间距为1米,梁高1.6米,因此竖弯变化量不大,间距满足要求,但是施工时由于工人工作不认真使井子架坐标不准确,并且采用人工穿束,束长在100米到120米不等。张拉时发现大部分钢束的伸长值与理论伸长值不符(有的比理论值少11%),张拉过程中经常听到内部钢束

缠绞在一起后被拉开的声音,当时立即对设备进行检定,在设备没有问题的情况下设计单位、监理单位和施工单位开始对问题进行分析,其中钢绞线计算伸长值时采用实测弹性模量,μ、κ取值按规范推荐值。设计单位对结构进行重新验算,最后确定在保证张拉力的情况下,伸长值误差保证在12%以内,无疑降低了结构安全系数。 沈大高速公路苏家屯互通立交D匝道为4孔一联的曲线连 续梁,梁长220米,曲线半径55米,因此钢束既有平弯又有竖弯,井字架按照50cm间距布设而且坐标准确,采用人工配合机械穿束(将钢绞线束固定在一个锥形的牵引装臵上,用卷扬机牵引锥形牵引装臵),在广州南部快速路工程14标马克特大桥2联100米连续梁施工中,同样使用以上方法,由于特别注意控制孔道坐标和孔道线形圆顺,并且很好的避免了钢绞线间的互相缠绞,张拉过程中以上两项工程钢束伸长值均满足要求。 二、预应力钢绞线张拉 1、张拉控制应力与伸长值:张拉控制应力能否达到设计规定值直接影响预应力效果,因此张拉控制应力是张拉中质量控制的重点,张拉控制应力必须达到设计规定值,但是不能超过设计规定的最大张拉控制应力。预应力值过大,超过设计值过多,虽然结构抗裂性较好,但因抗裂度过高,预应力筋在承受使用荷载时经常处于过高的应力状态,与结构出现裂缝时的荷载接近,往往在破坏前没有明显的预兆,将严重危害结构的使用安全。因此为了准确把握预应力的施加情况,以应力控制方法张拉时必须以伸长值进行校核。因此能够提供准确的理论伸长值显得尤为重要,必须对《公路桥涵施工技术规范》(JTJ041-2000)中理论伸长值的计算有个正确理解: ①预应力孔道坐标符合设计要求、曲线孔道圆顺的情况

无粘结钢绞线体外预应力加固法

8 无粘结钢绞线体外预应力加固法(征求意见稿) 8.1 设计规定 8.1.1 本方法适用于对钢筋混凝土受弯、受拉和偏心受拉构件的加固,不适用于素混凝土构件的加固。 8.1.2 被加固的混凝土结构构件,其现场实测混凝土强度等级不得低于C10。 8.1.3 采用本方法加固的混凝土结构,其长期使用的环境温度不应高于60℃。 8.1.4 当被加固构件的表面有防火要求时,应按现行国家标准《建筑防火设计规范》GBJ 16规定的耐火等级及耐火极限要求,对加固材料进行防护。 8.1.5 在预应力钢绞线端部锚具的支承垫板不小于100×100mm的情况下,当端部锚固区的砼强度不低于C15时,端部锚固区混凝土的局部承压强度可不作验算。 8.2 无粘结钢绞线体外预应力加固钢筋混凝土梁 8.2.1 当采用无粘结钢绞线体外预应力对梁进行加固时,应按下列规定计算: 1 梁的正截面强度按偏心受压构件进行计算; 2 在作构件强度计算时,应先确定构件达到极限状态时钢绞线的应力值;该应力值等于钢绞线的有效预应力值加钢绞线在构件达到极限状态时的应力增量值。计算中,可假定达到极限状态时钢绞线的应力即为施加预应力时的张拉控制应力,即假定钢绞线的应力增量值与预应力损失值相等。 当采用一端张拉,而连续跨的跨数超过二跨;或当采用两端张拉,而连续跨的跨数超过四跨时,距张拉端二跨以上的梁,其由摩擦力引起的预应力损失有可能大于钢绞线的应力增量。此时可采用以下二种方法加以弥补:方法一:在跨中设置拉紧螺栓,采用手工横向张拉的方法补足预应力损失值; 方法二:将钢绞线的张拉预应力提高至0.75fptk,计算时仍按0.70fptk取值。

预应力砼用钢绞线

预应力砼用钢绞线 1.现行标准:GB/T 5224-2014 本标准代替GB/T5224-2003《预应力混凝土用钢绞线》,与GB/T5224-2003相比主要技术内容变化如下: —增加了19丝钢绞线类别、规格、强度级别; —增加了7丝钢绞线的规格; —规定了最大力的最大值,取消供方每一次交货批钢绞线的实际强度不能高于其抗拉强度级别200MPa; —将松弛试验初始力由特征最大力百分比改为实际最大力百分比,增加如无特殊要求只进行初始为70%实际最大力Fma的松弛试验,取消原初始力为60%最大力的要求; —0.2%屈服力Fpo.2值由不小于整根钢绞线公称最大力Fm的90%改为应在整根钢绞线实际最大力Fma的88%~95%范围内; —增大了部分规格钢绞线的盘径,增加重量偏差要求; —增加了钢绞线特征值附录。 本标准使用重新起草法参考 ISO 6934-4;1991《预应力混凝土用钢第4 部分:钢绞线》编制,与ISO 6934 第 4 部分的一致性程度为非等效,主要差异如下: —增加了强度级别,调整了规格;

—增加了刻痕钢绞线品种; —调整了屈强比范围; —规定了最大力的最大值; —增加了附录 A。 2.1分类与代号 钢绞线按结构分为8类。其代号为: 1)用两根钢丝捻制的钢绞线 1X2 2)用三根钢丝捻制的钢绞线 1X3 3)用三根刻痕钢丝捻制的钢绞线 1X3I 4)用七根钢丝捻制的标准型钢绞线 1X7 5)用六根刻痕钢丝和一根光圆中心钢丝捻制的钢绞线 1X7I 6)用七根钢丝捻制又经模拔的钢绞线 (1X7)C 7)用十九根钢丝捻制的1+9+9西鲁式钢绞线 1X19S 8)用十九根钢丝捻制的1+6+6/6瓦林吞式钢绞线 1X19W 4.2 标记 4.2.1 标记内容

预应力混凝土用钢绞线检验操作规程.

预应力混凝土用钢绞线检验操作规程 1 总则 1.0.1 预应力混凝土用钢绞线检验依据标准为《预应力混凝土用钢绞线》(GB/T5224—2003)。为统一山东地区预应力混凝土用钢绞线的检测方法,保证检测精度,制定本规程。 1.0.2 本规程规定了预应力混凝土用钢绞线的分类、技术要求、试验方法等。本规程适用于由冷拉光圆钢丝及刻痕钢丝捻制的用于预应力混凝土结构的钢绞线(以下简称钢绞丝)。 2 术语、符号 2.1 术语 2.1.1 标准型钢绞线 由冷拉光圆钢丝捻制成的钢绞线。 2.1.2 刻痕钢绞线 由刻痕钢丝捻制成的钢绞线。 2.1.3 模拔型钢绞线 捻制后再经冷拔成的钢绞线。 2.1.4 公称直径 钢绞线外接圆直径的名义尺寸。 2.1.5 稳定化处理 为减少应用时的应力松弛,钢绞线在一定张力下进行的短时热处理。 2.2 符号 D——钢绞线直径; n S——钢绞线参考截面积; n R m ——钢绞线抗拉强度; F m ——整根钢绞线的最大力; F p0.2 ——规定非比例延伸力; A gt ——最大力总伸长率; ΔF a——应力范围(两倍应力幅)的等效负荷值; D ——偏斜拉伸系数。 3 分类和标记 3.1 分类与代号 钢绞线按结构分为5类。其代号为: 用两根钢丝捻制的钢绞线1×2 用三根钢丝捻制的钢绞线1×3 用三根刻痕钢丝捻制的钢绞线1×3Ⅰ 用七根钢丝捻制的标准型钢绞线1×7 用七根钢丝捻制又经模拔的钢绞线(1×7)C

3.2 标记 3.2.1 标记内容包含下列内容: 预应力钢绞线,结构代号,公称直径,强度级别,标准号 3.2.2 标记示例 公称直径为15.20mm,强度级别为1860MPa的七根钢丝捻制的标准型钢绞线其标记为:预应力钢绞线1×7-15.20-1860-GB/T5224—2003 4 检验规则 4.1 检查和验收 产品的检查由供方技术监督部门按表4.3.1的规定进行,需方可按本标准进行检查验收。 4.2 组批规则 钢绞线应成批验收,每批钢绞线由同一牌号、同一规格、同一生产工艺捻制的钢绞线组成。每批质量不大于60吨。 4.3 检验项目及取样数量 4.3.1 钢绞线的检验项目及取样数量应符合下表4.3.1的规定。 表4.3.1 供方出厂常规检验项目及取样数量 4.3.2 设备有重大变化及新产品生产、停产后复产时进行检验。 4.4 复验与判定规则 当4.3.1中规定的某一项检验结果不符合本规程规定时,则该盘卷不得交货。并从同一批未经试验的钢绞线盘卷中取双倍数量的试样进行该不合格项目的复验,复验结果即使有一个试样不合格,则整批钢绞线不得交货,或进行逐盘检验合格后交货。供方有权对复验不合格产品进行重新组批提交验收。 5 尺寸、外形、重量及允许偏差 5.1 预应力钢绞线的截面形状如附录A中图1、图2、图3所示。

预应力钢绞线控制要点

后张法预应力施工控制要点及计算 一、张拉前的准备工作 1、波纹管 ㈠布置波纹管时首先用钢筋加工环形架作为波纹管的定位架,纵向间距为1m,横向位置按设计图纸上的坐标定位,波纹管中穿有内衬管,以保证波纹管成孔质量。 ㈡筑混凝土前应检查波纹管是否有孔洞或变形,接头处是否用胶带密封好,在与锚垫板接头处,一定要用磁带或其它东西堵塞好,以防水泥浆渗进波纹管或锚孔内。 ㈢筑混凝土时应尽量避免振捣棒直接接触波纹管,以防漏浆堵孔。 2、钢绞线 ㈠钢绞线假如采用湖北汉川金属制口有限公司生产的φs15.2(STM416-94a,270级,低松弛),标准强度Ryb=1860Mpa。 ㈡钢绞线下料要在干净整洁的地面上进行,并清除表面上的锈迹及杂物,下料时用砂轮切割机切割。 ㈢穿束前,将钢绞线理顺,用扎丝绑扎好,以防在穿束过程中钢绞线打绞,张拉时受力不均,导致有的钢绞线达不到张拉控制应力而有的则可能被拉断。 ㈣穿束时,将钢束中单根钢绞线编号,以便张拉时做到对应编号,对称张拉。 3、预应力筋控制力计算 ㈠计算依据 ①设计图纸 假如:锚下控制应力N1~N3为1340 Mpa,N4为1340 Mpa。 ②《公路桥涵施工技术规范》JTJ041-2000 ㈡理伦计算 ①计算公式:P=δ×Ag×n×1/1000×b 式中:P—预应力盘的张拉力,KN; δ—预应力筋的张拉控制力,Mpa; Ag—每根预应力筋的截面积,mm2; N—同时张拉预应力筋的根数; b —超张拉系数,不超张拉的为1.0。 ②参数先取 中跨连续端: 钢束编号:N1,N2,N3:δ中123=1340 Mpa;n=4 N4:δ中4=1340 Mpa;n=4 Ag=140mm2;b=1.0 边跨非连续端: 钢束编号:N1,N2,N3:δ边123=1340 Mpa;n=5 N4:δ边4=1340 Mpa;n=4 Ag=140mm2;b=1.0 ③计算张拉力P 中跨连续端: 钢束编号:N1,N2,N3:P中123=1340×140×4×1/1000×1.0 =750.4 KN N4:P中4=1320×140×4×1/1000×1.0=739.2 KN 边跨非连续端: 钢束编号:N1,N2,N3:P边123=1340×140×5×1/1000×1.0

相关文档
最新文档