2015年辽宁省沈阳市中考数学试题及参考答案(word解析版)
2015年辽宁省沈阳市中考数学试卷(含详细答案)
__
__一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只
__
__有一项是符合题目要求的)
__
__
__
__
__ABCD
__
名__3.下列事件为必然事件的是()
_C.抛出的篮球会下落D.任意买一张电影票,座位号是2的倍数
_
__A.100B.90
_题
校
学
业A.a4a2a8B.(a5)2a7
,OB与AC相交于点E.
(1)求OCA的度数;
(2)若COB3AOBOC23,求图中阴影部分面积.(结果保留和根号)
19.(本小题满分10分)
我国是世界上严重缺水的国家之一,全国总用水量逐年上升,全国总用水量可分为农
业用水量、工业用水量和生活用水量三部分.为了合理利用水资源,我国连续多年对
水资源的利用情况进行跟踪调查,将所得数据进行处理,绘制了2008年全国总用水量
分布情况扇形统计图和2004~2008年全国生活用水量折线统计图的一部分如下:
22.(本小题满分10分)
如图,已知一次函数y3
k
x的图象相交于点A(4,n),与x轴
(1)2007年全国生活用水量比2004年增加了16%,则2004年全国生活用水量
为亿m3,2008年全国生活用水量比2004年增加了20%,则2008年全
数学试卷第3页(共34页)
相交于点B.
(1)填空:n的值为,k的值为;
(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐
标;
(3)考察反比函数yk
数学试卷第4页(共34页)
_此(3)当m35时,请直接写出t的值;
2015年辽宁省沈阳市中考数学试题及解析
2015年辽宁省沈阳市中考数学试卷一.选择题(每小题3分,共24分,只有一个答案是正确的)1.(3分)(2015•沈阳)比0大的数是()C.﹣0.5 D.1A.﹣2 B.﹣2.(3分)(2015•沈阳)如图是由6个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.3.(3分)(2015•沈阳)下列事件为必然事件的是()A.经过有交通信号灯的路口,遇到红灯B.明天一定会下雨C.抛出的篮球会下落D.任意买一张电影票,座位号是2的倍数4.(3分)(2015•沈阳)如图,在△ABC中,点D是边AB上一点,点E是边AC上一点,且DE∥BC,∠B=40°,∠AED=60°,则∠A的度数是()A.100°B.90°C.80°D.70°5.(3分)(2015•沈阳)下列计算结果正确的是()A.a4•a2=a8B.(a5)2=a7C.(a﹣b)2=a2﹣b2D.(ab)2=a2b2 6.(3分)(2015•沈阳)一组数据2、3、4、4、5、5、5的中位数和众数分别是()A.3。
5,5 B.4,4 C.4,5 D.4。
5,47.(3分)(2015•沈阳)顺次连接对角线相等的四边形的各边中点,所形成的四边形是() A.平行四边形B.菱形C.矩形D.正方形8.(3分)(2015•沈阳)在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A.B.C.D.二.填空题(每小题4分,共32分)9.(4分)(2015•沈阳)分解因式:ma2﹣mb2=.10.(4分)(2015•沈阳)不等式组的解集是.11.(4分)(2015•沈阳)如图,在△ABC中,AB=AC,∠B=30°,以点A为圆心,以3cm为半径作⊙A,当AB=cm时,BC与⊙A相切.12.(4分)(2015•沈阳)某跳远队甲、乙两名运动员最近10次跳远成绩的平均数为602cm,若甲跳远成绩的方差为S甲2=65.84,乙跳远成绩的方差为S乙2=285.21,则成绩比较稳定的是.(填“甲”或“乙”)13.(4分)(2015•沈阳)在一个不透明的袋中装有12个红球和若干个黑球,每个球除颜色外都相同,任意摸出一个球是黑球的概率为,那么袋中的黑球有个.14.(4分)(2015•沈阳)如图,△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则AB:DE=.15.(4分)(2015•沈阳)如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要s能把小水杯注满.16.(4分)(2015•沈阳)如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK=.三。
辽宁省2015年十城市中考数学试卷及答案_4
2015年辽宁省本溪市中考数学试卷一、选择题(每题3分,共24分)1、2-的相反数是( )A 、12-B 、12C 、2D 、±22、如图是某几何体得三视图,则这个几何体是( )A 、球B 、圆锥C 、圆柱D 、三棱体3 )A 、2B 、4C 、15D 、164、一元二次方程2104x x -+=的根( ) A 、121122x x ==-, , B 、1222x x ==-, C 、1212x x ==- D 、1212x x == 5、在一次数学竞赛中,某小组6名同学的成绩(单位:分)分别是69、75、86、92、95、88.这组数据的中位数是( )A 、79B 、86C 、92D 、876、如图,在Rt △ABC 中,∠C=90°,AB=10,BC=8,DE 是△ABC 的中位线,则DE 的长度是( )A 、3B 、4C 、4.8D 、57、反比例函数(0)k y k x=≠的图象如图所示,若点A (11x y ,)、B (22x y ,)、C (33x y ,)是这个函数图象上的三点,且1230x x x >>>,则123y y y 、、的大小关系( )A 、312y y y <<B 、213y y y <<C 、321y y y <<D 、123y y y <<8、如图,正方形ABCD 的边长是4,∠DAC 的平分线交DC 于点E ,若点P 、Q 分别是AD 和AE 上的动点,则DQ+PQ 的最小值( )A 、2B 、4C 、D 、二、填空题(每题3分,共24分)9、函数14y x =-中的自变量x 的取值范围__________。
10、掷一枚质地均匀的正方体骰子,骰子的六个面上分别有1至6的点数,则向上一面的点数是偶数的概率__________。
11、如图:AB ∥CD ,直线MN 分别交AB 、CD 于点E 、F ,EG 平分∠AEF .EG ⊥FG于点G ,若∠BEM=50°,则∠CFG= __________。
2015年沈阳市数学中考知识点独家整理.doc
2015年辽宁省沈阳市中考数学试卷考点卡片1.有理数大小比较(1)有理数的大小比较比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.(2)有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.【规律方法】有理数大小比较的三种方法1.法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.2.数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.3.作差比较:若a﹣b>0,则a>b;若a﹣b<0,则a<b;若a﹣b=0,则a=b.2.实数的运算(1)实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.(2)在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.【规律方法】实数运算的“三个关键”1.运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0指数)运算、根式运算、特殊三角函数值的计算以及绝对值的化简等.2.运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.3.运算律的使用:使用运算律可以简化运算,提高运算速度和准确度.3.同底数幂的乘法(1)同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.a m•a n=a m+n(m,n是正整数)(2)推广:a m•a n•a p=a m+n+p(m,n,p都是正整数)在应用同底数幂的乘法法则时,应注意:①底数必须相同,如23与25,(a2b2)3与(a2b2)4,(x﹣y)2与(x﹣y)3等;②a可以是单项式,也可以是多项式;③按照运算性质,只有相乘时才是底数不变,指数相加.(3)概括整合:同底数幂的乘法,是学校整式乘除运算的基础,是学好整式运算的关键.在运用时要抓住“同底数)这一关键点,同时注意,有的底数可能并不相同,这时可以适当变形为同底数幂.4.幂的乘方与积的乘方(1)幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.(2)积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.(ab)n=a n b n(n是正整数)注意:①因式是三个或三个以上积的乘方,法则仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.5.完全平方公式(1)完全平方公式:(a±b)2=a2±2ab+b2.可巧记为:“首平方,末平方,首末两倍中间放”.(2)完全平方公式有以下几个特征:①左边是两个数的和的平方;②右边是一个三项式,其中首末两项分别是两项的平方,都为正,中间一项是两项积的2倍;其符号与左边的运算符号相同.(3)应用完全平方公式时,要注意:①公式中的a,b可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式;③对于三项的可以把其中的两项看做一项后,也可以用完全平方公式.6.提公因式法与公式法的综合运用提公因式法与公式法的综合运用.7.零指数幂零指数幂:a0=1(a≠0)由a m÷a m=1,a m÷a m=a m﹣m=a0可推出a0=1(a≠0)注意:00≠1.8.负整数指数幂负整数指数幂:a﹣p=1ap(a≠0,p为正整数)注意:①a≠0;②计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(﹣3)﹣2=(﹣3)×(﹣2)的错误.③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.④在混合运算中,始终要注意运算的顺序.9.分式方程的应用1、列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.2、要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间等等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.10.解一元一次不等式组(1)一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.(2)解不等式组:求不等式组的解集的过程叫解不等式组.(3)一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.11.一次函数的应用1、分段函数问题分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.2、函数的多变量问题解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数.3、概括整合(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用.(2)理清题意是采用分段函数解决问题的关键.12.一次函数综合题(1)一次函数与几何图形的面积问题首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.(2)一次函数的优化问题通常一次函数的最值问题首先由不等式找到x的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.(3)用函数图象解决实际问题从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.13.反比例函数综合题(1)应用类综合题能够从实际的问题中抽象出反比例函数这一数学模型,是解决实际问题的关键一步,培养了学生的建模能力和从实际问题向数学问题转化的能力.在解决这些问题的时候我们还用到了反比例函数的图象和性质、待定系数法和其他学科中的知识.(2)数形结合类综合题利用图象解决问题,从图上获取有用的信息,是解题的关键所在.已知点在图象上,那么点一定满足这个函数解析式,反过来如果这点满足函数的解析式,那么这个点也一定在函数图象上.还能利用图象直接比较函数值或是自变量的大小.将数形结合在一起,是分析解决问题的一种好方法.14.二次函数的图象(1)二次函数y=ax2(a≠0)的图象的画法:①列表:先取原点(0,0),然后以原点为中心对称地选取x值,求出函数值,列表.②描点:在平面直角坐标系中描出表中的各点.③连线:用平滑的曲线按顺序连接各点.④在画抛物线时,取的点越密集,描出的图象就越精确,但取点多计算量就大,故一般在顶点的两侧各取三四个点即可.连线成图象时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接起来.画抛物线y=ax2(a≠0)的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.(2)二次函数y=ax2+bx+c(a≠0)的图象二次函数y=ax2+bx+c(a≠0)的图象看作由二次函数y=ax2的图象向右或向左平移||个单位,再向上或向下平移||个单位得到的.15.二次函数综合题(1)二次函数图象与其他函数图象相结合问题解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.(2)二次函数与方程、几何知识的综合应用将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.(3)二次函数在实际生活中的应用题从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.16.平行线的性质1、平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.2、两条平行线之间的距离处处相等.17.三角形内角和定理(1)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.(2)三角形内角和定理:三角形内角和是180°.(3)三角形内角和定理的证明证明方法,不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中借助平行线.(4)三角形内角和定理的应用主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.18.全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.19.矩形的性质(1)矩形的定义:有一个角是直角的平行四边形是矩形.(2)矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.(3)由矩形的性质,可以得到直角三角线的一个重要性质,直角三角形斜边上的中线等于斜边的一半.20.中点四边形中点四边形.21.四边形综合题四边形综合题.22.圆内接四边形的性质(1)圆内接四边形的性质:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).(2)圆内接四边形的性质是沟通角相等关系的重要依据,在应用此性质时,要注意与圆周角定理结合起来.在应用时要注意是对角,而不是邻角互补.23.切线的判定(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(2)在应用判定定理时注意:①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.24.扇形面积的计算(1)圆面积公式:S=πr2(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.(3)扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=πR2或S扇形=lR(其中l为扇形的弧长)(4)求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.(5)求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.25.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.26.位似变换(1)位似图形的定义:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.(2)位似图形与坐标在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.27.特殊角的三角函数值(1)特指30°、45°、60°角的各种三角函数值.sin30°=;cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=;tan60°=;(2)应用中要熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐增大,余弦逐渐减小,正切逐渐增大;二是按特殊直角三角形中各边特殊值规律去记.(3)特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.28.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角直角的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sinA=∠A的对边斜边=ac,cosA=∠A的邻边斜边=bc,tanA=∠A的对边∠A的邻边=ab.(a,b,c分别是∠A、∠B、∠C的对边)29.简单组合体的三视图(1)画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.(2)视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.(3)画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.30.扇形统计图(1)扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.(2)扇形图的特点:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.(3)制作扇形图的步骤①根据有关数据先算出各部分在总体中所占的百分数,再算出各部分圆心角的度数,公式是各部分扇形圆心角的度数=部分占总体的百分比×360°.②按比例取适当半径画一个圆;按扇形圆心角的度数用量角器在圆内量出各个扇形的圆心角的度数;④在各扇形内写上相应的名称及百分数,并用不同的标记把各扇形区分开来.31.折线统计图(1)定义:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.(2)特点:折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.(3)绘制折线图的步骤①根据统计资料整理数据.②先画纵轴,后画横轴,纵、横都要有单位,按纸面的大小来确定用一定单位表示一定的数量.③根据数量的多少,在纵、横轴的恰当位置描出各点,然后把各点用线段顺序连接起来.32.中位数(1)中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.(2)中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息.(3)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中出现,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.33.众数(1)一组数据中出现次数最多的数据叫做众数.(2)求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.(3)众数不易受数据中极端值的影响.众数也是数据的一种代表数,反映了一组数据的集中程度,众数可作为描述一组数据集中趋势的量..34.方差(1)方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.(2)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s2来表示,计算公式是:s2=1n[(x1﹣x¯)2+(x2﹣x¯)2+…+(x n﹣x¯)2](可简单记忆为“方差等于差方的平均数”)(3)方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.35.随机事件(1)确定事件事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.(2)随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.(3)事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件(随机事件),那么0<P(A)<1.36.概率公式(1)随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=0.。
【真题精选】辽宁省沈阳市2016年中考数学试题及答案解析(word版)
数学精品复习资料2016年辽宁省沈阳市中考数学试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的。
每小题2分,共20分)1.下列各数是无理数的是()A.0B.﹣1C.D.2.如图是由4个大小相同的小立方块搭成的几何体,这个几何体的俯视图是()A.B.C.D.3.在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为()A.0.54×107B.54×105C.5.4×106D.5.4×1074.如图,在平面直角坐标系中,点P是反比例函数y=(x>0)图象上的一点,分别过点P作PA⊥x 轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,则k的值为()A.3B.﹣3C.D.﹣5.“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件6.下列计算正确的是()A.x4+x4=2x8B.x3•x2=x6C.(x2y)3=x6y3D.(x﹣y)(y﹣x)=x2﹣y27.已知一组数据:3,4,6,7,8,8,下列说法正确的是()A.众数是2B.众数是8C.中位数是6D.中位数是78.一元二次方程x2﹣4x=12的根是()A.x1=2,x2=﹣6B.x1=﹣2,x2=6C.x1=﹣2,x2=﹣6D.x1=2,x2=69.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A.B.4C.8D.410.在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A.y1<y2B.y1>y2C.y的最小值是﹣3D.y的最小值是﹣4二、填空题(每小题3分,共18分)11.分解因式:2x2﹣4x+2=.12.若一个多边形的内角和是540°,则这个多边形是边形.13.化简:(1﹣)•(m+1)=.14.三个连续整数中,n是最大的一个,这三个数的和为.15.在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲,乙两车分别从A,B两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图表示,当甲车出发h时,两车相距350km.16.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是.三、解答题17.计算:(π﹣4)0+|3﹣tan60°|﹣()﹣2+.18.为了传承优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A,B,C依次表示这三个诵读材料),将A,B,C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小明诵读《论语》的概率是;(2)请用列表法或画树状图(树形图)法求小明和小亮诵读两个不同材料的概率.19.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.20.我市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校m名学生最喜欢的一种项目(每名学生必选且只能选择四种活动项目的一种),并将调查结果绘制成如下的不完整的统计图表:学生最喜欢的活动项目的人数统计表根据图表中提供的信息,解答下列问题:(1)m=,n=,p=;(2)请根据以上信息直接补全条形统计图;(3)根据抽样调查结果,请你估计该校2000名学生中有多少名学生最喜欢跳大绳.21.如图,在△ABC中,以AB为直径的⊙O分别于BC,AC相交于点D,E,BD=CD,过点D作⊙O 的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为5,∠CDF=30°,求的长(结果保留π).22.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?23.如图,在平面直角坐标系中,△AOB的顶点O为坐标原点,点A的坐标为(4,0),点B的坐标为(0,1),点C为边AB的中点,正方形OBDE的顶点E在x轴的正半轴上,连接CO,CD,CE.(1)线段OC的长为;(2)求证:△CBD≌△COE;(3)将正方形OBDE沿x轴正方向平移得到正方形O1B1D1E1,其中点O,B,D,E的对应点分别为点O1,B1,D1,E1,连接CD,CE,设点E的坐标为(a,0),其中a≠2,△CD1E1的面积为S.①当1<a<2时,请直接写出S与a之间的函数表达式;②在平移过程中,当S=时,请直接写出a的值.24.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.25.如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y=x2﹣3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD 交于点K.(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①点B的坐标为(、),BK的长是,CK的长是;②求点F的坐标;③请直接写出抛物线的函数表达式;(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM 于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG 和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1•S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.2016年辽宁省沈阳市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的。
2015年辽宁省沈阳市中考数学试卷-答案
辽宁省沈阳市2015年初中学生学业水平(升学)考试数学答案解析第Ⅰ卷一、选择题1.【答案】D【解析】A 、B 、C 都是负数,故A 、B 、C 错误;1是正数,故D 正确,故选D 。
【考点】有理数的大小比较2.【答案】A【解析】从左面看易得第一层有4个正方形,第二层最左边有一个正方形,故选A 。
【考点】几何体的三视图3.【答案】C【解析】经过某一有交通信号灯的路口遇到红灯是随机事件,A 错误;明天可能是晴天,也可能是雨天,属于不确定性事件中的可能性事件,B 错误;在操场上抛出的篮球会下落,是必然事件,C 正确;任意买一张电影票,座位号是2的倍数为不确定事件,即随机事件,D 错误,故选:C 。
【考点】必然事件,随机事件4.【答案】C【解析】∵DE BC ∥,AED 40∠=︒,∴C AED 60∠=∠=︒,∵B 40∠=︒,∴A 180C B 180406080∠=︒∠∠=︒︒︒=︒----,故选C 。
【考点】平行线的性质及三角形内角和定理5.【答案】D【解析】426a a a =,故A 错误;5210a )(a =,故B 错误;()222a b a 2ab b -=+-,故C 错误;()222ab a b =,故D 正确,故选D 。
【考点】整式的相关运算6.【答案】C【解析】数据按从小到大排列:2、3、4、4、5、5、5,中位数是4;数据5出现3次,次数最多,所以众数是5,故选C 。
【考点】中位数和众数的概念7.【答案】B【解析】如图所示,∵E ,F 分别为AB ,BC 的中点,∴EF 为△ABC 的中位线,∴EF AC ∥,1EF AC 2=,同理HG AC ∥,1HG AC 2=,∴EF HG ∥,且E F H G =,∴四边形EFGH 为平行四边形,∵1EH BD 2=,AC BD =,∴EF EH =,则四边形EFGH 为菱形,故选B 。
【考点】二次函数的图像和性质8.【答案】D【解析】二次函数()()2y a x h a 0=≠-的顶点坐标为(h ,0),它的顶点坐标在x 轴上,故选:D 。
2015辽宁沈阳中考数学模拟试卷
2015年沈阳市中考模拟试卷数 学(满分150分,考试时间120分钟 命题人:王昌伟)参考公式:抛物线y=ax 2+bx+c 的顶点是(-b 2a ,4ac -b 4a 2),对称轴是直线x=-b2a. 一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题3分,共24分)1.211-的倒数是( ) A. 23- B. 32- C. 32 D. 232.下面右边的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图形的俯视图是( )3.沈阳地铁2号线的开通,方便了市民的出行.从2014年1月1日到2月1日的一个月时间里,累计客运量约达385万人次,将385万用科学记数法表示为( )A .3.85×105B .0. 385×107C .38.5×105D .3.85×106 4.12的值()A .在1到2之间B .在2到3之间C .在3到4之间D .在4到5之间5.下列说法中,正确的是( )A 、平行四边形既是中心对称图形又是轴对称图形.6、(B B 、正方形的对角线互相垂直平分且相等C 、矩形是轴对称图形且有四条对称轴D 、菱形的对角线相等 6.若m =3- n ,则222426m mn n ++-的值为( )A.12B.6C.3D.07. 在同一平面直角坐标系中,,作出函数2kx y =和)0(2≠-=k kx y 的图象,只可能是 ( )8.如下图,将一个等腰直角三角形按图示方式依次翻折,若DE =a ,则下列说法:①DC 平分∠BDE ;②BC 长为(2+2)a ;③△B C'D 是等腰三角形;④△CED 的周长等于BC 的长,正确的个数有( )A. B. C. D.A .1个 B.2个 C.3个 D.4个 二、填空题(每小题4分,满分32分.) 9. 分解因式:2288x x -+= .10.、已知5、a 、4、b 、3这五个数据,其中a 、b 是方程0232=+-x x 的两个根,则这五个数据的标准差是 .11.一次函数b x y +=3的图像经过(3,2),图像与x 轴所形成的锐角是 度. 12.13、设关于x 的方程02)2(2=+++a x a ax ,有两个不相等的实数根1x 、2x ,且1x <<12x ,那么实数a 的取值范围是 . 13.不等式组⎩⎨⎧<+<-2332x x 的最大整数解是 . 14. 如图所示,A 、B 、C 、D 是圆上的点,∠B=28度,∠C=30则C ∠= 度.15.如图,n +1个边长为2的等边三角形有一条边在同一直线上,设△211B D C 的面积为1S ,△322B D C 的面积为2S ,…,△1n n n B D C +的面积为n S ,则2S =_____;S2014=_________.( 图16)16.如图,点A 在双曲线xy 10=上,且OA =4,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为 .三、解答题(第17、18小题各8分,第19小题10分,共26分) 17.(2013沈阳,17,8分)计算:17.计算:(1) 计算:131-⎪⎭⎫⎝⎛-032tan 60(1--+-18.以下统计图描述了沈阳市某中学九年级(1)班学生在2014年4月一个月的读书月活动中,三个阶段(上旬、中旬、下旬)日人均阅读时间的情况:ABC D 1(图14)(1)从以上统计图可知,九年级(1)班共有学生 人; (2) 图1中a 的值是 ;(3)从图1、2中判断,在这次读书月活动中,该班学生每日阅读时间 (填“普遍增加了”或“普遍减少了”); (4)通过这次读书月活动,如果该班学生初步形成了良好的每日阅读习惯,参照以上统计图的变化趋势,至读书月活动结束时,该班学生日人均阅读时间在0.5~1小时的人数比活动开展初期增加了 人。
2015年辽宁省沈阳市中考数学试卷(含详细答案)
数学试卷第2页(共34页)绝密★启用前辽宁省沈阳市2015年初中学生学业水平(升学)考试数学本试卷满分150分,考试时间120分钟.参考公式:抛物线2y ax bx c=++的顶点是24(,)24b ac ba a--,对称轴是直线2bxa=-.第Ⅰ卷(选择题共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.比0大的数是( )A.2-B.32-C.0.5-D.12.如图是由6个相同的小立方块搭成的几何体,这个几何体的左视图是( )A B C D3.下列事件为必然事件的是 ( )A.经过有交通信号灯的路口,遇到红灯B.明天一定会下雨C.抛出的篮球会下落D.任意买一张电影票,座位号是2的倍数4.如图,在ABC△中,点D是边AB上一点,点E是边AC上一点,且DE BC∥,40B∠=,60AED∠=,则A∠的度数是( )A.100B.90C.80D.705.下列计算结果正确的是( )A.428a a a=B.527()a a=C.222()a b a b-=-D.222()ab a b=6.一组数据2,3,4,4,5,5,5的中位数和众数分别是( )A.3.5,5B.4,4C.4,5D.4.5,47.顺次连接对角线相等的四边形的各边中点,所形成的四边形是( )A平行四边形B.菱形C.矩形D.正方形8.在平面直角坐标系中,二次函数2)0y a x h a=-≠(()的图象可能是( )A B C D第Ⅱ卷(非选择题共126分)二、填空题(本大题共8小题,每小题4分,共32分.把答案填写在题中的横线上)9.分解因式:22ma mb-=.10.不等式组30,240xx-⎧⎨+⎩<≥的解集是.11.如图,在ABC△中,AB AC=,30B∠=,以点A为圆心,以3cm为半径作A,当AB=cm时,BC与A相切.12.某跳远队甲、乙两名运动员最近10次跳远成绩的平均数为602cm,若甲跳远成绩的方差为265.84s=甲,乙跳远成绩的方差为2285.21s=乙,则成绩比较稳定的是(填“甲”或“乙”).13.在一个不透明的袋中装有12个红球和若干个黑球,每个球除颜色外都相同,任意摸出一个球是黑球的概率为14,那么袋中的黑球有个.14.如图,ABC△与DEF△位似,位似中心为点O,且ABC△的面积等于DEF△面积的49,则:AB DE=.15.如图1,在某个盛水容器中,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水.小水杯内水的高度y()cm和注水时间x(s)之间的关系满足如图2中的图象,则至少需要s能把小水杯注满水. -------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________姓名________________考生号_____________________________________________数学试卷第1页(共34页)16.如图,正方形ABCD绕点B逆时针旋转30后得到正方形BEFG,EF与AD相交于点H,延长DA交GF 于点K,若正方形ABCD边长为3,则AK=.三、解答题(本大题共9小题,共94分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)计算:203127|52|()(tan601)3-+--+-.18.(本小题满分8分)如图,点E为矩形ABCD外一点,AE DE=,连接EB EC,分别与AD相交于点F G,.求证:(1)E EAB DC≌△△;(2)EFG EGF∠=∠.19.(本小题满分10分)我国是世界上严重缺水的国家之一,全国总用水量逐年上升,全国总用水量可分为农业用水量、工业用水量和生活用水量三部分.为了合理利用水资源,我国连续多年对水资源的利用情况进行跟踪调查,将所得数据进行处理,绘制了2008年全国总用水量分布情况扇形统计图和2004~2008年全国生活用水量折线统计图的一部分如下:(1)2007年全国生活用水量比2004年增加了16%,则2004年全国生活用水量为亿3m,2008年全国生活用水量比2004年增加了20%,则2008年全国生活用水量为亿3m;(2)根据以上信息,请补全折线统计图;(3)根据以上信息,2008年全国总用水量为亿3m;(4)我国2008年水资源总量约为42.7510⨯亿3m,根据国外的经验,一个国家当年的全国总用水量超过这个国家年水资源总量的20%,就有可能发生“水危机”.依据这个标准,2008年我国是否属于可能发生“水危机”的行列?并说明理由.20.(本小题满分10分)高速铁路列车已成为中国人出行的重要交通工具,其平均速度是普通铁路列车平均速度的3倍,同样行驶690km,高速铁路列车比普通铁路列车少运行了4.6h,求高速铁路列车的平均速度.21.(本小题满分10分)如图,四边形ABCD是O的内接四边形,2ABC D∠=∠,连接OA OB OC AC,,,OB,与AC相交于点E.(1)求OCA∠的度数;(2)若323COB AOB OC∠=∠=,,求图中阴影部分面积.(结果保留π和根号)22.(本小题满分10分)如图,已知一次函数332y x=-与反比例函数kyx=的图象相交于点4A n(,),与x轴相交于点B.(1)填空:n的值为,k的值为;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)考察反比函数kyx=的图象,当2y≥-时,请直接写出自变量x的取值范围.数学试卷第3页(共34页)数学试卷第4页(共34页)数学试卷 第5页(共34页) 数学试卷 第6页(共34页)23.(本小题满分12分)如图,在平面直角坐标系中,四边形OABC 的顶点O 是坐标原点,点A 在第一象限,点C 在第四象限,点B 的坐标为6009050OA AB OAB OC =∠==(,),,,.点P 是线段OB 上的一个动点(点P 不与点O ,B 重合),过点P 与y 轴平行的直线l 交边OA 或边AB 于点Q ,交边OC 或边BC 于点R ,设点P 横坐标为t ,线段QR 的长度为m .已知40t =时,直线l 恰好经过点C . (1)求点A 和点C 的坐标;(2)当030t <<时,求m 关于t 的函数关系式; (3)当35m =时,请直接写出t 的值;(4)直线l 上有一点M ,当90PMB POC ∠+∠=,且PMB △的周长为60时,请直接写出满足条件的点M 的坐标.24.(本小题满分12分)如图,在□ABCD 中,6460AB BC B ==∠=,,,点E 是边AB 上的一点,点F 是边CD 上一点,将□ABCD 沿EF 折叠,得到四边形EFGH ,点A 的对应点为点H ,点D 的对应点为点G .(1)当点H 与点C 重合时.①填空:点E 到CD 的距离是 ; ②求证:BCE GCF ≌△△; ③求CEF △的面积;(2)当点H 落在射线BC 上,且1CH =时,直线EH 与直线CD 交于点M ,请直接写出MEF △的面积.温馨提醒:考生可以根据题意,在备用图中补充图形,以便作答.25.(本小题满分14分)如图,在平面直角坐标系中,抛物线232234y x x -=-+与x 轴交于B ,C 两点(点B 在点C 的左侧),与y 轴交于点A ,抛物线的顶点为D .(1)填空:点A 的坐标为( , ),点B 的坐标为( , ),点C 的坐标为( , ),点D 的坐标为( , ); (2)点P 是线段BC 上的动点(点P 不与点B ,C 重合).①过点P 作x 轴的垂线交抛物线于点E ,若PE PC =,求点E 的坐标;②在①的条件下,点F 是坐标轴上的点,且点F 到EA 和ED 的距离相等,请直接写出线段EF 的长;③若点Q 是线段AB 上的动点(点Q 不与点A ,B 重合),点R 是线段AC 上的动点(点R 不与点A ,C 重合),请直接写出PQR △周长的最小值. 温馨提醒:考生可以根据题意,在备用图中补充图形,以便作答.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共34页)数学试卷 第8页(共34页)辽宁省沈阳市2015年初中学生学业水平(升学)考试数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】A 、B 、C 都是负数,故A 、B 、C 错误;1是正数,故D 正确,故选D 。
辽宁省大连市2015年中考数学试题(word版-含解析)
2015省市中考数学试卷(解析版) (满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2015,1,3分)﹣2的绝对值是( )A . 2B .-2C .21 D .-21【答案】A【解析】解:根据负数的绝对值等于它的相反数,得|﹣2|=2.故选A . 2. (2015,2,3分)如图是某几何体的三视图,则该几何体是( )(第2题)A .球B .圆柱C .圆锥D .三棱柱【答案】C【解析】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥,故选C.3.(2015,3,3分)下列长度的三条线段能组成三角形的是( )A . 1,2,3B .,1,2,3C .3,4,8D .4,5,6【答案】D【解析】解:根据三角形任意两边之和大于第三边,只要两条较短的边的和大于最长边即可。
故选D . 4. (2015,4,3分)在平面直角坐标系中,将点P (3,2)向右平移2个单位长度,所得到的点的坐标为( )A.(1,2)B.(3,0)C.(3,4)D.(5,2) 【答案】D【解析】解:根据点的坐标平移规律“左减右加,下减上加”,可知横坐标应变为5,而纵坐标不变,故选D.5. (2015,5,3分)方程4)1(2x 3=-+x 的解是( )A. 52=x B. 65=x C.2=x D.1=x【答案】C【解析】解:4)1(2x 3=-+x ,去括号得:3x+2-2x=4.移项合并得:2=x 。
故选C. 6. (2015,6,3分)计算()2x 3-的结果是( )A. 2x 6B.2x 6-C.2x 9D.2x 9- 【答案】C【解析】解:根据积的乘方,()2x 3-=()22x 3⋅-=2x 9,故选C.7. (2015,7,3分)某舞蹈队10名队员的年龄如下表所示:年龄(岁) 13 14 15 16 人数2431则这10名队员年龄的众数是( ) A. 16 B.14 C.4 D.3 【答案】B【解析】解:一组数据中出现次数最多的那个数据叫做众数,14出现的次数最多,故选B.8. (2015,8,3分)如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上,∠ADC=2∠B,AD=5,则BC 的长为( )(第8题)A.3-1B.3+1C.5-1D.5+1【答案】D【解析】解:在△ADC 中,∠C=90°,AC=2,所以CD=()1252222=-=-AC AD ,因为∠ADC=2∠B ,∠ADC=∠B+∠BAD,所以∠B=∠BAD,所以BD=AD=5,所以BC=5+1,故选D.二、填空题(本大题共8小题,每小题3分,满分24分.)9. (2015,9,3分)比较大小:3__________ -2(填>、<或=) 【答案】>【解析】解:根据一切正数大于负数,故答案为>。
2015年中考数学试题及答案(Word版)
2015年初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.........1.2的相反数是A.2 B.12C.-2 D.-122.有一组数据:3,5,5,6,7,这组数据的众数为A.3 B.5 C.6 D.73.月球的半径约为1 738 000m,1 738 000这个数用科学记数法可表示为A.1.738×106B.1.738×107C.0.1738×107D.17.38×1054.若()2m=-,则有A.0<m<1 B.-1<m<0 C.-2<m<-1 D.-3<m<-2 5.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过15min的频率为A.0.1 B.0.4 C.0.5 D.0.96.若点A(a,b)在反比例函数2yx=的图像上,则代数式ab-4的值为A.0 B.-2 C.2 D.-67.如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =35°,则∠C 的度数为 A .35° B .45°C .55°D .60°8.若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x的方程x 2+bx =5的解为 A .120,4x x ==B .121,5x x ==C .121,5x x ==-D .121,5x x =-=9.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接CD .若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为 A.43πB.43π-C.πD.23π10.如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为 A .4kmB.(2kmC.D.(4-km二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上......... 11.计算:2a a ⋅= ▲ .12.如图,直线a ∥b ,∠1=125°,则∠2的度数为 ▲ °.DCB A(第7题)(第9题)(第10题)l13.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 ▲ 名. 14.因式分解:224a b -= ▲ .15.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 ▲ .16.若23a b -=,则924a b -+的值为 ▲ .17.如图,在△ABC 中,CD 是高,CE 是中线,CE =CB ,点A 、D 关于点F 对称,过点F作FG ∥CD ,交AC 边于点G ,连接GE .若AC =18,BC =12,则△CEG 的周长为 ▲ .18.如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则()224x y +-的值为 ▲ . 三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.(第17题)GF E D CBA F EDC B A (第18题)ba(第13题)20%10%30%40%其他乒乓球篮球羽毛球(第15题)19.(本题满分5分)(052--. 20.(本题满分5分)解不等式组:()12,31 5.x x x +≥⎧⎪⎨-+⎪⎩>21.(本题满分6分)先化简,再求值:2121122x x x x ++⎛⎫-÷⎪++⎝⎭,其中1x .22.(本题满分6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?23.(本题满分8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是 ▲ ;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.24.(本题满分8分)如图,在△ABC中,AB=AC.分别以B、C为圆心,BC长为半径在BC下方画弧,设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD.(1)求证:AD平分∠BAC;(2)若BC=6,∠BAC=50︒,求 DE、 DF的长度之和(结果保留π).25.(本题满分8分)如图,已知函数kyx=(x>0)的图像经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图像经过点A、D,与x轴的负半轴交于点E.(1)若AC=32OD,求a、b的值;(2)若BC∥AE,求BC的长.(第24题)F EDCBA26.(本题满分10分)如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点,过点B 作BE ∥AD ,交⊙O 于点E ,连接ED . (1)求证:ED ∥AC ;(2)若BD =2CD ,设△EBD 的面积为1S ,△ADC 的面积为2S ,且2121640S S -+=,求△ABC 的面积.27.(本题满分10分)如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接P A 、PC ,P A =PC . (1)∠ABC 的度数为 ▲ °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△P AC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.(第26题)28.(本题满分10分)如图,在矩形ABCD 中,AD =a cm ,AB =b cm (a >b >4),半径为2cm的⊙O 在矩形内且与AB 、AD 均相切.现有动点P 从A 点出发,在矩形边上沿着A →B →C →D 的方向匀速移动,当点P 到达D 点时停止移动;⊙O 在矩形内部沿AD 向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O 回到出发时的位置(即再次与AB 相切)时停止移动.已知点P 与⊙O 同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P 从A →B →C →D ,全程共移动了 ▲ cm (用含a 、b 的代数式表示); (2)如图①,已知点P 从A 点出发,移动2s 到达B 点,继续移动3s ,到达BC 的中点.若点P 与⊙O 的移动速度相等,求在这5s 时间内圆心O 移动的距离;(3)如图②,已知a =20,b =10.是否存在如下情形:当⊙O 到达⊙O 1的位置时(此时圆心O 1在矩形对角线BD 上),DP 与⊙O 1恰好相切?请说明理由.(第28题)(图②)(图①)2015年苏州市初中毕业暨升学考试数学试题答案一、选择题1.C 2.B 3.A 4.C 5.D6.B 7.C 8.D 9.A 10.B二、填空题11.3a12.55 13.60 14.()()22a b a b+-15.1416.3 17.27 18.16三、解答题19.解:原式=3+5-1 =7.20.解:由12x+≥,解得1x≥,由()315x x-+>,解得4x>,∴不等式组的解集是4x>.21.解:原式=()21122xxx x++÷++=()2121211x xx xx++⨯=+++.当1x===.22.解:设乙每小时做x面彩旗,则甲每小时做(x+5)面彩旗.根据题意,得60505x x=+.解这个方程,得x=25.经检验,x=25是所列方程的解.∴x+5=30.答:甲每小时做30面彩旗,乙每小时做25面彩旗.23.解:(1)1.(2)用表格列出所有可能的结果:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.∴P(两次都摸到红球)=212=16.24.证明:(1)由作图可知BD =CD .在△ABD 和△ACD 中,,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).∴∠BAD =∠CAD ,即AD 平分∠BAC .解:(2)∵AB =AC ,∠BAC =50°,∴∠ABC =∠ACB=65°.∵BD = CD = BC ,∴△BDC 为等边三角形. ∴∠DBC =∠DCB=60°. ∴∠DBE =∠DCF=55°. ∵BC =6,∴BD = CD =6.∴ DE的长度= DF 的长度=556111806ππ⨯⨯=. ∴ DE、 DF 的长度之和为111111663πππ+=. 25.解:(1)∵点B (2,2)在ky x=的图像上,∴k =4,4y x=. ∵BD ⊥y 轴,∴D 点的坐标为(0,2),OD =2. ∵AC ⊥x 轴,AC =32OD ,∴AC =3,即A 点的纵坐标为3. ∵点A 在4y x=的图像上,∴A 点的坐标为(43,3).∵一次函数y =ax +b 的图像经过点A 、D , ∴43,3 2.a b b ⎧+=⎪⎨⎪=⎩ 解得3,42.a b ⎧=⎪⎨⎪=⎩ (2)设A 点的坐标为(m ,4m),则C 点的坐标为(m ,0). ∵BD ∥CE ,且BC ∥DE ,∴四边形BCED 为平行四边形. ∴CE = BD =2.∵BD ∥CE ,∴∠ADF =∠AEC .∴在Rt △AFD 中,tan ∠ADF =42AF mDF m -=, 在Rt △ACE 中,tan ∠AEC =42AC mEC =, ∴4422m m m -=,解得m =1.∴C 点的坐标为(1,0),BC26.证明:(1)∵AD 是△ABC 的角平分线, ∴∠BAD =∠DAC .∵∠E=∠BAD ,∴∠E =∠DAC . ∵BE ∥AD ,∴∠E =∠EDA . ∴∠EDA =∠DA C . ∴ED ∥AC .解:(2)∵BE ∥AD ,∴∠EBD =∠ADC .∵∠E =∠DAC ,∴△EBD ∽△ADC ,且相似比2BDk DC==. ··················· ∴2124S k S ==,即124S S =. ∵2121640S S -+=,∴222161640S S -+=,即()22420S -=.∴212S =. ∵233ABC S BC BD CD CD S CD CD CD +==== ,∴32ABC S = . 27.解:(1)45.理由如下:令x =0,则y =-m ,C 点坐标为(0,-m ).令y =0,则()210x m x m +--=,解得11x =-,2x m =.∵0<m <1,点A 在点B 的左侧,∴B 点坐标为(m ,0).∴OB =OC =m .∵∠BOC =90°,∴△BOC 是等腰直角三角形,∠OBC =45°. (2)解法一:如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E ,由题意得,抛物线的对称轴为12mx -+=. 设点P 坐标为(12m-+,n ). ∵P A = PC , ∴P A 2= PC 2,即AE 2+ PE 2=CD 2+ PD 2.∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭.解得12m n -=.∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭. 解法二:连接PB .由题意得,抛物线的对称轴为12m x -+=. ∵P 在对称轴l 上,∴P A =PB . ∵P A =PC ,∴PB =PC .∵△BOC 是等腰直角三角形,且OB =OC ,∴P 在BC 的垂直平分线y x =-上.∴P 点即为对称轴12mx -+=与直线y x =-的交点. ∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭.图①图②(3)解法一:存在点Q 满足题意.∵P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴P A 2+ PC 2=AE 2+ PE 2+CD 2+ PD 2=222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵AC 2=21m +,∴P A 2+ PC 2=AC 2.∴∠APC =90°. ∴△P AC 是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△P AC 相似, ∴△QBC 是等腰直角三角形.∴由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m ). ①如图①,当Q 点的坐标为(-m ,0)时,若PQ 与x 轴垂直,则12m m -+=-,解得13m =,PQ =13. 若PQ 与x 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(25-,0)时, PQ 的长度最小.②如图②,当Q 点的坐标为(0,m )时,若PQ 与y 轴垂直,则12m m -=,解得13m =,PQ =13. 若PQ 与y 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ.<13, ∴当25m =,即Q 点的坐标为(0,25)时, PQ 的长度最小.综上:当Q 点坐标为(25-,0)或(0,25)时,PQ 的长度最小.解法二: 如图①,由(2)知P 为△ABC 的外接圆的圆心. ∵∠APC 与∠ABC 对应同一条弧AC ,且∠ABC =45°, ∴∠APC =2∠ABC =90°.下面解题步骤同解法一.28.解:(1)a +2b .(2)∵在整个运动过程中,点P 移动的距离为()2a b +cm ,圆心O 移动的距离为()24a -cm , 由题意,得()224a b a +=-. ①∵点P 移动2s 到达B 点,即点P 用2s 移动了b cm ,点P 继续移动3s ,到达BC 的中点,即点P 用3s 移动了12a cm .∴1223a b =. ② 由①②解得24,8.a b =⎧⎨=⎩∵点P 移动的速度与⊙O 移动的速度相等,∴⊙O 移动的速度为42b=(cm/s ). ∴这5s 时间内圆心O 移动的距离为5×4=20(cm ). (3)存在这种情形.解法一:设点P 移动的速度为v 1cm/s ,⊙O 移动的速度为v 2cm/s ,由题意,得()()1222021052422044v a b v a ++⨯===--.FE如图,设直线OO 1与AB 交于点E ,与CD 交于点F ,⊙O 1与AD 相切于点G . 若PD 与⊙O 1相切,切点为H ,则O 1G =O 1H . 易得△DO 1G ≌△DO 1H ,∴∠ADB =∠BDP . ∵BC ∥AD ,∴∠ADB =∠CBD . ∴∠BDP =∠CBD .∴BP =DP .设BP =x cm ,则DP =x cm ,PC =(20-x )cm ,在Rt △PCD 中,由勾股定理,可得222PC CD PD +=,即()2222010x x -+=,解得252x =.∴此时点P 移动的距离为25451022+=(cm ). ∵EF ∥AD ,∴△BEO 1∽△BAD . ∴1EO BE AD BA =,即182010EO =. ∴EO 1=16cm .∴OO 1=14cm .①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm , ∴此时点P 与⊙O 移动的速度比为454521428=.∵455284≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ), ∴此时点P 与⊙O 移动的速度比为45455218364==. ∴此时PD 与⊙O 1恰好相切. 解法二:∵点P 移动的距离为452cm (见解法一), OO 1=14cm (见解法一),1254v v =,∴⊙O 应该移动的距离为4541825⨯=(cm ). ①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm ≠18 cm , ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ),∴此时PD 与⊙O 1恰好相切.解法三:点P 移动的距离为452cm ,(见解法一) OO 1=14cm ,(见解法一) 由1254v v =可设点P 的移动速度为5k cm/s ,⊙O 的移动速度为4k cm/s , ∴点P 移动的时间为459252k k=(s ).①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的时间为1479422k k k=≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的时间为2(204)14942k k⨯--=, ∴此时PD 与⊙O 1恰好相切.。
2015年辽宁省沈阳市中考数学试题及解析
2015年辽宁省沈阳市中考数学试卷一.选择题(每小题3分,共24分,只有一个答案是正确的)1.(3分)(2015•沈阳)比0大的数是()C.﹣0.5 D.1A.﹣2 B.﹣2.(3分)(2015•沈阳)如图是由6个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.3.(3分)(2015•沈阳)下列事件为必然事件的是()A.经过有交通信号灯的路口,遇到红灯B.明天一定会下雨C.抛出的篮球会下落D.任意买一张电影票,座位号是2的倍数4.(3分)(2015•沈阳)如图,在△ABC中,点D是边AB上一点,点E是边AC上一点,且DE∥BC,∠B=40°,∠AED=60°,则∠A的度数是()A.100°B.90°C.80°D.70°5.(3分)(2015•沈阳)下列计算结果正确的是()A.a4•a2=a8B.(a5)2=a7C.(a﹣b)2=a2﹣b2D.(ab)2=a2b2 6.(3分)(2015•沈阳)一组数据2、3、4、4、5、5、5的中位数和众数分别是()A.3.5,5 B.4,4 C.4,5 D.4.5,47.(3分)(2015•沈阳)顺次连接对角线相等的四边形的各边中点,所形成的四边形是()A.平行四边形B.菱形C.矩形D.正方形8.(3分)(2015•沈阳)在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A.B.C.D.二.填空题(每小题4分,共32分)9.(4分)(2015•沈阳)分解因式:ma2﹣mb2=.10.(4分)(2015•沈阳)不等式组的解集是.11.(4分)(2015•沈阳)如图,在△ABC中,AB=AC,∠B=30°,以点A为圆心,以3cm 为半径作⊙A,当AB=cm时,BC与⊙A相切.12.(4分)(2015•沈阳)某跳远队甲、乙两名运动员最近10次跳远成绩的平均数为602cm,若甲跳远成绩的方差为S甲2=65.84,乙跳远成绩的方差为S乙2=285.21,则成绩比较稳定的是.(填“甲”或“乙”)13.(4分)(2015•沈阳)在一个不透明的袋中装有12个红球和若干个黑球,每个球除颜色外都相同,任意摸出一个球是黑球的概率为,那么袋中的黑球有个.14.(4分)(2015•沈阳)如图,△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则AB:DE=.15.(4分)(2015•沈阳)如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要s能把小水杯注满.16.(4分)(2015•沈阳)如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK=.三.解答题17.(8分)(2015•沈阳)计算:+|﹣2|﹣()﹣2+(tan60°﹣1)0.18.(8分)(2015•沈阳)如图,点E为矩形ABCD外一点,AE=DE,连接EB、EC分别与AD相交于点F、G.求证:(1)△EAB≌△EDC;(2)∠EFG=∠EGF.19.(10分)(2015•沈阳)我国是世界上严重缺失的国家之一,全国总用水量逐年上升,全国总用水量可分为农业用水量、工业用水量和生活用水量三部分.为了合理利用水资源,我国连续多年对水资源的利用情况进行跟踪调查,将所得数据进行处理,绘制了2008年全国总用水量分布情况扇形统计图和2004﹣2008年全国生活用水量折线统计图的一部分如下:(1)2007年全国生活用水量比2004年增加了16%,则2004年全国生活用水量为亿m3,2008年全国生活用水量比2004年增加了20%,则2008年全国生活用水量为亿m3;(2)根据以上信息,请直接在答题卡上补全折线统计图;(3)根据以上信息2008年全国总水量为亿;(4)我国2008年水资源总量约为2.75×104亿m3,根据国外的经验,一个国家当年的全国总用水量超过这个国家年水资源总量的20%,就有可能发生“水危机”.依据这个标准,2008年我国是否属于可能发生“水危机”的行列?并说明理由.20.(10分)(2015•沈阳)高速铁路列车已成为中国人出行的重要交通工具,其平均速度是普通铁路列车平均速度的3倍,同样行驶690km,高速铁路列车比普通铁路列车少运行了4.6h,求高速铁路列车的平均速度.21.(10分)(2015•沈阳)如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E.(1)求∠OCA的度数;(2)若∠COB=3∠AOB,OC=2,求图中阴影部分面积(结果保留π和根号)22.(10分)(2015•沈阳)如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)填空:n的值为,k的值为;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)考察反比函数y=的图象,当y≥﹣2时,请直接写出自变量x的取值范围.23.(12分)(2015•沈阳)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B的坐标为(60,0),OA=AB,∠OAB=90°,OC=50.点P是线段OB上的一个动点(点P不与点O、B重合),过点P与y轴平行的直线l交边OA或边AB于点Q,交边OC或边BC于点R,设点P横坐标为t,线段QR的长度为m.已知t=40时,直线l恰好经过点C.(1)求点A和点C的坐标;(2)当0<t<30时,求m关于t的函数关系式;(3)当m=35时,请直接写出t的值;(4)直线l上有一点M,当∠PMB+∠POC=90°,且△PMB的周长为60时,请直接写出满足条件的点M的坐标.24.(12分)(2015•沈阳)如图,在▱ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD上一点,将▱ABCD沿EF折叠,得到四边形EFGH,点A的对应点为点H,点D的对应点为点G.(1)当点H与点C重合时.①填空:点E到CD的距离是;②求证:△BCE≌△GCF;③求△CEF的面积;(2)当点H落在射线BC上,且CH=1时,直线EH与直线CD交于点M,请直接写出△MEF 的面积.25.(14分)(2015•沈阳)如图,在平面直角坐标系中,抛物线y=﹣x2﹣x+2与x轴交于B、C两点(点B在点C的左侧),与y轴交于点A,抛物线的顶点为D.(1)填空:点A的坐标为(,),点B的坐标为(,),点C的坐标为(,),点D 的坐标为(,);(2)点P是线段BC上的动点(点P不与点B、C重合)①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R 不与点A、C重合),请直接写出△PQR周长的最小值.2015年辽宁省沈阳市中考数学试卷参考答案与试题解析一.选择题(每小题3分,共24分,只有一个答案是正确的)1.(3分)(2015•沈阳)比0大的数是()C.﹣0.5 D.1A.﹣2 B.﹣考点:有理数大小比较.分析:正实数都大于0,负实数都小于0,据此判断即可.解答:解:A、B、C都是负数,故A 、B、C 错误;D、1是正数,故D正确;故选D .点评:本题考查了有理数比较大小,正数大于0是解题关键.2.(3分)(2015•沈阳)如图是由6个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解答:解:从左面看易得第一层有4个正方形,第二层最左边有一个正方形.故选A.点评:本题考查了三视图的知识.注意左视图是指从物体的左边看物体.3.(3分)(2015•沈阳)下列事件为必然事件的是()A.经过有交通信号灯的路口,遇到红灯B.明天一定会下雨C.抛出的篮球会下落D.任意买一张电影票,座位号是2的倍数考点:随机事件.分析:根据事件的分类对各选项进行逐一分析即可.解答:解:A、经过某一有交通信号灯的路口遇到红灯是随机事件,故本选项错误;B、明天可能是晴天,也可能是雨天,属于不确定性事件中的可能性事件,故本选项错误;C、在操场上抛出的篮球会下落,是必然事件,故本选项正确;D、任意买一张电影票,座位号是2的倍数为不确定事件,即随机事件,故本选项错误;故选:C.点评:本题考查的是事件的分类,即事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,熟知以上知识是解答此题的关键.4.(3分)(2015•沈阳)如图,在△ABC中,点D是边AB上一点,点E是边AC上一点,且DE∥BC,∠B=40°,∠AED=60°,则∠A的度数是()A.100°B.90°C.80°D.70°考点:平行线的性质;三角形内角和定理.分析:先根据平行线的性质求出∠C的度数,再根据三角形内角和定理求出∠A的度数即可.解答:解:∵DE∥BC,∠AED=40°,∴∠C=∠AED=60°,∵∠B=40°,∴∠A=180°﹣∠C﹣∠B=180°﹣40°﹣60°=80°.点评:本题考查的是平行线的性质及三角形内角和定理,先根据平行线的性质求出∠C的度数是解答此题的关键.5.(3分)(2015•沈阳)下列计算结果正确的是()A.a4•a2=a8B.(a5)2=a7C.(a﹣b)2=a2﹣b2D.(ab)2=a2b2考点:幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.分析:运用同底数幂的乘法,幂的乘方,积的乘方,完全平方公式运算即可.解答:解:A.a4•a2=a6,故A错误;B.(a5)2=a10,故B错误;C.(a﹣b)2=a2﹣2ab+b2,故C错误;D.(ab)2=a2b2,故D正确,故选D.点评:本题考查了完全平方公式,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.6.(3分)(2015•沈阳)一组数据2、3、4、4、5、5、5的中位数和众数分别是()A.3.5,5 B.4,4 C.4,5 D.4.5,4考点:众数;中位数.分析:先把数据按大小排列,然后根据中位数和众数的定义可得到答案.解答:解:数据按从小到大排列:2、3、4、4、5、5、5,中位数是4;数据5出现3次,次数最多,所以众数是5.故选C.点评:本题考查了中位数,众数的意义.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.7.(3分)(2015•沈阳)顺次连接对角线相等的四边形的各边中点,所形成的四边形是()A.平行四边形B.菱形C.矩形D.正方形考点:中点四边形.专题:计算题.分析:菱形,理由为:利用三角形中位线定理得到EF与HG平行且相等,得到四边形EFGH 为平行四边形,再由EH=EF,利用邻边相等的平行四边形是菱形即可得证.解答:解:菱形,理由为:如图所示,∵E,F分别为AB,BC的中点,∴EF为△ABC的中位线,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,∴EF∥HG,且EF=HG,∴四边形EFGH为平行四边形,∵EH=BD,AC=BD,∴EF=EH,则四边形EFGH为菱形,故选B点评:此题考查了中点四边形,平行四边形的判定,菱形的判定,熟练掌握三角形中位线定理是解本题的关键.8.(3分)(2015•沈阳)在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A.B.C.D.考点:二次函数的图象.分析:根据二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,即可解答.解答:解:二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,故选:D.点评:本题考查了二次函数的图象,解决本题的关键是明二次函数的顶点坐标.二.填空题(每小题4分,共32分)9.(4分)(2015•沈阳)分解因式:ma2﹣mb2=m(a+b)(a﹣b).考点:提公因式法与公式法的综合运用.分析:应先提取公因式m,再对余下的多项式利用平方差公式继续分解.解答:解:ma2﹣mb2,=m(a2﹣b2),=m(a+b)(a﹣b).点评:本题考查了提公因式法,公式法分解因式,关键在于提取公因式后继续利用平方差公式进行因式分解.10.(4分)(2015•沈阳)不等式组的解集是﹣2≤x<3.考点:解一元一次不等式组.专题:计算题.分析:分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解答:解:,由①得:x<3,由②得:x≥﹣2,则不等式组的解集为﹣2≤x<3,故答案为:﹣2≤x<3点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.(4分)(2015•沈阳)如图,在△ABC中,AB=AC,∠B=30°,以点A为圆心,以3cm 为半径作⊙A,当AB=6cm时,BC与⊙A相切.考点:切线的判定.分析:当BC与⊙A相切,点A到BC的距离等于半径即可.解答:解:如图,过点A作AD⊥BC于点D.∵AB=AC,∠B=30°,∴AD=AB,即AB=2AD.又∵BC与⊙A相切,∴AD就是圆A的半径,∴AD=3cm,则AB=2AD=6cm.故答案是:6.点评:本题考查了切线的判定.此题利用了切线的定义和含30度角的直角三角形的性质得到AB的长度的.12.(4分)(2015•沈阳)某跳远队甲、乙两名运动员最近10次跳远成绩的平均数为602cm,若甲跳远成绩的方差为S甲2=65.84,乙跳远成绩的方差为S乙2=285.21,则成绩比较稳定的是甲.(填“甲”或“乙”)考点:方差.分析:根据方差的意义进行判断.解答:解:∵S甲2=65.84,S乙2=285.21,∴S甲2<S乙2,∴甲的成绩比乙稳定.故答案为甲.点评:本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.13.(4分)(2015•沈阳)在一个不透明的袋中装有12个红球和若干个黑球,每个球除颜色外都相同,任意摸出一个球是黑球的概率为,那么袋中的黑球有4个.考点:概率公式.分析:首先设袋中的黑球有x个,根据题意得:=,解此分式方程即可求得答案.解答:解:设袋中的黑球有x个,根据题意得:=,解得:x=4,经检验:x=4是原分式方程的解.即袋中的黑球有4个.故答案为:4.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.(4分)(2015•沈阳)如图,△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则AB:DE=2:3.考点:位似变换.分析:由△ABC经过位似变换得到△DEF,点O是位似中心,根据位似图形的性质,即可得AB∥DE,即可求得△ABC的面积:△DEF面积=,得到AB:DE═2:3.解答:解:∵△ABC与△DEF位似,位似中心为点O,∴△ABC∽△DEF,∴△ABC的面积:△DEF面积=()2=,∴AB:DE=2:3,故答案为:2:3.点评:此题考查了位似图形的性质.注意掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.15.(4分)(2015•沈阳)如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要5s能把小水杯注满.考点:一次函数的应用.分析:一次函数的首先设解析式为:y=kx+b,然后利用待定系数法即可求得其解析式,再由y=11,即可求得答案.解答:解:设一次函数的首先设解析式为:y=kx+b,将(0,1),(2,5)代入得:,解得:,∴解析式为:y=2x+1,当y=11时,2x+1=11,解得:x=5,∴至少需要5s能把小水杯注满.故答案为:5.点评:此题考查了一次函数的实际应用问题.注意求得一次函数的解析式是关键.16.(4分)(2015•沈阳)如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK=2﹣3.考点:旋转的性质.分析:连接BH,由正方形的性质得出∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,得出∠ABE=60°,由HL证明Rt△ABH≌Rt△EBH,得出∠ABH=∠EBH=∠ABE=30°,AH=EH,由三角函数求出AH,得出EH、FH,再求出KH=2FH,即可求出AK.解答:解:连接BH,如图所示:∵四边形ABCD和四边形BEFG是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,∴∠ABE=60°,在Rt△ABH和Rt△EBH中,,∴Rt△ABH≌△Rt△EBH(HL),∴∠ABH=∠EBH=∠ABE=30°,AH=EH,∴AH=AB•tan∠ABH=×=1,∴EH=1,∴FH=﹣1,在Rt△FKH中,∠FKH=30°,∴KH=2FH=2(﹣1),∴AK=KH﹣AH=2(﹣1)﹣1=2﹣3;故答案为:2﹣3.点评:本题考查了旋转的性质、正方形的性质、全等三角形的判定与性质、三角函数;熟练掌握旋转的性质和正方形的性质,并能进行推理计算是解决问题的关键.三.解答题17.(8分)(2015•沈阳)计算:+|﹣2|﹣()﹣2+(tan60°﹣1)0.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:先算立方根,绝对值,负整数指数幂和0指数幂,再算加减,由此顺序计算即可.解答:解:原式=3+﹣2﹣9+1=﹣7.点评:此题考查实数的混合运算,掌握运算顺序与计算方法是解决问题的关键.18.(8分)(2015•沈阳)如图,点E为矩形ABCD外一点,AE=DE,连接EB、EC分别与AD相交于点F、G.求证:(1)△EAB≌△EDC;(2)∠EFG=∠EGF.考点:全等三角形的判定与性质;矩形的性质.专题:证明题.分析:(1)先由四边形ABCD是矩形,得出AB=DC,∠BAD=∠CDA=90°.由EA=ED,得出∠EAD=∠EDA,根据等式的性质得到∠EAB=∠EDC.然后利用SAS即可证明△EAB≌△EDC;(2)由△EAB≌△EDC,得出∠AEF=∠DEG,根据三角形外角的性质得出∠EFG=∠EAF+∠AEF,∠EGF=∠EDG+∠DEG,即可证明∠EFG=∠EGF.解答:证明:(1)∵四边形ABCD是矩形,∴AB=DC,∠BAD=∠CDA=90°.∵EA=ED,∴∠EAD=∠EDA,∴∠EAB=∠EDC.在△EAB与△EDC中,,∴△EAB≌△EDC(SAS);(2)∵△EAB≌△EDC,∴∠AEF=∠DEG,∵∠EFG=∠EAF+∠AEF,∠EGF=∠EDG+∠DEG,∴∠EFG=∠EGF.点评:本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形的性质,三角形外角的性质以及等式的性质,证明出△EAB≌△EDC是解题的关键.19.(10分)(2015•沈阳)我国是世界上严重缺失的国家之一,全国总用水量逐年上升,全国总用水量可分为农业用水量、工业用水量和生活用水量三部分.为了合理利用水资源,我国连续多年对水资源的利用情况进行跟踪调查,将所得数据进行处理,绘制了2008年全国总用水量分布情况扇形统计图和2004﹣2008年全国生活用水量折线统计图的一部分如下:(1)2007年全国生活用水量比2004年增加了16%,则2004年全国生活用水量为625亿m3,2008年全国生活用水量比2004年增加了20%,则2008年全国生活用水量为750亿m3;(2)根据以上信息,请直接在答题卡上补全折线统计图;(3)根据以上信息2008年全国总水量为5000亿;(4)我国2008年水资源总量约为2.75×104亿m3,根据国外的经验,一个国家当年的全国总用水量超过这个国家年水资源总量的20%,就有可能发生“水危机”.依据这个标准,2008年我国是否属于可能发生“水危机”的行列?并说明理由.考点:折线统计图;扇形统计图.专题:计算题.分析:(1)设2004年全国生活用水量为x亿m3,利用增长率公式得到x•(1+16%)=725,解得x=625,然后计算用(1+20%)乘以2004的全国生活用水量得到2008年全国生活用水量;(2)补全折线统计图即可;(3)用2008年全国生活用水量除以2008年全国生活用水量所占的百分比即可得到2008年全国总水量;(4)通过计算得到2.75×104×20%=5500>5000,根据题意可判断2008年我国不属于可能发生“水危机”的行列.解答:解:(1)设2004年全国生活用水量为x亿m3,根据题意得x•(1+16%)=725,解得x=625,即2004年全国生活用水量为625亿m3,则2008年全国生活用水量=625×(1+20%)=750(亿m3);(2)如图:(3)2008年全国总水量=750÷15%=5000(亿);(4)不属于.理由如下:2.75×104×20%=5500>5000,所以2008年我国不属于可能发生“水危机”的行列.故答案为625,750,5000.点评:本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.也考查了扇形统计图.20.(10分)(2015•沈阳)高速铁路列车已成为中国人出行的重要交通工具,其平均速度是普通铁路列车平均速度的3倍,同样行驶690km,高速铁路列车比普通铁路列车少运行了4.6h,求高速铁路列车的平均速度.考点:分式方程的应用.分析:设高速铁路列车的平均速度为xkm/h,根据高速铁路列车比普通铁路列车少运行了4.6h列出分式方程,解分式方程即可,注意检验.解答:解:设高速铁路列车的平均速度为xkm/h,根据题意,得:,去分母,得:690×3=690+4.6x,解这个方程,得:x=300,经检验,x=300是所列方程的解,因此高速铁路列车的平均速度为300km/h.点评:本题考查了分式方程的应用;根据时间关系列出分式方程时解决问题的关键,注意解分式方程必须检验.21.(10分)(2015•沈阳)如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E.(1)求∠OCA的度数;(2)若∠COB=3∠AOB,OC=2,求图中阴影部分面积(结果保留π和根号)考点:扇形面积的计算;圆内接四边形的性质;解直角三角形.分析:(1)根据四边形ABCD是⊙O的内接四边形得到∠ABC+∠D=180°,根据∠ABC=2∠D得到∠D+2∠D=180°,从而求得∠D=60°,最后根据OA=OC得到∠OAC=∠OCA=30°;(2)首先根据∠COB=3∠AOB得到∠AOB=30°,从而得到∠COB为直角,然后利用S阴影=S扇形OBC﹣S△OEC求解.解答:解:(1)∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠D=180°,∵∠ABC=2∠D,∴∠D+2∠D=180°,∴∠D=60°,∴∠AOC=2∠D=120°,∵OA=OC,∴∠OAC=∠OCA=30°;(2)∵∠COB=3∠AOB,∴∠AOC=∠AOB+3∠AOB=120°,∴∠AOB=30°,∴∠COB=∠AOC﹣∠AOB=90°,在Rt△OCE中,OC=2,∴OE=OC•tan∠OCE=2•tan30°=2×=2,∴S△OEC=OE•OC=×2×2=2,∴S扇形OBC==3π,∴S阴影=S扇形OBC﹣S△OEC=3π﹣2.点评:本题考查了扇形面积的计算,院内接四边形的性质,解直角三角形的知识,在求不规则的阴影部分的面积时常常转化为几个规则几何图形的面积的和或差.22.(10分)(2015•沈阳)如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)填空:n的值为3,k的值为12;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)考察反比函数y=的图象,当y≥﹣2时,请直接写出自变量x的取值范围.考点:反比例函数综合题.分析:(1)把点A(4,n)代入一次函数y=x﹣3,得到n的值为3;再把点A(4,3)代入反比例函数y=,得到k的值为8;(2)根据坐标轴上点的坐标特征可得点B的坐标为(2,0),过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,根据勾股定理得到AB=,根据AAS 可得△ABE≌△DCF,根据菱形的性质和全等三角形的性质可得点D的坐标;(3)根据反比函数的性质即可得到当y≥﹣2时,自变量x的取值范围.解答:解:(1)把点A(4,n)代入一次函数y=x﹣3,可得n=×4﹣3=3;把点A(4,3)代入反比例函数y=,可得3=,解得k=12.(2)∵一次函数y=x﹣3与x轴相交于点B,∴x﹣3=0,解得x=2,∴点B的坐标为(2,0),如图,过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,∵A(4,3),B(2,0),∴OE=4,AE=3,OB=2,∴BE=OE﹣OB=4﹣2=2,在Rt△ABE中,AB===,∵四边形ABCD是菱形,∴AB=CD=BC=,AB∥CD,∴∠ABE=∠DCF,∵AE⊥x轴,DF⊥x轴,∴∠AEB=∠DFC=90°,在△ABE与△DCF中,,∴△ABE≌△DCF(ASA),∴CF=BE=2,DF=AE=3,∴OF=OB+BC+CF=2++2=4+,∴点D的坐标为(4+,3).(3)当y=﹣2时,﹣2=,解得x=﹣6.故当y≥﹣2时,自变量x的取值范围是x≤﹣6或x>0.故答案为:3,12.点评:本题考查了反比例函数综合题,利用了待定系数法求函数解析式,菱形的性质和全等三角形的判定和性质,勾股定理,反比例函数的性质等知识,综合性较强,有一定的难度.23.(12分)(2015•沈阳)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B的坐标为(60,0),OA=AB,∠OAB=90°,OC=50.点P是线段OB上的一个动点(点P不与点O、B重合),过点P与y轴平行的直线l交边OA或边AB于点Q,交边OC或边BC于点R,设点P横坐标为t,线段QR的长度为m.已知t=40时,直线l恰好经过点C.(1)求点A和点C的坐标;(2)当0<t<30时,求m关于t的函数关系式;(3)当m=35时,请直接写出t的值;(4)直线l上有一点M,当∠PMB+∠POC=90°,且△PMB的周长为60时,请直接写出满足条件的点M的坐标.考点:一次函数综合题.分析:(1)利用等腰三角形的性质以及勾股定理结合B点坐标得出A,C点坐标;(2)利用锐角三角函数关系结合(1)中所求得出PR,QP的长,进而求出即可;(3)利用(2)中所求,利用当0<t<30时,当30≤t≤60时,分别利用m与t的关系式求出即可;(4)利用相似三角形的性质,得出M点坐标即可.解答:解:(1)如图1,过点A作AD⊥OB,垂足为D,过点C作CE⊥OB,垂足为E,∵OA=AB,∴OD=DB=OB,∵∠OAB=90°,∴AD=OB,∵点B的坐标为:(60,0),∴OB=60,∴OD=OB=×60=30,∴点A的坐标为:(30,30),∵直线l平行于y轴且当t=40时,直线l恰好过点C,∴OE=40,在Rt△OCE中,OC=50,由勾股定理得:CE===30,∴点C的坐标为:(40,﹣30);(2)如图2,∵∠OAB=90°,OA=AB,∴∠AOB=45°,∵直线l平行于y轴,∴∠OPQ=90°,∴∠OQP=45°,∴OP=QP,∵点P的横坐标为t,∴OP=QP=t,在Rt△OCE中,OE=40,CE=30,∴tan∠EOC=,∴tan∠POR==,∴PR=OP•tan∠POR=t,∴QR=QP+PR=t+t=t,∴当0<t<30时,m关于t的函数关系式为:m=t;(3)由(2)得:当0<t<30时,m=35=t,解得:t=20;如图3,当30≤t≤60时,∵OP=t,则BP=QP=60﹣t,∵PR∥CE,∴△BPR∽△BEC,∴=,∴=,解得:PR=90﹣t,则m=60﹣t+90﹣t=35,解得:t=46,综上所述:t的值为20或46;(4)如图4,当∠PMB+∠POC=90°且△PMB的周长为60时,此时t=40,直线l恰好经过点C,则∠MBP=∠COP,故此时△BMP∽△OCP,则=,即=,解得:x=15,故M1(40,15),同理可得:M2(40,﹣15),综上所述:符合题意的点的坐标为:M1(40,15),M2(40,﹣15).点评:此题主要考查了一次函数综合以及相似三角形的判定与性质和勾股定理等知识,利用分类讨论以及数形结合得出是解题关键.24.(12分)(2015•沈阳)如图,在▱ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD上一点,将▱ABCD沿EF折叠,得到四边形EFGH,点A的对应点为点H,点D的对应点为点G.(1)当点H与点C重合时.①填空:点E到CD的距离是2;②求证:△BCE≌△GCF;③求△CEF的面积;(2)当点H落在射线BC上,且CH=1时,直线EH与直线CD交于点M,请直接写出△MEF 的面积.考点:四边形综合题.分析:(1)①解直角三角形即可;②根据平行四边形的性质和折叠的性质得出∠B=∠G,∠BCE=∠GCF,BC=GC,然后根据AAS即可证明;③过E点作EP⊥BC于P,设BP=m,则BE=2m,通过解直角三角形求得EP=m,然后根据折叠的性质和勾股定理求得EC,进而根据三角形的面积就可求得;(2)过E点作EQ⊥BC于Q,通过解直角三角形求得EP=n,根据折叠的性质和勾股定理求得EH,然后根据三角形相似对应边成比例求得MH,从而求得CM,然后根据三角形面积公式即可求得.解答:解:(1)如图1,①作CK⊥AB于K,∵∠B=60°,∴CK=BC•sin60°=4×=2,∵C到AB的距离和E到CD的距离都是平行线AB、CD间的距离,∴点E到CD的距离是2,故答案为2;②∵四边形ABCD是平行四边形,∴AD=BC,∠D=∠B,∠A=∠BCD,由折叠可知,AD=CG,∠D=∠G,∠A=∠ECG,∴BC=GC,∠B=∠G,∠BCD=∠ECG,∴∠BCE=∠GCF,在△BCE和△GCF中,,∴△BCE≌△GCF(AAS);③过E点作EP⊥BC于P,∵∠B=60°,∠EPB=90°,∴∠BEP=30°,∴BE=2BP,设BP=m,则BE=2m,∴EP=BE•sin60°=2m×=m,由折叠可知,AE=CE,∵AB=6,∴AE=CE=6﹣2m,∵BC=4,∴PC=4﹣m,在RT△ECP中,由勾股定理得(4﹣m)2+(m)2=(6﹣2m)2,解得m=,∴EC=6﹣2m=6﹣2×=,∵△BCE≌△GCF,∴CF=EC=,∴S△CEF=××2=;(2)①当H在BC的延长线上时,如图2,过E点作EQ⊥BC于Q,∵∠B=60°,∠EQB=90°,∴∠BEQ=30°,∴BE=2BQ,设BQ=n,则BE=2n,∴QE=BE•sin60°=2n×=n,由折叠可知,AE=HE,∵AB=6,∴AE=HE=6﹣2n,∵BC=4,CH=1,∴BH=5,∴QH=5﹣n,在RT△EHQ中,由勾股定理得(5﹣n)2+(n)2=(6﹣2n)2,解得n=,∴AE=HE=6﹣2n=,∵AB∥CD,∴△CMH∽△BEH,∴=,即=,∴MH=,∴EM=﹣=∴S△EMF=××2=.②如图3,当H在BC的延长线上时,过E点作EQ⊥BC于Q,∵∠B=60°,∠EQB=90°,∴∠BEQ=30°,∴BE=2BQ,设BQ=n,则BE=2n,∴QE=BE•sin60°=2n×=n,由折叠可知,AE=HE,∵AB=6,∴AE=HE=6﹣2n,∵BC=4,CH=1,∴BH=3∴QH=3﹣n在RT△EHQ中,由勾股定理得(3﹣n)2+(n)2=(6﹣2n)2,解得n=∴BE=2n=3,AE=HE=6﹣2n=3,∴BE=BH,∴∠B=60°,∴△BHE是等边三角形,∴∠BEH=60°,∵∠AEF=∠HEF,∴∠FEH=∠AEF=60°,∴EF∥BC,∴DF=CF=3,∵AB∥CD,∴△CMH∽△BEH,∴=,即=,∴CM=1∴EM=CF+CM=4∴S△EMF=×4×2=4.综上,△MEF的面积为或4.点评:本题是四边形综合题,考查了解直角三角形,平行四边形的性质,折叠的性质勾股定理的应用,三角形相似的判定和性质,三角形面积等,熟练掌握性质定理是解题的关键.25.(14分)(2015•沈阳)如图,在平面直角坐标系中,抛物线y=﹣x2﹣x+2与x轴交于B、C两点(点B在点C的左侧),与y轴交于点A,抛物线的顶点为D.(1)填空:点A的坐标为(0,2),点B的坐标为(﹣3,0),点C的坐标为(1,0),点D的坐标为(﹣1,);(2)点P是线段BC上的动点(点P不与点B、C重合)①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R 不与点A、C重合),请直接写出△PQR周长的最小值.考点:二次函数综合题.分析:(1)令x=0,求得A(0,2),令y=0,求得B(﹣3,0),C(1,0),由y=﹣x2。
2015年辽宁省大连市中考数学试题及解析
2015年辽宁省大连市中考数学试卷一、选择题(本大题共8小题, 每小题3分, 共24分, 在每小题给出的四个选项中, 只有一个选项正确)1. (3分)A.2B.﹣2 C.D.(2015•大连)﹣2的绝对值是()2. (3分)(2015•大连)某几何体的三视图如图所示, 则这个几何体是()A.球B.圆柱C.圆锥D.三棱柱A.1, 2, 3 B.1, , 3 C.3, 4, 8 D.4, 5, 63. (3分)(2015•大连)下列长度的三条线段能组成三角形的是()A.(1, 2)B.(3, 0)C.(3, 4)D.(5, 2)4. (3分)(2015•大连)在平面直角坐标系中, 将点P(3, 2)向右平移2个单位,所得的点的坐标是( ) 5. (3分)(2015•大连)方程3x+2(1﹣x )=4的解是( ) A . x= B . x=C . x =2D . x =16. (3分)(2015•大连)计算(﹣3x )2的结果是( ) A . 6x 2 B . ﹣6x 2 C . 9x 2 D . ﹣9x 27. (3分)(2015•大连)某舞蹈队10名队员的年龄分布如下表所示: 年龄(岁) 13 14 15 16 人数 2 4 3 1 则这10名队员年龄的众数是( ) A . 16 B . 14 C . 4 D . 38. (3分)(2015•大连)如图, 在△ABC 中, ∠C=90°, AC=2, 点D 在BC 上, ∠ADC=2∠B, AD= , 则BC 的长为( )A . ﹣1B . +1C . ﹣1D . +1二、填空题(本题共8小题, 每小题3分, 满分24分) 9. (3分)(2015•大连)比较大小:3 ﹣2. (填“>”、“<”或“=”)10. (3分)(2015•大连)若a=49, b=109, 则ab﹣9a的值为.11. (3分)(2015•大连)不等式2x+3<﹣1的解集为.12. (3分)(2015•大连)如图, AB∥CD, ∠A=56°, ∠C=27°, 则∠E的度数为.13. (3分)(2015•大连)一枚质地均匀的正方体骰子的六个面分别刻有1到6的点数, 将这枚骰子掷两次, 其点数之和是7的概率为.14. (3分)(2015•大连)如图, 在▱ABCD中, AC, BD相交于点O, AB=10cm, AD=8cm, AC ⊥BC, 则OB=cm.15. (3分)(2015•大连)如图, 从一个建筑物的A处测得对面楼BC的顶部B的仰角为32°, 底部C的俯角为45°, 观测点与楼的水平距离AD为31m, 则楼BC的高度约为m(结果取整数). (参考数据: sin32°≈0.5, cos32°≈0.8, tan32°≈0.6)16. (3分)(2015•大连)在平面直角坐标系中, 点A, B的坐标分别为(m, 3), (3m﹣1, 3), 若线段AB与直线y=2x+1相交, 则m的取值范围为.三、解答题(本题共4小题, 其中17、18、19题各9分, 20题12, 共39分)17. (9分)(2015•大连)计算:(+1)(﹣1)+ ﹣()0.18. (9分)(2015•大连)解方程: x2﹣6x﹣4=0.19. (9分)(2015•大连)如图, 在▱ABCD中, 点E, F在AC上, 且∠ABE=∠CDF, 求证: BE=DF.20. (12分)测试成绩(分)人数(2015•大连)某地区共有1800名初三学生, 为了解这些学生的体质健康状况, 开学之初随机选取部分学生进行体育测试,以下是根据测试成绩绘制的统计图表的一部分.等级优秀45≤x≤50 140良好37.5≤x<45 36及格30≤x<37.5不及格x<30 6根据以上信息, 解答下列问题:(1)本次测试学生体质健康成绩为良好的有人, 达到优秀的人数占本次测试总人数的百分比为%.(2)本次测试的学生数为人, 其中, 体质健康成绩为及格的有人, 不及格的人数占本次测试总人数的百分比为%.(3)试估计该地区初三学生开学之初体质健康成绩达到良好及以上等级的学生数.四、解答题(本题共3小题, 其中21.22题各9分, 23题10分, 共28分)21.(9分)(2015•大连)甲、乙两人制作某种机械零件, 已知甲每小时比乙多做3个, 甲做96个所用的时间与乙做84个所用的时间相等, 求甲、乙两人每小时各做多少个零件?22. (9分)(2015•大连)如图, 在平面直角坐标系中, ∠AOB=90°, AB∥x轴, OB=2, 双曲线y= 经过点B, 将△AOB绕点B逆时针旋转, 使点O的对应点D落在x轴的正半轴上. 若AB的对应线段CB恰好经过点O.(1)求点B的坐标和双曲线的解析式;(2)判断点C是否在双曲线上, 并说明理由.23. (10分)(2015•大连)如图, AB是⊙O的直径, 点C, D在⊙O上, 且AD平分∠CAB, 过点D作AC的垂线, 与AC的延长线相交于点E, 与AB的延长线相交于点F.(1)求证: EF与⊙O相切;(2)若AB=6, AD=4 , 求EF的长.五、解答题(本题共3小题, 其中24题11分, 25.26题各12分, 共35分)24.(11分)(2015•大连)如图1, 在△ABC中, ∠C=90°, 点D在AC上, 且CD>DA, DA=2, 点P, Q同时从点D出发, 以相同的速度分别沿射线DC.射线DA运动, 过点Q作AC的垂线段QR, 使QR=PQ, 连接PR, 当点Q到达点A时, 点P, Q同时停止运动.设PQ=x, △PQR 与△ABC重叠部分的面积为S, S关于x的函数图象如图2所示(其中0<x≤, <x≤m 时, 函数的解析式不同).(1)填空: n的值为;(2)求S关于x的函数关系式, 并写出x的取值范围.25. (12分)(2015•大连)在△ABC中, 点D, E, F分别在AB, BC, AC上, 且∠ADF+∠DEC=180°, ∠AFE=∠BDE.(1)如图1, 当DE=DF时, 图1中是否存在与AB相等的线段?若存在, 请找出, 并加以证明;若不存在, 说明理由;(2)如图2, 当DE=kDF(其中0<k<1)时, 若∠A=90°, AF=m, 求BD的长(用含k, m 的式子表示).26. (12分)(2015•大连)如图, 在平面直角坐标系中, 矩形OABC的顶点A, C分别在x 轴和y轴的正半轴上, 顶点B的坐标为(2m, m), 翻折矩形OABC, 使点A与点C重合, 得到折痕DE, 设点B的对应点为F, 折痕DE所在直线与y轴相交于点G, 经过点C, F, D的抛物线为y=ax2+bx+c.(1)求点D的坐标(用含m的式子表示);(2)若点G的坐标为(0, ﹣3), 求该抛物线的解析式;(3)在(2)的条件下, 设线段CD的中点为M, 在线段CD上方的抛物线上是否存在点P, 使PM= EA?若存在, 直接写出点P的坐标;若不存在, 说明理由.2015年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题, 每小题3分, 共24分, 在每小题给出的四个选项中, 只有一个选项正确)A.2B.﹣2 C.D.1. (3分)(2015•大连)﹣2的绝对值是()考点:绝对值.分析:根据负数的绝对值等于它的相反数解答.解答:解: ﹣2的绝对值是2,即|﹣2|=2.故选:A.故选: A.故选:A.点评:本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2. (3分)(2015•大连)某几何体的三视图如图所示, 则这个几何体是()A.球B.圆柱C.圆锥D.三棱柱考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体, 锥体还是球体, 再由俯视图即可确定具体形状.解答:解: 根据主视图和左视图为三角形判断出是锥体, 根据俯视图是圆形和圆心可判断出这个几何体应该是圆锥,故选:C.故选: C.故选:C.点评:此题考查了由三视图判断几何体, 考查学生对三视图掌握程度和灵活运用能力, 同时也体现了对空间想象能力方面的考查.A.1, 2, 3 B.1, , 3 C.3, 4, 8 D.4, 5, 63. (3分)(2015•大连)下列长度的三条线段能组成三角形的是()考点:三角形三边关系.分析:根据三角形的三边满足任意两边之和大于第三边来进行判断.解答:解: A.1+2=3, 不能组成三角形, 故本选项错误;B.1+ <3, 不能组成三角形, 故本选项错误;C.3+4<8, 不能组成三角形, 故本选项错误;D、4+5>6, 能组成三角形, 故本选项正确.故选D.故选D.点评:本题考查了能够组成三角形三边的条件, 简便方法是:用两条较短的线段相加, 如果大于最长的那条线段就能够组成三角形.4. (3分)A.(1, 2)B.(3, 0)C.(3, 4)D.(5, 2)(2015•大连)在平面直角坐标系中, 将点P(3, 2)向右平移2个单位,所得的点的坐标是()考点:坐标与图形变化-平移. 分析:将点P (3, 2)向右平移2个单位后, 纵坐标不变, 横坐标加上2即可得到平移后点的坐标. 解答:解: 将点P (3, 2)向右平移2个单位, 所得的点的坐标是(3+2, 2), 即(5, 2). 故选D. 故选D . 点评:本题考查了坐标与图形变化﹣平移, 掌握平移中点的变化规律:横坐标右移加, 左移减;纵坐标上移加, 下移减是解题的关键. 5. (3分)(2015•大连)方程3x+2(1﹣x )=4的解是( ) A . x= B . x=C . x =2D . x =1考点:解一元一次方程. 专题:计算题. 分析:方程去括号, 移项合并, 把x 系数化为1, 即可求出解. 解答:解: 去括号得: 3x+2﹣2x=4, 解得:x=2, 故选C. 故选C . 点评:此题考查了解一元一次方程, 熟练掌握运算法则是解本题的关键. 6. (3分)(2015•大连)计算(﹣3x )2的结果是( ) A . 6x 2 B . ﹣6x 2 C . 9x 2 D . ﹣9x 2考点:幂的乘方与积的乘方.分析:根据积的乘方进行计算即可.解答:解: (﹣3x)2=9x2,故选C.故选C.点评:此题考查积的乘方, 关键是根据法则进行计算.13 14 15 167. (3分)(2015•大连)某舞蹈队10名队员的年龄分布如下表所示:年龄(岁)人数 2 4 3 1则这10名队员年龄的众数是()A.16 B.14 C.4D.3考点:众数.分析:众数可由这组数据中出现频数最大数据写出;解答:解: 这组数据中14岁出现频数最大, 所以这组数据的众数为14;故选B.故选B.点评:本题考查的是众数的定义.要注意, 当所给数据有单位时, 所求得的平均数、众数和中位数与原数据的单位相同, 不要漏单位.8. (3分)(2015•大连)如图, 在△ABC中, ∠C=90°, AC=2, 点D在BC上, ∠ADC=2∠B, AD= , 则BC的长为()A.﹣1 B.+1 C.﹣1 D.+1考点:勾股定理;等腰三角形的判定与性质.分析:根据∠ADC=2∠B, ∠ADC=∠B+∠BAD判断出DB=DA, 根据勾股定理求出DC的长, 从而求出BC的长.解答:解: ∵∠ADC=2∠B, ∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA= ,在Rt△ADC中,DC===1;∴BC= +1.故选D.故选D.点评:本题主要考查了勾股定理, 同时涉及三角形外角的性质, 二者结合, 是一道好题.二、填空题(本题共8小题, 每小题3分, 满分24分)9. (3分)(2015•大连)比较大小:3>﹣2. (填“>”、“<”或“=”)考点:有理数大小比较.分析:有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数, 绝对值大的其值反而小, 据此判断即可.解答:解: 根据有理数比较大小的方法, 可得3>﹣2.故答案为:>.故答案为: >.故答案为:>.点评:此题主要考查了有理数大小比较的方法, 要熟练掌握, 解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数, 绝对值大的其值反而小.10. (3分)(2015•大连)若a=49, b=109, 则ab﹣9a的值为4900.考点:因式分解-提公因式法.专题:计算题.分析:原式提取公因式a后, 将a与b的值代入计算即可求出值.解答:解: 当a=49, b=109时, 原式=a(b﹣9)=49×100=4900,故答案为:4900.故答案为: 4900.故答案为:4900.点评:此题考查了因式分解﹣提公因式法, 熟练掌握提取公因式的方法是解本题的关键.11. (3分)(2015•大连)不等式2x+3<﹣1的解集为x<﹣2.考点:解一元一次不等式.分析:利用不等式的基本性质, 把3移到不等号的右边, 合并同类项即可求得原不等式的解集.解答:解: 移项得, 2x<﹣1﹣3,合并同类项得, 2x<﹣4解得x<﹣2,故答案为x<﹣2.故答案为x<﹣2.点评:本题考查了解一元一次不等式, 以及解简单不等式的能力, 解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.12. (3分)(2015•大连)如图, AB∥CD, ∠A=56°, ∠C=27°, 则∠E的度数为29°.考点:平行线的性质;三角形的外角性质.分析:根据AB∥CD, 求出∠DFE=56°, 再根据三角形外角的定义性质求出∠E的度数.解答:解: ∵AB∥CD,∴∠DFE=∠A=56°,又∵∠C=27°,∴∠E=56°﹣27°=29°,故答案为29°.故答案为29°.点评:本题考查了平行线的性质、三角形的外角的性质, 找到相应的平行线是解题的关键.13. (3分)(2015•大连)一枚质地均匀的正方体骰子的六个面分别刻有1到6的点数, 将这枚骰子掷两次, 其点数之和是7的概率为.考点:列表法与树状图法.专题:计算题.分析:先画树状图展示所有36种等可能的结果数, 再找出点数之和是7的结果数, 然后根据概率公式求解.解答:解: 画树状图为:共有36种等可能的结果数, 其中点数之和是7的结果数为6,所以点数之和是7的概率= = .故答案为.故答案为.点评:本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n, 再从中选出符合事件A或B的结果数目m, 然后根据概率公式求出事件A或B的概率.14. (3分)(2015•大连)如图, 在▱ABCD中, AC, BD相交于点O, AB=10cm, AD=8cm, AC ⊥BC, 则OB=cm.考点:平行四边形的性质;勾股定理.分析:由平行四边形的性质得出BC=AD=8cm, OA=OC= AC, 由勾股定理求出AC, 得出OC, 再由勾股定理求出OB即可.解答:解: ∵四边形ABCD是平行四边形,∴BC=AD=8cm, OA=OC= AC,∵AC⊥BC,∴∠ACB=90°,∴AC= = =6,∴OC=3,∴OB===;故答案为:.故答案为: .故答案为:.点评:本题考查了平行四边形的性质、勾股定理;熟练掌握平行四边形的性质, 并能进行推理计算是解决问题的关键.15. (3分)(2015•大连)如图, 从一个建筑物的A处测得对面楼BC的顶部B的仰角为32°, 底部C的俯角为45°, 观测点与楼的水平距离AD为31m, 则楼BC的高度约为50m(结果取整数). (参考数据: sin32°≈0.5, cos32°≈0.8, tan32°≈0.6)考点:解直角三角形的应用-仰角俯角问题.分析:在Rt△ABD中, 根据正切函数求得BD=AD•tan32°=31×0.6=18.6, 在Rt△ACD中, 求得BC=BD+CD=18.6+31=49.6m.结论可求.解答:解: 在Rt△ABD中,∵AD=31, ∠BAD=32°,∴BD=AD•tan32°=31×0.6=18.6,在Rt△ACD中,∵∠DAC=45°,∴CD=AD=31,∴BC=BD+CD=18.6+31≈50m.故答案为:50.故答案为: 50.故答案为:50.点评:此题考查了仰角与俯角的知识.此题难度适中, 注意能借助仰角或俯角构造直角三角形并解直角三角形是解此题的关键.16. (3分)(2015•大连)在平面直角坐标系中, 点A, B的坐标分别为(m, 3), (3m﹣1, 3), 若线段AB与直线y=2x+1相交, 则m的取值范围为≤m≤1.考点:两条直线相交或平行问题.专题:计算题.分析:先求出直线y=3与直线y=2x+1的交点为(1, 3), 再分类讨论:当点B在点A的右侧, 则m≤1≤3m﹣1, 当点B在点A的左侧, 则3m﹣1≤1≤m, 然后分别解关于m的不等式组即可.解答:解: 当y=3时, 2x+1=3, 解得x=1,所以直线y=3与直线y=2x+1的交点为(1, 3),当点B在点A的右侧, 则m≤1≤3m﹣1, 解得≤m≤1;当点B在点A的左侧, 则3m﹣1≤1≤m, 无解,所以m的取值范围为≤m≤1.所以m的取值范围为≤m≤1.点评:本题考查了两直线相交或平行问题:两条直线的交点坐标, 就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系, 那么他们的自变量系数相同, 即k值相同.三、解答题(本题共4小题, 其中17、18、19题各9分, 20题12, 共39分)17. (9分)(2015•大连)计算:(+1)(﹣1)+ ﹣()0.考点:二次根式的混合运算;零指数幂.专题:计算题.分析:先根据平方差公式和零指数幂的意义得到原式=3﹣1+2 ﹣1, 然后进行加减运算.解答:解: 原式=3﹣1+2 ﹣1=1+2 .=1+2.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式, 再进行二次根式的乘除运算, 然后合并同类二次根式.也考查了零指数幂.18. (9分)(2015•大连)解方程: x2﹣6x﹣4=0.考点:解一元二次方程-配方法.分析:此题考查了配方法解一元二次方程, 解题时要注意解题步骤的准确应用, 把左边配成完全平方式, 右边化为常数.解答:解: 移项得x2﹣6x=4,配方得x2﹣6x+9=4+9,即(x﹣3)2=13,开方得x﹣3=±,∴x1=3+ , x2=3﹣.∴x1=3+ ,x2=3﹣.∴x1=3+,x2=3﹣.点评:本题考查了用配方法解一元二次方程, 用配方法解一元二次方程的步骤: (1)形如x2+px+q=0型:第一步移项, 把常数项移到右边;第二步配方, 左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步, 直接开方即可.(2)形如ax2+bx+c=0型, 方程两边同时除以二次项系数, 即化成x2+px+q=0, 然后配方.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.19. (9分)(2015•大连)如图, 在▱ABCD中, 点E, F在AC上, 且∠ABE=∠CDF, 求证: BE=DF.考点:全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:根据平行四边形的性质, 证明AB=CD, AB∥CD, 进而证明∠BAC=∠CDF, 根据ASA 即可证明△ABE≌△CDF, 根据全等三角形的对应边相等即可证明.解答:证明: ∵四边形ABCD是平行四边形,∴AB=CD, AB∥CD,∴∠BAC=∠CDF,∴△ABE和△CDF中,,∴△ABE≌△CDF,∴BE=DF.∴BE=DF.点评:本题考查的是利用平行四边形的性质结合三角形全等来解决有关线段相等的证明.测试成绩(分)人数20. (12分)(2015•大连)某地区共有1800名初三学生, 为了解这些学生的体质健康状况, 开学之初随机选取部分学生进行体育测试,以下是根据测试成绩绘制的统计图表的一部分.等级优秀45≤x≤50 140良好37.5≤x<45 36及格30≤x<37.5不及格x<30 6根据以上信息, 解答下列问题:(1)本次测试学生体质健康成绩为良好的有36人, 达到优秀的人数占本次测试总人数的百分比为70%.(2)本次测试的学生数为200人, 其中, 体质健康成绩为及格的有18人, 不及格的人数占本次测试总人数的百分比为3%.(3)试估计该地区初三学生开学之初体质健康成绩达到良好及以上等级的学生数.考点:扇形统计图;用样本估计总体;统计表.分析:(1)根据统计图和统计表即可直接解答;(2)根据优秀的有140人, 所占的百分比是70%即可求得总人数, 利用总人数减去其它组的人数即可求得及格的人数, 然后根据百分比的意义求得不及格的人数所占百分比;(3)利用总人数乘以对应的百分比即可求解.(3)利用总人数乘以对应的百分比即可求解.解答:解: (1)本次测试学生体质健康成绩为良好的有36人.达到优秀的人数占本次测试总人数的百分比为70%.故答案是: 36, 70;(2)调查的总人数是: 140÷70%=200(人),体质健康成绩为及格的有200﹣140﹣36﹣6=18(人),不及格的人数占本次测试总人数的百分比是: ×100%=3%.故答案是: 200, 18, 3%;(3)本次测试学生体质健康成绩为良好的有36人, =18%,估计该地区初三学生开学之初体质健康成绩达到良好及以上等级的学生数是:1800×(70%+18%)=1584(人).估计该地区初三学生开学之初体质健康成绩达到良好及以上等级的学生数是: 1800×(70%+18%)=1584(人).估计该地区初三学生开学之初体质健康成绩达到良好及以上等级的学生数是:1800×(70%+18%)=1584(人).点评:本题考查的是条形统计图和扇形统计图的综合运用, 读懂统计图, 从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.四、解答题(本题共3小题, 其中21.22题各9分, 23题10分, 共28分)21.(9分)(2015•大连)甲、乙两人制作某种机械零件, 已知甲每小时比乙多做3个, 甲做96个所用的时间与乙做84个所用的时间相等, 求甲、乙两人每小时各做多少个零件?考点:分式方程的应用.分析:由题意可知:设乙每小时做的零件数量为x个, 甲每小:时做的零件数量是x+3;根据甲做90个所用的时间=乙做60个所用的时间列出方程求解.解答:解: 设乙每小时做的零件数量为x个, 甲每小时做的零件数量是x+3, 由题意得=解得x=21,经检验x=21是原分式方程的解,则x+3=24.答:甲每小时做24个零件, 乙每小时做21个零件.答:甲每小时做24个零件,乙每小时做21个零件.答: 甲每小时做24个零件,乙每小时做21个零件.答:甲每小时做24个零件,乙每小时做21个零件.点评:此题考查分式方程的应用, 利用工作时间相等建立等量关系是解决问题的关键.22. (9分)(2015•大连)如图, 在平面直角坐标系中, ∠AOB=90°, AB∥x轴, OB=2, 双曲线y= 经过点B, 将△AOB绕点B逆时针旋转, 使点O的对应点D落在x轴的正半轴上. 若AB的对应线段CB恰好经过点O.(1)求点B的坐标和双曲线的解析式;(2)判断点C是否在双曲线上, 并说明理由.考点:反比例函数图象上点的坐标特征;坐标与图形变化-旋转.分析:(1)先求得△BOD是等边三角形, 即可求得B的坐标, 然后根据待定系数法即可求得双曲线的解析式;(2)求得OB=OC, 即可求得C的坐标, 根据C的坐标即可判定点C是否在双曲线上.(2)求得OB=OC,即可求得C的坐标,根据C的坐标即可判定点C是否在双曲线上.(2)求得OB=OC,即可求得C的坐标,根据C的坐标即可判定点C是否在双曲线上.解答:解: (1)∵AB∥x轴,∴∠ABO=∠BOD,∵∠ABO=∠CBD,∴∠BOD=∠OBD,∵OB=BD,∴∠BOD=∠BDO,∴△BOD是等边三角形,∴∠BOD=60°,∴B(1, );∵双曲线y= 经过点B,∴k=1×= .∴双曲线的解析式为y= .(2)∵∠ABO=60°, ∠AOB=90°,∴∠A=30°,∴AB=2OB,∵AB=BC,∴BC=2OB,∴OC=OB,∴C(﹣1, ﹣),∵﹣1×(﹣)= ,∴点C在双曲线上.∴点C在双曲线上.点评:本题考查了反比例函数图象上点的坐标特征, 旋转的性质, 等边三角形的判定和性质, 待定系数法求二次函数的解析式等, 求得△BOD是等边三角形是解题的关键.23. (10分)(2015•大连)如图, AB是⊙O的直径, 点C, D在⊙O上, 且AD平分∠CAB, 过点D作AC的垂线, 与AC的延长线相交于点E, 与AB的延长线相交于点F.(1)求证: EF与⊙O相切;(2)若AB=6, AD=4 , 求EF的长.考点:切线的判定.分析:(1)连接OD, 由题可知, E已经是圆上一点, 欲证CD为切线, 只需证明∠OED=90°即可.(2)连接BD, 作DG⊥AB于G, 根据勾股定理求出BD, 进而根据勾股定理求得DG, 根据角平分线性质求得DE=DG= , 然后根据△ODF∽△AEF, 得出比例式, 即可求得EF的长.(2)连接BD,作DG⊥AB于G,根据勾股定理求出BD,进而根据勾股定理求得DG,根据角平分线性质求得DE=DG= ,然后根据△ODF∽△AEF,得出比例式,即可求得EF的长.(2)连接BD,作DG⊥AB于G,根据勾股定理求出BD,进而根据勾股定理求得DG,根据角平分线性质求得DE=DG=,然后根据△ODF∽△AEF,得出比例式,即可求得EF的长.解答:(1)证明: 连接OD,∵AD平分∠CAB,∴∠OAD=∠EAD.∵OE=OA,∴∠ODA=∠OAD.∴∠ODA=∠EAD.∴OD∥AE.∵∠ODF=∠AEF=90°且D在⊙O上,∴EF与⊙O相切.(2)连接BD, 作DG⊥AB于G,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=6, AD=4 ,∴BD= =2,∵OD=OB=3,设OG=x, 则BG=3﹣x,∵OD2﹣OG2=BD2﹣BG2, 即32﹣x2=22﹣(3﹣x)2,解得x= ,∴OG= ,∴DG= = ,∵AD平分∠CAB, AE⊥DE, DG⊥AB,∴DE=DG= ,∴AE= = ,∵OD∥AE,∴△ODF∽△AEF,∴= , 即= ,∴= ,∴EF= .点评:本题考查了相似三角形的性质和判定, 勾股定理, 切线的判定等知识点的应用, 主要考查学生运用性质进行推理和计算的能力, 两小题题型都很好, 都具有一定的代表性.五、解答题(本题共3小题, 其中24题11分, 25.26题各12分, 共35分)24.(11分)(2015•大连)如图1, 在△ABC中, ∠C=90°, 点D在AC上, 且CD>DA, DA=2, 点P, Q同时从点D出发, 以相同的速度分别沿射线DC.射线DA运动, 过点Q作AC的垂线段QR, 使QR=PQ, 连接PR, 当点Q到达点A时, 点P, Q同时停止运动.设PQ=x, △PQR 与△ABC重叠部分的面积为S, S关于x的函数图象如图2所示(其中0<x≤, <x≤m 时, 函数的解析式不同).(1)填空: n的值为;(2)求S关于x的函数关系式, 并写出x的取值范围.考点:动点问题的函数图象.分析:(1)当x= 时, △PQR与△ABC重叠部分的面积就是△PQR的面积, 然后根据PQ= ,QR=PQ, 求出n的值是多少即可.(2)首先根据S关于x的函数图象, 可得S关于x的函数表达式有两种情况:当0<x≤时, S= ×PQ×RQ= x2, 判断出当点Q点运动到点A时, x=2AD=4, 据此求出m=4;然后求出当<x≤4时, S关于x的函数关系式即可.(2)首先根据S关于x的函数图象,可得S关于x的函数表达式有两种情况:当0<x≤时,S= ×PQ×RQ= x2,判断出当点Q点运动到点A时,x=2AD=4,据此求出m=4;然后求出当<x≤4时,S关于x的函数关系式即可.(2)首先根据S关于x的函数图象,可得S关于x的函数表达式有两种情况: 当0<x≤时,S= ×PQ×RQ= x2,判断出当点Q点运动到点A时,x=2AD=4,据此求出m=4;然后求出当<x≤4时,S关于x的函数关系式即可.(2)首先根据S关于x的函数图象,可得S关于x的函数表达式有两种情况:当0<x≤时,S=×PQ×RQ=x2,判断出当点Q点运动到点A时,x=2AD=4,据此求出m=4;然后求出当<x≤4时,S关于x的函数关系式即可.解答:解: (1)如图1,,当x= 时, △PQR与△ABC重叠部分的面积就是△PQR的面积,∵PQ= , QR=PQ,∴QR= ,∴n=S= ×()2= ×= .(2)如图2,,根据S关于x的函数图象, 可得S关于x的函数表达式有两种情况:当0<x≤时,S= ×PQ×RQ= x2,当点Q点运动到点A时,x=2AD=4,∴m=4.当<x≤4时,S=S△APF﹣S△AQF= AP•FG﹣AQ•EQ,AP=2+ , AQ=2﹣,∵△AQE∽△AQ1R1, ,∴QE= ,设FG=PG=m,∵△AGF△AQ1R1, ,∴AG=2+ ﹣m,∴m= ,∴S=S△APF﹣S△AQE=AP•FG﹣AQ•EQ=(2)(2)﹣(2﹣)•(2)=x2+∴S= x2+ .综上, 可得S=故答案为:.故答案为: .故答案为:.点评:此题主要考查了动点问题的函数图象, 要熟练掌握, 解答此题的关键是要明确:图象应用信息广泛, 通过看图获取信息, 不仅可以解决生活中的实际问题, 还可以提高分析问题、解决问题的能力.用图象解决问题时, 要理清图象的含义即会识图.25. (12分)(2015•大连)在△ABC中, 点D, E, F分别在AB, BC, AC上, 且∠ADF+∠DEC=180°, ∠AFE=∠BDE.(1)如图1, 当DE=DF时, 图1中是否存在与AB相等的线段?若存在, 请找出, 并加以证明;若不存在, 说明理由;(2)如图2, 当DE=kDF(其中0<k<1)时, 若∠A=90°, AF=m, 求BD的长(用含k, m 的式子表示).考点:相似三角形的判定与性质.分析:(1)如图1, 连结AE. 先由DE=DF, 得出∠DEF=∠DFE, 由∠ADF+∠DEC=180°, 得出∠ADF=∠DEB. 由∠AFE=∠BDE, 得出∠AFE+∠ADE=180°, 那么A.D.E、F 四点共圆, 根据圆周角定理得出∠DAE=∠DFE=∠DEF, ∠ADF=∠AEF. 再由∠ADF=∠DEB=∠AEF, 得出∠AEF+∠AED=∠DEB+∠AED, 则∠AEB=∠DEF=∠BAE, 根据等角对等边得出AB=BE;(2)如图2, 连结AE.由A、D、E、F四点共圆, 得出∠ADF=∠AEF, 由∠DAF=90°, 得出∠DEF=90°, 再证明∠DEB=∠AEF.又∠AFE=∠BDE, 根据两角对应相等的两三角形相似得出△BDE∽△AFE, 利用相似三角形对应边成比例得到= .在直角△DEF中, 利用勾股定理求出EF= = DF, 然后将AF=m, DE=kDF代入, 计算即可求解.(2)如图2,连结AE. 由A、D、E、F四点共圆,得出∠ADF=∠AEF,由∠DAF=90°,得出∠DEF=90°,再证明∠DEB=∠AEF. 又∠AFE=∠BDE,根据两角对应相等的两三角形相似得出△BDE∽△AFE,利用相似三角形对应边成比例得到= . 在直角△DEF中,利用勾股定理求出EF= = DF,然后将AF=m,DE=kDF代入,计算即可求解.(2)如图2,连结AE.由A.D、E、F四点共圆,得出∠ADF=∠AEF,由∠DAF=90°,得出∠DEF=90°,再证明∠DEB=∠AEF.又∠AFE=∠BDE,根据两角对应相等的两三角形相似得出△BDE∽△AFE,利用相似三角形对应边成比例得到= .在直角△DEF中,利用勾股定理求出EF= = DF,然后将AF=m,DE=kDF代入,计算即可求解.(2)如图2,连结AE.由A、D.E、F四点共圆,得出∠ADF=∠AEF,由∠DAF=90°,得出∠DEF=90°,再证明∠DEB=∠AEF.又∠AFE=∠BDE,根据两角对应相等的两三角形相似得出△BDE∽△AFE,利用相似三角形对应边成比例得到= .在直角△DEF中,利用勾股定理求出EF= = DF,然后将AF=m,DE=kDF代入,计算即可求解.(2)如图2,连结AE.由A、D、E、F四点共圆,得出∠ADF=∠AEF,由∠DAF=90°,得出∠DEF=90°,再证明∠DEB=∠AEF.又∠AFE=∠BDE,根据两角对应相等的两三角形相似得出△BDE∽△AFE,利用相似三角形对应边成比例得到=.在直角△DEF中,利用勾股定理求出EF==DF,然后将AF=m,DE=kDF代入,计算即可求解.解答:解: (1)如图1, 连结AE.∵DE=DF,。
2015学年辽宁省沈阳中考数学年试题答案
【考点】反比例函数的性质,曲线上点的坐标与方程的关系,勾股定理,分类思想的应用 16.【答案】 2+ 3 或 4+2 3
【解析】∵四边形纸片 ABCD 中, A C 90,B 150 ,∴ C 30 . 如 答 图 , 根 据 题 意 对折、裁剪、铺平后可有两种情况得到平行四边形:
∵ y x2 2x 1 x 12 ,
∴二次函数开口上,对称轴是 x -1,在对称轴右侧 y 随 x 的增大而增大. ∴当1 x 2 时,y 随 x 的增大而增大. 【考点】二次函数的性质 14.【答案】(90 - )
2
3/9
【解析】∵ ECA 度,∴ ECB 180 - 度.
1 时,n 为它的整数位数减 1;当该数小于 1 时,-n 为它第一个有效数字前 0 的个数(含小数点前的 1 个
0).因此,∵11.4 万=114 000 一共 6 位,∴11.4 万 114000 1.14105 ,故选 C.
【考点】科学记数法
2.【答案】C
【 解 析 】 根 据 有 理 数 的 运 算 法 则 逐 一 计 算 做 出 判 断 : A . 23 24 8 16 24 27 , 选 项 错 误 ;
mm 后继续应用平方差公式分解即可: m3n - 4mn mn m2 - 4 mnm 2m - 2 .
【考点】提公因式法和应用公式法因式分解 13.【答案】 1 增大 【解析】函数 y x2 2x 1 ,当 y=0 时,即 x2 2x 1 0 ,解得 x -1.
选项错误.故选 A.
【考点】代数式的变形
5.【答案】D
【解析】∵圆内接四边形 ABCD 中,已知 A 70 ,∴根据圆内接四边形互补的性质,得 C 110 .故
2015年沈阳中考数学真题卷含答案解析
2015年沈阳市中等学校招生统一考试数学试题(含答案全解全析)参考公式:抛物线y=ax2+bx+c的顶点是(-b2a ,4ac-b24a),对称轴是直线x=-b2a.第Ⅰ卷(选择题,共24分)一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题3分,共24分)1.比0大的数是( )A.-2B.-32C.-0.5D.12.如图是由6个相同的小立方块搭成的几何体,这个几何体的左视图是( )3.下列事件为必然事件的是( )A.经过有交通信号灯的路口,遇到红灯B.明天一定会下雨C.抛出的篮球会下落D.任意买一张电影票,座位号是2的倍数4.如图,在△ABC中,点D是边AB上一点,点E是边AC上一点,且DE∥BC,∠B=40°,∠AED=60°,则∠A的度数是( )A.100°B.90°C.80°D.70°5.下列计算结果正确的是( )A.a4·a2=a8B.(a5)2=a7C.(a-b)2=a2-b2D.(ab)2=a2b26.一组数据2、3、4、4、5、5、5的中位数和众数分别是( )A.3.5,5B.4,4C.4,5D.4.5,47.顺次连结对角线相等的四边形的各边中点,所形成的四边形是( ) A.平行四边形B.菱形C.矩形D.正方形8.在平面直角坐标系中,二次函数y=a(x-h)2(a ≠0)的图象可能是( )第Ⅱ卷(非选择题,共126分)二、填空题(每小题4分,共32分)9.分解因式:ma 2-mb 2= . 10.不等式组{x -3<0,2x +4≥0的解集是 .11.如图,在△ABC 中,AB=AC,∠B=30°,以点A 为圆心,以3 cm 为半径作☉A,当AB= cm 时,BC 与☉A 相切.12.某跳远队甲、乙两名运动员最近10次跳远成绩的平均数均为602 cm,若甲跳远成绩的方差为s 甲2=65.84,乙跳远成绩的方差为s 乙2=285.21,则成绩比较稳定的是 .(填“甲”或“乙”)13.在一个不透明的袋中装有12个红球和若干个黑球,每个球除颜色外都相同,任意摸出一个球是黑球的概率为14,那么袋中的黑球有 个. 14.如图,△ABC 与△DEF 位似,位似中心为点O,且△ABC 的面积等于△DEF 面积的49,则AB∶DE= .15.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水.小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足图2中的图象,则至少需要 s 能把小水杯注满水.16.如图,正方形ABCD 绕点B 逆时针旋转30°后得到正方形BEFG,EF 与AD 相交于点H,延长DA 交GF 于点K,若正方形ABCD 边长为√3,则AK= .三、解答题(第17、18小题各8分,第19小题10分,共26分) 17.计算:√273+|√5-2|-(13)-2+(tan 60°-1)0.18.如图,点E 为矩形ABCD 外一点,AE=DE,连结EB 、EC 分别与AD 相交于点F 、G. 求证:(1)△EAB ≌△EDC; (2)∠EFG=∠EGF.19.我国是世界上严重缺水的国家之一,全国总用水量逐年上升,全国总用水量可分为农业用水量、工业用水量和生活用水量三部分.为了合理利用水资源,我国连续多年对水资源的利用情况进行跟踪调查,将所得数据进行处理,绘制了2008年全国总用水量分布情况扇形统计图和2004—2008年全国生活用水量折线统计图的一部分如下:(1)2007年全国生活用水量比2004年增加了16%,则2004年全国生活用水量为亿m3,2008年全国生活用水量比2004年增加了20%,则2008年全国生活用水量为亿m3;(2)根据以上信息,请补全折线统计图;(3)根据以上信息,2008年全国总用水量为亿m3;(4)我国2008年水资源总量约为2.75×104亿m3,根据国外的经验,一个国家当年的全国总用水量超过这个国家年水资源总量的20%,就有可能发生“水危机”.依据这个标准,2008年我国是否属于可能发生“水危机”的行列?并说明理由.四、解答题(每小题10分,共20分)20.高速铁路列车已成为中国人出行的重要交通工具,其平均速度是普通铁路列车平均速度的3倍,同样行驶690km,高速铁路列车比普通铁路列车少运行了4.6h,求高速铁路列车的平均速度.21.如图,四边形ABCD是☉O的内接四边形,∠ABC=2∠D,连结OA、OB、OC、AC,OB与AC相交于点E.(1)求∠OCA的度数;(2)若∠COB=3∠AOB,OC=2√3,求图中阴影部分面积.(结果保留π和根号)五、解答题(本题10分)22.如图,已知一次函数y=32x-3与反比例函数y=kx的图象相交于点A(4,n),与x 轴相交于点B. (1)填空:n 的值为 ,k 的值为 ;(2)以AB 为边作菱形ABCD,使点C 在x 轴正半轴上,点D 在第一象限,求点D 的坐标; (3)考察反比例函数y=k x的图象,当y ≥-2时,请直接..写出自变量x 的取值范围.六、解答题(本题12分)23.如图,在平面直角坐标系中,四边形OABC 的顶点O 是坐标原点,点A 在第一象限,点C 在第四象限,点B 的坐标为(60,0),OA=AB,∠OAB=90°,OC=50.点P 是线段OB 上的一个动点(点P 不与点O 、B 重合),过点P 与y 轴平行的直线l 交边OA 或边AB 于点Q,交边OC 或边BC 于点R,设点P 横坐标为t,线段QR 的长度为m.已知t=40时,直线l 恰好经过点C. (1)求点A 和点C 的坐标;(2)当0<t<30时,求m 关于t 的函数关系式;(3)当m=35时,请直接..写出t 的值; (4)直线l 上有一点M,当∠PMB+∠POC=90°,且△PMB 的周长为60时,请直接..写出满足条件的点M 的坐标.七、解答题(本题12分)24.如图,在▱ABCD 中,AB=6,BC=4,∠B=60°,点E 是边AB 上一点,点F 是边CD 上一点,将▱ABCD沿EF 折叠,得到四边形EFGH,点A 的对应点为H,点D 的对应点为点G. (1)当点H 与点C 重合时.①填空:点E 到CD 的距离是 ; ②求证:△BCE ≌△GCF; ③求△CEF 的面积;(2)当点H 落在射线BC 上,且CH=1时,直线EH 与直线CD 交于点M,请直接..写出△MEF 的面积. 温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.八、解答题(本题14分)25.如图,在平面直角坐标系中,抛物线y=-23x 2-43x+2与x 轴交于B 、C 两点(点B 在点C 的左侧),与y 轴交于点A,抛物线的顶点为D.(1)填空:点A 的坐标为( , ),点B 的坐标为( , ),点C 的坐标为( , ),点D 的坐标为( , ); (2)点P 是线段BC 上的动点(点P 不与点B 、C 重合).①过点P 作x 轴的垂线交抛物线于点E,若PE=PC,求点E 的坐标;②在①的条件下,点F 是坐标轴上的点,且点F 到EA 和ED 的距离相等,请直接..写出线段EF 的长;③若点Q 是线段AB 上的动点(点Q 不与点A 、B 重合),点R 是线段AC 上的动点(点R 不与点A 、C 重合),请直接..写出△PQR 周长的最小值. 温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.答案全解全析:一、选择题1.D -2,-32,-0.5都是负数,1是正数,由“正数都大于0,负数都小于0”得1>0.故选D.2.A从几何体的左面看,得到四个正方形,其中三个横向排列,且在最左边的一个正方形上面有一个正方形.故选A.评析几何体的三视图分别是从正面、左面、上面看几何体得到的平面图形,实质上就是从某一方向看到的几何体的外轮廓与看不到的线(用虚线表示)组成的图形.3.C A项,经过有交通信号灯的路口,有可能遇到红灯,也有可能遇到黄灯或绿灯,所以“经过有交通信号灯的路口,遇到红灯”是随机事件;B项,明天可能下雨,也可能不下雨,所以“明天一定会下雨”是随机事件;C项,抛出的篮球在地球引力的作用下一定会下落,所以“抛出的篮球一定会下落”是必然事件;D项,任意买一张电影票,座位号可能是奇数,也可能是偶数,所以“任意买一张电影票,座位号是2的倍数”是随机事件.故选C.评析一定发生的事件是必然事件;一定不会发生的事件是不可能事件;有可能发生,也有可能不发生的事件为随机事件.4.C∵DE∥BC,∴∠AED=∠C.又∵∠AED=60°,∴∠C=60°.在△ABC 中,∠A+∠B+∠C=180°,∵∠B=40°,∠C=60°,∴∠A=180°-∠B-∠C=180°-40°-60°=80°.故选C.5.D A项,根据同底数幂的乘法法则得a4·a2=a4+2=a6,故本选项错误;B项,根据幂的乘方法则得(a5)2=a5×2=a10,故本选项错误;C项,根据完全平方公式得(a-b)2=a2-2ab+b2,故本选项错误;D 项,根据积的乘方法则得(ab)2=a2b2,故本选项正确.故选D.6.C将这组数据按从小到大的顺序排列后,位于中间位置的是4,故这组数据的中位数为4.在这组数据中5出现了3次,出现的次数最多,所以这组数据的众数为5.故选C.7.B如图,在△ABD中,E,F分别是AB,AD的中点,∴EF是△ABD的中位线,∴EF=1BD,同2理,GH=1BD,EH=1AC,FG=1AC,∵AC=BD,∴EF=FG=HG=HE,∴四边形EFGH是菱形.评析 顺次连结四边形各边中点所得的四边形是中点四边形.中点四边形一定是平行四边形,它的其他特征取决于原四边形对角线的特点:①若原四边形的对角线互相垂直,则中点四边形的各角为直角;②若原四边形的对角线相等,则中点四边形的各边相等.8.D 二次函数y=a(x-h)2(a ≠0)的图象的顶点坐标为(h,0),由于该点的纵坐标为0,所以该点在x 轴上,符合这一条件的图象只有D.故选D.二、填空题9.答案 m(a+b)(a-b)解析 先用提公因式法提取公因式m,再用平方差公式分解:ma 2-mb 2=m(a 2-b 2)=m(a+b)(a-b).10.答案 -2≤x<3解析 解不等式x-3<0,得x<3;解不等式2x+4≥0,得x ≥-2.所以原不等式组的解集为-2≤x<3. 11.答案 6解析 作AD ⊥BC 于点D.当BC 与☉A 相切时,AD=3 cm. 在Rt △ABD 中,AD=3 cm,∠B=30°,∴AB=ADsin30°=6 cm. ∴当AB=6 cm 时,BC 与☉A 相切. 12.答案 甲解析 ∵甲、乙两名运动员最近10次跳远成绩的平均数相等,且s 甲2<s 乙2,∴甲的成绩比较稳定.评析 当两组数据的平均数相等时,方差小的一组数据比较稳定. 13.答案 4解析 设这个不透明的袋中的黑球有x 个,则P(摸到黑球)=x12+x =14,所以x=4.故黑球有4个.14.答案 2∶3 解析∵△ABC与△DEF位似,∴△ABC ∽△DEF,∴S △ABC S △DEF =(AB DE )2.∵S △ABC =49S △DEF ,∴S △ABC S △DEF =49.∴(AB DE )2=49, ∴AB DE =23(舍负),即AB∶DE=2∶3. 15.答案 5解析 设t s 时恰好注满小水杯.在向小水杯内注水的过程中,当0≤x ≤t 时,小水杯内水的高度y(cm)与注水时间x(s)的图象是一条线段,这条线段所在直线过(0,1),(2,5),(t,11)三点.设这条直线的解析式为y=kx+b(k ≠0),则{1=k ×0+b,5=2k +b,解这个方程组,得{k =2,b =1.∴这条直线的解析式为y=2x+1.当y=11时,有11=2t+1,∴t=5.∴至少需要5 s 能把小水杯注满水. 评析 由函数图象的形状确定函数的类型是用函数模型解决实际问题最常用的方法.当函数图象为直线(或其一部分)时,该函数为一次函数;当函数图象为双曲线(或其一部分)时,该函数为反比例函数;当函数图象为抛物线(或其一部分)时,该函数为二次函数. 16.答案 2√3-3解析 如图,延长BA 交GF 于点N.由旋转的性质得∠GBN=∠EBC=30°,GB=AB=√3.在Rt △GBN 中,∵GB=√3,∠GBN=30°,∴BN=GBcos ∠GBN =√3cos30°=2,∴AN=BN -AB=2-√3.∵∠NAK=∠G=90°,∴∠KNA+∠NKA=90°,∠KNA+∠GBN=90°,∴∠NKA=∠GBN=30°(同角的余角相等).在Rt △KAN 中,∵AN=2-√3,∠NKA=30°,∴AK=NA =2-√3=2√3-3.评析 本题考查正方形的性质、旋转的性质和解直角三角形的有关知识,综合性较强.三、解答题17.解析 √273+|√5-2|-(13)-2+(tan 60°-1)0=3+√5-2-9+1=√5-7.18.证明(1)∵四边形ABCD是矩形,∴AB=DC,∠BAD=∠CDA=90°.∵EA=ED,∴∠EAD=∠EDA,∴∠EAB=∠EDC,∴△EAB≌△EDC.(2)∵△EAB≌△EDC,∴∠AEF=∠DEG.∵∠EFG=∠EAF+∠AEF,∠EGF=∠EDG+∠DEG,∴∠EFG=∠EGF.19.解析(1)设2004年全国生活用水量为x亿m3.则x(1+16%)=725,解得x=625,则2008年全国生活用水量为625×(1+20%)=750(亿m3).故填625;750.(2)(3)750÷15%=5000(亿m3),故填5000.(4)不属于.理由:2.75×104×20%=5500>5000,因此,2008年我国不属于可能发生“水危机”的行列.四、解答题20.解析设高速铁路列车的平均速度为x km/h,根据题意,得69013x=690x +4.6. 解这个方程,得x=300. 经检验,x=300是所列方程的根.答:高速铁路列车的平均速度为300 km/h. 21.解析 (1)∵四边形ABCD 是☉O 的内接四边形,∴∠ABC+∠D=180°.∵∠ABC=2∠D,∴2∠D+∠D=180°, ∴∠D=60°,∴∠AOC=2∠D=120°. ∵OA=OC,∴∠OCA=∠OAC=30°. (2)∵∠COB=3∠AOB,∴∠AOC=∠AOB+3∠AOB=120°,∴∠AOB=30°, ∴∠COB=∠AOC-∠AOB=90°. 在Rt △OCE 中,OC=2√3,∴OE=OC ·tan ∠OCE=2√3·tan 30°=2√3×√33=2, ∴S △OEC =12OE ·OC=12×2×2√3=2√3, ∵S扇形OBC =90π×(2√3)2360=3π, ∴S 阴影=S 扇形OBC -S △OEC =3π-2√3.五、解答题22.解析 (1)由题可知A(4,n)在y=32x-3的图象上, ∴n=32×4-3=3,∴A(4,3). 又∵A 在y=kx 的图象上, ∴k=xy=4×3=12.故填3;12. (2)直线y=32x-3与x 轴相交于点B,令3x-3=0,2得x=2,∴B点坐标为(2,0).过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F.∵A(4,3),B(2,0),∴OE=4,AE=3,OB=2,∴BE=OE-OB=4-2=2.在Rt△ABE中,AB=√AE2+BE2=√32+22=√13.∵四边形ABCD是菱形,∴AB=DC=BC=√13,AB∥CD,∴∠ABE=∠DCF.又∵AE⊥x轴,DF⊥x轴,∴∠AEB=∠DFC=90°,∴△ABE≌△DCF,∴CF=BE=2,DF=AE=3,∴OF=OB+BC+CF=2+√13+2=4+√13,∴点D的坐标为(4+√13,3).(3)x≤-6或x>0.六、解答题23.解析(1)如图,过点A作AD⊥OB,垂足为D,过点C作CE⊥OB,垂足为E.∵OA=AB,∴OD=DB=1OB.2OB,∵∠OAB=90°,∴AD=12∴OD=AD.∵点B 的坐标为(60,0),∴OB=60, ∴OD=12OB=12×60=30, ∴点A 的坐标为(30,30).∵直线l 平行于y 轴且当t=40时,直线l 恰好过点C, ∴OE=40.在Rt △OCE 中,OC=50,由勾股定理得CE=√OC 2-OE 2=√502-402=30. ∴点C 的坐标为(40,-30).(2)如图,∵∠OAB=90°,OA=AB,∴∠AOB=45°.∵直线l 平行于y 轴,∴∠OPQ=90°, ∴∠OQP=45°,∴OP=QP. ∵点P 的横坐标为t,∴OP=QP=t. 在Rt △OCE 中,OE=40,CE=30, ∴tan ∠EOC=34.∴tan ∠POR=PR OP =34,∴PR=OP ·tan ∠POR=34t, ∴QR=QP+PR=t+34t=74t,∴当0<t<30时,m 关于t 的函数关系式为m=7t. (3)t 的值为20或46. (4)M 1(40,15)、M 2(40,-15).七、解答题24.解析 (1)①2√3.②∵四边形ABCD 是平行四边形, ∴AD=BC,∠D=∠B,∠A=∠BCD,由折叠可知,AD=CG,∠D=∠G,∠A=∠ECG, ∴BC=GC,∠B=∠G,∠BCD=∠ECG, ∴∠BCE=∠GCF,∴△BCE ≌△GCF. ③过点E 作EP ⊥BC 于P,∵∠B=60°,∠EPB=90°, ∴∠BEP=30°,∴BE=2BP. 可设BP=m,则BE=2m,∴EP=BE ·sin 60°=2m×√32=√3m. 由折叠可知,AE=CE. ∵AB=6,∴AE=CE=6-2m, ∵BC=4,∴PC=4-m. 在Rt △ECP 中,由勾股定理得(4-m)2+(√3m)2=(6-2m)2,∴m=54,∴EC=6-2m=6-2×54=72. ∵△BCE ≌△GCF,∴CF=EC=72, ∴S △CEF =1×7×2√3=7√3. (2)124√335或4√3.八、解答题25.解析 (1)点A 的坐标为(0,2),点B 的坐标为(-3,0),点C 的坐标为(1,0),点D 的坐标为(-1,83).(2)①设点P 的坐标为(n,0). ∵EP ⊥x 轴,点E 在抛物线上,∴点E 的坐标为(n,-23n 2-43n +2). 又∵PE=PC,∴-23n 2-43n+2=1-n,∴n 1=-32,n 2=1(不符合题意,舍去),∴当n=-32时,-23n 2-43n+2=-23×(-32)2-43×(-32)+2=52,∴E (-32,52). ②32或52. ③32√65.。
【精品】2015年辽宁省沈阳市九年级上学期期中数学试卷带解析答案(一)
2014-2015学年辽宁省沈阳市九年级(上)期中数学试卷(一)一、选择题(共8小题,每小题3分,满分24分)1.(3分)已知关于x的方程,(1)ax2+bx+c=0;(2)x2﹣4x=0;(3)1+(x﹣1)(x+1)=0;(4)3x2=0中,一元二次方程的个数为()个.A.1 B.2 C.3 D.42.(3分)如图所示的几何体的俯视图是()A.B.C.D.3.(3分)有如下四个命题:(1)三角形三边垂直平分线的交点一定在三角形内部;(2)四边形的内角和与外角和相等;(3)顺次连接四边形各边中点所得的四边形一定是菱形;(4)一组对边平行且一组对角相等的四边形是平行四边形.其中真命题的个数有()A.1个 B.2个 C.3个 D.4个4.(3分)如图,等腰三角形ABC中,AB=AC,∠A=44°,CD⊥AB于D,则∠DCB 等于()A.44°B.68°C.46°D.22°5.(3分)如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和3 B.3和2 C.4和1 D.1和46.(3分)若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是()A.m<﹣4 B.m>﹣4 C.m<4 D.m>47.(3分)在同一平面直角坐标系中,函数y=x﹣1与函数的图象可能是()A.B.C.D.8.(3分)如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A.B.C.D.二、填空题(共8小题,每小题4分,满分32分)9.(4分)一元二次方程x(x﹣3)=0的解是.10.(4分)在函数y=中,当x<﹣2时,y的取值范围;当y>﹣2时,x的取值范围.11.(4分)如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列出方程为.12.(4分)如图,点P是正比例函数y=x与反比例函数y=在第一象限内的交点,PA⊥OP交x轴于点A,△POA的面积为2,则k的值是.13.(4分)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD 的长为.14.(4分)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O 处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF=cm.15.(4分)如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ 并延长CQ交边AB于点P.则点P的坐标为.16.(4分)在△ABC中,AB=AC,AB的垂直平分线DE与AC所在的直线相交于点E,垂足为D,连接BE,已知AE=5,=,则BE+CE=.三、解答题(共40分)17.(16分)解下列方程:(1)x2﹣2x﹣1=0;(2)2x2﹣5x﹣1=0;(3)x2﹣3x﹣18=0;(4)4x(x+1)=x2﹣1.18.(8分)据媒体报道,我国2010年公民出境旅游总人数约5 000万人次,2012年公民出境旅游总人数约7 200万人次.若2011年、2012年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2013年仍保持相同的年平均增长率,请你预测2013年我国公民出境旅游总人数约多少万人次?19.(8分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)20.(8分)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.求证:AM=AN.2014-2015学年辽宁省沈阳市九年级(上)期中数学试卷(一)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)已知关于x的方程,(1)ax2+bx+c=0;(2)x2﹣4x=0;(3)1+(x﹣1)(x+1)=0;(4)3x2=0中,一元二次方程的个数为()个.A.1 B.2 C.3 D.4【解答】解:(1)ax2+bx+c=0中a可能为0,故不是一元二次方程;(2)x2﹣4x=0符合一元二次方程的定义,故是一元二次方程;(3)1+(x﹣1)(x+1)=0,去括号合并后为x2=0,是一元二次方程;(4)3x2=0,符合一元二次方程的定义,是一元二次方程;所以是一元二次方程的有三个,故选:C.2.(3分)如图所示的几何体的俯视图是()A.B.C.D.【解答】解:从上面看是一个有直径的圆环,故选:D.3.(3分)有如下四个命题:(1)三角形三边垂直平分线的交点一定在三角形内部;(2)四边形的内角和与外角和相等;(3)顺次连接四边形各边中点所得的四边形一定是菱形;(4)一组对边平行且一组对角相等的四边形是平行四边形.其中真命题的个数有()A.1个 B.2个 C.3个 D.4个【解答】解:(1)三角形三边垂直平分线的交点一定在三角形内部,正确,为真命题;(2)四边形的内角和与外角和相等,正确,为真命题;(3)顺次连接四边形各边中点所得的四边形一定是菱形,错误,为假命题;(4)一组对边平行且一组对角相等的四边形是平行四边形,错误,为假命题,故选:B.4.(3分)如图,等腰三角形ABC中,AB=AC,∠A=44°,CD⊥AB于D,则∠DCB 等于()A.44°B.68°C.46°D.22°【解答】解:∵∠A=44°,AB=AC∴∠B=∠C=68°∵∠BDC=90°∴∠DCB=22°.故选:D.5.(3分)如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和3 B.3和2 C.4和1 D.1和4【解答】解:∵AE平分∠BAD∴∠BAE=∠DAE∵▱ABCD∴AD∥BC∴∠DAE=∠AEB∴∠BAE=∠BEA∴AB=BE=3∴EC=AD﹣BE=2故选:B.6.(3分)若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是()A.m<﹣4 B.m>﹣4 C.m<4 D.m>4【解答】解:∵△=(﹣4)2﹣4m=16﹣4m<0,∴m>4.故选:D.7.(3分)在同一平面直角坐标系中,函数y=x﹣1与函数的图象可能是()A.B.C.D.【解答】解:函数中,k=1>0,故图象在第一三象限;函数y=x﹣1的图象在第一三四象限,故选:C.8.(3分)如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A.B.C.D.【解答】解:∵∠ADC=∠BDE,∠C=∠E,∴△ADC∽△BDE,∴,∵AD=4,BC=8,BD:DC=5:3,∴BD=5,DC=3,∴DE==.故选:B.二、填空题(共8小题,每小题4分,满分32分)9.(4分)一元二次方程x(x﹣3)=0的解是x1=0,x2=3.【解答】解:x=0或x﹣3=0,所以x1=0,x2=3.故答案为x1=0,x2=3.10.(4分)在函数y=中,当x<﹣2时,y的取值范围﹣1<y<0;当y>﹣2时,x的取值范围﹣1<x<0.【解答】解:∵函数y=中k=2>0,∴在每个象限内y随着x的增大而减小,∵当x=﹣2时,y=﹣1,∴当x<﹣2时,﹣1<y<0,当y>﹣2时,x的取值范围,﹣1<x<0故答案为:﹣1<y<0,﹣1<x<0.11.(4分)如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列出方程为(22﹣x)(17﹣x)=300.【解答】解:设道路的宽应为x米,由题意有(22﹣x)(17﹣x)=300,故答案为:(22﹣x)(17﹣x)=300.12.(4分)如图,点P是正比例函数y=x与反比例函数y=在第一象限内的交点,PA⊥OP交x轴于点A,△POA的面积为2,则k的值是2.【解答】解:过P作PB⊥OA于B,如图,∵正比例函数的解析式为y=x,∴∠POA=45°,∵PA⊥OP,∴△POA为等腰直角三角形,∴OB=AB,=S△POA=×2=1,∴S△POB∴k=1,∴k=2.故答案为2.13.(4分)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD 的长为 1.6.【解答】解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=2,BC=3.6,∴CD=BC﹣BD=3.6﹣2=1.6.故答案为:1.6.14.(4分)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF=cm.【解答】解:连接BD、AC,∵四边形ABCD是菱形,∴AC⊥BD,AC平分∠BAD,∵∠BAD=120°,∴∠BAC=60°,∴∠ABO=90°﹣60°=30°,∵∠AOB=90°,∴AO=AB=×2=1,由勾股定理得:BO=DO=,∵A沿EF折叠与O重合,∴EF⊥AC,EF平分AO,∵AC⊥BD,∴EF∥BD,∴EF为△ABD的中位线,∴EF=BD=(+)=,故答案为:.15.(4分)如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ 并延长CQ交边AB于点P.则点P的坐标为(2,4﹣2).【解答】解:∵四边形OABC是边长为2的正方形,∴OA=OC=2,OB=2,∵QO=OC,∴BQ=OB﹣OQ=2﹣2,∵正方形OABC的边AB∥OC,∴△BPQ∽△OCQ,∴=,即=,解得BP=2﹣2,∴AP=AB﹣BP=2﹣(2﹣2)=4﹣2,∴点P的坐标为(2,4﹣2).故答案为:(2,4﹣2).16.(4分)在△ABC中,AB=AC,AB的垂直平分线DE与AC所在的直线相交于点E,垂足为D,连接BE,已知AE=5,=,则BE+CE=6或16.【解答】解:①若∠BAC为锐角,如答图1所示:∵AB的垂直平分线是DE,∴AE=BE,ED⊥AB,AD=AB,∵AE=5,=,∴sin∠AED=,∴AD=AE•sin∠AED=3,∴AB=6,∴BE+CE=AE+CE=AC=AB=6;②若∠BAC为钝角,如答图2所示:同理可求得:BE+CE=16.故答案为:6或16.三、解答题(共40分)17.(16分)解下列方程:(1)x2﹣2x﹣1=0;(2)2x2﹣5x﹣1=0;(3)x2﹣3x﹣18=0;(4)4x(x+1)=x2﹣1.【解答】解:(1)配方得,(x2﹣2x+1)﹣1﹣1=0,即(x﹣1)2=2,所以,x﹣1=±,x1=1+,x2=1﹣;(2)a=2,b=﹣5,c=﹣1,△=b2﹣4ac=(﹣5)2﹣4×2×(﹣1)=25+8=33,x==,x1=,x2=;(3)因式分解得,(x+3)(x﹣6)=0,由此得,x+3=0,x﹣6=0,所以,x1=﹣3,x2=6;(4)移项得,4x(x+1)﹣(x2﹣1)=0,因式分解得,4x(x+1)﹣(x+1)(x﹣1)=0,(x+1)(3x+1)=0,由此得x+1=0,3x+1=0,所以x1=﹣1,x2=﹣.18.(8分)据媒体报道,我国2010年公民出境旅游总人数约5 000万人次,2012年公民出境旅游总人数约7 200万人次.若2011年、2012年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2013年仍保持相同的年平均增长率,请你预测2013年我国公民出境旅游总人数约多少万人次?【解答】解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得:5000(1+x)2 =7200,解得x1 =0.2=20%,x2 =﹣2.2 (不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2013年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为7200(1+x)=7200×(1+20%)=8640(万人次).答:预测2013年我国公民出境旅游总人数约8640万人次.19.(8分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为26.8万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)【解答】解:(1)∵若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,∴若该公司当月售出3部汽车,则每部汽车的进价为:27﹣0.1×(3﹣1)=26.8,故答案为:26.8;(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为:28﹣[27﹣0.1(x﹣1)]=(0.1x+0.9)(万元),当0≤x≤10,根据题意,得x•(0.1x+0.9)+0.5x=12,整理,得x2+14x﹣120=0,解这个方程,得x1=﹣20(不合题意,舍去),x2=6,当x>10时,根据题意,得x•(0.1x+0.9)+x=12,整理,得x2+19x﹣120=0,解这个方程,得x1=﹣24(不合题意,舍去),x2=5,因为5<10,所以x2=5舍去.答:需要售出6部汽车.20.(8分)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.求证:AM=AN.【解答】证明:∵△AEB由△ADC旋转而得,∴△AEB≌△ADC,∴∠EAB=∠CAD,∠EBA=∠C,∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∠ABC=∠C,∴∠EAB=∠DAB,∠EBA=∠DBA,∵∠EBM=∠DBN,∴∠MBA=∠NBA,在△AMB和△ANB 中,,∴△AMB≌△ANB(ASA),∴AM=AN.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年辽宁省沈阳市中考数学试题及参考答案
一.选择题(本大题共8小题,每小题3分,共24分)
1.比0大的数是()
A.﹣2 B.
3
2
-C.﹣0.5 D.1
2.如图是由6个相同的小立方块搭成的几何体,这个几何体的左视图是()
A.B.C.D.
3.下列事件为必然事件的是()
A.经过有交通信号灯的路口,遇到红灯B.明天一定会下雨
C.抛出的篮球会下落D.任意买一张电影票,座位号是2的倍数
4.如图,在△ABC中,点D是边AB上一点,点E是边AC上一点,且DE∥BC,∠B=40°,∠AED=60°,则∠A的度数是()
A.100°B.90°C.80°D.70°
5.下列计算结果正确的是()
A.a4•a2=a8B.(a5)2=a7C.(a﹣b)2=a2﹣b2D.(ab)2=a2b2
6.一组数据2、3、4、4、5、5、5的中位数和众数分别是()
A.3.5,5 B.4,4 C.4,5 D.4.5,4
7.顺次连接对角线相等的四边形的各边中点,所形成的四边形是()
A.平行四边形B.菱形C.矩形D.正方形
8.在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()
A.B.C.D.
二.填空题(本大题共8小题,每小题4分,共32分)
9.分解因式:ma2﹣mb2=.
10.不等式组
30
240
x
x
-
⎧
⎨
+
⎩
<
≥
的解集是.
11.如图,在△ABC 中,AB=AC ,∠B=30°,以点A 为圆心,以3cm 为半径作⊙A ,当AB= cm 时,BC 与⊙A 相切.
12.某跳远队甲、乙两名运动员最近10次跳远成绩的平均数为602cm ,若甲跳远成绩的方差为S 甲2=65.84,乙跳远成绩的方差为S 乙2=285.21,则成绩比较稳定的是 .(填“甲”或“乙”)
13.在一个不透明的袋中装有12个红球和若干个黑球,每个球除颜色外都相同,任意摸出一个球是黑球的概率为14
,那么袋中的黑球有 个. 14.如图,△ABC 与△DEF 位似,位似中心为点O ,且△ABC 的面积等于△DEF 面积的
49,则AB :DE= .
15.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y (cm )和注水时间x (s )之间的关系满足如图2中的图象,则至少需要 s 能把小水杯注满.
16.如图,正方形ABCD 绕点B 逆时针旋转30°后得到正方形BEFG ,EF 与AD 相交于点H ,延长
DA 交GF 于点K .若正方形ABCD AK= .
三.解答题(本大题共9小题,满分94分)
17.(8()2
012|tan 6013-⎛⎫-+︒- ⎪⎝⎭.
18.(8分)如图,点E为矩形ABCD外一点,AE=DE,连接EB、EC分别与AD相交于点F、G.求证:
(1)△EAB≌△EDC;
(2)∠EFG=∠EGF.
19.(10分)我国是世界上严重缺水的国家之一,全国总用水量逐年上升,全国总用水量可分为农业用水量、工业用水量和生活用水量三部分.为了合理利用水资源,我国连续多年对水资源的利用情况进行跟踪调查,将所得数据进行处理,绘制了2008年全国总用水量分布情况扇形统计图和2004﹣2008年全国生活用水量折线统计图的一部分如下:
(1)2007年全国生活用水量比2004年增加了16%,则2004年全国生活用水量为亿m3,2008年全国生活用水量比2004年增加了20%,则2008年全国生活用水量为亿m3;
(2)根据以上信息,请直接在答题卡上补全折线统计图;
(3)根据以上信息2008年全国总水量为亿;
(4)我国2008年水资源总量约为2.75×104亿m3,根据国外的经验,一个国家当年的全国总用水量超过这个国家年水资源总量的20%,就有可能发生“水危机”.依据这个标准,2008年我国是否属于可能发生“水危机”的行列?并说明理由.
20.(10分)高速铁路列车已成为中国人出行的重要交通工具,其平均速度是普通铁路列车平均速度的3倍,同样行驶690km,高速铁路列车比普通铁路列车少运行了4.6h,求高速铁路列车的平均速度.
21.(10分)如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E.
(1)求∠OCA的度数;
(2)若∠COB=3∠AOB,OC=,求图中阴影部分面积(结果保留π和根号)
22.(10分)如图,已知一次函数
3
3
2
y x
=-与反比例函数
k
y
x
=的图象相交于点A(4,n),与x
轴相交于点B.
(1)填空:n的值为,k的值为;
(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;
(3)观察反比函数
k
y
x
=的图象,当y≥﹣2时,请直接写出自变量x的取值范围.
23.(12分)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B的坐标为(60,0),OA=AB,∠OAB=90°,OC=50.点P是线段OB上的一个动点(点P不与点O、B重合),过点P与y轴平行的直线l交边OA或边AB于点Q,交边OC 或边BC于点R,设点P横坐标为t,线段QR的长度为m.已知t=40时,直线l恰好经过点C.(1)求点A和点C的坐标;
(2)当0<t<30时,求m关于t的函数关系式;
(3)当m=35时,请直接写出t的值;
(4)直线l上有一点M,当∠PMB+∠POC=90°,且△PMB的周长为60时,请直接写出满足条件的点M的坐标.
24.(12分)如图,在▱ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD 上一点,将▱ABCD沿EF折叠,得到四边形EFGH,点A的对应点为点H,点D的对应点为点G.(1)当点H与点C重合时.
①填空:点E到CD的距离是;
②求证:△BCE≌△GCF;
③求△CEF的面积;
(2)当点H落在射线BC上,且CH=1时,直线EH与直线CD交于点M,请直接写出△MEF的面积.
25.(14分)如图,在平面直角坐标系中,抛物线22
4233
y x x =--+与x 轴交于B 、C 两点(点B 在点C 的左侧),与y 轴交于点A ,抛物线的顶点为D .
(1)填空:点A 的坐标为( , ),点B 的坐标为( , ),点C 的坐标为( , ),点D 的坐标为( , );
(2)点P 是线段BC 上的动点(点P 不与点B 、C 重合)
①过点P 作x 轴的垂线交抛物线于点E ,若PE=PC ,求点E 的坐标;
②在①的条件下,点F 是坐标轴上的点,且点F 到EA 和ED 的距离相等,请直接写出线段EF 的长; ③若点Q 是线段AB 上的动点(点Q 不与点A 、B 重合),点R 是线段AC 上的动点(点R 不与点
A 、C 重合),请直接写出△PQR 周长的最小值.
参考答案与解析
一.选择题(本大题共8小题,每小题3分,共24分)
1.比0大的数是( )
A .﹣2
B .32
- C .﹣0.5 D .1
【知识考点】有理数大小比较.
【思路分析】正实数都大于0,负实数都小于0,据此判断即可.
【解答过程】解:A 、B 、C 都是负数,故A 、B 、C 错误;
D 、1是正数,故D 正确;
故选D .
【总结归纳】本题考查了有理数比较大小,正数大于0是解题关键.
2.如图是由6个相同的小立方块搭成的几何体,这个几何体的左视图是( )
A .
B .
C .
D .
【知识考点】简单组合体的三视图.
【思路分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.。