液压转矩加载器设计研究

液压转矩加载器设计研究
液压转矩加载器设计研究

顶部驱动钻井系统顶驱下套管装置、软扭矩系统、扭摆减阻系统

A A 附 录 A (规范性附录) 顶驱下套管装置 A.1 概述 顶驱下套管装置是基于顶驱装置进行下套管作业的一种工具,按照驱动方式可分为液压驱动、机械驱动、液压机械复合驱动顶驱下套管装置。根据夹持套管的部位不同可分为内卡式顶驱下套管装置和外卡式顶驱下套管装置。顶驱下套管装置的设计及制造应满足以下功能及技术要求。 A.2 功能要求 A.2.1 概述 顶驱下套管装置应具备相应的功能,产品部件和整机安装完成后均应进行试验以评定其功能是否达到设计要求。 A.2.2 顶驱下套管装置功能描述 A.2.2.1顶驱下套管装置应和顶驱具有良好的兼容性,与顶驱连接后应留有安全作业空间。 A.2.2.2顶驱下套管装置通过顶驱的提升和下放实现套管柱的提升和下放动作;通过顶驱的主轴旋转带动顶驱下套管装置的卡瓦夹持总成实现套管螺纹的连接和松开。套管的钻井液灌注和循环通过顶驱钻井液通道完成,顶驱下套管装置的密封导向总成应具备密封套管的能力。 A.2.2.3顶驱下套管装置下放套管规格应符合GB/T 19830。 A.2.2.4顶驱下套管装置下套管作业数据(扭矩、转速)源于顶驱控制系统,应具有设定、记录和归档功能,具备追溯性。 A.2.2.5顶驱下套管装置为可选配套装置,不作为顶驱的标准配置出厂。 A.3 顶驱下套管装置设计要求 A.3.1 由于不同规格套管的抗内、外压能力不同,为了安全起见,当套管标称外径大于等于168.28 mm时宜采用内卡的夹持方式,当套管标称外径小于168.28 mm时宜采用外卡的夹持方式。 A.3.2 顶驱下套管装置与顶驱之间应具有良好的接口(连接螺纹、控制管线),安装时应不拆除内防喷器,安装后不应影响顶驱的基本功能。 A.3.3 顶驱下套管作业时,宜使用加长吊环,可在原吊环的基础上利用短吊环加长原吊环,以满足安全提升管柱要求为准则。 A.3.4 顶驱下套管装置在满足安全提升和扭矩载荷的前提下,一套装置应能满足多种规格套管的作业需求,减少设备的数量。

汽车转向系设计说明书

汽车设计课程设计说明书 题目:重型载货汽车转向器设计 姓名:席昌钱 学号:5 同组者:严炳炎、孔祥生、余鹏、李朋超、郑大伟专业班级:09车辆工程2班 指导教师:王丰元、邹旭东

设计任务书 目录 1.转向系分析 (4) 2.机械式转向器方案分析 (8) 3.转向系主要性能参数 (9) 4.转向器设计计算 (14) 5.动力转向机构设计 (16) 6.转向梯形优化设计 (22) 7.结论 (24) 8.参考文献 (25)

1转向系设计 基本要求 1.汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转。 2.操纵轻便,作用于转向盘上的转向力小于200N。 3.转向系的角传动比在23~32之间,正效率在60%以上,逆效率在50%以上。 4.转向灵敏。 5.转向器和转向传动机构中应有间隙调整机构。 6.转向系应有能使驾驶员免遭或减轻伤害的防伤装置。 基本参数 1.整车尺寸: 11976mm*2395mm*3750mm。 2.轴数/轴距 4/(1950+4550+1350)mm 3.整备质量 12000kg 4.轮胎气压 2.转向系分析 对转向系的要求[3] (1) 保证汽车有较高的机动性,在有限的场地面积内,具有迅速和小半径转弯的能力,同时操作轻便; (2) 汽车转向时,全部车轮应绕一个瞬时转向中心旋转,不应有侧滑; (3) 传给转向盘的反冲要尽可能的小; (4) 转向后,转向盘应自动回正,并应使汽车保持在稳定的直线行驶状态; (5) 发生车祸时,当转向盘和转向轴由于车架和车身变形一起后移时,转向系统最好有保护机构防止伤及乘员. 转向操纵机构 转向操纵机构包括转向盘,转向轴,转向管柱。有时为了布置方便,减小由于装置位置误差及部件相对运动所引起的附加载荷,提高汽车正面碰撞的安全性以及便于拆装,在转向轴与转向器的输入端之间安装转向万向节,如图2-1。采用柔性万向节可减少传至转向轴上的振动,但柔性万向节如果过软,则会影响转向系的刚度。采用动力转向时,还应有转向动力系统。但对于中级以下的轿车和前轴负荷不超过3t的载货汽车,则多数仅在用机械转向系统而无动力转向装置。

循环球式转向器的设计

2.4 主要尺寸参数的选择 长安福特福克斯2.0满载前轴载荷为51%Mg,再根据表(2-2)选择齿扇模数为4.5。在确定齿扇模数后,转向器其他参数根据表(2-1)和表(2-3)进行选取。 表2-1 循环球转向器的主要参数 参数数值 齿扇模数/mm 3.0 3.5 4.0 4.5 5.0 6.0 6.5 摇臂轴直径/mm 22 26 30 32 32 38 42 钢球中心距/mm 20 23 25 28 30 35 40 螺杆外径/mm 20 23 25 28 29 34 38 钢球直径/mm 5.556 6.350 6.350 7.144 8.000 螺距/mm 7.938 8.731 9.525 10.000 11.000 工作圈数 1.5 2.5 2.5 环流行数 2 齿扇齿数 5 5 齿扇整圆齿数12 13 18 14 15 齿扇压力角22°30′ 27°30′ 切削角6°30′6°30′7°30′ 齿扇宽/mm 22 25 25 27 25 28 30 28-32 34 38 35 38

表2-2各类汽车循环球转向器的齿扇齿模数 齿扇齿模数 m/mm 3.0 3.5 4.O 4.5 5.O 6.0 6.5 轿车发动机 排量/ ml 500 1000 ~ 1800 1600 ~ 2000 2000 2000 前轴负 荷/N 3500 ~ 3800 4700 ~ 7350 7000 ~ 9000 8300 ~ 11000 10000 ~ 11000 货车和大客车前轴负 荷/N 3000 ~ 5000 4500 ~ 7500 5500 ~ 18500 7000 ~ 19500 9000 ~ 24000 17000 ~ 37000 23000 ~ 44000 最大装 载/kg 350 1000 2500 2700 3500 6000 8000 表2-3 循环球式转向器的部分参数 模数m 螺杆外 径 螺纹升程 螺母长 度 钢球直径 齿扇压 力角 齿扇切 削角 摇臂 轴外 径 3.0 20 7.938 40 5.556 22 30′ 6 30′ 7 30′ 22 3.5 23 8.731 45 5.556 22 30′ 6 30′ 7 30′ 26 4.0 25 9.525 48 6.350 22 30′ 6 30′ 7 30′ 20 4.5 28 9.525 58 7.144 22 30′ 6 30′ 7 30′ 32 5.0 29 10.319 62 7.144 22 30′ 6 30′ 7 30′ 35 根据所选择的齿扇模数,根据表(2-1)和表(2-3)选取对应的参数为:

JW-3扭矩仪使用说明书

?普联JW-3扭矩仪 使 用 说 明 书 湖南湘仪动力测试仪器有限公司

目录 2、仪器功能和配置 (8) 3、主要性能特点 (8) 4、主要技术指标 (9) 5、前面板 (10) 5.1、参数显示 (11) 5.2、键盘操作 (12) 5.2.1、传感器参数设置 (12) 5.2.2、采样时间设置 (14) 5.2.3、扭矩调零 (15) 5.2.4、转速修正 (20) 5.2.5、温度补偿设置 (22) 5.2.6、声光报警 (23) 5.2.7、开关量输出 (24) 5.2.8、模拟输入 (26) 5.2.9、模拟输出 (28) 5.2.10、快速存储 (28) 5.2.11、释放操作 (29) 5.2.12、RS232设置 (30) 5.2.13、CAN设置 (33) 5.2.14、打印设置 (34) 5.2.15、恢复默认值 (35) 5.2.16、传感器标定 (37) 6、后面板 (38) 7、仪器使用注意事项 (40) 8、系统软件 (41) 1、试验登录 (42) 2、控制按钮 (44) 9、仪器附件 (55) 10、特殊订货选项 (55) 11、仪器的使用与存储条件 (55) 12、售后服务 (56) 13、注意事项 (57) 1、正确选用传感器 (57) 2正确安装传感器 (58) 3、正确连接传感器和扭矩仪 (59) 14、常见问题解答 (62) 1.JC型转矩转速传感器精度等级如何划分? (62) 2.JC型传感器能测静扭矩吗? (62) 3.JC型传感器的过载能力有多大? (62) 5.采用何种负载方式为好? (62) 6.JC型传感器与动力和负载之间以什么样的连接方式为好? (63) 7.尼龙绳连接应注意什么问题? (63)

16L爱丽舍转向系统设计说明书

1.摘要 汽车转向器是汽车的重要组成部分,也是决定汽车主动安全性的关键总成,它的质量严重影响汽车的操纵稳定性。随着汽车工业的发展,汽车转向器也在不断的得到改进,虽然电子转向器已开始应用,但机械式转向器仍然广泛地被世界各国汽车及汽车零部件生产厂商所采用。而在机械式转向器中,循环球齿条-齿扇式转向器由于其自身的特点被广泛应用于各级各类汽车上。本文选择GX1608A型循环球齿条-齿扇式转向器作为研究课题,其主要内容有:汽车转向器的组成分类;转向器总成方案分析及其数据确定和转向器的设计过程。 这种转向器的优点是,操纵轻便,磨损小,寿命长。缺点是结构复杂,成本高,转向灵敏度不如齿轮齿条式。因此逐渐被齿轮齿条式取代。但随着动力转向的应用,循环球式转向器近年来又得到广泛使用。 关键词;转向器操纵稳定性循环球齿条-齿扇式转向器

目录 摘要 (1) 1绪论 (4) 2汽车转向系的组成及分类 (6) 2.1汽车转向系的类型和组成 (6) 2.1.1 机械式转向系 (9) 2.1.2 动力转向器 (10) 2.2 转向系主要性能参数 (11) 2.2.1转向器的效率 (11) 2.2.2传动比的变化特性 (12) 2.2.3转向盘自由行程 (17) 2.3 转向操纵机构及转向传动机构 (17) 2.3.1转向操纵机构 (17) 2.3.2转向传动机构 (18) 3转向器总成方案分析 (20) 3.1转向器设计要求 (20) 3.2转向器总成方案设计 (21) 4循环球式转向器主要尺寸参数的选择 (25) 5 转向器输出力矩的确定 (26) 6 轴的设计计算及校核 (27) 6.1 转向摇臂轴(即齿形齿扇轴)的设计计算 (27) 6.1.1材料的选择 (27) 6.1.2结构设计 (27) 6.1.3轴的设计计算 (27) 6.2 螺杆轴设计计算及主要零件的校核 (31) 6.2.1材料选择 (31) 6.2.2结构设计 (31) 6.2.3轴的设计计算 (32) 6.2.4钢球与滚道之间的接触应力校核 (34)

毕业论文设计转向系统设计

目录摘要2 第一章绪论3 1.1汽车转向系统概述3 1.2齿轮齿条式转向器概述9 1.3液压助力转向器概述10 1.4国内外发展情况12 1.5本课题研究的目的和意义12 1.6本文主要研究内容13 第二章汽车主要参数的选择14 2.1汽车主要尺寸的确定14 2.2汽车质量参数的确定16 2.3轮胎的选择17 第三章转向系设计概述18 3.1对转向系的要求18 3.2转向操纵机构18 3.3转向传动机构19 3.4转向器20 3.5转角及最小转弯半径20 第四章.转向系的主要性能参数22 4.1转向系的效率22 4.2传动比变化特性23 4.3转向器传动副的传动间隙△T25 4.4转向盘的总转动圈数26 第五章机械式转向器方案分析及设计26 5.1齿轮齿条式转向器26 5.2其他转向器28 5.3齿轮齿条式转向器布置和结构形式的选择29 5.4数据的确定29 5.5设计计算过程31 5.6齿轮轴的结构设计35 5.7轴承的选择35 5.8转向器的润滑方式和密封类型的选择35 5.动力转向机构设计36 5.1对动力转向机构的要求36 5.2动力转向机构布置方案36 5.3液压式动力转向机构的计算38 5.4动力转向的评价指标43

6. 转向传动机构设计45 6.1转向传动机构原理45 6.2转向传送机构的臂、杆与球销47 6.3转向横拉杆及其端部47 6.4杆件设计结果48 7.结论49 致谢49 摘要 本课题的题目是转向系的设计。以齿轮齿条转向器的设计为中心,一是汽车总体构架参数对汽车转向的影响;二是机械转向器的选择;三是齿轮和齿条的合理匹配,以满足转向器的正确传动比和强度要求;四是动力转向机构设计;五是梯形结构设计。因此本课题在考虑上述要求和因素的基础上研究利用转向盘的旋转带动传动机构的齿轮齿条转向轴转向,通过万向节带动转向齿轮轴旋转,转向齿轮轴与转向齿条啮合,从而促使转向齿条直线运动,实现转向。实现了转向器结构简单紧凑,轴向尺寸短,且零件数目少的优点又能增加助力,从而实现了汽车转向的稳定性和灵敏性。在本文中主要进行了转向器齿轮齿条的设计和对转向齿轮轴的校核,主要方法和理论采用汽车设计的经验参数和大学所学机械设计的课程内容进行设计,其结果满足强度要求,安全可靠。 关键词:转向系;机械型转向器;齿轮齿条;液压式助力转向器 Abstract The title of this topic is the design of steering system. Rack and pinion steering gear to the design as the center, one vehicle parameters on the overall framework of the impact of vehicle steering; Second, the choice of mechanical steering; third rack gear and a reasonable match to meet the correct steering gear ratio and strength requirements; Fourth, power steering mechanism design; Fifth, the structural design of trapezoidal. Therefore, taking into account the above issues and factors that require study, based on the steering wheel rotary drive transmission shaft of the steering rack and pinion steering, through the universal joint drive shaft rotation gear shift, steering rack and steering gear shaft meshing, thereby encouraging steering rack linear motion to achieve steering. Simple structure to achieve the steering tight, short axial dimension, and the number of parts can increase the advantages of less power in order to achieve the vehicle steering stability and sensitivity. In this article a major design steering rack and pinion steering gear shaft and the check, the main methods and theoretical experience in the use of automotive design parameters and the University of mechanical design school curriculum design and the results meet the strength

金属材料扭矩控制疲劳试验

金属材料扭矩控制疲劳试验 1 范围 本标准规定了金属试样在给定扭矩、恒定幅值、名义上受弹性应力、不引起应力集中条件下的疲劳试验。试验通常在室温(10℃~35℃)大气条件下进行,沿试样的纵轴加载。 本标准适用于圆形截面试样及圆管截面试样的切取、制备和试验。不包括构件及其他特殊类型的试验。同样也不包括恒幅角位移控制的低周扭转疲劳试验,其失效周次通常只有几千次。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 ISO 554:1976 标准大气环境条件和试验的说明(Standard atmospheres for conditioning and/or testing - Specifications) 3 术语和定义 下列术语和定义适用于本文件。 4 最大应力 maximum stress τmax 在应力循环中剪切应力的最大代数值(见图1)。 5 最小应力 minimum stress τmin 在应力循环中剪切应力的最小代数值(见图1)。 6 平均应力 mean stress τm 剪切应力的静态分量(见图1)。 注:最大剪切应力与最小剪切应力代数和的一半,见公式(1): (1) 7 应力幅值stress amplitude τa 剪切应力的动态分量(见图1)。 注:最大剪切应力与最小剪切应力代数差的一半,见公式(2): (2)

说明: X轴—时间; Y轴—应力; 1— 1个应力循环。 图1 疲劳应力循环 8 循环周次 number of cycles N 试验任意阶段的循环次数。 9 应力比 stress ratio R 在同一循环周次中最小剪切应力与最大剪切应力的代数比值。 注:可以表达为: (3) 10 应力范围stress range 最大剪切应力与最小剪切应力之间范围。 注:可以表达为: (4) 11 失效疲劳寿命 fatigue life at failure

微型轿车转向器毕业设计说明书

目录 设计任务书 (3) 设计评语 (6) 摘要 (7) 第一章.绪论 (8) 汽车发展史概括 (8) 中国轿车工业发展现状 (8) 汽车转向系统设计技术发展概括 (9) 微型轿车转向系统及其与整车的关系 (9) 第二章.转向系技术的最新发展 (10) 电动助力转向系统技术 (10) 轿车的四轮转向技术 (17) 第三章.微型轿车转向系统的组成 (25) 转向操纵机构 (25) 转向传动机构 (25) 转向器 (25) 第四章.微型轿车转向系的特点及要求 (26) 微型汽车转向系统的特点 (26) 微型汽车转向系统要求 (26) 第五章.转向系的主要性能参数 (27) 转角及最小转弯半径 (27) 转向系的效率 (28) 转向系的角传动比 (29) 转向系的力传动比 (31) 转向系的传动间隙特性 (34)

转向系的刚度 (35) 转向盘的总转动圈数 (35) 第六章.转向器的结构型式选择及其计算 (36) 齿轮齿条式转向器小齿轮计算 (37) 齿条计算 (37) 转向器壳体 (38) 齿轮的强度校核 (39) 齿条强度校核 (41) 第七章.转向传动机构的设计 (42) 转向节臂的设计 (43) 转向横拉杆 (44) 球头销计算 (46) 第八章.转向操纵机构的设计 (49) 转向盘 (49) 转向轴和转向管柱的结构设计 (49) 第九章.转向减振器的设计 (52) 第十章.设计总结 (53) 参考文献 (55) 附件:外文翻译——有关燃油添加剂 (56) 一、原文 (57) 二、译文 (61)

设计任务书 一、微型轿车设计任务书 1.设计原则 (1)选用国内大量生产的发动机和零部件; (2)造型美观,乘坐舒适,价廉实用; (3)面对乡镇和农村广大用户。 2.主要技术参数 车型 7080 车身 3门两厢式 乘员数 3-4 布置形式发动机前置前驱 总长(mm)≤3000 总宽(mm)≤1400 总高(mm)≤1450 轴距(mm) 2000 前轮距(mm) 1240 后轮距(mm) 1240 前悬(mm) 500 后悬(mm) 500 离去角 30o 最小离地间隙(mm) 150 最小转弯直径(m) 9 最高车速(km/L) 100 最大爬坡度 20% 空车总质量(kg) 550 满载总质量(kg) 800 制动距离(m)≤6(制动初速度为30km/L)制动跑偏(mm)≤400 油耗(L/100kg)≤ 续航里程(km) 300 加速时间(s) 25

机械毕业设计1535循环球式转向器的设计

1 绪论 (1) 1.1课题背景 (1) 1.2 国内外研究现状 (3) 1.3 研究目的及意义 (3) 1.4 研究内容和设计方法 (3) 2 转向器的设计 (4) 2.1 转向系统简介 (4) 2.2 机械转向系 (5) 2.2.1 转向操纵机构 (6) 2.2.2 转向器 (6) 2.2.3 转向传动机构 (8) 2.3 转向系主要性能参数 (8) 2.3.1 转向器的效率 (8) 2.3.2 传动比的变化特性 (10) 2.4 主要尺寸参数的选择 (12) 2.4.1 螺杆、钢球、螺母传动副设计 (15) 2.4.2 齿条、齿扇传动副设计 (19) 2.5转向器的计算和校核 (21) 2.5.1循环球式转向器零件的强度计算 (21) 2.5.2 转向摇臂轴直径的确定 (24) 3结论 (25) 致谢 (26) I

汽车是一种性能要求高,负荷变化大的运输工具。转向系统作为汽车的关键部件之一,更需要了解和掌握。转向器作为转向系统中最重要的组成部件,对它进行深入的研究便显得意义重大。循环球式转向器主要由螺杆、螺母、钢球、转向器壳体等组成,具有较高的传动效率,操纵轻便,磨损较小,使用寿命长,近年来得到广泛使用。根据现用的国家标准并依据轻型汽车的循环球转向器数据,按照汽车设计的原则设计一款循环球转向器,完成三维图形和零件平面图的绘制,使其能够满足现代轿车的国家标准要求。 关键词: 循环球;转向器;设计;分析 II

Abstract Automobile is a transport machine with high-performance and variable loads. Steering system is one of the key components for vehicles and need to be understood and grasped. As the most important part of steering system, steering gear need to be studied importantly. Circulating ball-type steering gear contains screw, nut, ball, steering gear housing, etc. It has many Advantages, such as high transmission efficiency, light manipulation, less wear and long service life, so as to be widely used in recent years. According to current national standards and the ball steering vehicle data of BJ2020, a cycle ball steering is designed by the automotive principles, and some three-dimensional graphics and rendering parts of the plan are completed, so as to meet the national standards of Modern utility vehicle. Key words: Circulating ball;Steering gear;Design;Analysis III

齿轮箱扭矩加载器功能及代表厂家

风电(变桨)齿轮箱加载试验台 1、联接方式 第一种开放式加载试验: 电机---减速机---变桨齿轮箱—陪试齿轮箱---增速机---可控模拟负载 第二种电封闭式加载试验: 拖动单元和负载单元均采用交流模拟负载,负载单元的交流电能反馈到拖动单元的输入端,实现能量闭环。 2、加载控制方式 自动P I D数字控制,操作十分方便。 举例:在转速1482rpm时,通过控制台数字设定加载扭矩210N.m后,可控模拟负载自动加载到210N.m,此时加载功率为33kw。 功率=转速*扭矩/9549=1482*210/9549=33 3、功能 数字显示转速、加载扭矩、加载功率、表面温度等参数 4、用户介绍 中船重工重庆清平机械厂 风电(增速)齿轮箱加载试验台 1、联接方式 第一种开放式加载试验: 电机---增速齿轮箱--陪试齿轮箱---可控模拟负载 ? 第二种电封闭式加载试验: 拖动单元和负载单元均采用交流模拟负载,负载单元的交流电能反馈到拖动单元的输入端, 实现能量闭环。 ? 2、加载控制方式 自动P I D数字控制,操作十分方便。 举例:在转速1482rpm时,通过控制台数字设定加载扭矩2100N.m后,可控模拟负载自 动加载到2100N.m,此时加载功率为326kw。 功率=转速*扭矩/9549=1482*2100/9549=326 3、功能 数字显示转速、加载扭矩、加载功率、表面温度等参数 4、用户介绍 南京高速齿轮箱厂 风力发电专用齿轮箱试验台 应用范围:各种变速箱

简介:由电网引出的电能经整流器、逆变器后被电机转换为机械能,再通过齿轮箱将机械能传递给电机,转化为电能后反馈回整流器直流侧,这样,试验台系统内部电能--〉机械能--〉电能能量转换循环,只需较少的电网能量及较小的变压器容量,由电网提供系统的电气耗能和机械摩擦耗能即可完成试验。 功能特点: 本系统交流变频互馈式传动试验台,用于对齿轮箱进行加载试验和测试。 交流变频互馈式传动试验台基本电气原理是:电网6kV的工频交流电经过高压受电开关柜进行隔离后送到变压器的原边,变压器输出有两套次边绕组(Y接、Δ接),两组三相之间相差30°,经整流柜内的两套整流装置整流后并联输出直流电(12脉波),再由驱动逆变器将直流电逆变为频率可调的交流电驱动电机按转速闭环运行;驱动电机与陪试减速器、被试减速器、加载电机之间依次机械联接运转,由加载变频器控制加载电机给被试减速器加载,控制加载电机工作在发电状态,以转矩闭环运行。 加载电动机发出的电能通过加载变频器变为直流回到系统的直流侧,再向驱动逆变器供电,系统能量构成内部循环反馈,外部电网只提供系统启动及电气损耗、机械损耗,可节约70%~80%的能源。 扭矩加载器代表厂家:德国GAT传动技术有限公司 网址:www.gat-mbh.de

液压马达的工作原理

液压马达工作原理 一、液压马达的特点及分类 液压马达是把液体的压力能转换为机械能的装置,从原理上讲,液压泵可以作液压马达用,液压马达也可作液压泵用。但事实上同类型的液压泵和液压马达虽然在结构上相似,但由于两者的工作情况不同,使得两者在结构上也有某些差异。例如: 1.液压马达一般需要正反转,所以在部结构上应具有对称性,而液压泵一般是单方向旋转的,没有这一要求。 2.为了减小吸油阻力,减小径向力,一般液压泵的吸油口比出油口的尺寸大。而液压马达低压腔的压力稍高于大气压力,所以没有上述要求。 3.液压马达要求能在很宽的转速围正常工作,因此,应采用液动轴承或静压轴承。因为当马达速度很低时,若采用动压轴承,就不易形成润滑滑膜。 4.叶片泵依靠叶片跟转子一起高速旋转而产生的离心力使叶片始终贴紧定子的表面,起封油作用,形成工作容积。若将其当马达用,必须在液压马达的叶片根部装上弹簧,以保证叶片始终贴紧定子表面,以便马达能正常起动。 5.液压泵在结构上需保证具有自吸能力,而液压马达就没有这一要求。 6.液压马达必须具有较大的起动扭矩。所谓起动扭矩,就是马达由静止状态起动时,马达轴上所能输出的扭矩,该扭矩通常大于在同一工作压差时处于运行状态下的扭矩,所以,为了使起动扭矩尽可能接近工作状态下的扭矩,要求马达扭矩的脉动小,部摩擦小。 由于液压马达与液压泵具有上述不同的特点,使得很多类型的液压马达和液压泵不能互逆使用。 液压马达按其额定转速分为高速和低速两大类,额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。 高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。它们的主要特点是转速较高、转动惯量小,便于启动和制动,调速和换向的灵敏度高。通常高速液压马达的输出转矩不大(仅几十牛·米到几百牛·米),所以又称为高速小转矩液压马达。 高速液压马达的基本型式是径向柱塞式,例如单作用曲轴连杆式、液压平衡式和多作用曲线式等。此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式。低速液压马达的主要特点是排量大、体积大、转速低(有时可达每分种几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大(可达几千牛顿·米到几万牛顿·米),所以又称为低速大转矩液压马达。 液压马达也可按其结构类型来分,可以分为齿轮式、叶片式、柱塞式和其他型式。 二、液压马达的性能参数 液压马达的性能参数很多。下面是液压马达的主要性能参数: 1.排量、流量和容积效率习惯上将马达的轴每转一周,按几何尺寸计算所进入的液体容积,称为马达的排量V,有时称之为几何排量、理论排量,即不考虑泄漏损失时的排量。 液压马达的排量表示出其工作容腔的大小,它是一个重要的参数。因为液压马达在工作中输出的转矩大小是由负载转矩决定的。但是,推动同样大小的负载,工作容腔大的马达的压力要低于工作容腔小的马达的压力,所以说工作容腔的大小是液压马达工作能力的主要标志,也就是说,排量的大小是液压马达工作能力的重要标志。 根据液压动力元件的工作原理可知,马达转速n、理论流量q i与排量V之间具有下列

汽车转向器设计及应用毕业论文

汽车转向器设计及应用毕业论文 目录 插图清单 (3) 表格清单 (3) 摘要 (4) Abstract (5) 第一章绪论 (6) 1.1 汽车转向器的功能及重要性 (6) 1.2 汽车转向器的主要性能参数 (6) 1.2.1转向器的效率 (6) 2.2.2传动比的变化特性 (7) 2.2.3转向盘自由行程 (9) 1.4 汽车转向器的工作原理 (10) 1.4.1 动力转向系统的工作原理 (10) 1.4.2 转阀式液压助力转向器工作原理 (11) 第二章总体方案设计 (12) 2.1 转向器设计的分类 (12) 2.1.1齿轮齿条式转向器 (12) 2.1.2 蜗杆曲柄销式转向器 (12) 2.1.3 循环球式转向器 (12) 2.2 转向器方案分析 (13) 2.3 防伤安全机构方案分析 (15) 第三章循环球式转向器的设计与计算 (17) 3.1 螺杆、钢球和螺母传动副 (18) 3.1.1 钢球中心距D、螺杆外径D1和螺母径D2 (19) 3.1.2 钢球直径d及数量n (19) 3.1.3 滚道截面 (20) 3.1.4 接触角 (20) 3.1.5 螺距P和螺旋线导程角 (21) 3.1.6 工作钢球圈数W (21) 3.1.7 导管径d1 (21) 3.2 齿条、齿扇传动副的设计 (21) 3.3 循环球式转向器零件强度计算 (23) 3.3.1钢球与滚道之间的接触应力σ (23) (24) 3.3.2 齿的弯曲应力 w 3.3.3 转向摇臂轴直径的确定 (24) 第四章动力转向机构的设计 (25)

4.1 对动力转向机构的要求 (25) 4.2 液压式动力转向机构布置方案分析 (25) 4.2.1 动力转向机构布置方案分析 (25) 4.3 液压式动力转向机构的计算 (27) 4.3.1 动力缸尺寸的计算 (27) 4.3.2 分配滑阀参数的选择 (27) 4.3.3 分配阀的回位弹簧 (27) 4.3.4 动力转向器的评价指标 (29) 第五章转向梯形 (31) 5.1 转向梯形结构方案分析 (31) 5.1.1 整体式转向梯形 (31) 5.1.2 断开式转向梯形 (32) 5.2整体式转向梯形机构优化设计 (33) 致谢 (37) 参考文献 (38)

转向器的结构型式选择及其设计计算

5.2转向器的结构型式选择及其设计计算 根据所采用的转向传动副的不同,转向器的结构型式有多种。常见的有齿轮齿条式、循环球式、球面蜗杆滚轮式、蜗杆指销式等。 对转向其结构形式的选择,主要是根据汽车的类型、前轴负荷、使用条件等来决定,并要考虑其效率特性、角传动比变化特性等对使用条件的适应性以及转向器的其他性能、寿命、制造工艺等。中、小型轿车以及前轴负荷小于1.2t 的客车、货车,多采用齿轮齿条式转向器。球面蜗杆滚轮式转向器曾广泛用在轻型和中型汽车上,例如:当前轴轴荷不大于2.5t 且无动力转向和不大于4t 带动力转向的汽车均可选用这种结构型式。循环球式转向器则是当前广泛使用的一种结构,高级轿车和轻型及以上的客车、货车均多采用。轿车、客车多行驶于好路面上,可以选用正效率高、可逆程度大些的转向器。矿山、工地用汽车和越野汽车,经常在坏路或在无路地带行驶,推荐选用极限可逆式转向器,但当系统中装有液力式动力转向或在转向横拉杆上装有减振器时,则可采用正、逆效率均高的转向器,因为路面的冲击可由液体或减振器吸收,转向盘不会产生“打手”现象。 关于转向器角传动比对使用条件的适应性问题,也是选择转向器时应考虑的一个方面。对于前轴负荷不大的或装有动力转向的汽车来说,转向的轻便性不成问题,而主要应考虑汽车高速直线行驶的稳定性和减小转向盘的总圈数以提高汽车的转向灵敏性。因为高速行驶时,很小的前轮转角也会导致产生较大的横向加速度使轮胎发生侧滑。这时应选用转向盘处于中间位置时角传动比较大而左、右两端角传动比较小的转向器。对于前轴负荷较大且未装动力转向的汽车来说,为了避免“转向沉重”,则应选择具有两端的角传动比较大、中间较小的角传动比变化特性的转向器。 下面分别介绍几种常见的转向器。 5.2.1循环球式转向器 循环球式转向器又有两种结构型式,即常见的循环球-齿条齿扇式和另一种即循环球-曲柄销式。它们各有两个传动副,前者为:螺杆、钢球和螺母传动副以及落幕上的齿条和摇臂轴上的齿扇传动副;后者为螺杆、钢球和螺母传动副以及螺母上的销座与摇臂轴的锥销或球销传动副。两种结构的调整间隙方法均是利用调整螺栓移动摇臂轴来进行调整。 循环球式转向器的传动效率高、工作平稳、可靠,螺杆及螺母上的螺旋槽经渗碳、淬火及磨削加工,耐磨性好、寿命长。齿扇与齿条啮合间隙的调整方便易行,这种结构与液力式动力转向液压装置的匹配布置也极为方便。 5.2.1.1循环球式转向器的角传动比w i 由循环球式转向器的结构关系可知:当转向盘转动?角时,转向螺母及其齿条的移动量应为 t s )360/(?= (5-21) 式中t ——螺杆或螺母的螺距。 这时,齿扇转过β角。设齿扇的啮合半径w r ,则β角所对应的啮合圆弧长应等于s ,即 s r w =?πβ2)360/( (5-22) 由以上两式可求得循环球式转向器的角传动比w i 为

Newcatle圆柱齿轮接触疲劳试验器

秘密 TECHNICAL SPECIFICATION OF CYLINDRICAL GEAR CONTACT FATIGUE TEST RIG (160mm CENTER DISTANCE) 圆柱齿轮接触疲劳试验器(160mm中心距) 技术规格书 中机生产力促进中心 制造工程研究所 2012-11

FOREWORD 前言 Since the complexity of the gear shape, the raw material property tested by bars can’t represent the material property of gears. The way of manufacturing of gear such as cutting, heat treatment and final process which affect gear surface, the lubrication oil used for the gears etc. make a great difference to the gear material properties. As result, it has become common practice that the gear fatigue life are tested through specifically designed and manufactured gears together with the actual oil on specific test rigs following specific procedures. It is used to evaluate gear manufacturing process by testing gears manufactured by different way. 由于齿轮形状的复杂性,原材料试棒的试验性能并不能代表齿轮的材料特性。齿轮加工工艺不同和使用条件的不同,对齿轮的强度和寿命的影响很大。不同的机加工工艺、不同的热处理条件、使用不同的润滑油,都会使得齿轮的材料特性产生很大的差异。因此,对专门设计和制造的齿轮,使用实际的润滑油,在专用的试验台架上按规定的流程进行齿轮强度和寿命测试,得到普遍的应用。通过对不同加工工艺制造完成的齿轮进行疲劳强度测试,可以评价齿轮加工工艺的优劣和工艺参数的合理性。 1 TECHNICAL DESCRIPTION技术描述 1.1 Background 背景 Test rigs designed by Design Unit of The University of Newcastle upon Tyne have been developed in the past twenty years in order to carry out research into contact fatigue and bending fatigue strength of gears. The rigs were designed to remedy the shortcomings of the test rigs which were at that time commercially available. Over the years the test rigs have been improved based on practical experience of their use. 英国纽卡斯尔大学齿轮技术中心设计的试验器是在过去的20年间开发出来的,用以研究齿轮接触疲劳和弯曲疲劳强度。此试验器可以弥补商业化试验器的不足。经过这么多年,在长期使用经验基础上,试验器不断完善。 1.2 General Description of Gear Contact Fatigue S-N Curve Test Rig (160mm center distance) The cylindrical gear contact fatigue test rigs (160mm center distance) operated with back to back (power re-circulating) are high performance gear test rigs capable of operating at high speed and torque with high test power (‘re-circulating’power). They are used for contact fatigue testing (pitting and micropitting), for bending fatigue and scuffing tests. They have been designed for good reliability and long life and continuous, 24 hour per day unattended operation.

JB-T 08728-1998 低速大扭矩液压马达

IC S 23.100.10 J20 JB/T8728-1998 低速大扭矩液压马达 L ow speed high to rque hydraulic motor 1998-03-19 发布1998-07-01 实施中华人民共和国机械工业部发布

JB/T8728-1998 前言 本标准的附录A是标准的附录。 本标准由全国液压气动标准化委员会提出并归口。 本标准起草单位:机械工业部天津工程机械研究所。 本标准主要起草人:温华平。 本标准于1998年3月首次发布。 I

1 1 范围 本标准规定了内曲线径向柱塞马达、曲轴连杆径向柱塞马达、曲轴无连杆径向柱塞马达、径向钢球马达、双斜盘轴向柱塞马达等五种低速大扭矩液压马达的结构类型、基本参数、技术要求、试验方法、检验规则和标志、包装。 本标准适用于以液压油或性能相当的其他矿物油为介质的内曲线径向柱塞马达、曲轴连杆径向柱塞马达、曲轴无连杆径向柱塞马达、径向钢球马达、双斜盘轴向柱塞马达等五种结构类型的低速大扭矩液压马达。其他结构类型的低速大扭矩液压马达可参照使用。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB/T 786.1—93 液压气动 图形符号 GB 2346—88 液压气动系统及元件 公称压力系列 GB 2347—80 液压泵及马达公称排量系列 GB/T 2353.2—93 液压泵和马达安装法兰与轴伸尺寸系列与标记(二) 多边形法兰(包括圆形法 兰) GB 2828—87 逐批检查计数抽样程序及抽样表(适用于连续批的检查) GB/T 2878—93 液压元件螺纹连接 油口型式和尺寸 GB 3767—83 噪声源声功率级的测定 工程法及准工程法 GB 7935—87 液压元件 通用技术条件 GB 7936—87 液压泵、马达空载排量 测定方法 GB/T 14039—93 液压系统工作介质固体颗粒污染等级代号 JB/T 2184—77 液压元件 型号编制方法 JB/T 5058—91 机械工业产品质量特性重要度分级导则 JB/T 7858—95 液压元件 清洁度评定方法及液压元件清洁度指标 3 定义 本标准采用下列定义。 3. 1 额定压力 额定工况下的压力。 3. 2 空载压力 机械工业部 1998-03-19 批准 中华人民共和国机械行业标准 低速大扭矩液压马达 Low spe ed high torque hydraulic motor JB/T 8728-1998 1998-07-01 实施

相关文档
最新文档