算法设计与分析实验报告—八皇后问题

合集下载

数据结构与算法专题实验实验报告_八皇后_背包问题的求解_农夫过河

数据结构与算法专题实验实验报告_八皇后_背包问题的求解_农夫过河

数据结构与算法专题实验实验报告_八皇后_背包问题的求解_农夫过河实验报告:数据结构与算法专题实验报告实验题目:八皇后问题的求解与背包问题的求解实验目的:1. 掌握八皇后问题的求解方法,了解回溯算法的应用。

2. 掌握背包问题的求解方法,了解动态规划算法的应用。

3. 进一步理解数据结构与算法的基本概念和应用。

实验内容:1. 八皇后问题的求解八皇后问题是一个经典的递归与回溯算法问题,要求在一个8×8的棋盘上放置8个皇后,使得任意两个皇后不在同一行、同一列或同一斜线上。

具体求解步骤如下:a. 定义一个8×8的二维数组作为棋盘,初始化所有元素为0。

b. 从第一行开始,依次尝试在每一列放置皇后。

c. 对于每一列,判断当前位置是否与已经放置的皇后冲突。

如果冲突,则回溯到上一行,重新选择位置;否则,继续放置下一行的皇后。

d. 当放置完所有皇后时,输出结果。

2. 背包问题的求解背包问题是一个经典的动态规划算法问题,要求在给定的一组物品中选择一些物品放入背包,使得背包的总重量最大,但不能超过背包的承重量。

具体求解步骤如下:a. 定义一个二维数组dp,其中dp[i][j]表示在前i个物品中选择,背包容量为j时的最大重量。

b. 初始化dp数组的第一行和第一列为0,表示背包容量为0时和没有物品可选时的最大重量都为0。

c. 对于每个物品,分两种情况讨论:- 如果当前物品的重量大于背包的容量,则无法选择该物品,直接继承前i-1个物品的最大重量,即dp[i][j] = dp[i-1][j];- 如果当前物品的重量小于等于背包的容量,则可以选择该物品或不选择该物品。

选择该物品时,背包的总重量为dp[i-1][j-w[i]] + v[i],不选择该物品时,背包的总重量为dp[i-1][j]。

取两者中的较大值作为dp[i][j]的值。

d. 最终,dp[n][m]即为所求的最大重量,其中n为物品的个数,m为背包的承重量。

八皇后实验报告

八皇后实验报告

八皇后实验报告八皇后实验报告引言:八皇后问题是一个经典的数学问题,它要求在一个8x8的国际象棋棋盘上放置8个皇后,使得任意两个皇后都不会互相攻击。

这个问题看似简单,但实际上却充满了挑战。

在本次实验中,我们将探索八皇后问题的解法,并通过编写算法来解决这个问题。

一、问题背景:八皇后问题最早由数学家马克斯·贝瑟尔于1848年提出,它是一道经典的递归问题。

在国际象棋中,皇后可以在同一行、同一列或同一对角线上进行攻击,因此我们需要找到一种方法,使得8个皇后彼此之间不会相互攻击。

二、解决方法:为了解决八皇后问题,我们可以使用回溯法。

回溯法是一种穷举搜索的方法,它通过逐步尝试所有可能的解决方案,直到找到符合要求的解。

具体步骤如下:1. 初始化一个8x8的棋盘,并将所有格子标记为无皇后。

2. 从第一行开始,依次尝试在每一列放置一个皇后。

3. 在每一列中,检查当前位置是否符合要求,即与已放置的皇后不在同一行、同一列或同一对角线上。

4. 如果当前位置符合要求,将皇后放置在该位置,并进入下一行。

5. 如果当前位置不符合要求,尝试在下一列放置皇后。

6. 重复步骤3-5,直到找到一个解或者所有可能的位置都已尝试过。

7. 如果找到一个解,将其输出;否则,回溯到上一行,继续尝试下一列的位置。

三、编写算法:基于上述步骤,我们可以编写一个递归函数来解决八皇后问题。

伪代码如下所示:```function solveQueens(board, row):if row == 8:print(board) # 打印解returnfor col in range(8):if isSafe(board, row, col):board[row][col] = 1solveQueens(board, row + 1)board[row][col] = 0function isSafe(board, row, col):for i in range(row):if board[i][col] == 1:return Falseif col - (row - i) >= 0 and board[i][col - (row - i)] == 1:return Falseif col + (row - i) < 8 and board[i][col + (row - i)] == 1:return Falsereturn Trueboard = [[0]*8 for _ in range(8)]solveQueens(board, 0)```四、实验结果:通过运行上述算法,我们得到了八皇后问题的所有解。

算法设计与分析实验报告—八皇后问题

算法设计与分析实验报告—八皇后问题

算法设计与分析实验报告—八皇后问题-姓名:***学号:********班级:软件83【问题描述】在国际象棋盘上放八个皇后,要求任一皇后吃不到别人,也不受其他皇后的攻击,求出问题的所有解。

【问题分析&算法设计】用8元组x[1: n]表示8后问题。

其中x[ i]表示皇后i放在棋盘的第i行的第x[ i]列。

由于不允许将2个皇后放在一列,所以解向量中的x[ i]互不相同。

2个皇后不能放在同一斜线上是问题的隐约束。

故若2个皇后放置的位置分别是(i,j)和(k,l),且i – j = k – l或i + j = k + l,则说明这2个皇后处于同一斜线上。

这两个方程分别等价于i – k = j – l和i – k = l – j。

由此可知,只要|i - k| = |j - l|成立,就表明2个皇后位于同一条斜线上。

问题的隐约束化成了显约束。

用回溯法解决8皇后问题时,用完全8叉树表示解空间。

【算法实现】#include "stdio.h"#include "math.h"#include "iostream.h"#define N 8 /* 定义棋盘大小*/static int sum; /* 当前已找到解的个数*/static int x[N]; /* 记录皇后的位置,x[i]表示皇后i放在棋盘的第i行的第x[i]列*//* 每找到一个解,打印当前棋盘状态*/void Show(){sum++;cout << "第" << sum << "种情况:" << endl;cout << "坐标为:\t";for(int k = 0; k < N; k++)cout << '(' << k+1 << ',' << x[k] << ") ";cout << endl;cout << "---------------------------------\n";for (int i = 0; i < N; i ++){for (int j = 0; j < N; j ++)if (j == x[i]) //printf("@ ");cout << "* | ";else //printf("* ");cout << " | ";cout << "\n---------------------------------\n";}}/* 确定某一位置皇后放置与否,放置则返回1,反之返回0 */int Judge(int k){// 测试皇后k在第k行第x[k]列时是否与前面已放置好的皇后相攻击。

数据结构 八皇后问题 报告

数据结构 八皇后问题 报告

数据结构实验报告实验名称:实验2 利用栈结构实现八皇后问题学生姓名:廖宁班级:2009211114班内序号:18学号:09210411日期:2010年11月18日1.实验要求八皇后问题是19世纪著名的数学家高斯于1850年提出的。

他的问题是:在8*8的棋盘上放置8个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列、同一斜线上。

请设计算法打印所有可能的摆放方法。

提示:(1)可以使用递归或非递归两种方法实现。

(2)实现一个关键算法,判断任意两个皇后是否在同一行、同一列和同一斜线上。

2. 程序分析程序工程包含一个模板类函数实现定义的源文件forthelove.cpp和测试源文件sbsuowang.cpp。

2.1 存储结构存储结构为栈。

2.2 关键算法分析(1)判断在第row行第column列摆放皇后是否非法,采取定行不定列的方法,列相等的算法为position[i]=colume,对角线相等有两种情况:一是position在上则row-i=colume-position[i];二是position在下,row-i=position[i]-colume.加入能放皇后,列和对角线上值都不能相等。

具体代码如下:int IsIllegal(int row, int column, const int* position){/int i;for (i=1; i < row; ++i){if ((position[i] == column)|| (row - i == column - position[i])|| (row - i == position[i] - column)){return TRUE;}}return FALSE;}(2)我采用定行尝试列的方法来遍历,记录皇后位置的数组可以和栈数组合二为一,而栈顶指针也可以和行坐标合二为一,这样一来栈帧只要一个列坐标就可以了。

1.伪代码:while(栈不空){if ( 行(即栈顶) <= n && 列<= n ){if ( 当前位置不能放皇后){列++;}else{列入栈(隐含着"行++");列= 1;}}else{if ( 行(即栈顶) > n ){输出位置数组(即栈数组);}列退栈(隐含着"行--");列++;}}//end while具体实现代码:void Queens(int n, void (* Visit)(const int* position)) {//position[n]数组:position[0]为棋盘大小,即n//position[1]~position[n]:下标为行坐标,值为列坐标int* stack = NULL; //栈int top; //栈顶int column; //列stack = (int*)malloc((n + 1) * sizeof(int));stack[0] = n;top = column = 1;while(top > 0){if ((top <= n) && (column <= n)){if (IsIllegal(top, column, stack)){++column;}else{stack[top++] = column;column = 1;}}else{if (top > n){(* Visit)(stack);}column = stack[--top];++column;}}//end whilefree(stack);return;}3. 程序运行结果程序实现八皇后问题:经过测试,程序运行良好,无明显错误。

c八皇后问题课程设计报告范文

c八皇后问题课程设计报告范文

c八皇后问题课程设计报告范文八皇后问题一、设计任务与目标在8行8列的棋盘上放置8个皇后,皇后可吃掉与她处于同行或同列或同一对角线上的其他棋子,要使任一个皇后都不能吃掉其他的7个皇后,则需要同时控制同行,同列,同一条对角线的情况,然后当行,列,以及对角线都无皇后时,记录该点。

并用“Q”表示皇后的位置,“+”表示其它位置。

二、方案设计与论证定义4个具有全局作用域的数组intLineNum[9];boola[9],b[15]分别表示第几列的皇后要放的行位置,第几行上是否未放皇后,“/”斜对角线上是否未放皇后,“\\”反斜对角线上是否未放皇后。

通过语句“if(a[j]&&b[i+j-2]&&c[i-j+7])LineNum[i]=j;”判断并实现一枚皇后是否放置安全。

然而当第一枚皇后位置放置后,则它所在的行,列,以及对角线的记录状态需要改变后,才能进行下一枚皇后的放置。

下一枚皇后判断位置的步骤与第一枚一样,所以可以用递归的方法进行下一枚皇后位置的放置。

当第8枚皇后的位置确定后,就跳出递归。

之后还要对之前每一个位置记录的情况初始化才能进行下一种放置八皇后的情况。

三、程序框图或流程图,程序清单与调用关系Inti=1i>8否是Intj=1;否j<9是j++输出并显示八皇后摆放情况a[j]&&b[i+j-2]&&c[i-j+7]是否跳出递归j++LineNum[i]=j;a[j]=fale;b[i+j-2]=fale;c[i-j+7]=fale;i++;i--a[j]=true;b[i+j-2]=true;c[i-j+7]=true;否i<2是四、全部源程序清单#include#includeintLineNum[9];//第i列的皇后要放的行位置(只用其中的列号1到8)boola[9];//a[i]为1表示第i行上尚未放皇后boolb[15];//b[i]为1表示第i条斜对角线上尚未放皇后(斜对角线指的是\状对角线,该对角线上各点的行列号之和i+j为一个常数)boolc[15];//c[i]为1表示第i条反斜对角线上尚未放皇后(反斜对角线指的是\状对角线,该对角线上各点的行列号之差i-j为一个常数)。

国际象棋中的八皇后问题解决实验报告

国际象棋中的八皇后问题解决实验报告

八皇后一、作业题目:在国际象棋的棋盘上摆上八个皇后,使得任何两个皇后不在一行,不在一列,同时也不在一条斜线上。

要求找出所有的解。

二、作业目的:(1)训练C语言编程能力和数据结构中一些方法的运用。

(2)体会数据结构中的方法对简化编程的好处。

三、作业要求:在国际象棋的棋盘上摆上八个皇后,使得任何两个皇后不在一行,不在一列,同时也不在一条斜线上。

要求找出所有可行的方法,并输出所有方法的数目和每种方法如何排列。

四、算法思想:先将所有的点全部置为有可能有皇后,选择第一行的一个点为起点后,进行修剪,当某个点所在的行列斜边都有可能皇后时,则该点有皇后,同时将该点所在的直线斜线上除此点外的所有点都标记为不可能有皇后。

用递归法遍历下面的行。

即前面行的皇后确定后看后面行所有的可能情况。

当递归依次跳出,跳到第一次调用的的子函数时,则该起点对应的方法都找完了。

找出该起点所对应的所有方法后,起点在第一行向后移,再递归遍历。

当遍历完同一行八个起点后,就可以得出所有方法。

用一个子函数输出结果,其中有皇后的地方用“Q”表示,没有的用“.”表示。

五、数据结构:用数组存储六、程序:#include <stdio.h>#include <stdlib.h>#define N 8int column[N+1]; // 同栏是否有皇后,1表示有int rup[2*N+1]; // 右上至左下是否有皇后int lup[2*N+1]; // 左上至右下是否有皇后int queen[N+1] = {0};int num; // 解答编号void backtrack(int i); // 递归求解int main(void) {int i;num = 0;for(i = 1; i <= N; i++)column[i] = 1;for(i = 1; i <= 2*N; i++)rup[i] = lup[i] = 1;backtrack(1);return 0;}void showAnswer() {int x, y;printf("\n解答%d\n", ++num);for(y = 1; y <= N; y++) {for(x = 1; x <= N; x++) {if(queen[y] == x) {printf(" Q");}else {printf(" .");}}printf("\n");}}void backtrack(int i) {int j;if(i > N) {showAnswer();}else {for(j = 1; j <= N; j++) {if(column[j] == 1 &&rup[i+j] == 1 && lup[i-j+N] == 1) { queen[i] = j;// 设定为占用column[j] = rup[i+j] = lup[i-j+N] = 0;backtrack(i+1);column[j] = rup[i+j] = lup[i-j+N] = 1;}}}}七、运行结果:八、操作界面:九、结论:一共有92种遍历方法十、参考文献:[1]廖明宏郭福顺张岩李秀坤.数据结构与算法(第四版),高等教育出版社,2007.[2]苏小红陈惠鹏孙志刚.C语言大学实用教程(第二版),电子工业出版社,2010.。

人工智能实验报告(八皇后)

人工智能实验报告(八皇后)
if(canplace(m,i,a)) {
a[m]=i; sesearch(m+1,a); a[m]=100; } } } } int main() {
int a[8],i; fp=NULL; fp=fopen("output.txt","w+"); if(NULL==fp) {
printf("cann't open the file\n"); } for(i=0;i<8;++i)
if((a[j]+j)==(m+i)||//判断是否会有冲突 ((a[j]-j)==(i-m))|| (a[j]==i)) return 0;
++j; } return 1; } void output(int a[8]) { int i=0,j; fprintf(fp,"No %d:\n",n);
《人工智能导论》上机实验
八皇后问题求解
班级:10011207 姓名:盛家铭 学号:2012302532
图搜索策略实验 八皇后问题求解 一、实验软件
codeblocks 环境
二、 实验目的
通过实验能对搜索策略有更深刻的理解 熟悉人工智能系统中的问题求解过程; 熟悉状态空间的盲目搜索和启发式搜索算法的应用; 熟悉对八数码问题的建模、求解及编程语言的应用。 三、 需要的知识 熟悉人工智能系统中的问题求解过程; 熟悉状态空间的盲目搜索和启发式搜索算法的应用; 熟悉对八数码问题的建模、求解及编程语言的应用。 四、 实验数据及步骤 1、实验内容 八皇后问题是一个以国际象棋为背景的问题:如何能够在 8 ×8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法 直接吃掉其他的皇后。为了达到此目的,任两个皇后都不能处于 同一条横行、纵行或斜线上。八皇后问题可以推广为更一般的 n 皇后摆放问题:这时棋盘的大小变为 n×n,而皇后个数也变成 n。 当且仅当 n = 1 或 n ≥ 4 时问题有解。 2、程序函数调用图

八皇后问题实验报告

八皇后问题实验报告

实验报告——八皇后问题求解(递归和非递归)学号:专业年级:姓名:一、需求分析(要实现的功能描述)1.问题描述八皇后问题是一个以国际象棋为背景的问题:如何能够在8×8的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行、纵行或斜线上。

八皇后问题可以推广为更一般的n皇后摆放问题:这时棋盘的大小变为n×n,而皇后个数也变成n。

当且仅当n=1或n≥4时问题有解。

八皇后问题最早是由国际国际象棋棋手马克斯·贝瑟尔于1848年提出。

诺克也是首先将问题推广到更一般的n皇后摆放问题的人之一。

2.实现功能八皇后问题实现了在棋盘上摆放八个皇后的功能,这八个皇后任意两个皇后都不能处于同一条横行、纵行或斜线上。

3.测试数据测试数据可以通过手工寻找三组满足需要的值,测试数组(M,N),其中M代表皇后所在的行,N代表皇后所在的列。

例如,第一组测试数据:(1,4)、(2,7)、(3,3)、(4、8)、(5,2)、(6,5)、(7,1)、(8,6);第二组测试数据(1,4)、(2,2)、(3,7)、(4,3)、(5,6)、(6,8)、(7,5)、(8,1)。

最后与编程求得的结果进行比较。

如果这三组数据在最后编程求得的结果中,说明程序的编写基本没有什么问题。

二、概要设计在进行概要设计的过程中,要清楚整个程序包含的功能模块及模块间的调用关系。

对于八皇后问题,整个程序中应该包括主函数模块,摆放皇后的函数模块,以及判断皇后的位置是否摆放正确的判断模块。

对于模块间的关系,在运行主函数的过程中会调用摆放皇后的函数模块,在摆放皇后的函数模块中,又会调用判断皇后位置是否摆放正确的判断模块。

三、详细设计抽象数据类型中定义的各种操作算法实现(用N-S图描述)对于求解八皇后问题的非递归算法,N-S图如下:对于八皇后问题求解的递归算法,N-S图如下:四、调试分析1.程序在调式过程中出现的问题及解决方法由于对于C语言编程问题掌握的并非十分熟练,因而在程序的调试过程中出现了一些问题。

数据结构实验报告--八皇后

数据结构实验报告--八皇后

数据结构实验报告1.实验要求实验目的:利用栈结构实现八皇后问题八皇后问题如下:八皇后问题是19世纪著名的数学家高斯于1850年提出的。

他的问题是,在8*8的棋盘上放置8个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行,同一列,同一斜线上。

实验内容:利用所学的栈结构用递归或非递归解决八皇后问题。

2. 程序分析程序使用程序最主要只是在主函数用了一个递归函数Queen。

Queen函数使用了三个参数m,flag[][],chess[][]。

其中m是行数,flag[][]是判断二维数组何处可以放置皇后,chess[][]是存储字符串的二维数组。

主函数中对Queen函数中的形参数组flag[][],chess[][]进行初始化,在Queen函数中再进行各种操作。

Queen函数执行代码,首先行数m为0,当m小于7时,通过if…else…语句,利用Queen(m+1,f,c)重新执行递归函数到下一行。

2.1 存储结构存储结构:数组存储。

flag[][]数组存储数字判断输出和储能放置皇后,chess[][]数组存储字符串即皇后和非皇后的形状。

2.2 关键算法分析1、关键算法:a.for(i=0;i<8;i++)for(j=0;j<8;j++){f[i][j]=0;c[i][j]='*';说明:对棋盘进行初始化未放置皇后的为“*”b.for(i=0;i<8;i++)for(j=0;j<8;j++){c[i][j]=chess[i][j];f[i][j]=flag[i][j];}说明:对c[][],f[][]进行初始化。

c.for(i=0;i<8;i++)for(j=0;j<8;j++){i f(f[i][j]==0 && (i+j==m+k || m==i || k==j || m-k==i-j))f[i][j]=-1;}c[m][k]='#';说明:已放置皇后的行、列以及对角线都不能再放置皇后。

八皇后问题实验报告

八皇后问题实验报告

软件工程上机报告实验名称:八皇后问题图形界面求解姓名:郭恂学号:2011011435班级:11级数学班中国石油大学(北京)计算机科学与技术系一、试验程序截图:点击显示下一组解即可显示下一组解:同样的,如果点击上一组解即可显示上一组解。

若在第1组解时点击显示上一组解会弹出报错提示框。

同样,若在第92组解点击显示下一组解也会弹出报错提示框:二、程序代码程序使用Java语言编写,编写环境为jdk1.6.0_18。

使用编程开发环境eclipse.exe编写。

本程序创建了两个类,两个类在同一个工程中。

其中Queen类的作用仅仅用来保存八皇后问题计算结果的数据,便于画图时使用。

本程序大概由两部分组成,第一部分是解八皇后问题,第二部分是画图。

程序源代码为:类1:public class Queen{public int[] x=new int[8];public int[] y=new int[8];public String name;}类2:import javax.swing.*;import java.awt.event.*;import java.awt.*;import javax.swing.JOptionPane;public class bahuanghou extends JFrame implements ActionListener {//JLabel[] l;int number=0; //当前显示的解的编号int sum=0; //所有解得数量JLabel l2;JButton b1,b2; //b1为显示下一组解得按钮,b2为显示上一组解得按钮。

Queen[] q=new Queen[128]; //得到的解储存在Queen类的数组里面。

private Image bomb1=Toolkit.getDefaultToolkit().getImage("D:\\qizi1.JPG"); //黑格棋子为bomb1private Image bomb2=Toolkit.getDefaultToolkit().getImage("D:\\qizi2.JPG"); //白格棋子为bomb2public bahuanghou() //构造方法,初始化窗口。

河师大算法设计与分析N皇后问题实验报告

河师大算法设计与分析N皇后问题实验报告

计算机与信息技术学院实验报告专业:计算机科学与技术年级/班级:2009级 2011—2012学年第一一、实验项目N皇后问题二、需求分析八皇后问题是一个古老而著名的问题。

该问题是十九世纪著名的数学家高斯1850年提出的。

八皇后问题要求在一个8*8的棋盘上放上8个皇后,使得每一个皇后既不攻击到另外七个皇后,也不被另外七个皇后所攻击。

按照国际象棋的规则,一个皇后可以攻击与之处在同一行或同一列或同一斜线上的其他任何棋子,问有多少种不同的摆法:并找出所有的摆法。

因此,八皇后问题等于要求八个皇后中的任意两个不能被放置在同一行或同一列或同一斜线。

本次实验算法设计中,用到的主要知识有:递归法的运用,for 语句的灵活运用,数据结构中树知识的灵活运用、数组及动态数组技术的掌握。

系统要求:win98 以上操作系统;语言平台:vc++6.0 或以上版本。

根据程序的设计要求,需要设计一个八皇后问题的演示程序,程序需要具备以下功能:能够快速查找并显示八皇后的布局方式有多少种正确方法。

能够逐个查看每种布局的结果。

能够很方便的改变皇后个数即棋盘规格。

三、概要设计:本实验是用递归和回溯法来实现的,分别测试了每一种摆法,并将一个解图形化显示输出。

在这程序中,思路主要是这样的:1、解决冲突问题和数据结构的实现对于数据结构的实现,则是着重于:(1)数组x[i]:表示第i个皇后放置的列;i的范围:0—n-1;(2)数据初始化(3)从n列开始摆放第n个皇后(因为这样便可以符合每一竖列一个皇后的要求),先用xx函数测试当前位置是未被占领;如果是,摆放第n-1个皇后后并宣布占领,接着进行递归;如果不是,测试下一个位置(n,m+1),但是如果当n<=8,m=8时,却发现此时已经无法摆放时,便要进行回溯。

(4)当n=8时,便一一打印出结果。

)首先定义一个递归找全部的解的递归函数FindQueen(int i),设有一个参数i,表示1至i-1行都已有皇后合理放置的情况下,寻找第i行的合理放置。

数据结构八皇后问题实验报告

数据结构八皇后问题实验报告

八皇后问题一.八皇后问题简述:在8*8的国际象棋棋盘上放置8个皇后,使任意两个皇后不能互相攻击,即任何行任何列或对角线(与水平轴的夹角为45°或135°的斜线)上不得有两个或两个以上的皇后,这样的一个格局称为问题的一个解。

请求八皇后问题的算法。

二.解决思路:先声明我们根据条件可以知道皇后肯定是每行都有且只有一个所以我们创建一个数组x[t]让数组角标表示八皇后的行,用这个角标对应的数组值来确定这个皇后在这行的那一列。

我们用递归来做:这问题要求皇后所在的位置必须和其他皇后的位置不在同一行、列还有把两个皇后看成点其|斜率|=1;所以我们就要写这个限定条件用一个函数来实现:函数内对每一个已经放好的皇后的位置进行判断,所以就要有个循环。

我们既然是用递归来解决问题那就要把这个问题分成一个个相同的小问题来实现。

不难发现我们要在8*8的方格里放好8个皇后那我们就要知道在8(列)*7(行)是怎么放的在有我们事先写好的判断函数放好最后行就搞定了;以此类推我们要知道8*7的怎么方的我们就要知道8*6是怎么样的就好了,所以我们是以一行怎么放作为一个单元。

我们就去建一个可以放好一行的函数backtrack(int t)里面的t表示是第几行,在main函数调用的时候第一次传进来的是0也就是从第一行开始判断。

我们就开始写函数体了:每一行有8个位置可以放,每一个位置我们都要去判断一下所以我们就用循环来搞定。

在这个循环里面我们让x[t]=i也就是从这一行的第一个开始判断。

放好后就要去判断是否符合条件。

如果符合条件我们就在调用这个函数本身backtrack 不过传进去的参数是t+1也就是下一行的意思。

在进行判断下一行之前我们要判断一下t是不是等于8也就是已经是最后一行了,如果是最后一行了我们就可以将其进行输出。

打印8*8的矩阵(提示在写一个函数)皇后的位置用1表示出来没有的用0表示。

三.代码与注解:#include <math.h>#include <stdio.h>#include <time.h>#include<string.h>#include<conio.h> //用getch()要调用的头文件#include <stdlib.h> //要用system函数要调用的头文件int SUM=0; //统计有多少种可能int shezhi(){ //设置为N皇后问题int N;printf("这是一个N皇后问题...\n请输入N=");scanf("%d",&N);return N;}void Print(int N,int x[]) //印出結果{int MAX=N;for(int i=0;i<MAX;i++){for(int j=0;j<MAX;j++)if(j==x[i])printf("@");elseprintf("*");printf("\n");}SUM++; //打印一种情况统计一次printf("\n");}int Judge(int k,int x[]) //判断是否在同一直、橫、斜线上有其它棋子{int i;for(i=0;i<k;i++)if( abs(k-i)==abs(x[i]-x[k]) || x[i]==x[k] ) //函数名: abs; 功能: 求整数的绝对值 ;return 0;return 1;}void backtrack(int t,int N,int x[]) // 把棋子放到棋盘上{ int MAX=N;int i;for(i=0;i<MAX;i++){x[t]=i;if(Judge(t,x)){if(t==MAX-1){Print(MAX,x); // 找到其中一种放法,印出結果}else backtrack(t+1,N,x);}}}void Introduce(){printf("1.设置为N皇后问题。

八皇后实验报告心得

八皇后实验报告心得

八皇后实验报告心得引言八皇后问题是一个经典的回溯算法问题,它的目标是在一个8x8的棋盘上放置8个皇后,使得任意两个皇后都不在同一行、同一列或同一对角线上。

这个问题看似简单,但实际上非常复杂,需要用到回溯算法来进行求解。

在本次实验中,我们使用Python语言实现了八皇后问题的解法,并进行了一系列的实验。

实验目的本实验旨在通过实现八皇后问题的解法,加深对回溯算法思想的理解,同时掌握Python语言的基本语法和列表操作。

实验方法我们采用了递归的回溯算法来解决八皇后问题。

具体步骤如下:1. 创建一个空的棋盘列表,并初始化为全0。

2. 从第一行开始,从左至右遍历每一个格子。

3. 对于每个格子,如果该格子满足放置皇后的条件(不与已放置的皇后冲突),则在该位置标记为1,并递归地进入下一行。

4. 如果在某一行找不到合适的位置放置皇后,则回溯到上一行,尝试放置在下一个位置。

5. 当放置完所有的皇后时,输出结果。

实验结果经过多次实验,我们成功地获得了一共92个不同的解决方案。

每个解决方案都是一个8x8的矩阵,其中1表示放置了皇后的位置,0表示空位置。

以下是其中一种解决方案的示意图:0 0 0 0 1 0 0 00 0 0 0 0 0 1 00 1 0 0 0 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 0 11 0 0 0 0 0 0 00 0 0 1 0 0 0 00 0 1 0 0 0 0 0实验分析与讨论通过实验,我们发现八皇后问题的解法非常依赖于回溯算法。

回溯算法通过不断地试错、回溯的方式,能够高效地找到所有解决方案。

在本次实验中,我们并未采用剪枝优化的策略,仅仅用递归来实现,所以算法的时间复杂度较高。

然而,由于八皇后问题的规模较小(仅有8个皇后),所以运行时间仍然可以接受。

实验总结通过本次实验,我们不仅掌握了回溯算法的基本思想,还熟悉了Python语言的基本语法和列表操作。

同时,我们深刻认识到八皇后问题的复杂性,以及回溯算法在解决复杂问题上的作用。

八皇后问题课程设计报告

八皇后问题课程设计报告

课程设计题目:名称:八皇后问题内容:设计程序完成如下要求:在8×8的国际象棋棋盘上,放置8个皇后,使得这8个棋子不能互相被对方吃掉。

要求:(1)依次输出各种成功的放置方法。

(2)最好能画出棋盘的图形形式,并在其上动态地标注行走的过程。

(3)程序能方便地移植到其他规格的棋盘上。

一、问题分析和任务定义八皇后问题是一个古老而著名的问题,是回溯算法的典型例题。

该问题是十九世纪著名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,根据国际象棋的规定,皇后可以攻击与它在同一行、同一列或者同一斜线上的棋子,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。

在8!=40320种排列中共有92种解决方案。

本程序需要解决的问题有:1、建立合适的数据类型表示皇后在棋盘上所处的位置。

2、成功的输出全部正确的放置方法。

3、画出棋盘形式,在上面动态的标注其行走的过程。

二、数据结构的选择和概要设计1、为了简单易行的表示皇后在棋盘所处的位置,在此建立一个整型数组queen[i]来表示,若queen[3]=2则表示皇后处在8×8棋盘的第三行和第二列。

2、表示好皇后以后,设计judge( )和check( )函数来检测第一个皇后的同列和同斜线上有没有其他皇后(程序以行为基础,逐行试探每列和斜线上是否有皇后)。

然后设计输出函数show( )和print( )分别输出正确解法的排列形式和棋盘摆放形式。

在输出棋盘的步骤中,设计一个递归函数go( )实现棋盘的输出。

3、程序的流程图如下图所示:图1 程序流程图三、详细设计和编码1、首先定义整型数组queen[i]表示皇后的位置,i的取值由0到7表示八个皇后。

然后定义一个整型变量count来统计所有正确解法的个数。

2、因为每行只能摆放一个皇后,所以在皇后不在同一行的基础上,设计检测函数检测皇后的同列和同斜线上是否存在其他皇后。

八皇后 实验报告

八皇后 实验报告

八皇后实验报告八皇后实验报告导言:八皇后问题是一个经典的数学问题,最早由西班牙的数学家马克斯·贝恩在1848年提出。

问题的目标是在一个8×8的棋盘上,放置8个皇后,使得它们互相之间无法攻击到对方。

本次实验旨在通过编程的方式求解八皇后问题,并分析解的个数和解的特点。

一、问题描述八皇后问题可以简化为在一个8×8的棋盘上放置8个皇后,使得任意两个皇后都不在同一行、同一列或同一斜线上。

这意味着每一行和每一列最多只能有一个皇后。

二、算法设计为了求解八皇后问题,我们采用了回溯算法。

回溯算法是一种通过逐步试错的方式来寻找问题解的方法。

具体的算法步骤如下:1. 从棋盘的第一行开始,依次尝试在每一列放置一个皇后。

2. 在放置一个皇后后,检查是否满足任意两个皇后都不在同一行、同一列或同一斜线上的条件。

3. 如果满足条件,则继续到下一行放置皇后;如果不满足条件,则回溯到上一行重新选择位置。

4. 当最后一行的皇后放置完毕后,即找到了一个解,记录下来。

5. 继续回溯,寻找下一个解,直到所有解都找到为止。

三、实验结果通过编程实现了八皇后问题的求解算法,并运行了多组实验。

实验结果如下:1. 解的个数在8×8的棋盘上,共有92个不同的解。

每个解都代表了一种放置皇后的方式,使得它们互不攻击到对方。

2. 解的特点(1) 对称性:在所有的解中,有一半解是对称的。

即如果一个解是对称的,那么它的镜像解也是一个合法解。

(2) 旋转性:每个解可以通过旋转得到其他的合法解。

例如,一个解可以通过将整个棋盘顺时针旋转90度得到另一个解。

(3) 反射性:每个解可以通过水平或垂直翻转得到其他的合法解。

例如,一个解可以通过将整个棋盘水平翻转得到另一个解。

(4) 解的数量:解的数量随着棋盘大小的增加而急剧增加。

在8×8的棋盘上有92个解,而在9×9的棋盘上有352个解。

四、讨论与总结八皇后问题是一个非常经典的数学问题,通过本次实验我们可以得出以下结论:1. 回溯算法是求解八皇后问题的有效方法,可以找到所有的解。

八皇后实验报告

八皇后实验报告

目录一、引言 (2)二、算法分析及流程 (2)三、实验过程分析 (4)四、结果与讨论 (5)五、改进 (5)六、结语 (7)一、算法分析及流程1、八皇后问题是一个古老而著名的问题。

该问题是十九世纪著名的数学家高斯1850提出;在8×8格的国际象棋上摆放八皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。

高斯认为有76种方案。

1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后人有人用图论的方法解出92宗结果。

虽然问题的关键在于如何判定某个皇后所在的行、列、斜线是否有别的皇后;可以从矩阵的特点上找到规律,如果在同一行,则行号相同;如果在同一列上,则列号相同;如果同在“/”斜线上的行列值之和相同;如果在对角线上,则行列号之和或之差相等,逐个纪录符合题意的情况,最终得出解。

//自定义一个类:CQueenclass cQueen {int aQueen[8]; //可以在类外访问的私有成员(默认)int sum;public: //只能被该类的成员函数所访问的公有成员cQueen(); //构造函数:确保每个对象正确地初始化int judge(int x,int y);void show();void step();};cQueen::cQueen()//通过构造函数对aQueen[1---8]初始化{sum=0;for(int i=0;i<8;i++)aQueen[i]=0;}int cQueen::judge(int x,int y) //判断皇后摆放位置是否有冲突,如果没有冲突,则返回;如果有冲突,则返回{for(int i=0;i<x;i++)if(aQueen[i]==y || aQueen[i]+x-i==y || aQueen[i]-x+i==y)return 0;return 1;}void cQueen::step() //一步一步进行查找摆放{int x=0,y=0;//标记皇后所在键盘位置,x代表列,y代表行(相当于坐标)while(aQueen[0]<8){while(y<8){if(judge(x,y)) //调用类函数judge(x,y),如果aQueen[1---8]都已经标记,则执行该语句{aQueen[x]=y; //摆放皇后x++; //进行下一列时y=0; //y进行重置}else //否则,进入下一行y++;} //当执行到最后一行时,继续执行下一个if语句if(y==8&&x!=8) //最后一行,从第一列开始{if(aQueen[--x]!=7)y=++aQueen[x];else if(aQueen[0]!=7)y=++aQueen[--x];elseaQueen[0]=8;}if(x==8) //最后一列{show(); //x,y从至结束,大循环结束if(aQueen[--x]!=7)y=++aQueen[x];elsey=++aQueen[--x];}}}void cQueen::show()//输出棋盘状态{cout<<"(非递归法)皇后摆放方式的第"<<++sum<<"种情况:"<<endl;for(int i=0;i<8;i++) //输出八皇后的各种状态,有皇后的位置用@ 表示,没有皇后的位置用* 表示{for(int j=0;j<aQueen[i];j++)cout<<setw(2)<<"*";cout<<setw(2)<<"@";for(j++;j<8;j++)cout<<setw(2)<<"*";cout<<endl;}cout<<sum<<": ";for(int k=0;k<8;k++)cout<<'('<<k+1<<','<<aQueen[k]+1<<")";cout<<endl<<endl;//system("pause");//从程序里调用pause命令,一个结果一个结果地看}void measure2(){cQueen a;a.step();}二、实验过程分析在本次的课程设计中,用到的知识点主要有:类、函数、选择结构里的条件语句、循环结构里的while语句以及for循环语句、控制语句里的break语句、以及字符串函数的运用等等,并且应用到递归、回溯及穷举等比较经典的算法。

(2023)八皇后问题实验报告(一)

(2023)八皇后问题实验报告(一)

(2023)八皇后问题实验报告(一)实验背景八皇后问题,是一道经典的数学问题,简要地说:在一个 8x8 的国际象棋棋盘上摆放 8 个皇后,使其不能互相攻击。

即任意两个皇后都不能处于同一行、同一列或同一斜线上。

实验目的1.理解并掌握八皇后问题的基础算法;2.利用Python编写程序,解决八皇后问题;3.掌握递归算法与回溯算法的基本思想;4.分析算法时间复杂度,理解优化算法的重要性。

实验步骤1.利用递归算法,枚举每一行中皇后的位置;2.每一行都有8个候选位置,依次尝试每个位置是否可行;3.如果某个位置可行,继续对下一行进行递归;4.如果都不可行,则回溯到上一行,重新选择位置;5.直到第8行所有位置都选择完成,输出结果。

程序实现及结果def conflict(pos, i):for j in range(i):if abs(pos[i] - pos[j]) in (0, i - j):return Truereturn Falsedef queen(num =8, pos = ()):for i in range(num):if not conflict(pos, i):if len(pos) == num -1:yield (i, )else:for result in queen(num, pos + (i, )):yield (i, ) + resultfor solution in list(queen(8)):print(solution)程序输出结果为所有可能的八皇后问题解决方案,共计92种:(0, 4, 7, 5, 2, 6, 1, 3)(0, 5, 7, 2, 6, 3, 1, 4)…(7, 3, 0, 2, 5, 1, 6, 4)(7, 4, 2, 0, 6, 1, 3, 5)结论与分析1.通过本实验,我们深入地理解了递归算法与回溯算法的基本思想,并将其应用到八皇后问题的解决中;2.程序的输出结果表明:八皇后问题有92种可能的解决方案;3.根据算法的时间复杂度分析,当八皇后问题的规模更大时,应该采用更高效的算法进行优化;4.进一步研究表明,通过基因算法等优化算法可以提高八皇后问题的解决效率。

八皇后数据结构实验报告 完整版

八皇后数据结构实验报告 完整版

数据结构实验报告——八皇后问题实验目的:熟练掌握栈操作的基本算法实现。

实现功能:利用回溯法和栈来实现八皇后问题:在8×8的国际象棋棋盘上, 安放8个皇后, 要求没有一个皇后能够“吃掉”任何其他一个皇后, 即没有两个或两个以上的皇后占据棋盘上的同一行、同一列或同一对角线。

设计思路:数据结构:enum boolean { false , true }enum boolean a[9] , b[17] , c[17] ;//检查皇后之间是否冲突//皇后位置安全性可用逻辑表达式: a[ j ] && b[ i+j ] && c[ i-j+9 ]int s[9];//s[1..8]表示顺序栈, 栈的下标值表示皇后所在的行号, 栈的内容是皇后所在的列号。

该算法抽象描述如下:置当前行当前列均为1;while(当前行号≤8){ 检查当前行, 从当前列起逐列试探, 寻找安全列号;if ( 找到安全列号)放置皇后, 将列号记入栈中, 并将下一行置成当前行, 第一列置为当前列;else退栈回溯到上一行, 移去该行已放置的皇后, 以该皇后所在列的下一列作为当前列;} 结束程序。

程序流程图:源程序:#include<stdio.h>enum boolean {FALSE,TRUE}; //声明全局变量enum boolean a[9],b[17],c[17];int s[9];int num=0;//函数声明void print();void movequeen();void eightqueen();void main(){ //主函数eightqueen();printf("共有%d种解法\n",num);}void print() //输出函数{int k;printf("\n");printf("NO.%d\n",++num);printf("行号: 1 2 3 4 5 6 7 8\n");printf("列号:");for(k=1;k<=8;k++)printf("%3d",s[k]);printf("\n");}void movequeen(int i,int j){a[j]=TRUE;b[i+j]=TRUE;c[i-j+9]=TRUE;}void eightqueen()//算法函数{int i,j;for(i=2;i<=16;i++){if(i>=2&&i<=9)a[i-1]=TRUE;b[i]=TRUE;c[i]=TRUE;}i=1;j=1;while(i>=1){while(j<=8){if(a[j]&&b[i+j]&&c[i-j+9])break;j++;}if(j<=8){a[j]=FALSE;b[i+j]=FALSE;c[i-j+9]=FALSE;s[i]=j;if(i==8){num++;print();movequeen(i,j);i--;j=s[i];movequeen(i,j);j++;}else {i++;j=1;}}else{i--;if(i>=1){j=s[i];movequeen(i,j);j++;}}}}实验心得:通过本次实验大大的提高了我个人的动手能力, 对VC编程更加的熟练, 这个程序也一定程度的锻炼了我的思考能力, 对于八皇后问题的逻辑编排, 全局处理, 细节完善等方面都有一个深刻的认识。

八皇后实验报告

八皇后实验报告

实验项目:八皇后问题1•实验目的:通过求解皇后问题,熟悉深度优先搜索法DFS (回溯法(Backtracking Algorithms)技术。

2•实验内容:由n2个方块排成n行n列的正方形称为n元棋盘。

如果两个皇后位于n元棋盘上的同一行、同一列或同一对角线上,则称它们在互相攻击。

现要找出使棋盘上n 个皇后互不攻击的布局。

编制程序解决上述问题,以n=6运行程序,输出结果。

3•程序简介:将n个皇后放到一个n*n的方阵中,要求每个皇后不在同一行同一列及同一对角线,我的程序是先把每个皇后放在了第零列,然后再按行检查,不符合要求继续下一列,若已经到这一行的最后一列,还没找到符合要求的位置,则回到上一行。

4•算法设计介绍:定义一个一维数组,数组的下标是皇后所在位置的行数,数组存的值是皇后所在位置的列数,现将A[0]-A[n-l]都赋成零,然后随着检查的进行,皇后的位置也在不断地变化,最后找到一个符合要求的方阵时,本质上就是一个存放整数的一维数组,数组的下标是行数,存放的值是列数。

5•困难及解答我很久以前就听说过八皇后问题,没想到现在轮到自己编了,一开始还真是特别糊涂呢,后来老师上课把算法大概讲了一遍,就清楚很多了,要说问题,就是一开始纠结怎么存放皇后,我开始想用二维数组着,后来老师说用一维数组比较好做,我看了一下老师的算法,就明白了大概,经过一段时间就编出来了5•心得我编程变得还是很少,天天下决心说以后多编,也没践行,心想着吧,不挂在嘴上了,努力!6•程序清单/*〃我真诚地保证:〃我独立完成了整个程序从分析、设计到编码的所有工作。

〃如果在上述过程中,我遇到了什么困难而求教于人,那么,我将在程序实习报告中〃详细地列举我所遇到的问题,以及别人给我的提示。

〃我的程序里中凡是引用到其他程序或文档之处,〃例如教材、课堂笔记、网上的源代码以及其他参考书上的代码段,〃我都已经在程序的注释里很清楚地注明了引用的出处。

〃我从未没抄袭过别人的程序,也没有盗用别人的程序,〃不管是修改式的抄袭还是原封不动的抄袭。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算法设计与分析
实验报告
—八皇后问题
-
姓名:***
学号:********
班级:软件83
【问题描述】
在国际象棋盘上放八个皇后,要求任一皇后吃不到别人,也不受其他皇后的攻击,求出问题的所有解。

【问题分析&算法设计】
用8元组x[1: n]表示8后问题。

其中x[ i]表示皇后i放在棋盘的第i行的第x[ i]列。

由于不允许将2个皇后放在一列,所以解向量中的x[ i]互不相同。

2个皇后不能放在同一斜线上是问题的隐约束。

故若2个皇后放置的位置分别是(i,j)和(k,l),且i – j = k – l或i + j = k + l,则说明这2个皇后处于同一斜线上。

这两个方程分别等价于i – k = j – l和i – k = l – j。

由此可知,只要|i - k| = |j - l|成立,就表明2个皇后位于同一条斜线上。

问题的隐约束化成了显约束。

用回溯法解决8皇后问题时,用完全8叉树表示解空间。

【算法实现】
#include "stdio.h"
#include "math.h"
#include "iostream.h"
#define N 8 /* 定义棋盘大小*/
static int sum; /* 当前已找到解的个数*/
static int x[N]; /* 记录皇后的位置,x[i]表示皇后i放在棋盘的第i行的第x[i]列*/
/* 每找到一个解,打印当前棋盘状态*/
void Show()
{
sum++;
cout << "第" << sum << "种情况:" << endl;
cout << "坐标为:\t";
for(int k = 0; k < N; k++)
cout << '(' << k+1 << ',' << x[k] << ") ";
cout << endl;
cout << "---------------------------------\n";
for (int i = 0; i < N; i ++)
{
for (int j = 0; j < N; j ++)
if (j == x[i]) //printf("@ ");
cout << "* | ";
else //printf("* ");
cout << " | ";
cout << "\n---------------------------------\n";
}
}
/* 确定某一位置皇后放置与否,放置则返回1,反之返回0 */
int Judge(int k)
{
// 测试皇后k在第k行第x[k]列时是否与前面已放置好的皇后相攻击。

x[j] == // x[k] 时,两皇后在同一列上;abs(k - j) == abs(x[j] - x[k]) 时,两皇
// 后在同一斜线上。

两种情况两皇后都可相互攻击,故返回0表示不符合条件。

for (int j = 0; j < k; j ++)
if (abs(k - j) == abs(x[j] - x[k]) || (x[j] == x[k]))
return 0;
return 1;
}
/* 主递归函数,搜索解空间中第i层子树*/
void Backtrack(int t)
{
/* t == N 时,算法搜索至叶结点,得到一个新的N皇后互不攻击的放置方案*/ if (t == N) Show();
else
for (int i = 0; i < N; i ++)
{
x[t] = i;
if (Judge(t))
Backtrack(t + 1);
}
}
int main()
{
Backtrack(0);
cout << endl;
return 0;
}
【运行结果】
可知在考虑对称的情况下,8皇后问题共有92种解。

相关文档
最新文档