1 凸轮机构的工作原理和从动件的运动规律
凸轮机构的工作原理
![凸轮机构的工作原理](https://img.taocdn.com/s3/m/1d32415ca9114431b90d6c85ec3a87c240288ad4.png)
凸轮机构的工作原理一、概述凸轮机构是一种广泛应用于各种机械设备的传动机构,其核心部件是凸轮。
凸轮是一个具有曲线轮廓的盘形零件,通过其轮廓与从动件之间的相互作用,实现将凸轮的转动运动转换为从动件的往复运动。
凸轮机构具有结构简单、紧凑、传动效率高等优点,因此在许多领域中得到了广泛应用。
二、工作原理凸轮机构的工作原理主要是通过凸轮与从动件之间的接触和相互作用实现的。
当凸轮转动时,其轮廓与从动件产生接触,对从动件施加作用力,使从动件按照预定规律进行往复运动。
从动件的运动规律取决于凸轮的轮廓形状和尺寸。
根据需要,通过设计不同形状和尺寸的凸轮,可以实现各种不同的运动规律,满足各种不同的工作需求。
三、类型及应用凸轮机构有多种类型,常见的有尖顶从动件凸轮机构、滚子从动件凸轮机构和平底从动件凸轮机构等。
不同类型的凸轮机构适用于不同的工作场合和需求。
例如,尖顶从动件凸轮机构适用于传递较小力矩的场合,滚子从动件凸轮机构适用于传递较大力矩的场合,平底从动件凸轮机构适用于对从动件导向精度要求较高的场合。
在实际应用中,凸轮机构广泛应用于各种自动化设备和机械传动系统中,如内燃机的配气机构、高速包装机械的间歇分度机构、机床的进给机构等。
通过合理选择和应用凸轮机构,可以有效地实现各种复杂的运动规律和运动轨迹,提高设备的性能和生产效率。
四、设计及优化凸轮机构的设计及优化是实现其高效、稳定工作的关键环节。
在设计凸轮机构时,需要考虑从动件的运动规律、凸轮的轮廓形状和尺寸、机构的材料和热处理、润滑和摩擦等众多因素。
同时,还需要进行动力学分析和强度校核,以确保凸轮机构的性能和可靠性。
在优化凸轮机构时,可以采用现代设计方法和计算机辅助设计技术,如有限元分析、优化设计、可靠性设计等。
这些方法和技术可以帮助设计师更好地理解机构的动态特性和受力情况,优化机构的几何尺寸和运动参数,提高机构的性能和可靠性。
五、结论综上所述,凸轮机构作为一种重要的传动机构,具有广泛的应用前景和重要的研究价值。
凸轮机构工作过程及从动件运动规律
![凸轮机构工作过程及从动件运动规律](https://img.taocdn.com/s3/m/c2a1052752d380eb63946d05.png)
加速度: a1 A0推程的前h / 2等加速 A0
a2 A0推程的后h / 2等减速
产生柔性冲击
-A0
0 0 0
导路间的偏置距离,用 e 表示。
凸轮
----推程运动角 δ0
----远休止角 δs
----回程运动角 δ0’
----近休止角
δ
’ s
二、从动件常用的运动规律
ห้องสมุดไป่ตู้
1. 等速运动规律
(以推程为例分析)
s h
位移: s Vt位移曲线为一倾斜直线
速度: v V0速度恒定
v
V0
加速度: 从动件在推程的起始与
终止速度有突变, 使O,1两位置加速度
a
+∞
无穷大,存在刚性
0
冲击。
a0 a1
0
0
1
-∞
2. 等加速等减速运动规律 (以推程为例分析)
位移:
s1
1 2
At2
s
h
s2
1 2
At2
v
速度: 推程的前h / 2的速度v1 At
推程的后h / 2的速度v2 At a
一、凸轮机构工作过程
推杆
从距凸轮转动中心最近→最远 = 推程 在最远处停止不动 = 远休
从距凸轮转动中心最远→最近 = 回程 在最近处停止不动 = 近休
凸轮基圆:以凸轮转动中心
为圆心,以其轮廓最小向径rb为 半径的圆;
从动件行程: 在推程或回程中
从动件的最大位移,用 h 表示;
偏 距: 凸轮回转中心与从动件
凸轮机构从动件常用运动规律的工作特点
![凸轮机构从动件常用运动规律的工作特点](https://img.taocdn.com/s3/m/fb4b115db6360b4c2e3f5727a5e9856a57122650.png)
凸轮机构是机械传动中常用的一种机构,它通过凸轮的不规则形状来带动从动件做复杂的运动。
在凸轮机构中,从动件的运动规律受到凸轮形状和工作特点的影响,下面我们就来深入探讨凸轮机构从动件常用运动规律的工作特点。
一、凸轮机构从动件常用运动规律的工作特点1. 节流运动在凸轮机构中,从动件常常表现出节流运动的特点。
所谓节流运动,即从动件在运动过程中,速度逐渐增大、达到最大值后再逐渐减小的运动规律。
这种运动特点能够保证从动件在与其他零部件接触时的平稳性,降低运动过程中的冲击力,有利于提高机械设备的稳定性和使用寿命。
2. 可逆运动凸轮机构中的从动件常常具有可逆运动的特点。
所谓可逆运动,即从动件在运动过程中可以根据输入信号的变化而实现正向或反向的运动。
这种特点使得凸轮机构能够根据不同的工作需求来实现灵活的运动控制,提高了机械设备的适用范围和灵活性。
3. 多样化运动凸轮机构中的从动件常常展现出多样化的运动形式。
凸轮的不规则形状和不同的工作参数可以使得从动件实现多种不同的运动规律,如往复运动、旋转运动、摆动运动等。
这种多样化的运动特点能够满足不同工作场景下的运动需求,提高了机械设备的适用性和通用性。
二、个人观点和理解在我看来,凸轮机构从动件的常用运动规律,是凸轮机构能够实现复杂、精准、稳定运动的重要基础。
它的工作特点保证了从动件在运动过程中的平稳性和灵活性,使得凸轮机构能够广泛应用于各个领域的机械设备中。
而随着科技的不断发展和创新,我相信凸轮机构从动件的运动规律和工作特点还会不断完善和拓展,为机械传动领域带来更多的可能性和发展空间。
总结回顾通过本文对凸轮机构从动件常用运动规律的工作特点的深入探讨,我们了解到了节流运动、可逆运动和多样化运动等特点,这些特点保证了凸轮机构从动件能够实现复杂、精准、稳定的运动。
我也共享了个人对这一主题的理解和观点,希望能够为读者提供启发和思考。
随着机械传动技术的不断发展,凸轮机构从动件的工作特点还有很大的发展空间,相信在未来会有更多的创新和突破。
凸轮机构从动件常用运动规律的工作特点
![凸轮机构从动件常用运动规律的工作特点](https://img.taocdn.com/s3/m/9519d809e55c3b3567ec102de2bd960590c6d9e8.png)
凸轮机构从动件常用运动规律的工作特点凸轮机构是一种广泛应用于机械和工程领域的运动传动机构,它能够将输入运动转换成指定的输出运动。
在凸轮机构中,从动件是指受凸轮驱动而产生规定运动的零件。
从动件在凸轮机构中有着多种不同的运动规律,这些运动规律对于实际工程应用具有重要意义。
本文将从动点件在凸轮机构中常用的运动规律进行详细介绍,以及对其工作特点进行分析。
第一,常用的凸轮机构从动件运动规律是直线运动。
在凸轮机构中,通过凸轮的转动,驱使从动件做直线运动,这种运动规律广泛应用于各种需要直线运动的装置中,如提升机、压料机等。
直线运动的从动件工作特点是稳定、精确、高效,能够准确地完成所需的动作。
第二,另一种常用的凸轮机构从动件运动规律是往复运动。
往复运动是凸轮机构中最常见的运动形式之一,通过凸轮的设计和驱动,实现从动件做往复运动的目的。
这种运动规律适用于需要周期性往复运动的装置,如发动机汽缸活塞运动、柴油机柱塞泵等。
往复运动的从动件工作特点是具有较大的冲击力和推动力,适用于需要产生直线推动力的场合。
凸轮机构从动件的另一种常用运动规律是回转运动。
通过设计合适的凸轮曲线和传动机构,可以实现从动件做回转运动的需求。
这种运动规律广泛应用于需要回转运动的装置中,如电机转子、离合器压盘等。
回转运动的从动件工作特点是运动平稳、动力传递效率高、能够实现大范围的角度调节。
第四,在一些特殊的凸轮机构中,还会有一些复合运动规律的从动件。
这类从动件会在一定的时间内,同时进行两种或多种不同的运动形式,以实现复杂的工作需求。
这种运动规律的从动件工作特点是高难度、复杂多变,需要精密的设计和制造,适用于一些高级别的机械装置中。
凸轮机构从动件的工作特点是根据实际应用需求来设计,能够实现各种不同形式的运动规律,并具有稳定、高效、精确、多功能等特点。
在实际工程应用中,凸轮机构从动件的运动规律将根据具体的工作场合和要求进行选择和优化,以实现最佳的工作效果。
凸轮机构的总结范文
![凸轮机构的总结范文](https://img.taocdn.com/s3/m/b9e63b4dcd7931b765ce0508763231126edb77aa.png)
一、引言凸轮机构是一种常见的机械传动机构,广泛应用于各种机械设备中。
它主要由凸轮、从动件、机架等部分组成。
本文将对凸轮机构的工作原理、分类、设计方法以及应用领域进行总结。
二、工作原理凸轮机构的工作原理是利用凸轮的旋转运动,使从动件按照预定的轨迹运动。
当凸轮的轮廓与从动件的轮廓接触时,从动件受到凸轮的推动力,从而实现预期的运动。
三、分类1. 按照从动件的类型,凸轮机构可分为尖底从动件凸轮机构、平底从动件凸轮机构和滚子从动件凸轮机构。
2. 按照凸轮的形状,凸轮机构可分为圆柱凸轮、圆锥凸轮、圆弧凸轮和盘形凸轮。
3. 按照凸轮的旋转方向,凸轮机构可分为右旋凸轮和左旋凸轮。
四、设计方法1. 确定从动件的运动规律:根据实际需求,选择合适的从动件运动规律,如等速运动、等加速运动、等减速运动等。
2. 设计凸轮轮廓:根据从动件的运动规律和凸轮的形状,设计凸轮轮廓。
设计过程中,需要满足从动件的运动轨迹、运动速度和加速度等要求。
3. 选择合适的材料:根据凸轮的工作条件和受力情况,选择合适的材料,以保证凸轮机构的性能和寿命。
4. 进行强度校核:在凸轮机构的设计过程中,进行强度校核,确保凸轮机构在受力时不会发生破坏。
五、应用领域凸轮机构在工业生产、日常生活等领域有着广泛的应用,主要包括:1. 自动化设备:如机床、机器人、自动化生产线等。
2. 家用电器:如洗衣机、空调、电风扇等。
3. 交通工具:如汽车、摩托车、自行车等。
4. 农业机械:如收割机、拖拉机等。
六、总结凸轮机构作为一种常见的机械传动机构,具有结构简单、工作可靠、设计灵活等优点。
在今后的研究和应用中,应继续探索凸轮机构的新设计方法、新材料和新应用领域,以满足不断发展的工业生产和人民生活的需求。
说出凸轮机构从动件常用运动规律
![说出凸轮机构从动件常用运动规律](https://img.taocdn.com/s3/m/e17c99e70129bd64783e0912a216147917117ea5.png)
说出凸轮机构从动件常用运动规律1. 引言1.1 概述凸轮机构是一种常见的运动传动装置,通过凸轮和从动件的配合实现不同运动规律的转换。
凸轮机构被广泛应用于各种机械设备中,如汽车发动机、工业机械等领域。
了解凸轮机构从动件的常用运动规律对于理解其工作原理以及设计和优化具有重要意义。
本文将重点介绍凸轮机构从动件常用的三种运动规律,即正圆运动规律、椭圆运动规律和抛物线运动规律。
通过详细讲解每种运动规律的原理和特点,结合相关的应用案例,旨在帮助读者全面了解这些常见的凸轮机构从动件运动规律。
1.2 文章结构本文分为五个部分进行阐述。
首先,在引言部分对凸轮机构进行了概述,并说明了文章内容和结构。
接下来,在第二部分中简要介绍了凸轮机构的定义与分类以及基本组成部分,同时列举了该装置在各个应用领域中的实际应用。
然后,在第三部分中简要描述了凸轮机构从动件常用的三种运动规律,即正圆运动规律、椭圆运动规律和抛物线运动规律。
在第四部分中,将分别对这些从动件的常用运动规律进行详细解析,并通过实际应用案例加深理解。
最后,在结论与展望部分总结文章的主要内容,并对未来凸轮机构研究方向进行展望。
1.3 目的本文旨在介绍凸轮机构从动件常用的运动规律,包括正圆、椭圆和抛物线三种类型。
通过阐述每一种运动规律的原理和特点,读者能够对凸轮机构从动件的工作原理有更深入的理解,并能够应用于具体的工程设计和优化中。
同时,通过引入实际案例,希望读者能够更好地理解这些运动规律在实际中的应用价值。
2. 凸轮机构简介:2.1 定义与分类:凸轮机构是一种常见的机械传动装置,由凸轮和从动件组成。
凸轮是一个具有非圆周运动的特殊零件,通过转动或移动凸轮使得从动件产生特定的运动规律。
根据凸轮曲线形状和运动规律的不同,凸轮机构可以分为三类主要类型:正圆轨迹型、椭圆轨迹型和抛物线轨迹型。
2.2 基本组成部分:典型的凸轮机构包括凸轮、滑块、连接杆、曲柄等组成部分。
其中,凸轮为核心部件,其曲线形状决定了从动件的运动规律。
凸轮机构原理
![凸轮机构原理](https://img.taocdn.com/s3/m/f455009627fff705cc1755270722192e453658ef.png)
凸轮机构原理凸轮机构是一种常见的机械传动装置,它通过凸轮的旋转运动将其上连接的零件带动实现特定的运动规律。
在本文中,将介绍凸轮机构的原理及其应用。
一、凸轮机构的基本原理凸轮机构由凸轮、从动件和驱动件组成。
其中,凸轮是核心部件,它通常形状为圆柱体,其轴线与从动件轴线平行。
凸轮的外表面通常具有不规则的形状,以满足特定的运动要求。
从动件与凸轮接触并被驱动进行运动,驱动从动件的力来自于驱动件。
凸轮机构的工作原理是基于凸轮的旋转运动。
当凸轮旋转时,凸轮上的形状会与从动件进行接触,从而产生驱动力。
凸轮的形状决定了从动件的运动规律,可以实现直线运动、转动运动或复杂的轨迹运动等。
在凸轮机构中,凸轮的运动通常是以连续的方式完成的。
当凸轮旋转一周后,以不同速度和运动规律运动的从动件会回到初始位置,从而实现特定的往复或连续运动。
在某些凸轮机构中,凸轮的速度和角度可以通过其他传动装置进行调节,以实现调整从动件的运动规律。
二、凸轮机构的应用凸轮机构广泛应用于各种机械设备中,其中最常见的是内燃机的气门控制系统。
在内燃机中,凸轮机构负责控制气门的开关,以实现燃烧室的进气和排气。
凸轮机构通过凸轮和气门杆的连接,将凸轮的旋转运动转换为气门的上下运动,从而实现气门的开启和关闭。
不同类型内燃机根据其工作原理和要求,凸轮机构的设计和形状也会有所不同。
此外,凸轮机构还应用于机床、自动化生产线、纺织机械等领域。
在机床中,凸轮机构可以用于驱动工作台、进给机构和切削工具等,以实现工件的加工和加工过程的自动化。
在自动化生产线中,凸轮机构可以配合其他传动装置,如链条、齿轮等,实现物料的输送和组装。
而在纺织机械领域,凸轮机构则常用于纺纱机、织布机等的驱动系统,以实现纱线的拉伸和布匹的运动。
凸轮机构的应用范围非常广泛,其原理简单可靠,具有良好的可控性和稳定性。
通过根据具体的运动要求设计凸轮的形状和相关的传动装置,可以实现各种复杂的运动规律,为机械运动的控制和操作提供了有效的解决方案。
机械设计专升本章节练习题(含答案)——凸轮机构
![机械设计专升本章节练习题(含答案)——凸轮机构](https://img.taocdn.com/s3/m/cbe0f613b7360b4c2e3f6424.png)
第5章凸轮机构1.从动件的运动规律:等速,等加速等减速,余弦加速度,正弦加速度2.动力特性:刚性冲击,柔性冲击3.设计原理:反转法,比例尺,等分基圆,偏置从动件压力角与自锁条件4.基本参数:基圆半径,滚子半径,平底尺寸【思考题】5-1 凸轮机构的应用场合是什么?凸轮机构的组成是什么?通常用什么办法保证凸轮与从动件之间的接触?5-2 凸轮机构分成哪几类?凸轮机构有什么特点?5-3 为什么滚子从动件是最常用的从动件型式?5-4 凸轮机构从动件的常用运动规律有那些?各有什么特点?5-5 图解法绘制凸轮轮廓的原理是什么?为什么要采用这种原理?5-6 什么情况下要用解析法设计凸轮的轮廓?5-7 设计凸轮应注意那些问题?5-8 从现有的机器上找出两个凸轮机构应用实例,分析其类型和运动规律?A级能力训练题1.在凸轮机构的几种基本的从动件运动规律中,运动规律使凸轮机构产生刚性冲击,运动规律产生柔性冲击,运动规律则没有冲击。
2.在凸轮机构的各种常用的推杆运动规律中,只宜用于低速的情况,宜用于中速,但不宜用于高速的情况,而可在高速下应用。
3.设计滚子推杆盘形凸轮轮廓线时,若发现凸轮轮廓线有变尖现象,则在尺寸参数的改变上应采取的措施是或。
4.移动从动件盘形凸轮机构,当从动件运动规律一定时,欲同时降低升程的压力角,可采用的措施是。
若只降低升程的压力角,可采用方法。
5.凸轮的基圆半径是从到的最短距离。
6.设计直动滚子推杆盘形凸轮机构的工作廓线时,发现压力角超过了许用值,且廓线出现变尖现象,此时应采用的措施是__________________________________________。
7.与其他机构相比,凸轮机构的最大优点是。
(1)便于润滑(2)可实现客种预期的运动规律(3)从动件的行程可较大(4)制造方便,易获得较高的精度8.凸轮的基圆半径越小,则凸轮机构的压力角,而凸轮机构的尺寸。
(1)增大(2)减小(3)不变(4)增大或减小9.设计凸轮廓线对,若减小凸轮的基圆半径r b,则凸轮廓线曲率半径将。
凸轮机构中从动件计算公式
![凸轮机构中从动件计算公式](https://img.taocdn.com/s3/m/5d319e06ff4733687e21af45b307e87101f6f829.png)
凸轮机构中从动件计算公式在机械设计中,凸轮机构是一种常用的传动机构,它通过凸轮的运动来驱动从动件进行运动。
凸轮机构的设计涉及到很多参数的计算,其中包括从动件的运动规律和计算公式。
本文将从动件的计算公式作为标题,详细介绍凸轮机构中从动件的计算方法。
1. 从动件的运动规律。
在凸轮机构中,从动件的运动规律可以通过凸轮的运动规律来确定。
通常情况下,凸轮的运动规律可以用曲线来描述,而从动件的运动规律则可以通过凸轮曲线的参数方程来确定。
假设凸轮的曲线方程为x=f(θ),y=g(θ),其中θ为凸轮的转动角度,x和y分别为凸轮曲线上点的坐标。
则从动件的运动规律可以通过以下步骤确定:1)确定从动件的起始位置和终止位置;2)根据凸轮的曲线方程,确定从动件在整个运动过程中的位置;3)根据从动件的位置,确定从动件的运动规律。
2. 从动件的计算公式。
在确定了从动件的运动规律后,就可以通过计算公式来确定从动件的运动参数。
常见的从动件运动参数包括位移、速度和加速度。
下面将分别介绍这些参数的计算公式。
2.1 位移。
从动件的位移可以通过凸轮曲线的参数方程来确定。
假设从动件在运动过程中的位置为(x,y),则从动件的位移可以通过以下公式计算:s=∫√(dx^2+dy^2)。
其中s为从动件的位移,dx和dy分别为从动件在x和y方向上的位移。
通过对位移的积分,可以得到从动件在整个运动过程中的位移。
2.2 速度。
从动件的速度可以通过位移对时间的导数来确定。
假设从动件的位移为s(t),则从动件的速度可以通过以下公式计算:v=ds/dt。
其中v为从动件的速度,ds/dt为从动件位移对时间的导数。
通过对速度的计算,可以确定从动件在不同时间点的速度大小。
2.3 加速度。
从动件的加速度可以通过速度对时间的导数来确定。
假设从动件的速度为v(t),则从动件的加速度可以通过以下公式计算:a=dv/dt。
其中a为从动件的加速度,dv/dt为从动件速度对时间的导数。
机械设计-凸轮机构的运动规律分析
![机械设计-凸轮机构的运动规律分析](https://img.taocdn.com/s3/m/fe38b311f11dc281e53a580216fc700aba685270.png)
s
h
2h p
A
0
5v
1 6
2 7
3 8
a
φ
4φ
φ
φ
φ
φ
小结
1.运动过程分析
运动循环和运动参数
2.从动件的运动规 律
运动规律 等速运动规律 等加速等减速运动 余弦加速度运动规律 正弦加速度运动规律
运动特性
有刚性冲击
柔性冲击 柔性冲击 无冲击
适用场合
低速、轻载
中速、 轻载 中速、中载
✓ 等加速等减速运动规律(线运动规律(正弦加速度运动律)
1.等速运动规律
定义 从动件在推程或回程作等速运动。
启动瞬间: 速度由0→v0,a 由0→∞ 终止瞬间: 速度由v0→0,a 由0→-∞
冲击特性:始点、末点刚性冲击(F=ma) 适用场合:低速轻载
s h
O
v
O
a
∞
O
v0
φ φ
φ φ
φ φ
-∞
2.等加速等减速运动规律 定义 从动件在推程或回程的前半行程作等加速 运动,后半行程作等减速运动。
运动线图 从动件位移方程
抛物线
动力特性 加速度在运动的起始、中间和终止 位置有突变。
存在柔性冲击 (F=ma)
适用场合 中速轻载。
A
B
3.简谐(余弦加速度)运动规律
近休止:从动件在初始位置静止不动。 近休止角 :凸轮转过角度 Φs´ 凸轮与从动件的关系: 从动件的运动规律取决于凸轮的轮廓曲
二、从动件的运动规律
从动件的运动规律:从动件的位移(s)、速度(v)和加速 度(a)随时间(t)或凸轮转角(φ)的变 化规律。
9—3凸轮机构工作过程及从动件运动规律
![9—3凸轮机构工作过程及从动件运动规律](https://img.taocdn.com/s3/m/71d8c41f2e3f5727a4e96247.png)
1.等速运动规律(以推程为例)
从动件上升(或下降)的速度为一常数。
等速运动规律
2.等加速等减速运动规律
从动件在行程中先作等加速运动,后作等减速 运动。
等加速等减速运动规律
等加速等减速运动规律位移曲线画法
从动件运动规律的选择原则
当机械的工作过程只要求从动件实现一定的工作 行程,而对其运动规律无特殊要求时,所选择的运 动规律应使凸轮机构具有较好的动力性和易加工性。
当对从动件的运动规律有特殊要求,而凸轮转速 又不太高时,应首先从满足工作需要出发来选择从动 件的运动规律,其次考虑其动力性和是否便于加工。
选择从动件的运动规律时,除了要考虑其冲击特 性外,还应考虑其最大速度、最大加速度和最大位移, 因为它们会从不同角度影响凸轮机构 Nhomakorabea工作性能。
§9—3 凸轮机构工作过程及 从动件运动规律
了解凸轮机构工作过程及从动件运动规律。
若凸轮作等速转动,从动杆作何种运动? 凸轮机构
一、凸轮机构工作过程
凸轮机构中最常用的运动形式为凸轮作等速 回转运动,从动件作往复移动。
凸轮回转时,从动件作“升→停→降→停” 的运动循环。
凸轮机构工作过程
二、凸轮机构从动件常用运动规律
凸轮机构的工作原理和从动件的运动规律
![凸轮机构的工作原理和从动件的运动规律](https://img.taocdn.com/s3/m/054f488588eb172ded630b1c59eef8c75fbf95f9.png)
常见的凸轮机构应用案例
发动机气门控制
展示发动机中凸轮机构用于 控制气门开闭的示例。
流水线转盘
演示凸轮机构在流水线转盘 中的应用。
纺织机械
展示凸轮机构在纺织机械中 的运动控制示例。
往复循环运动
从动件沿直线循环运动,如摇杆。
复杂运动
从动件的运动轨迹复杂多样,如复杂凸轮 机构。
凸轮和从动件运动的配合方式
凸轮和从动件可以通过直接接触、连杆、滚动轴承等方式进行配合,以实现 预期的运动效果。
凸轮机构在机械传动中的应用
凸轮机构广泛应用于机械传动领域,如发动机气门控制、工业机械自动化装置和纺织机械的运动 控制等。
凸轮机构的优点和缺点
1 优点
凸轮机构具有结构简单、易于控制和维护的优点。
2 缺点
凸轮机构可能存在噪音、磨损和能量损失等缺点。
从动件的设计与制造要点
从动件的设计和制造需要考虑材料选择、精度要求、配合方式和工艺要求等 因素。
凸轮曲线参数的选择和调整
选择合适的凸轮曲线参数可以实现所需的运动规律,调整参数可以改变从动件的运动特点。
从动件的分类
从动件可以根据它们的结构和功能进行分类。常见的从动件包括摇杆、滑块、 连杆和推块。
生动的凸轮和从动件的图示
凸轮形状设计
展示凸轮设计中的不同形状 和轮廓。
摇杆运动演示
演示摇杆作为从动件时的运 动特点。
滑块运动示例
展示滑块在凸轮机构中的运 动示例。
凸轮机构的工作原理
1
凸轮运动
凸轮通过回转运动驱动凸轮上的从动件。
凸轮机构的工作原理和从 动件的运动规律
凸轮机构是一种能够将回转运动转化为直线运动或者其他特定运动的机械传 动装置。本次演讲将深入探讨凸轮机构的工作原理和从动件的运动规律。
凸轮从动件运动规律-职高
![凸轮从动件运动规律-职高](https://img.taocdn.com/s3/m/95c63685a8114431b80dd86f.png)
(1)绘制基本的凸轮机构。凸轮用基圆表示,推杆与凸轮接触。
(2)把基圆按照推程运动角,远休止角,回程运动角,近休止角进行划分。
(3)确定转折点处的凸轮轮廓线点。圆弧连接远休止曲线和近休止曲线。
(4)对于推程和回程,先对推杆的位移曲线均分为几段, 再在凸轮上绘制出对应的点。
例4.试设计一偏置直动滚 子盘形凸轮机构的轮廓曲 线,已知凸轮基圆半径 35mm,偏距为10mm,滚子 半径为5mm,从动件行程 40mm,其位移曲线如图。
作图 思路
主体同例3. 把滚子中心作为尖顶推杆的尖顶即可。
1.按照尖顶推杆绘制理论廓 线
2.以理论廓线上的点为圆心, 以滚子半径做一系列圆。
从动件的运动形式
偏置 直动
从动件的形状
滚子从动件
凸轮的形状
盘形凸轮 机构
问题:(2)画出凸轮的基圆。 基圆是理论廓线上的最小内切圆。
理论廓线
基圆
问题:(3)画出从推程开始到图示位置时从动件的位移S, 相应的凸轮转角。
沿着导路位置线,从基圆到理论廓 线之间的线段长度
位移
转角
问题:(4)画出推程开始时和图示位置时机构的压力角。
• 5. 推杆高副元素族
• 6. 推杆高副元素的包络线
900
机械设计基础——凸轮机构
2 对心直动滚子推杆盘形凸轮机构
已知:r0,推杆运动规律,滚子半径rr, 凸轮逆时针方向
转动
s
设计:凸轮廓线 解: 1. 定比例尺l • 2. 初始位置及推杆位移曲线 0 • 注:两条廓线,理论/实际廓
线 • 实际廓线基圆rmin • 理论廓线基圆r0 • 3. 确定推杆反转运动占据的各
凸轮机构工作过程和从动件运动规律
![凸轮机构工作过程和从动件运动规律](https://img.taocdn.com/s3/m/c97afb730a4c2e3f5727a5e9856a561252d321fb.png)
凸轮机构工作过程和从动件运动规律凸轮机构是一种常见的传动装置,主要用于将转动的轴向运动转变为具有特定规律的径向或直线运动。
它由凸轮、从动件和固定件组成。
在凸轮机构中,凸轮是主动件,从动件是被动件。
凸轮可以是一个圆柱体、椭圆体或者一个不规则形状。
在工作过程中,凸轮通过旋转或者来回运动,驱动从动件进行规律的运动。
凸轮的外形决定了从动件运动的规律,可以实现各种复杂的运动轨迹。
从动件通常是由连杆、滑块等组成的。
其运动规律受到凸轮形状、连接件长度等因素的影响。
常见的凸轮运动规律有以下几种:1.简谐运动:当凸轮的形状为圆形或者椭圆形时,从动件的运动规律呈现出简谐振动的特点,运动轨迹为直线或者椭圆。
2.往复运动:当凸轮的形状为沿轴向的不规则形状时,从动件的运动呈现出往复运动的特点。
这种往复运动可以是直线运动,也可以是曲线运动,具体取决于凸轮的形状。
3.非往复运动:有些凸轮机构的从动件的运动规律是非往复的,从动件的运动轨迹可以是圆弧、摆线等。
这种运动规律可以实现复杂的曲线运动,并广泛应用于工业生产中的各种机械装置中。
凸轮机构的工作过程一般可以分为以下几个步骤:1.凸轮旋转或者运动:凸轮通过外力的作用,开始旋转或者运动。
2.凸轮对从动件的驱动:当凸轮旋转或者运动时,凸轮表面的凸点或者凹槽与从动件的连接件接触,通过摩擦力或者其他力的作用,将动力传递给从动件。
3.从动件的运动:从动件根据凸轮的形状和运动轨迹,进行规律的运动。
从动件可以是连杆、滑块等,在凸轮的作用下,完成各种不同的运动方式。
4.固定件的作用:固定件用于支撑和固定凸轮和从动件,保证凸轮机构的稳定运行。
固定件可以是机架、底座等。
凸轮机构的工作过程和从动件的运动规律是通过优化凸轮形状和连接件长度来实现的。
只有在合理设计和优化的情况下,凸轮机构才能实现稳定可靠的工作,并满足特定的运动要求。
总之,凸轮机构的工作过程主要包括凸轮的运动和从动件的运动,依靠凸轮的形状和运动规律来实现不同的运动效果。
凸轮机构工作过程及从动件运动规律
![凸轮机构工作过程及从动件运动规律](https://img.taocdn.com/s3/m/df69895211a6f524ccbff121dd36a32d7375c79f.png)
汇报人:XX
01
02
03
04
05
06
凸轮机构是一种常见的机械传动机构 它由凸轮、从动件和机架三个基本构件组成 凸轮机构可以实现复杂的运动规律和运动轨迹 在机械、汽车、航空、化工等领域得到广泛应用
凸轮:通常是一个具有曲线轮廓或凹槽的盘形零件,是凸轮机构中的主动件。
确定凸轮机构的 运动规律
选择适当的凸轮 轮廓曲线
确定从动件运动 规律
确定凸轮机构的 基本尺寸
凸轮机构的压力 角要小,以减小 摩擦和磨损
凸轮轮廓的曲率半 径要大,以减小凸 轮的尺寸和重量
凸轮的基圆半径不 能太小,以避免凸 轮轮廓的急剧变化
凸轮的升程和回程 要合理设计,以确 保从动件能够正确 地响应
吸气阶段:凸轮机构开始工作,从动件开始运动 压缩阶段:从动件压缩气体,为燃烧做准备 做功阶段:燃料燃烧,产生高温高压气体,推动从动件运动 排气阶段:从动件排出废气,完成一个工作循环
凸轮机构可以实 现复杂的运动规 律
凸轮机构具有较 高的传动精度和 稳定性
凸轮机构具有较 大的传动范围
凸轮机构具有较 小的体积和重量
汇报人:XX
谐运动规律
按照从动件在凸 轮转动一周中的 位移曲线分类: 多项式运动规律、 三角函数运动规 律、组合运动规
律
按照从动件在 凸轮转动一周 中的速度曲线 分类:刚性冲 击、柔性冲击、
无冲击
按照从动件在凸 轮转动一周中的 加速度曲线分类: 加速度最大值限 制、加速度变化
率限制
凸轮机构在汽车发动机配气系统中 的应用,控制气门的开启和关闭。
举例说明凸轮机构在机械手中的应用实例,如自动化生产线上的机械手、医疗设备中的机械 手等
凸轮机构工作过程及从动件运动规律
![凸轮机构工作过程及从动件运动规律](https://img.taocdn.com/s3/m/d58f41b2aff8941ea76e58fafab069dc50224785.png)
提高传动效率,减小速 度波动。
选择凸轮轮廓形状、从 动件类型为优化设计变 量。
考虑制造工艺和使用环 境等方面的限制,制定 相应的优化设计约束条 件。
经过智能优化算法求解 ,得到满足性能要求的 最优解,即凸轮轮廓形 状和从动件类型的最优 组合。与优化前相比, 传动效率提高了10%, 速度波动降低了5%。
规律。
CHAPTER 04
凸轮机构性能评价与优化设 计
凸轮机构性能评价性 和传动精度等方面的指标,如传动比 、传动效率、速度波动等。
动力性能
评价凸轮机构在动力传递过程中的性 能,如驱动力、驱动力矩、动态响应 等。
耐久性能
评价凸轮机构在长期使用过程中的耐 磨性、抗疲劳性等方面的指标,如寿 命、磨损量等。
、减少振动和噪音。
02
采用先进的控制策略
引入先进的控制策略,如PID控制、模糊控制等,可以实现对从动件运
动规律的精确控制。通过调整控制参数,可以优化从动件的运动性能,
提高其响应速度和稳定性。
03
选用高性能材料
采用高性能材料制造从动件和凸轮,可以提高机构的耐磨性、抗疲劳性
和承载能力。这有助于延长凸轮机构的使用寿命,并改善从动件的运动
凸轮机构工作过程实例解析
01
以一个具体的凸轮机构为例,详细解析其工作过程 。
02
分析该凸轮机构的轮廓曲线设计、从动件运动规律 和影响因素等。
03
通过实例解析,加深对凸轮机构工作过程的理解和 掌握。
CHAPTER 03
从动件运动规律研究
从动件位移、速度和加速度变化规律
位移变化规律
在凸轮机构工作过程中,从动件的位移随着凸轮的转动而发生变化。通常,位移曲线呈现 周期性变化,其形状和幅值取决于凸轮的轮廓和尺寸。
1凸轮机构的工作原理和从动件的运动规律
![1凸轮机构的工作原理和从动件的运动规律](https://img.taocdn.com/s3/m/630d75be7d1cfad6195f312b3169a4517623e57f.png)
分析从动件加 速度与凸轮轮 廓之间的关系
解释从动件加 速度变化对机 构运动的影响
总结从动件运 动规律加速度
特征的意义
从动件运动规律 的应用
在凸轮设计中的应用
确定从动件的运动 规律
选择合适的凸轮机 构类型
设计凸轮的轮廓曲 线
优化凸轮机构参数
在机械系统中的应用
凸轮机构广泛应 用于各种机械系 统中,如内燃机、 压缩机、印刷机 等。
优化方法:采用 新型材料、改进 设计参数、引入 智能控制技术等
实例分析:针对 具体凸轮机构, 分析其运动规律, 提出改进方案并 进行仿真验证
结论:优化后的 凸轮机构在传动 性能、稳定性及 可靠性等方面均 得到显著提升
运动规律的仿真与实验研究
仿真研究:通过计算机模拟技术, 对从动件的运动规律进行模拟分析, 预测其运动性能和优化方向。
从动件运动规律的选用
适用于低速轻载的从动件运动规律 适用于高速重载的从动件运动规律 适用于高精度要求的从动件运动规律 适用于低噪声低震动的从动件运动规律
从动件运动规律 的特性
运动规律的几何特征
运动规律的几何特征包括从动件在 凸轮推动下的位移、速度和加速度 变化。
速度变化则与从动件和凸轮的接触 点有关,该点在凸轮转动过程中的 速度决定了从动件的速度。
从动件的运动规律 可以实现精确的位 置控制和速度控制
在自动化生产线中 ,凸轮机构可以用 于实现工件的传送 、定位和装配等操 作
在机器人领域,凸轮机 构可以用于实现机器人 的手臂、手腕和手指等 关节的运动控制
从动件运动规律 的优化
运动规律的改进与优化
优化目标:提高 凸轮机构的传动 效率、减小振动 和噪声
从动件的常用运动规律
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s C0 C1 ds v C1 dt dv a 0 dt
ROAD ENERGY
回程运动角
推杆在运动起 始和终止点会 产生刚性冲击。 因此等速运动 规律,只宜用 于低速轻载的 场合。
边界条件
运动始点
0, s h
录音机卷带机构
5 3 3
作者:潘存云教授
4 4 皮带轮 皮带轮
摩擦轮
ROAD ENERGY
6.1 凸轮机构的应用和分类
一、凸轮机构的应用
盘形凸 轮机构 在印刷 机中的 应用 利用 分度 凸轮 机构 实现 转位 等径凸 轮机构 在 机械加 工中的 应用 圆柱凸 轮机构 在 机械加 工中的 应用
ROAD ENERGY
6.1 凸轮机构的应用和分类
一、凸轮机构的应用
特点:
凸轮是一个具有曲线轮廓的构件,当它运动时,通 过其上的曲线轮廓与从动件的高副接触,使从动件获
得预期的运动。
一般情况下,凸轮是原动件且作等速转动,从动件 则按预定的运动作直线移动或摆动。
ROAD ENERGY
6.1 凸轮机构的应用和分类
一、凸轮机构的应用
6.2 从动件的运动规律—多项式运动规律
运动始点 0, s 0, v 0 0 h , s 运动终点: 2 2
s 2h 2 / 02 2 v 4h / 0 2 2 a 4 h / 0
ROAD ENERGY
2、二次多项式运动规律—等加速/等减速运动规律
三、凸轮机构的分类—按从动件形状分
根据运动形式的不同,以上三种从动件还可分为直动 从动件,摆动从动件,平面复杂运动从动件。
摆动尖顶从动件
摆动滚子从动件
摆动平底从动件
ROAD ENERGY
6.1 凸轮机构的应用和分类
三、凸轮机构的分类—按凸轮与从动件保持接触的方式分
(1)几何封闭
几何封闭利用凸轮或从动件本身的特殊几何形状使从动件
4. 进行必要的分析,如凸轮机构的静力分析、效 率计算等。对于高速凸轮机构,有时需进行动 力分析。
ROAD ENERGY
6.2 从动件的运动规律
一、凸轮机构的基本名词术语
1) 基圆 (base circle) 、基圆 半径r0 2)推程(rise): 由轴心向外的 行程 3)推程运动角δ0: 4) 远休 (farthest dwell) 、远 休止角δ01 : 5) 回程 (return) 、回程运动角 δ’0 6)近休(nearest dwell)、近休 止角δ02
s
B’
A h r0
δ0 δ’0 δ01
D
δ02
o δ δ δ’ δ δ 0 02 01 0
ω B
t
7)行程(lift): h
C
ROAD ENERGY
6.2 从动件的运动规律
二、从动件的运动规律
从动件运动规律的定义:指从动件在推程或回程
时,其位移、速度和加速度随时间t变化的规律。 因绝大多数凸轮作等速转动,其转角δ与时间t成 正比,所以从动件的运动规律常表示为从动件的上 述运动参数随凸轮转角δ变化的规律。
第6 章 凸轮机构及其设计
ROAD ENERGY
6.1 凸轮机构的应用和分类
一、凸轮机构的应用
定义:由具有曲线轮廓的构件,通过高副接触带
动从动件实现预期运动规律的一种高副运动。 应用:在设计机械时,当需要其从动件必须准确 地实现某种预期的运动规律时,常采用凸轮机构
ROAD ENERGY
6.1 凸轮机构的应用和分类
角增大。
ROAD ENERGY
6.1 凸轮机构的应用和分类
三、凸轮机构的分类—按凸轮形状分
其凸轮可以看作是盘形凸轮
的转动轴线在无穷远处,这 时凸轮作往复移动,从动件 在同一平面内运动。 盘形凸轮和移动凸轮都是平
面凸轮机构。 (2)移动凸轮
ROAD ENERGY
6.1 凸轮机构的应用和分类
三、凸轮机构的分类—按凸轮形状分
ROAD ENERGY
6.2 从动件的运动规律
二、从动件的运动规律
从动件的位移曲线取决于凸轮轮廓曲线的形状,
即:从动件的运动规律与凸轮轮廓曲线相对应。 设计凸轮时:首先根据工作要求确定从动件的运 动规律,绘制从动件的位移线图,然后据其绘制凸 轮轮廓曲线。
ROAD ENERGY
6.2 从动件的运动规律
优点:
结构简单、紧凑,通过适当设计凸轮廓线可以使推 杆实现各种预期运动规律,同时还可以实现间歇运动。
缺点:
高副,易磨损,多用于传力不大的场合。
ROAD ENERGY
6.1 凸轮机构的应用和分类
二、凸轮机构的基本名词术语
1) 基圆 (base circle) 、基圆半 径 r0 2) 推程 (rise): 由轴心向外的 行程 3)推程运动角δ0 4) 远 休 (farthest dwell) 、远 休 止角δ01 5)回程(return)、回程运动角δ’0 6) 近休(nearest dwell) 、近休止 角δ02 7)行程(lift): h
ROAD ENERGY
6.1 凸轮机构的应用和分类
四、凸轮机构的命名规则
名称 =“从动件的运动形式 +从动件形状
+凸轮形状
+机构”
ROAD ENERGY
6.1 凸轮机构的应用和分类
五、凸轮机构设计的基本任务
1. 根据设计任务的要求选择凸轮的类型和从动件
运动规律。 2. 确定凸轮的基圆半径。
3. 确定凸轮的轮廓。
运动方程式一般表达式:
s C0 C1 C2 2 ds C1 2C2 v dt dv a 2C2 dt
推杆的等加速等减速运动规律:为保证凸轮机构运动平稳性, 常使推杆在一个行程h中的前半段作等加速运动,后半段作等 减速运动,且加速度和减速度的绝对值相等。
C
s
B’
A h r0
δ0 δ’0 δ01
D
δ02
o δ δ δ’ δ δ 0 02 01 0
ω B
t
ROAD ENERGY
6.1 凸轮机构的应用和分类
三、凸轮机构的分类
盘形凸轮 平面凸轮机构 1. 按凸轮形状分 凸 轮 机 构 分 类
移动凸轮 空间凸轮机构:圆柱凸轮
尖顶从动件
2. 按从动件形状分
滚子从动件 平底从动件 几何封闭
6.1 凸轮机构的应用和分类
三、凸轮机构的分类—按从动件形状分
该从动件优点在于:凸轮对 从动件的作用力始终垂直于 从动件的底部(不计摩擦 时),故受力比较平稳,而 且凸轮轮廓与平底的接触面 间容易形成楔形油膜,润滑 (3)平底从动件 情况良好,故常用于高速凸
轮机构中。
ROAD ENERGY
6.1 凸轮机构的应用和分类
h s 0 ds h v dt 0 dv 0 a dt
在起始和终止 点速度有突变, 使瞬时加速度 趋于无穷大, 从而产生无穷 大惯性力,引 起刚性冲击。
推程运动线图
6.2 从动件的运动规律—多项式运动规律
1、一次多项式运动规律—等速运动规律
δ:δ0/2~δ0
6.2 从动件的运动规律—多项式运动规律
3、五次多项式运动规律
组合运动规律
ROAD ENERGY
6.2 从动件的运动规律
二、从动件的基本运动规律
多项式运动规律
s C0 C1 C2 ... Cn
2
n
—凸轮转角; s —从动件位移;
Co , C1 , C2 ,...,Cn —待定系数,可利用边界条件来确定。
6.2 从动件的运动规律—多项式运动规律
一、凸轮机构的应用
组成:凸轮、从动件和机架
机架 从动件
滚子
凸轮
ROAD ENERGY
6.1 凸轮机构的应用和分类
一、凸轮机构的应用
应用领域:凸轮机构广泛用于自动机械、自动控制
装置和装配生产线中。
内 燃 机 配 汽 机 构
自动机床的进刀机构
ROAD ENERGY
卷带轮
2 1 1 放音键 放音键
3. 按凸轮与从动件保 持接触的方式分
力封闭
ROAD ENERGY
6.1 凸轮机构的应用和分类
三、凸轮机构的分类—按凸轮形状分
凸轮是绕固定轴转动且具有 变化向径的盘形构件,而且 从动件在垂直于凸轮轴线的 平面内运动,应用最广。
但从动件行程较大时,则凸
轮径向尺寸变化较大,而当
(1)盘形凸轮
推程运动角较小时会使压力
二、从动件的基本运动规律
多项式运动规律
一次多项式运动规律—等速运动 二次多项式运动规律—等加速或等减速运动 五次多项式运动规律
三角函数运动规律
余弦加速度运动规律—简谐运动规律
正弦加速度运动规律—摆线运动规律
凸轮一般为等速运动, 有δ=ωt, 推杆运动规 律常表示为推杆运动 参数随凸轮转角δ变 化的规律。
推程等加速 段边界条件
加速段运 动方程式:
推程等减速 段边界条件
运动始点
0 / 2, s h / 2 0 , s h, v 0 运动终点:
s h 2h / 02 ( 0 ) 2 等减速运 2 v 4h ( 0 ) / 0 动方程式: 2 2 a 4 h / 0
1、一次多项式运动规律—等速运动规律
运动方程 式一般表 达式:
s C0 C1 ds v C1 dt dv a 0 dt
ROAD ENERGY
0, s 0 边界条件 0, s h 运动终点: