(完整版)高一数学必修一函数经典题型复习

合集下载

人教版高中数学必修一知识点与典型习题——第二部分-函数(含答案)

人教版高中数学必修一知识点与典型习题——第二部分-函数(含答案)

2015-2016高一上学期期末复习知识点与典型例题人教数学必修一 第二部分 函数1、函数的定义域、值域2、判断相同函数3、分段函数4、奇偶性5、单调性1.定义域 值域(最值) 1.函数()()3log 3f x x =++的定义域为____________________ 2.函数22()log (23)f x x x 的定义域是( )(A) [3,1] (B) (3,1) (C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞3.2()23,(1,3]f x x x x =-+∈-的值域为____________________ 4.若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求a 、b 的值.2.函数相等步骤:1、看定义域是否相等; 2、看对应关系(解析式)能否化简到相同1.下列哪组是相同函数?2(1)(),()x f x x g x x ==(2)()()f x x g x ==,2(3)()2lg ,()lg f x x g x x ==(4)(),()f x x g x ==3.分段函数基本思路:分段讨论 (1)求值问题1.24(),(5)(1)4xx f x f f x x ⎧<==⎨-≥⎩已知函数则_______________ 2.设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,则=))3((f f ______________(2)解方程1.2log ,11(),()1,12x x f x f x x x >⎧==⎨-≤⎩已知函数则的解为_________________2.已知⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = .(3)解不等式1.21,0(),()1,0x f x f x x x x ⎧>⎪=>⎨⎪≤⎩已知函数则的解集为__________________2.2log ,0(),()023,0x x f x f x x x >⎧=>⎨+≤⎩已知函数则的解集为__________________(4)作图、求取值范围(最值)1.24-x ,0()2,012,0x f x x x x ⎧>⎪==⎨⎪-<⎩已知函数.(1)作()f x 的图象;(2)求2(1)f a +,((3))f f 的值;(3)当43x -≤<,求()f x 的取值集合(5)应用题(列式、求最值)1.为方便旅客出行,某旅游点有50辆自行车供租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出去的自行车就增加3辆,为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得), (1)求函数f(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?4.函数的单调性(1)根据图像判断函数的单调性——单调递增:图像上升 单调递减:图像下降 1.下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+ B.y =.1()2xy = D .1y x x=+2.下列函数中,在其定义域内为减函数的是( )A .3y x =- B .12y x = C .2y x = D .2log y x =(2)证明函数的单调性步骤——取值、作差12()()f x f x -、变形、定号、下结论 1.已知函数11()(0,0)f x a x a x=->>. (1)求证:()f x 在(0,)+∞上是单调递增函数;(2)若()f x 在1[,2]2上的值域是1[,2]2,求a 的值.(3)利用函数的单调性求参数的范围1.2()2(1)2(2]f x x a x =+-+-∞在,上是减函数,则a 的范围是________2.若函数⎪⎩⎪⎨⎧<-≥-=2,1)21(,2,)2()(x x x a x f x 是R 上的单调递减函数,则实数a 的取值范围为( )A .)2,(-∞B .]813,(-∞ C .)2,0( D .)2,813[3.讨论函数223f(x)x ax =-+在(2,2)-内的单调性(4)利用函数的单调性解不等式1.()f x 是定义在(0,)+∞上的单调递增函数,且满足(32)(1)f x f -<,则实数x 的取值范围是( ) A . (,1)-∞ B . 2(,1)3 C .2(,)3+∞ D . (1,)+∞ 2.2()[1,1](1)(1)f x f m f m m --<-若是定义在上的增函数,且,求的范围(5)奇偶性、单调性的综合1.奇函数f(x)在[1,3]上为增函数,且有最小值7,则它在[-3,-1]上是____函数,有最___值___. 2.212()(11)()125ax b f x f x +=-=+函数是,上的奇函数,且. (1)确定()f x 的解析式;(2)用定义法证明()f x 在(1,1)-上递增;(3)解不等式(1)()0f t f t -+>.3.f(x)是定义在( 0,+∞)上的增函数,且()()()xf f x f y y=-(1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .5.函数的奇偶性(1)根据图像判断函数的奇偶性奇函数:关于原点对称;偶函数:关于y 轴对称 例:判断下列函数的奇偶性① y=x ³ ② y=|x|(2)根据定义判断函数的奇偶性一看定义域是否关于原点对称;二看()f x -与()f x 的关系1.设函数)(x f 和)(x g 分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .)()(x g x f +是偶函数 B .)()(x g x f -是奇函数 C .)()(x g x f +是偶函数 D .)()(x g x f -是奇函数 2.已知函数()log (1)log (1)(01)a a f x x x a a =+-->≠且 (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明。

高中数学必修一第二章 一元二次函数、方程和不等式 复习与测试(含答案)

高中数学必修一第二章 一元二次函数、方程和不等式 复习与测试(含答案)

高中数学必修一第二章一、单选题1.已知a≥0,b≥0,且a+b=2,则( )A.ab≤12B.ab≥12C.a2+b2≥2D.a2+b2≤32.已知正数x,y满足x+1y=1,则1x+4y的最小值为( )A.9B.10C.6D.83.在实数集上定义运算⊗:x⊗y=x(1﹣y),若不等式(x﹣a)⊗(x+a)<1对任意实数x都成立,则实数a的取值范围是( )A.(﹣1,1)B.(0,2)C.(―12,32)D.(―32,12)4.已知1≤a+b≤5,―1≤a―b≤3,则3a―2b的取值范围是( )A.[―6,14]B.[―2,14]C.[―2,10]D.[―6,10] 5.若关于x的不等式x2―4x―2―a>0在区间(1,4)内有解,则实数a的取值范围是( )A.a<―2B.a>―2C.a>―6D.a<―6 6.若x=5―2,y=2―3,则x,y满足( )A.x>y B.x≥y C.x<y D.x=y7.正数a,b满足9a +1b=2,若a+b≥x2+2x对任意正数a,b恒成立,则实数x的取值范围是( )A.[―4,2]B.[―2,4]C.(―∞,―4]∪[2,+∞)D.(―∞,―2]∪[4,+∞)8.设正数a,b满足b―a<2,若关于x的不等式(a2―4)x2+4bx―b2<0的解集中的整数解恰有4个,则a的取值范围是( )A.(2,3)B.(3,4)C.(2,4)D.(4,5)二、多选题9.下列函数最小值为2的是( )A.y=x2+1x2B.y=x2+3+1x2+3C.y=2x+12x D.y=x2+1x,x>010.已知a>0,b>0.若4a+b=1,则( )A.14a +1b的最小值为9B.1a+1b的最小值为9C.(4a+1)(b+1)的最大值为94D.(a+1)(b+1)的最大值为9411.已知a>0,b>0,则下列式子一定成立的有( )A.2aba+b ≤ab B.a2+b22≤a+b2C.1a +1b≤4a+bD.a2+b22≤a2+b2a+b12.已知正数a,b满足a(a+b)=1,下列结论中正确的是( )A.a2+b2的最小值为22―2B.2a+b的最小值为2C.1a +1b的最小值为332D.a―b的最大值为1三、填空题13.设一元二次不等式ax2+bx+1>0的解集为{x|―1<x<13},则ab的值是 .14.已知x,y为正实数,且x+4y=1x+1y=m,则m的最小值为 .15.已知实数a,b满足ab>0,则aa+b―aa+2b的最大值为 16.已知实数x,y,z满足:{x+y+z=3x2+y2+z2=36,则|x|+|y|+|z|的最大值为 .四、解答题17.已知集合A={x|―2<x<5},B={x|m+1≤x≤2m―1}.(1)当m=3时,求(∁R A)∩B;(2)若A∪B=A,求实数m的取值范围.18.求证下列问题:(1)已知a,b,c均为正数,求证:bca +acb+abc≥a+b+c.(2)已知xy>0,求证:1x>1y的充要条件是x<y.19.已知不等式组{―x<2,x2+7x―8<0的解集为A,集合B={x|a―5<x<3a―5}.(1)求A;(2)若A∪B=B,求a的取值范围.20.已知函数g(x)=k2x+k,ℎ(x)=x2―2(k2―k+1)x+4.(1)当k=1时,求函数y=ℎ(x)g(x),x∈(―∞,―1)的最大值;(2)令f(x)={g(x),x>0ℎ(x),x<0,求证:对任意给定的非零实数x1,存在惟一的实数x2(x1≠x2)使得f(x1)=f(x2)成立的充要条件是k=4.21.若函数f(x)=a x2―(2a+1)x+2.(1)讨论f(x)>0的解集;(2)若a=1时,总∃x∈[13,1],对∀m∈[1,4],使得f(1x)+3―2mx≤b2―2b―2恒成立,求实数b的取值范围.22.已知函数f(x)=2|x+1|―|x―a|(a∈R).(Ⅰ)当a=2时,求不等式f(x)⩾x+2的解集;(Ⅱ)设函数g(x)=f(x)+3|x―a|,当a=1时,函数g(x)的最小值为t,且2m +12n=t(m>0,n>0),求m+n的最小值.答案解析部分1.【答案】C 2.【答案】A 3.【答案】C 4.【答案】C 5.【答案】A 6.【答案】C 7.【答案】A 8.【答案】C 9.【答案】A,C 10.【答案】B,C 11.【答案】A,D 13.【答案】614.【答案】315.【答案】3―2216.【答案】1+22217.【答案】(1)解:∵集合A ={x|―2<x <5},B ={x|m +1≤x ≤2m ―1}.∴∁R A ={x|x ≤―2或x ≥5},m =3时,B ={x|4≤x ≤5},∴(∁R A )∩B ={5}(2)解:若A ∪B =A ,则B ⊆A ,当B =∅时,m +1>2m ―1,解得m <2,成立;当B ≠∅时,{m +1≤2m ―1m +1>―22m ―1<5,解得2≤m <3,综上实数m 的取值范围为(―∞,3)18.【答案】(1)证明:bc a +ac b +ab c =2bc a +2ac b +2ab c 2=bc a +ac b +bc a +ab c +ac b +ab c 2≥2bc a ⋅ac b+2bc a ⋅ab c+2ac b ⋅ab c=a +b +c ,当且仅当bc a =ac b ,bc a=ab c ,acb =abc ,即a =b =c 时等号成立.(2)证明:依题意xy >0,则{x >0y >0或{x <0y <0,所以:1x >1y ⇔1x ―1y =y ―x xy >0⇔y ―x >0⇔x <y ,所以:1x>1y 的充要条件是x <y .19.【答案】(1)解:由{―x <2x 2+7x ―8<0,得{x >―2―8<x <1,得―2<x <1,所以A ={x |―2<x <1}.(2)解:由A ∪B =B ,得A ⊆B ,所以{a ―5≤―23a ―5≥1,得2≤a ≤3,故a 的取值范围为[2,3].20.【答案】(1)解:当 k =1 时,函数 y =x 2―2x +4x +1, x ∈(―∞,―1) ,令 t =x +1<0 ,则 y =t +7t―4 ,此时 ―t >0 ,由 (―t )+(―7t )≥2(―t )×7―t =27 ,即 t +7t≤―27 ,当且仅当 t =―7 ,即 x =―7―1 时取等号,综上,当 x =―7―1 时, y 最大值是 ―27―4 .(2)解:充分性:当 k =4 时, f (x )={16x +4,x >0x 2―26x +4,x <0 , 当 x >0 时, y =16x +4 在 (0,+∞) 单调递增,且 y >4 ,当 x <0 时, y =x 2―26x +4 在 (―∞,0) 单调递减,且 y >4 ,若 x 1>0 ,则存在惟一的 x 2<0 ,使得 f (x 1)=f (x 2) ,同理 x 1<0 时也成立,必要性:当 x >0 时, y =k 2x +k ,当 k =0 时, f (x ) 在 (0,+∞) 上的值域为 {0} ,显然不符合题意,因此 k ≠0 ,当 x >0 时, f (x ) 在 f (x ) 的取值集合 A =(k ,+∞) ,x <0 , f (x )=x 2―2(k 2―k +1)x +4 的对称轴 x =k 2―k +1>0 , f (x ) 在 (―∞,0) 上递减, f (x )>f (0)=4 ,所以 f (x ) 的取值集合 B =(4,+∞) ,①若 x 1>0 , f (x ) 且在 (0,+∞) 上单调递增,要使 f (x 1)=f (x 2) ,则 x 2<0 ,且 A ⊆B ,有 k ≥4 .②若 x 1<0 , f (x ) 且在 (―∞,0) 上单调递减,要使 f (x 1)=f (x 2) ,则 x 2>0 ,且 B ⊆A ,有 k ≤4 .综上: k =4 .21.【答案】(1)已知f (x )=a x 2―(2a +1)x +2,①当a =0时,f (x )=―x +2>0时,即x <2;②当a ≠0时,f (x )=a (x ―1a )(x ―2),若a <0,f (x )>0,解得 1a <x <2,若0<a <12,f (x )>0,解得x <2或x >1a ,若a =12,f (x )>0,解得x ≠2,若a >12时,f (x )>0,解得x <1a 或x >2,综上所述:当a <0时,f (x )>0的解集为(1a ,2);当a =0时,f (x )>0的解集为(―∞,2);当0<a <12时,f (x )>0的解集为(―∞,2)∪(1a ,+∞);当a =12时,f (x )>0的解集为(―∞,2)∪(2,+∞);当a >12时,f (x )>0的解集为(―∞,1a )∪(2,+∞).(2)若a =1,则f (x )=x 2―3x +2,∴f (1x )+3―2m x =1x 2―2m x +2,令t =1x ,原题等价于∃t ∈[1,3],对∀m ∈[1,4]使得t 2―2mt +2≤b 2―2b ―2恒成立,令g (m )=―2tm +t 2+2,∴g (m )是关于m 的减函数,∴对∀m ∈[1,4],g (m )≤b 2―2b ―2恒成立,即b 2―2b ―2≥g (m )max =g (1)=t 2―2t +2,又∃t ∈[1,3],b 2―2b ―2≥t 2―2t +2,即b 2―2b ―2≥(t 2―2t +2)min =12―2×1+2=1,故b 2―2b ―3=(b ―3)(b +1)≥0,解得b ≤―1或b ≥3.22.【答案】解:(Ⅰ)当 a =2 时, f (x )⩾x +2 化为 2|x +1|―|x ―2|≥x +2 ,当 x⩽―1 时,不等式化为 ―x ―4⩾x +2 ,解得 x⩽―3 ;当 ―1<x <2 时,不等式化为 3x⩾x +2 ,解得 1⩽x <2 ;当 x⩾2 时,不等式化为 x +4⩾x +2 ,解得 x⩾2 ,综上不等式 f (x )⩾x +2 的解集是 {x |x⩽―3或x⩾1}(Ⅱ)当 a =1 时, g (x )=2|x +1|+2|x ―1|⩾2|x +1+1―x |=4 ,当且仅当 (x +1)(x ―1)⩽0 ,即 ―1⩽x⩽1 时,等号成立.所以,函数 g (x ) 的最小值 t =4 ,所以 2m +12n =4 , 12m +18n=1 .m +n =(m +n )(12m +18n )=n 2m +m 8n +58⩾2n 2m ⋅m 8n +58=98 ,当且仅当 {12m +18n =1,n 2m =m 8n 即 {m =34,n =38时等号成立,所以 m +n 的最小值为 98.。

高中数学必修一函数大题(含详细解答)

高中数学必修一函数大题(含详细解答)

高中函数大题专练1、已知关于x 的不等式2(4)(4)0kx k x --->,其中k R ∈。

⑴试求不等式的解集A ;⑵对于不等式的解集A ,若满足A ZB =(其中Z 为整数集)。

试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合B ;若不能,请说明理由。

2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。

① 对任意的[0,1]x ∈,总有()0f x ≥;② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。

已知函数2()g x x =与()21xh x a =⋅-是定义在[0,1]上的函数。

(1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值;(3)在(2)的条件下,讨论方程(21)()xg h x m -+=()m R ∈解的个数情况。

3.已知函数||212)(x x x f -=. (1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t对于[2,3]t ∈恒成立,求实数m 的取值范围.4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x⎧-⎪=⎨⎪⎩0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式.(2)请你作出函数)(x f 的大致图像. (3)当0a b <<时,若()()f a f b =,求ab 的取值范围. (4)若关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,求,b c 满足的条件.5.已知函数()(0)||bf x a x x =-≠。

(1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围;(2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围;(3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是[,]m n ,则称()g x 是[,]m n 上的闭函数。

(完整word版)高一数学必修一函数的最值问题试题(1).doc

(完整word版)高一数学必修一函数的最值问题试题(1).doc

函数的最值问题(高一)一.填空题:1. f ( x)3x 5, x[3,6] 的最大值是。

f ( x)11,3 的最小值是。

, xx2.函数 y 12 4x x 2 的最小值是,最大值是 3.函数 y1的最大值是,此时 x2 x 2 8x104.函数 y 2x 3 3, 2 的最小值是,最大值是x , x15.函数 y 3 2, 1 的最小值是,最大值是x , xx 16.函数 y= x 2 - 的最小值是。

y x 1 2x 的最大值是x 27.函数 y=|x+1| –|2-x| 的最大值是 最小值是.8.函数 f x2 在 [2,6] 上的最大值是 最小值是。

x 19.函数 y= 3x( x ≥ 0)的值域是 ______________.1 2x10.二次函数 y=-x 2+4x 的最大值11. 函数 y=2x 2-3x+5 在[-2 ,2] 上的最大值和最小值 。

12.函数 y= -x 2 -4x+1 在 [-1 , 3] 上的最大值和最小值13.函数 f ( x ) =1 的最大值是y 2x 22x 5的最大值是1 x(1 x)x 2 x 114. 已知 f ( x ) =x 2- 6x+8, x ∈[ 1,a ]并且 f ( x )的最小值为 f ( a ),则 a 的取值范围是15.函数 y= –x 2–2ax(0 x 1)的最大值是 a 2,那么实数 a 的取值范围是16.已知 f ( x )=x 2-2x+3 ,在闭区间[ 0, m ]上有最大值 3,最小值 2,则 m 的取值范围是17. 若 f(x)= x2+ax+3 在区间 [1,4] 有最大值 10,则 a 的值为:18.若函数 y=x 2 3x 4 的定义域为 [0,m], 值域为 [ 25/4, 4],则 m 的取值范围是19. 已知 f ( x ) =-x 2+2x+3 , x ∈[ 0, 4] ,若 f ( x )m 恒成立, m 范围是。

高一数学必修一,函数的奇偶性题型归纳

高一数学必修一,函数的奇偶性题型归纳

函数的奇偶性 题型归纳题型一、函数奇偶性的概念➢ 函数奇偶性的定义:设函数D x x f y ∈=,)(,(D 为关于原点对称的区间):①如果对于任意的D x ∈,都有)()(x f x f -=,则称)(x f y =为偶函数;②如果对于任意的D x ∈,都有)()(x f x f --=,则称)(x f y =为奇函数。

➢ 函数奇偶性的性质:①函数具有奇偶性的必要条件是其定义域关于原点对称。

②奇偶函数的图像:奇函数关于原点对称;偶函数关于y 轴对称。

③奇函数)(x f y =在0=x 处有意义,则必有0)0(=f 。

④偶函数)(x f y =必满足|)(|)(x f x f =。

1. 若)(x f 是奇函数,则其图象关于( )【答案:C 】A .x 轴对称B .y 轴对称C .原点对称D .直线x y =对称2. 若函数))((R x x f y ∈=是奇函数,则下列坐标表示的点一定在函数)(x f y =图象上的是( )【答案:C 】A .))(,(a f a -B .))(,(a f a --C .))(,(a f a ---D .))(,(a f a -3. 下列说法错误的是( )【答案:D 】A.奇函数的图像关于原点对称B.偶函数的图像关于y 轴对称C.定义在R 上的奇函数()x f y =满足()00=fD.定义在R 上的偶函数()x f y =满足()00=f题型二、判断函数的奇偶性➢ 定义法:➢ 运算函数奇偶性的规律:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇×÷奇=偶;奇×÷偶=奇;偶×÷偶=偶。

➢ 复合函数奇偶性判断:内偶则偶,两奇为奇。

➢ 抽象函数奇偶性:赋值法。

1、定义法:1. 下列函数中为偶函数的是( )【答案:C 】A .x y =B .x y =C .2x y =D .13+=x y2. 判断函数的奇偶性 ①)3,1(,)(2-∈=x x x f ②2)(x x f -=;③25)(+=x x f ; ④)1)(1()(-+=x x x f .⑤()xx x f 1-= ⑥()13224+-=x x x f 【答案:】(1)非奇非偶函数.(2)偶函数.(3)非奇非偶函数.(4)偶函数.(5)奇函数(6)偶函数.2、奇偶函数的四则运算法则:3. 下列函数为偶函数的是( )【答案:D 】A.()x x x f +=B.()xx x f 12+= C.()x x x f +=2 D.()2x x x f =4. 判断函数的奇偶性①53)(x x x x f ++=; ②1y 2+=x x【答案:(1)奇函数. (2)奇函数. 】5. 已知函数)(x f y =是定义在R 上的奇函数,则下列函数中是奇函数的是 (填序号)。

完整版)高一数学函数经典习题及答案

完整版)高一数学函数经典习题及答案

完整版)高一数学函数经典习题及答案函数练题一、求函数的定义域1、求下列函数的定义域:⑴y = (x-1)/(2x^2-2x-15)⑵y = 1-[(2x-1)+4-x^2]/[1/(x+1)+1/(x+3)-3]2、设函数f(x)的定义域为[0,1],则函数f(x-2)的定义域为[-2,-1];函数f(2x-1)的定义域为[(1/2,1)]。

3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-3/2,2];函数f(2)的定义域为[1,4]。

4、已知函数f(x)的定义域为[-1,1],且函数F(x) = f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。

二、求函数的值域5、求下列函数的值域:⑴y = x+2/x-3 (x∈R)⑵y = x+2/x-3 (x∈[1,2])⑶y = 2/(3x-1)-3/(x-1) (x∈R)⑷y = (x+1)/(x+1) if x≥5y = 5x^2+9x+4/2x-6 (x<5)⑸y = (x-3)/(x+2)⑹y = x-3+x+1⑺y = (x^2-x)/(2x-1)(x+2)⑼y = -x^2+4x+5⑽y = 4-1/(x^2+4x+5)⑾y = x-1-2x/(2x^2+ax+b)6、已知函数f(x) = 2x+1/(x∈R)的值域为[1,3],求a,b的值。

三、求函数的解析式1、已知函数f(x-1) = x-4x,求函数f(x),f(2x+1)的解析式。

2、已知f(x)是二次函数,且f(x+1)+f(x-1) = 2x-4x,求f(x)的解析式。

3、已知函数2f(x)+f(-x) = 3x+4,则f(x) = (3x+4)/5.4、设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x) =x/(1+x),则f(x)在R上的解析式为f(x) = x/(1+x)-2/(1-x^2)。

5、设f(x)与g(x)的定义域是{x|x∈R,且x≠±1},f(x)是偶函数,g(x)是奇函数,且f(x)+g(x) = 3x,则f(x) = x,g(x) = 3x-x^3.四、求函数的单调区间6、求下列函数的单调区间:⑴y = x+2/x+3⑵y = -x^2+2x+3⑶y = x-6/x-127、函数f(x)在[0,+∞)上是单调递减函数,则f(1-x)的单调递增区间是(0,1]。

高中数学必修一第二章一元二次函数方程和不等式经典大题例题(带答案)

高中数学必修一第二章一元二次函数方程和不等式经典大题例题(带答案)

高中数学必修一第二章一元二次函数方程和不等式经典大题例题单选题1、实数a,b满足a>b,则下列不等式成立的是()A.a+b<ab B.a2>b2C.a3>b3D.√a2+b2<a+b答案:C分析:利用不等式的性质逐一判断即可.A,若a=1,b=0,则a+b>ab,故A错误;B,若a=1,b=−2,则a2<b2,故B错误;C,若a>b,则a3−b3=(a−b)(a2+ab+b2)=(a−b)[(a+b2)2+3b24]>0,所以a3>b3,故C正确;D,若a=1,b=−2,则√a2+b2>a+b,故D错误.故选:C2、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a(元/个)的取值范围应是()A.90<a<100B.90<a<110C.100<a<110D.80<a<100答案:A分析:首先设每个涨价x元,涨价后的利润与原利润之差为y元,结合条件列式,根据y>0,求x的取值范围,即可得到a的取值范围.设每个涨价x元,涨价后的利润与原利润之差为y元,则a=x+90,y=(10+x)⋅(400−20x)−10×400=−20x2+200x.要使商家利润有所增加,则必须使y>0,即x2−10x<0,得0<x<10,∴90<x+90<100,所以a的取值为90<a<100.故选:A3、已知y=(x−m)(x−n)+2022(n>m),且α,β(α<β)是方程y=0的两实数根,则α,β,m,n的大小关系是()A.α<m<n<βB.m<α<n<βC.m<α<β<n D.α<m<β<n答案:C分析:根据二次函数图像特点,结合图像平移变换即可得到答案.∵α,β为方程y=0的两实数根,∴α,β为函数y=(x−m)(x−n)+2022的图像与x轴交点的横坐标,令y1=(x−m)(x−n),∴m,n为函数y1=(x−m)(x−n)的图像与x轴交点的横坐标,易知函数y= (x−m)(x−n)+2022的图像可由y1=(x−m)(x−n)的图像向上平移2022个单位长度得到,所以m<α<β<n.故选:C.4、关于x的不等式ax2−|x|+2a≥0的解集是(−∞,+∞),则实数a的取值范围为()A.[√24,+∞)B.(−∞,√24]C.[−√24,√24]D.(−∞,−√24]∪[√24,+∞)答案:A分析:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,分x=0和a≠0两种情况讨论,结合基本不等式即可得出答案.解:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,当x=0时,a≥0,当a≠0时,a≥|x|x2+2=1|x|+2|x|,因为1|x|+2|x|≤2√|x|⋅2|x|=√24,所以a≥√24,综上所述a∈[√24,+∞). 故选:A.5、不等式1+5x −6x 2>0的解集为( )A .{x|x >1或x <−16}B .{x |−16<x <1 }C .{x|x >1或x <−3}D .{x |−3<x <2 } 答案:B分析:解一元二次不等式,首先确保二次项系数为正,两边同时乘−1,再利用十字相乘法,可得答案, 法一:原不等式即为6x 2−5x −1<0,即(6x +1)(x −1)<0,解得−16<x <1,故原不等式的解集为{x |−16<x <1 }.法二:当x =2时,不等式不成立,排除A ,C ;当x =1时,不等式不成立,排除D . 故选:B .6、已知正实数a ,b 满足a +1b=2,则2ab +1a的最小值是( )A .52B .3C .92D .2√2+1 答案:A分析:由已知得, a =2−1b 代入得2ab +1a =2(2b −1)+b2b−1,令2b −1=t ,根据基本不等式可求得答案. 解:因为a +1b=2,所以a =2−1b>0,所以0<b <2 ,所以2ab +1a =2(2−1b )b +b 2b−1=2(2b −1)+b2b−1, 令2b −1=t ,则b =t +12,且−1<t <3 ,所以2ab +1a =2t +t +12t=2t +12t +12≥2√2t ⋅12t +12=52,当且仅当2t =12t ,即t =12,b =34,a =23时,取等号,所以2ab +1a 的最小值是52. 故选:A.7、已知−1≤x +y ≤1,1≤x −y ≤5,则3x −2y 的取值范围是( ) A .[2,13]B .[3,13]C .[2,10]D .[5,10] 答案:A分析:设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,求出m,n 的值,根据x +y,x −y 的范围,即可求出答案.设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,所以{m −n =3m +n =−2,解得:{m =12n =−52,3x −2y =12(x +y )+52(x −y ), , 因为−1≤x +y ≤1,1≤x −y ≤5,所以3x −2y =12(x +y )+52(x −y )∈[2,13], 故选:A.8、已知a >b >0,下列不等式中正确的是( ) A .ca >cb B .ab <b 2C .a −b +1a−b ≥2D .1a−1<1b−1 答案:C分析:由a >b >0,结合不等式的性质及基本不等式即可判断出结论. 解:对于选项A ,因为a >b >0,0<1a<1b,而c 的正负不确定,故A 错误;对于选项B ,因为a >b >0,所以ab >b 2,故B 错误;对于选项C ,依题意a >b >0,所以a −b >0,1a−b >0,所以a −b +1a−b ≥2√(a −b )×1a−b =2,故C 正确; 对于选项D ,因为a >b >0,a −1>b −1>−1,1a−1与1b−1正负不确定,故大小不确定,故D 错误;故选:C. 多选题9、已知函数y =ax 2+bx -3,则下列结论正确的是( ) A .关于x 的不等式ax 2+bx -3<0的解集可以是{x |x >3 } B .关于x 的不等式ax 2+bx -3>0的解集可以是∅C .函数y =ax 2+bx -3的图象与x 轴正半轴可以有两个交点D .“关于x 的方程ax 2+bx -3=0有一个正根和一个负根”的充要条件是“a >0” 答案:BCD分析:根据不等式的解集求出a 、b ,再解不等式ax 2+bx -3<0可判断A ;取a =-1,b =0,解不等式-x 2-3>0可判断B ;取a =-1,b =4可判断C ;根据根的分布、充要条件的定义可判断D . 若不等式ax 2+bx -3<0的解集是{x |x >3},则a =0且3b -3=0,得b =1,而当a =0,b =1时,不等式ax 2+bx -3<0,即x -3<0,得x <3,与x >3矛盾,故A 错误; 取a =-1,b =0,此时不等式-x 2-3>0的解集为∅,故B 正确;函数y =ax 2+bx -3的图象与x 轴正半轴可以有两个交点,即ax 2+bx -3=0可以有2个正根,取a =-1,b =4,则由y =-x 2+4x -3=0,得x =1或3,故C 正确;若关于x 的方程ax 2+bx -3=0有一个正根和一个负根,则{a ≠0,−3a<0,得a >0,若a >0,则Δ=b 2+12a >0,故关于x 的方程ax 2+bx -3=0有两个不等的实根x 1,x 2, 且x 1x 2=-3a <0,即关于x 的方程ax 2+bx -3=0有一个正根和一个负根.因此“关于x 的方程ax 2+bx -3=0有一个正根和一个负根”的充要条件是“a >0”,故D 正确. 故选:BCD .10、已知x ,y 是正实数,则下列选项正确的是( ) A .若x +y =2,则1x+1y 有最小值2B .若x +y =3,则x(y +1)有最大值5C .若4x +y =1,则2√x +√y 有最大值√2D .x4+y 2x+1y有最小值94答案:AC分析:将已知转化,再利用基本不等式可判断ABC 选项;利用特值法判断选项D 。

《高一数学必修1》函数的概念、定义域、值域练习题(含答案)

《高一数学必修1》函数的概念、定义域、值域练习题(含答案)

函数的概念、定义域、值域练习题班级:高一(3)班 姓名: 得分:一、选择题(4分×9=36分)1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f (x )→y =12xB .f (x )→y =13x C .f (x )→y=23x D .f (x )→y =x 2.函数y =1-x 2+x 2-1的定义域是( ) A .[-1,1] B .(-∞,-1]∪[1,+∞) C .[0,1]D .{-1,1}3.已知f (x )的定义域为[-2,2],则f (x 2-1)的定义域为( )A .[-1,3]B .[0,3]C .[-3,3]D .[-4,4]4.若函数y =f (3x -1)的定义域是[1,3],则y =f (x )的定义域是( )A .[1,3]B .[2,4]C .[2,8]D .[3,9]5.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上6.函数f (x )=1ax 2+4ax +3的定义域为R ,则实数a 的取值范围是( )A .{a |a ∈R }B .{a |0≤a ≤34}C .{a |a >34}D .{a |0≤a <34}7.某汽车运输公司购置了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次函数关系(如图),则客车有营运利润的时间不超过( )年.A .4B .5C .6D .78.(安徽铜陵县一中高一期中)已知g (x )=1-2x ,f [g (x )]=1-x 2x 2(x ≠0),那么f ⎝ ⎛⎭⎪⎪⎫12等于( ) A .15 B .1 C .3D .309.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( )A .[0,+∞)B .[1,+∞)C .{1,3,5}D .R二、填空题(4分)10.某种茶杯,每个2.5元,把买茶杯的钱数y(元)表示为茶杯个数x(个)的函数,则y=________,其定义域为________.(5分)11.函数y=x+1+12-x的定义域是(用区间表示)________.三、解答题(5分×3=15分)12.求下列函数的定义域.(1)y=x+1x2-4;(2)y=1|x|-2;(3)y=x2+x+1+(x-1)0.(10分×2=20分)13.(1)已知f(x)=2x-3,x∈{0,1,2,3},求f(x)的值域.(2)已知f(x)=3x+4的值域为{y|-2≤y≤4},求此函数的定义域.(10分×2=20分)14.(1)已知f(x)的定义域为[ 1,2 ] ,求f (2x-1)的定义域;(2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;1.2.1 函数的概念答案一、选择题 1.[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C.2.[答案] D[解析] 使函数y =1-x 2+x 2-1有意义应满意⎩⎪⎨⎪⎧1-x 2≥0x 2-1≥0,∴x 2=1,∴x =±1.3.[答案] C[解析] ∵-2≤x 2-1≤2,∴-1≤x 2≤3,即x 2≤3,∴-3≤x ≤ 3.4.[答案] C[解析] 由于y =f (3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f (x )的定义域为[2,8]。

高一数学函数知识总结及例题

高一数学函数知识总结及例题

高一数学函数知识总结及例题高一数学函数知识总结及例题第一篇、复合函数问题一、复合函数定义:设y=f(u)的定义域为A,u=g(x)的值域为B,若AB,则y关于x函数的y=f[g(x)]叫做函数f与g的复合函数,u叫中间量.二、复合函数定义域问题:(一)例题剖析:(1)、已知f(x)的定义域,求fg(x)的定义域思路:设函数f(x)的定义域为D,即xD,所以f的作用范围为D,又f 对g(x)作用,作用范围不变,所以g(x)D,解得xE,E为fg(x)的定义域。

例1.设函数f(u)的定义域为(0,1),则函数f(lnx)的定义域为_____________。

解析:函数f(u)的定义域为(0,1)即u(0,1),所以f 的作用范围为(0,1)又f对lnx作用,作用范围不变,所以0lnx1解得x(1,e),故函数f(lnx)的定义域为(1,e)1,则函数ff(x)的定义域为______________。

x11解析:先求f的作用范围,由f(x),知x1x1例2.若函数f(x)即f的作用范围为xR|x1,又f对f(x)作用所以f(x)R且f(x)1,即ff(x)中x应满足x1f(x)1x1即1,解得x1且x21x1故函数ff(x)的定义域为xR|x1且x2(2)、已知fg(x)的定义域,求f(x)的定义域思路:设fg(x)的定义域为D,即xD,由此得g(x)E,所以f的作用范围为E,又f对x作用,作用范围不变,所以xE,E为f(x)的定义域。

例3.已知f(32x)的定义域为x1,2,则函数f(x)的定义域为_________。

解析:f(32x)的定义域为1,2,即x1,2,由此得32x1,5所以f的作用范围为1,5,又f对x作用,作用范围不变,所以x1,5 即函数f(x)的定义域为1,5x2例4.已知f(x4)lg2,则函数f(x)的定义域为______________。

x82x2x20解析:先求f的作用范围,由f(x4)lg2,知2x8x82解得x44,f的作用范围为(4,),又f对x作用,作用范围不变,所以2x(4,),即f(x)的定义域为(4,)(3)、已知fg(x)的定义域,求fh(x)的定义域思路:设fg(x)的定义域为D,即xD,由此得g(x)E,f的作用范围为E,又f对h(x)作用,作用范围不变,所以h(x)E,解得xF,F为fh(x)的定义域。

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)

《函 数》复习题一、 求函数的定义域1、求下列函数的定义域:答案:x²又⑵y =答案:2111x x -⎛⎫≤ ⎪+⎝⎭, ()()22111x x -≤+, ()()2211x x -≤+,222121x x x x -+≤++,-4x ≤0, ∴x ≥0{|0}x x ≥⑶01(21)111y x x =+-+-答案:211011011210210104022x x x x x x x x x ⎧+≠⇒-≠-⇒≠⎪-⎪⎪-≠⇒≠⎨⎪-≠⇒≠⎪≥⇒-≥⇒-≤≤∴1{|220,,1}2x x x x x -≤≤≠≠≠且2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _2 f x ()-2的定义域为________;答案:函数f(x)的定义域为[0.1], 则0≤x ≤1于是0≤x ²≤1 解得-1≤x ≤1所以函数f x ()2的定义域为[-1,1]f∴4≤x ≤93、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1x 1(2)f x+的定义域为 。

答案:y=f(x+1)的定义域是【-2,3】注:y=f(x+1)的定义域是【-2,3】 指的是里面X 的定义域 不是括号内整体的定义域 即-2<=x<=3∴-1<=x+1<=4 ∴x+1 的范围为 [-1,4] f(x)括号内的范围相等y=f(2x-1)f(4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

答案解1:知函数f(x)的定义域为[-1.1],则对函数F (X )=f(m+x)-f(x-m)来说 -1≤m+x ≤1 -1≤x-m ≤11. 由-1≤m+x 和x-m ≤1 两式相加-1+x-m ≤m+x+1 解得2m ≥-2 m ≥-12. 由m+x ≤1和-1≤x-m 两式相加 m+x-1≤x-m+12m ≤2 解得m ≤1综上:-1≤m ≤1答案解2: -1<x+m<1 →→-1-m < x<1-m-1<x-m<1 → -1+m<x<1+m定义域存在,两者的交集不为空集,(注:则只需(-m-1,1-m )与(m-1,1-m )有交集即可。

高中数学必修一第四章指数函数与对数函数知识点总结归纳完整版(带答案)

高中数学必修一第四章指数函数与对数函数知识点总结归纳完整版(带答案)

高中数学必修一第四章指数函数与对数函数知识点总结归纳完整版单选题1、已知函数y=a x、y=b x、y=c x、y=d x的大致图象如下图所示,则下列不等式一定成立的是()A.b+d>a+c B.b+d<a+c C.a+d>b+c D.a+d<b+c答案:B分析:如图,作出直线x=1,得到c>d>1>a>b,即得解.如图,作出直线x=1,得到c>d>1>a>b,所以b+d<a+c.故选:B2、如图所示,函数y=|2x−2|的图像是()A .B .C .D .答案:B分析:将原函数变形为分段函数,根据x =1及x ≠1时的函数值即可得解. ∵y =|2x−2|={2x −2,x ≥12−2x ,x <1,∴x =1时,y =0,x ≠1时,y >0. 故选:B.3、在同一平面直角坐标系中,一次函数y =x +a 与对数函数y =log a x (a >0且a ≠1)的图象关系可能是( )A .B .C .D .答案:C分析:根据对数函数的图象以及直线方程与图象关系分别进行讨论即可. A .由对数图象知0<a <1,此时直线的纵截距a >1,矛盾, B .由对数图象知a >1,此时直线的纵截距0<a <1,矛盾, C .由对数图象知0<a <1,此时直线的纵截距0<a <1,保持一致, D .由对数图象知a >1,此时直线的纵截距a <0,矛盾, 故选:C .4、函数f(x)=2x −1x 的零点所在的区间可能是( )A .(1,+∞)B .(12,1)C .(13,12)D .(14,13)答案:B分析:结合函数的单调性,利用零点存在定理求解.因为f(1)=2−11=1>0,f(12)=√2−2<0,f(13)=√23−3<0f(14)=√24−4<0,所以f(12)⋅f(1)<0,又函数f(x)图象连续且在(0,+∞)单调递增,所以函数f(x)的零点所在的区间是(12,1),故选:B .小提示:本题主要考查函数的零点即零点存在定理的应用,属于基础题. 5、已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <c C .b <c <a D .c <a <b 答案:A分析:由题意可得a 、b 、c ∈(0,1),利用作商法以及基本不等式可得出a 、b 的大小关系,由b =log 85,得8b =5,结合55<84可得出b <45,由c =log 138,得13c =8,结合134<85,可得出c >45,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、c ∈(0,1),a b =log 53log 85=lg3lg5⋅lg8lg5<1(lg5)2⋅(lg3+lg82)2=(lg3+lg82lg5)2=(lg24lg25)2<1,∴a <b ;由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45; 由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c >45.综上所述,a <b <c . 故选:A.小提示:本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.6、若y =log 3a 2−1x 在(0,+∞)内为增函数,且y =a −x 也为增函数,则a 的取值范围是( ) A .(√33,1)B .(0,12)C .(√33,√63)D .(√63,1) 答案:D分析:根据函数单调性,列出不等式组{3a 2−1>10<a <1求解,即可得出结果.若y =log 3a 2−1x 在(0,+∞)内为增函数,则3a 2−1>1,由y =a −x 为增函数得0<a <1.解不等式组{3a 2−1>10<a <1,得a 的取值范围是(√63,1).故选:D.小提示:本题主要考查由对数函数与指数函数的单调性求参数,涉及不等式的解法,属于基础题型. 7、已知a =lg2,10b =3,则log 56=( ) A .a+b 1+a B .a+b 1−a C .a−b 1+a D .a−b1−a 答案:B分析:指数式化为对数式求b ,再利用换底公式及对数运算性质变形. ∵a =lg2, 10b =3, ∴b =lg3, ∴log 56=lg6lg5=lg2×3lg 102=lg2+lg31−lg2=a+b1−a .故选:B .8、定义在R 上的奇函数f(x)在(−∞,0]上单调递增,且f(−2)=−2,则不等式f(lgx)−f (lg 1x )>4的解集为( )A .(0,1100)B .(1100,+∞)C .(0,100)D .(100,+∞) 答案:D分析:利用函数为奇函数,将不等式转化为f(lgx)>f (2),再利用函数的单调性求解. 因为函数f(x)为奇函数,所以f(−x)=−f (x ),又f(−2)=−2,f(2)=2,所以不等式f(lgx)−f (lg 1x )>4,可化为2f(lgx)>4=2f (2),即f(lgx)>f (2),又因为f(x)在(−∞,0]上单调递增, 所以f(x)在R 上单调递增, 所以lgx >2, 解得x >100. 故选:D. 多选题9、下列化简结果中正确的有(m 、n 均为正数)( ) A .(1a m)n=a −mn B .√a n n=a C .a m n=a m a nD .(π−3.14)0=1答案:AD分析:A.由指数幂的运算判断; B.由根式的性质判断;C.由分数指数幂和根式的转化判断;D.由规定判断. A. (1a m )n=(a −m )n =a −mn ,故正确; B. √a n n={a,n 为奇数|a |,n 为偶数 ,故错误;C. a m n=√a m n,故错误; D. (π−3.14)0=1,故正确. 故选:AD10、设函数f (x )={|x 2+3x |,x ≤1log 2x,x >1,若函数f (x )+m =0有五个零点,则实数m 可取( )A .−3B .1C .−12D .−2答案:CD分析:函数f (x )+m =0有五个零点等价于y =f(x)与y =−m 有五个不同的交点,作出f(x)图像,利用图像求解即可函数f (x )+m =0有五个零点等价于y =f(x)与y =−m 有五个不同的交点,作出f(x)图像可知,当x =−32时,f (−32)=|(−32)2+3×(−32)|=94若y =f(x)与y =−m 有五个不同的交点, 则−m ∈(0,94), ∴m ∈(−94,0), 故选:CD .11、下列运算(化简)中正确的有( ). A .(a 16)−1⋅(a −2)−13=a 12B .(x a −1y)a⋅(4y −a )=4x C .[(1−√2)2]12−(1+√2)−1+(1+√2)0=3−2√2D .2a 3b 23⋅(−5a 23b 13)÷(4√a 4b 53)=−52a 73b −23答案:ABD分析:根据指数幂的运算法则逐一验证即可 对于A :(a 16)−1⋅(a−2)−13=a−16+23=a12,故A 正确;对于B :(xa −1y)a⋅(4y−a )=4x1a×a y a−a =4xy 0=4x ,故B 正确; 对于C :[(1−√2)2]12−(1+√2)−1+(1+√2)0=[(√2−1)2]12−1+√2+1=√2−1−(√2−1)+1=1,故C 错误;对于D :2a 3b 23⋅(−5a 23b 13)÷(4√a 4b 53)=[2×(−5)÷4]a3+23−43b23+13−53=−52a 73b −23,故D 正确;故选:ABD 填空题12、不等式2022x ≤1的解集为______. 答案:(−∞,0]分析:根据给定不等式利用指数函数单调性求解即可作答.依题意,不等式2022x ≤1化为:2022x ≤20220,而函数y =2022x 在R 上单调递增,解得x ≤0, 所以不等式2022x ≤1的解集为(−∞,0]. 所以答案是:(−∞,0]13、√a ⋅√a ⋅√a 3的分数指数幂表示为____________答案:a 34分析:本题可通过根式与分数指数幂的互化得出结果.√a ⋅√a ⋅√a 3=√a ⋅√a ⋅a 123=√a ⋅√a 323=√a ⋅a 12=√a 32=a 34, 所以答案是:a 34.14、函数f(x)=lg(kx)−2lg(x +1)仅有一个零点,则k 的取值范围为________. 答案:(−∞,0)∪{4}分析:由题意f(x)仅有一个零点,令y 1=kx 、y 2=(x +1)2,即y 1、y 2在f(x)定义域内只有一个交点,讨论k >0、k <0并结合函数图象,求k 的范围.由题意,f(x)=lg(kx)−2lg(x +1)=0,即lg(kx)=lg(x +1)2, ∴在f(x)定义域内,y 1=kx 、y 2=(x +1)2只有一个交点,当k>0时,即(0,+∞)上y1、y2只有一个交点;∴仅当y1、y2相切,即x2+(2−k)x+1=0中Δ=(2−k)2−4=0,得k=4或k=0(舍),∴当k=4时,(0,+∞)上y1、y2只有一个交点;当k<0时,即(−1,0)上y1、y2只有一个交点,显然恒成立.∴k∈(−∞,0)∪{4}.所以答案是:(−∞,0)∪{4}解答题(a>0,a≠1).15、已知函数f(x)=1−2a|x|+1(1)判断f(x)的奇偶性并证明;,求a的值.(2)若f(x)在[−1,1]上的最大值为13答案:(1)偶函数;证明见解析;(2)a=2.解析:(1)利用奇偶函数的定义证明;(2)讨论去绝对值,并分a>1和0<a<1两种情况讨论函数的单调性,求函数的最大值,建立方程,求a的值. 解:(1)f(x)的定义域为R,又f(−x)=1−2a|−x|+1=1−2a|x|+1=f(x)⇒f(−x)=f(x),所以f(x)为偶函数;(2)因为f(x)为偶函数,当0≤x≤1时,f(x)=1−2a|x|+1=1−2a x+1,若a∈(0,1),f(x)=1−2a x+1,函数单调递减,f(x)max=f(0)=0,若a∈(1,+∞),f(x)=1−2a x+1,函数单调递增,f(x)max=f(1)=1−2a+1=13⇒a=2,当−1≤x<0,f(x)=1−2a|x|+1=1−2a−x+1,若a∈(0,1),f(x)=1−2a−x+1,函数单调递增,f(x)max=f(0)=0,若a∈(1,+∞),f(x)=1−2a−x+1,函数单调递减,f(x)max=f(−1)=1−2a+1=13⇒a=2,综上,a=2.小提示:关键点点睛:本题考查指数型复合函数证明奇偶性以及根据函数的最值,求参数的取值范围,本题的关键是求函数的单调性,关键是利用函数是偶函数,先去绝对值,再利用复合函数的单调性求函数的单调性,从而确定函数的最值.。

(完整版)高一数学必修一函数的最值问题试题(1)

(完整版)高一数学必修一函数的最值问题试题(1)

函数的最值问题(高一)一.填空题:1. ()35,[3,6]f x x x =+∈的最大值是 。

1()f x x =,[]1,3x ∈的最小值是 。

2.函数y =的最小值是 ,最大值是3.函数212810y x x =-+的最大值是 ,此时x =4.函数[]23,3,21x y x x -=∈--+的最小值是 ,最大值是5.函数[]3,2,1y x x x =-∈--的最小值是 ,最大值是6.函数y=2-x -21+x 的最小值是。

y x =-的最大值是7.函数y=|x+1|–|2-x| 的最大值是 最小值是 .8.函数()21f x x =-在[2,6]上的最大值是 最小值是 。

9.函数y =x x213+-(x ≥0)的值域是______________.10.二次函数y=-x 2+4x 的最大值11. 函数y=2x 2-3x+5在[-2,2]上的最大值和最小值 。

12.函数y= -x 2-4x+1在[-1 , 3]上的最大值和最小值13.函数f (x )=)1(11x x --的最大值是 222251x x y x x ++=++的最大值是14.已知f (x )=x 2-6x +8,x ∈[1,a ]并且f (x )的最小值为f (a ),则a 的取值范围是15.函数y= –x 2–2ax(0≤x ≤1)的最大值是a 2,那么实数a 的取值范围是16.已知f (x )=x 2-2x +3,在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围是17. 若f(x)= x 2+ax+3在区间[1,4]有最大值10,则a 的值为:18.若函数y=x 2-3x -4的定义域为[0,m],值域为[-25/4,-4],则m 的取值范围是19. 已知f (x )=-x 2+2x+3 , x ∈[0,4],若f (x )≤m 恒成立,m 范围是 。

二、解答题20.已知二次函数 在 上有最大值4,求实数 a 的值。

(word完整版)高一数学必修一函数专题

(word完整版)高一数学必修一函数专题

高一数学必修一函数专题(教师版)一.函数的奇偶性.(1)具有奇偶性的函数的定义域的特征:定义域必须关于原点对称!为此确定函数的奇偶性时,务必先判定函数定义域是否关于原点对称•(2)确定函数奇偶性的常用方法(若所给函数的解析式较为复杂,应先化简,再判断其奇偶性):①定义法;f(x) f( x) 0②利用函数奇偶性定义的等价形式:f( x) 1( f(x) 0).f (x)③图像法:奇函数的图象关于原点对称;偶函数的图象关于y轴对称.(3)函数奇偶性的性质:①奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反•②若f (x)为偶函数,贝U f( x) f (x) f (| x |).③若奇函数f(x)定义域中含有0,则必有f(0) 0.④奇函数的图象关于原点对称;偶函数的图象关于y轴对称.二.函数的单调性1. 函数单调性的定义:(1)如果函数f x对区间D内的任意x-! ,x2,当x1 x2时都有f % f x2,则f x在D内是增函数;当x1 x2时都有f为f x2,则f x在D内是减函数.(2)设函数y f (x)在某区间D内可导,若f X 0,则y f (x)在D内是增函数;若f x 0,则y f (x)在D内是减函数.2•单调性的定义的等价形式:(1)设x1 ,x2 a,b,那么匚勺——^-x^ 0 f x在a,b上是增函数;x1 x2(2) --------------------------------------- 设x1 ,x2 a,b,那么f x2 0 f x 在a,b 上是减函数;x1 x23.证明或判断函数单调性的方法:(1) 定义法:设元作差变形判断符号给出结论•其关键是作差变形,为了便于判断差的符号,通常将差变成因式连乘积、平方和等形式,再结合变量的范围,假设的两个变量的大小关系及不等式的性质作出判断;⑵复合函数单调性的判断方法:即“同增异减”法,即内层函数和外层函数的单调性相同,则复合函数为增函数;若相反,则复合函数为减函数•解决问题的关键是区分好内外层函数,掌握常用基本函数的单调性;(3)图象法:利用数形结合思想,画出函数的草图,直接得到函数的单调性;(4)导数法:利用导函数的正负来确定原函数的单调性,是最常用的方法.(5)利用常用结论判断:①奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内有相反的单调性;②互为反函数的两个函数具有相同的单调性;③在公共定义域内,增函数f(x)增函数g(x)是增函数;减函数f(x)减函数g(x)是减函数;增函数f (x)减函数g(x)是增函数;减函数f (x)增函数g(x)是减函数;④复合函数法:复合函数单调性的特点是同增异减,特别提醒:求单调区间时,勿忘定义域,三.函数的周期性.(1)类比“三角函数图像”得:①若y f (x)图像有两条对称轴x a,x b(a b),则y f (x)必是周期函数,且一周期为T 2|a b| ;②若y f (x)图像有两个对称中心A(a,O), B(b,O)(a b),则y f(x)是周期函数,且一周期为T 2|a b| ;③如果函数y f (x)的图像有一个对称中心A(a,O)和一条对称轴x b(a b),则函数y f(x)必是周期函数,且一周期为T 4|a b| ;(2)由周期函数的定义“函数f(x)满足f x f a x (a 0),则f(x)是周期为a的周期函数”得:函数f (x)满足 f x f a x,则f(x)是周期为2a的周期函数。

必修一函数的单调性题型归纳

必修一函数的单调性题型归纳

必修一函数的单调性题型归纳函数的单调性与最值函数单调性的性质可以分为增函数和减函数。

对于属于定义域I内某个区间上的任意两个自变量的值x1,x2,当x1f(x2),则函数为减函数。

此外,函数的单调性还有以下性质:函数f(x)与函数-f(x)的单调性相反;当f(x)恒为正或恒为负时,函数f(x1)-f(x2)0,函数kf(x)与函数f(x)具有相同的单调性(如果k0,则函数f(x)与函数f(-x)具有相同的单调性。

对于复合函数,判断其单调性需要使用同增异减的方法。

在证明单调性时,可以使用定义法证明单调性的等价形式:设x1,x2∈[a,b],x1≠x2,那么(x1-x2)(f(x1)-f(x2))>0,当且仅当f(x)在[a,b]上是增函数;(x1-x2)(f(x1)-f(x2))<0,当且仅当f(x)在[a,b]上是减函数。

例1:证明函数f(x)=x^2在R上是增函数。

解:对于任意x1,x2∈R,且x10,(f(x1)-f(x2))=(x1^2-x2^2)=(x1+x2)(x1-x2)>0,因此f(x)在R上是增函数。

例2:求函数f(x)=2x/(1-x)在(-1,+∞)内的单调性。

解:当x∈(-1,1)时,f(x)为增函数;当x>1时,f(x)为减函数。

因此,f(x)在(-1,+∞)内的单调性为:增-减。

例3:设y=f(x)的单增区间是(2,6),求函数y=f(2-x)的单调区间。

解:令u=2-x,则x=2-u,代入y=f(2-x)得y=f(u),即y=f(2-x)=f(u)。

因为y=f(x)在(2,6)上单增,所以u=2-x∈(2,4]。

因此,y=f(2-x)在[2,4)上为增函数,在(4,6)上为减函数,单调区间为:增-减。

上的增函数,且f(3)>1,解不等式f(x)>2的解集.题型二、比较函数值的大小例4、已知函数y=f(x)在[0.+∞)上是减函数,试比较f(1)与f(a-a+1)的大小。

覃巨石:高一数学必修一函数练习题总汇(三份)

覃巨石:高一数学必修一函数练习题总汇(三份)

高中数学必修一函数练习题一一、选择题:(本题共12题,每小题5分,满分60分) 1.若a 、b 、c ∈R +,则3a =4b =6c,则( )A .b ac 111+= B .b ac 122+=C .ba c 221+=D .ba c 212+=2.集合}5,4,3,2,1{},1,0,2{=-=N M ,映射N M f →:,使任意M x ∈,都有)()(x xf x f x ++是奇数,则这样的映射共有( )A .60个B .45个C .27个D .11个3.已知()1a x f x x a -=--的反函数...f -1(x )的图像的对称中心是(—1,3),则实数a 等于( )A .2B .3C .-2D .-44.已知()|log |a f x x =,其中01a <<,则下列不等式成立的是( )A .11()(2)()43f f f >>B .11(2)()()34f f f >>C .11()()(2)43f f f >>D .11()(2)()34f f f >>5.函数f (x )=1-x +2 (x ≥1)的反函数是( )A .y =(x -2)2+1 (x ∈R)B .x =(y -2)2+1 (x ∈R)C .y =(x -2)2+1 (x ≥2)D .y =(x -2)2+1 (x ≥1)6.函数y =lg(x 2-3x +2)的定义域为F ,y =lg(x -1)+lg(x -2)的定义域为G ,那么 ( )A .F ∩G=∅B .F=GC .FGD .GF7.已知函数y =f (2x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是( )A .(0,+∞)B .(0,1)C .[1,2]D .[2,4]8.若()()25log 3log 3xx-≥()()25log 3log 3yy---,则( )A .x y -≥0B .x y +≥0C .x y -≤0D .x y +≤0 9.函数)),0[(2+∞∈++=x c bx x y 是单调函数的充要条件是( )A .0≥bB .0≤bC .0<bD .0>b 10.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞11.将进货单价为80元的商品按90元一个出售时,能卖出400个,根据经验,该商品若每个涨(降)1元,其销售量就减少(增加)20个,为获得最大利润,售价应定为 ( )A .92元B .94元C .95元D .88元12.某企业2002年的产值为125万元,计划从2003年起平均每年比上一年增长20%,问哪一年这个企业的产值可达到216万元( )A .2004年B .2005年C .2006年D .2007年二、填空题:(本题共4小题,每小题4分,满分16分) 13.函数xxy +=12[),1((+∞-∈x ]图象与其反函数图象的交点坐标为 . 14.若4log 15a<(0a >且1)a ≠,则a 的取值范围是 . 15.lg25+32lg8+lg5·lg20+lg 22= .16.已知函数221)(x x x f +=,那么=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++41)4(31)3(21)2()1(f f f f f f f ____________.三、解答题:(本题共6小题,满分74分)17.(本题满分12分)设A={x∈R|2≤x ≤π},定义在集合A上的函数y=log a x (a>0,a≠1)的最大值比最小值大1,求a的值.18.(本题满分12分)已知f(x)=x2+(2+lg a)x+lg b,f(-1)=-2且f(x)≥2x恒成立,求a、b的值.19.(本题满分12分)“依法纳税是每个公民应尽的义务”,国家征收个人工资、薪金所得税是分段计算的:总收入不超过800元的,免征个人工资、薪金所得税;超过800元部分需征税,设纳税所得额(所得额指月工资、薪金中应纳税的部分)为x,x=全月总收入-800(元),税率见下表:(1)若应纳税额为f(x),试用分段函数表示1~3级纳税额f(x)的计算公式;(2)某人2004年10月份工资总收入为4000元,试计算这个人10月份应纳个人所得税多少元?20.(本题满分12分)设函数f(x) =21+x+lgxx+-11.(1)试判断函数f(x)的单调性,并给出证明;(2)若f(x)的反函数为f-1 (x) ,证明方程f-1 (x)= 0有唯一解.21.(本题满分13分)某地区上年度电价为0.80元/kW·h,年用电量为a kW·h.本年度计划将电价降到0.55元/kW·h 至0.75元/kW·h之间,而用户期望电价为0.4元/kW·h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k).该地区电力的成本为0.3元/kW·h.(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系式.(2) 设k =0.2a ,当电价最低定为多少时,仍可保证电力部门的收益比上年至少增长20%? (注:收益=实际用电量×(实际电价-成本价)).22.(本小题满分13分)已知.0>c 设P :函数xc y =在R 上单调递减.Q :不等式1|2|>-+c x x 的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围.参考答案三、解答题:(本题共6小题,满分74分)17.解析: a >1时,y =log a x 是增函数,log a π-log a 2=1,即log a2π=1,得a =2π.0<a <1时,y =log a x 是减函数,log a 2-log a π=1,即log aπ2=1,得a =π2. 综上知a 的值为2π或π2. 18.解析:由f (-1)=-2得:1-(2+lg a )+lg b =-2即lg b =lg a -1①101=a b 由f (x )≥2x 恒成立,即x 2+(lg a )x +lg b ≥0, ∴lg 2a -4lg b ≤0, 把①代入得,lg 2a -4lg a +4≤0,(lg a -2)2≤0 ∴lg a =2,∴a =100,b =1019.解:(1)依税率表,有[[13.)0,0(,14.4(0,)(1,)5+∞ ,15.3,16.27]] 第一段:x ·5%第二段:(x -500)·10%+500·5% 第三段:(x -2000)·15%+1500·10%+500·5%即:f (x )=⎪⎩⎪⎨⎧≤<+-≤<+-≤<)50002000( 175)2000(15.0)2000500( 25)500(1.0)5000( 05.0x x x x x x(2)这个人10月份纳税所得额 x =4000-800=3200f (3200)=0.15(3200-2000)+175=355(元) BBACC DDBAC CC 答:这个人10月份应缴纳个人所得税355元.20.解析:(1)由).1,1()(02011-⎪⎩⎪⎨⎧≠+>+-的定义域为解得函数x f x x x)11lg 11(lg )2121()()(,11:1122122121x x x x x x x f x f x x +--+-++-+=-<<<-则设 )1)(1()1)(1(lg)2)(2(21212121x x x x x x x x +--++++-=.又∵,0,0)2)(2(2121<->++x x x x).()(0)()(.0)1)(1()1)(1(lg 111)1)(1()1)(1(0,0)1)(1(,0)1)(1(,0)2)(2(1212212121122121212121212121x f x f x f x f x x x x x x x x x x x x x x x x x x x x x x x x <<-∴<+--+⇒<--+--+=+--+<∴>+->-+<++-∴即又故函数f(x)在区间(-1,1)内是减函数.(2)这里并不需要先求出f (x)的反函数f -1(x),再解方程f -1(x)=0∵0)(21,0)21(,21)0(11===∴=--x f x f f 是方程即的一个解.若方程f -1(x )=0还有另一解x 021≠,则.0)(1=-x f)0(f 又由反函数的定义知21≠,这与已知矛盾.故方程f-1(x)=0有唯一解.21.解析:(1)设下调后的电价为x 元/k W·h ,用电量增至(4.0-x k+a )依题意知,y=(4.0-x k+a )(x -0.3),(0.55≤x ≤0.75)(2)依题意有 ⎪⎩⎪⎨⎧≤≤+⨯-⨯≥-+-75.055.0%)201()]3.08.0([)3.0)(4.02.0(x a x a x a整理得⎩⎨⎧≤≤≥+-75.055.003.01.12x x x 解此不等式得0.60≤x ≤0.75答:当电价最低定为0.60元/k W·h ,仍可保证电力部门的收益比去年至少增长20%. 22.解析:函数xc y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+ ∵⎩⎨⎧<≥-=-+,2,2,2,22|2|c x c c x c x c x x).,1[]21,0(.1,,.210,,.21121|2|.2|2|+∞⋃≥≤<>⇔>⇔>-+∴-+=∴的取值范围为所以则正确且不正确如果则不正确且正确如果的解集为不等式上的最小值为在函数c c Q P c Q P c c R c x x c R c x x y高一数学必修一函数练习二1、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(,()g x =; ⑸21)52()(-=x x f ,52)(2-=x x f 。

高中数学必修一第四章指数函数与对数函数考点题型与解题方法(带答案)

高中数学必修一第四章指数函数与对数函数考点题型与解题方法(带答案)

高中数学必修一第四章指数函数与对数函数考点题型与解题方法单选题1、若2x =3,2y =4,则2x+y 的值为( ) A .7B .10C .12D .34 答案:C分析:根据指数幂的运算性质直接进行求解即可. 因为2x =3,2y =4,所以2x+y =2x ⋅2y =3×4=12, 故选:C2、已知2a =5,log 83=b ,则4a−3b =( ) A .25B .5C .259D .53 答案:C分析:根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 因为2a=5,b =log 83=13log 23,即23b=3,所以4a−3b=4a 43b=(2a )2(23b )2=5232=259.故选:C.3、已知实数a,b ∈(1,+∞),且log 2a +log b 3=log 2b +log a 2,则( ) A .a <√b <b B .√b <a <b C .b <√a <a D .√a <b <a 答案:B分析:对log 2a −log a 2<log 2b −log b 2,利用换底公式等价变形,得log 2a −1log 2a<log 2b −1log 2b,结合y =x −1x 的单调性判断b <a ,同理利用换底公式得log 2a −1log 2a<log 3b −1log 3b,即log 2a >log 3b ,再根据对数运算性质得log 2a >log 2√b ,结合y =log 2x 单调性, a >√b ,继而得解. 由log 2a +log b 3=log 2b +log a 2,变形可知log 2a −log a 2<log 2b −log b 2, 利用换底公式等价变形,得log 2a −1log2a<log 2b −1log 2b , 由函数f (x )=x −1x 在(0,+∞)上单调递增知,log 2a <log 2b ,即a <b ,排除C ,D ;其次,因为log 2b >log 3b ,得log 2a +log b 3>log 3b +log a 2,即log 2a −log a 2>log 3b −log b 3,同样利用f (x )=x −1x的单调性知,log 2a >log 3b ,又因为log 3b =log √3√b >log 2√b ,得log 2a >log 2√b ,即a >√b ,所以√b <a <b . 故选:B.4、设函数f(x)=ln|2x +1|−ln|2x −1|,则f (x )( )A .是偶函数,且在(12,+∞)单调递增B .是奇函数,且在(−12,12)单调递减 C .是偶函数,且在(−∞,−12)单调递增D .是奇函数,且在(−∞,−12)单调递减答案:D分析:根据奇偶性的定义可判断出f (x )为奇函数,排除AC ;当x ∈(−12,12)时,利用函数单调性的性质可判断出f (x )单调递增,排除B ;当x ∈(−∞,−12)时,利用复合函数单调性可判断出f (x )单调递减,从而得到结果.由f (x )=ln |2x +1|−ln |2x −1|得f (x )定义域为{x |x ≠±12},关于坐标原点对称,又f (−x )=ln |1−2x |−ln |−2x −1|=ln |2x −1|−ln |2x +1|=−f (x ), ∴f (x )为定义域上的奇函数,可排除AC ;当x ∈(−12,12)时,f (x )=ln (2x +1)−ln (1−2x ),∵y =ln (2x +1)在(−12,12)上单调递增,y =ln (1−2x )在(−12,12)上单调递减, ∴f (x )在(−12,12)上单调递增,排除B ;当x ∈(−∞,−12)时,f (x )=ln (−2x −1)−ln (1−2x )=ln 2x+12x−1=ln (1+22x−1), ∵μ=1+22x−1在(−∞,−12)上单调递减,f (μ)=lnμ在定义域内单调递增,根据复合函数单调性可知:f (x )在(−∞,−12)上单调递减,D 正确.故选:D.小提示:本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据f (−x )与f (x )的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.5、已知函数f(x)={a x ,x <0(a −2)x +3a,x ≥0,满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,则a 的取值范围是( )A .a ∈(0,1)B .a ∈[34,1)C .a ∈(0,13]D .a ∈[34,2)答案:C分析:根据条件知f(x)在R 上单调递减,从而得出{0<a <1a −2<03a ≤1,求a 的范围即可.∵f(x)满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,∴f(x)在R 上是减函数,∴{0<a <1a −2<0(a −2)×0+3a ≤a 0,解得0<a ≤13, ∴a 的取值范围是(0,13]. 故选:C .6、2021年10月16日,搭载神舟十三号载人飞船的长征二号F 遥十三运载火箭,在酒泉卫星发射中心成功发射升空,载人飞船精准进入预定轨道,顺利将3名宇航员送入太空,发射取得圆满成功.已知在不考虑空气阻力和地球引力的理想状态下,可以用公式v =v 0⋅ln Mm 计算火箭的最大速度v(m /s ),其中v 0(m /s )是喷流相对速度,m(kg )是火箭(除推进剂外)的质量,M(kg )是推进剂与火箭质量的总和,Mm 称为“总质比”.若某型火箭的喷流相对速度为1000m /s ,当总质比为625时,该型火箭的最大速度约为( )(附:lge ≈0.434,lg2≈0.301)A .5790m /sB .6219m /sC .6442m /sD .6689m /s 答案:C分析:根据对数的换底公式运算可得结果. v =v 0 ln Mm =1000×ln625=1000×4lg5lg e=1000×4(1−lg2)lg e≈6442m/s .故选:C .7、荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把(1+1%)365看作是每天的“进步”率都是1%,一年后是1.01365≈37.7834;而把(1−1%)365看作是每天“退步”率都是1%,一年后是0.99365≈0.0255.若“进步”的值是“退步”的值的100倍,大约经过(参考数据:lg 101≈2.0043,lg 99≈1.9956) ( )天.A .200天B .210天C .220天D .230天 答案:D分析:根据题意可列出方程100×0.99x =1.01x ,求解即可.设经过x 天“进步”的值是“退步”的值的100倍,则100×0.99x=1.01x,即(1.010.99)x =100,∴x =log 1.010.99100=lg 100lg 1.010.99=lg 100lg 10199=2lg 101−lg 99 ≈22.0043−1.9956=20.0087≈230.故选:D . 8、已知函数f(x)=11+2x,则对任意实数x ,有( )A .f(−x)+f(x)=0B .f(−x)−f(x)=0C .f(−x)+f(x)=1D .f(−x)−f(x)=13 答案:C分析:直接代入计算,注意通分不要计算错误.f (−x )+f (x )=11+2−x +11+2x =2x1+2x +11+2x =1,故A 错误,C 正确; f (−x )−f (x )=11+2−x−11+2x =2x1+2x −11+2x =2x −12x +1=1−22x +1,不是常数,故BD 错误; 故选:C . 多选题9、已知函数f (x )=lg (x 2+ax −a −1),下列结论中正确的是( ) A .当a =0时,f (x )的定义域为(−∞,−1)∪(1,+∞) B .f (x )一定有最小值C .当a =0时,f (x )的值域为RD .若f (x )在区间[2,+∞)上单调递增,则实数a 的取值范围是{a |a ≥−4} 答案:AC分析:A 项代入参数,根据对数型函数定义域求法进行求解;B 项为最值问题,问一定举出反例即可;C 项代入参数值即可求出函数的值域;D 项为已知单调性求参数范围,根据二次函数单调性结合对数函数定义域求解即可.对于A,当a=0时,f(x)=lg(x2−1),令x2−1>0,解得x<−1或x>1,则f(x)的定义域为(−∞,−1)∪(1,+∞),故A正确;对于B、C,当a=0时,f(x)=lg(x2−1)的值域为R,无最小值,故B错误,C正确;对于D,若f(x)在区间[2,+∞)上单调递增,则y=x2+ax−a−1在[2,+∞)上单调递增,且当x=2时,y> 0,则{−a2≤24+2a−a−1>0,解得a>−3,故D错误.故选:AC.10、已知函数f(x)=3x−3−x,则()A.f(x)的值域为RB.f(x)是R上的增函数C.f(x)是R上的奇函数D.f(x)有最大值答案:ABC分析:g(x)=3x∈(0,+∞),而ℎ(x)=−3−x∈(−∞,0)得到f(x)的值域为R,判断A正确,D错误,根据增函数加增函数还是增函数进行判断B选项,根据函数奇偶性定义判断得到C选项.g(x)=3x∈(0,+∞),而ℎ(x)=−3−x∈(−∞,0),所以f(x)=3x−3−x值域为R,A正确,D错误;因为g(x)=3x是递增函数,而ℎ(x)=−3−x是递增函数,所以f(x)=3x−3−x是递增函数,B正确;因为定义域为R,且f(−x)=3−x−3x=−f(x),所以f(x)是R上的奇函数,C正确;故选:ABC11、函数f(x)=2x+a2x(a∈R)的图象可能为()A.B.C.D.答案:ABD解析:根据函数解析式的形式,以及图象的特征,合理给a赋值,判断选项.当a=0时,f(x)=2x,图象A满足;当a=1时,f(x)=2x+1,f(0)=2,且f(−x)=f(x),此时函数是偶函数,关于y轴对称,图象B满足;2x,f(0)=0,且f(−x)=−f(x),此时函数是奇函数,关于原点对称,图象D满当a=−1时,f(x)=2x−12x足;图象C过点(0,1),此时a=0,故C不成立.故选:ABD小提示:思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 填空题12、里氏震级M 的计算公式为:M =lgA −lgA 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则此次地震的震级为_________级. 答案:6分析:将A =1000,A 0=0.001代入等式M =lgA −lgA 0计算即可得解.将A =1000,A 0=0.001代入等式M =lgA −lgA 0得M =lg1000−lg0.001=lg106=6. 所以答案是:6.13、已知函数f (x )=x 2−2|x |−1,若关于x 的方程f (x )=x +m 有四个根,则实数m 的取值范围为______. 答案:(−54,−1)分析:分离变量,画出特定函数的图像即可.由f (x )=x +m ,得m =f (x )−x =x 2−2|x |−x −1 令g (x )=x 2−2|x |−x −1={x 2−3x −1,x ≥0x 2+x −1,x <0,画出图像由图可知,当−54<m <−1时,方程m =f (x )−x 有四解, 即方程f (x )=x +m 有四个根. 故答案为:(−54,−1)14、已知log a x =2,log b x =3,log c x =5,则log abc x =______ 答案:3031分析:根据换底公式得到log x a =12,log x b =13,log x c =15,进而求出log x abc ,再用换底公式求出log abc x . 由log a x =2,log b x =3,log c x =5得:log x a =12,log x b =13,log x c =15,log x abc =log x a +log x b +log x c =12+13+15=3130,所以log abc x =3031所以答案是:3031解答题15、数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的素养.因为运算,数的威力无限;没有运算,数就只是一个符号.对数运算与指数幂运算是两类重要的运算.(1)对数的运算性质降低了运算的级别,简化了运算,在数学发展史上是伟大的成就.对数运算性质的推导有很多方法.请同学们根据所学知识推导如下的对数运算性质:如果a >0,且a ≠1,M >0,那么log a M n =nlog a M (n ∈R );(2)请你运用上述对数运算性质计算lg3lg4(lg8lg9+lg16lg27)的值; (3)因为210=1024∈(103,104),所以210的位数为4(一个自然数数位的个数,叫做位数).请你运用所学过的对数运算的知识,判断20192020的位数.(注lg2019≈3.305) 答案:(1)见解析(2)1712 (3)20192020的位数为6677解析:(1)根据指数与对数的转换证明即可.(2)根据对数的运算性质将真数均转换成指数幂的形式再化简即可. (3)分析lg20192020的值的范围再判断位数即可. (1)方法一: 设x =log a M 所以M =a x所以M n =(a x )n =a nx所以log a M n =nx =nlog a M ,得证.设x=nlog a M所以xn=log a M所以a xn=M所以a x=M n所以x=log a M n所以nlog a M=log a M n方法三:因为a log a M n=M na nlog a M=(a log a M)n=M n 所以a log a M n=a nlog a M所以log a M n=nlog a M得证.(2)方法一:lg3 lg4(lg8lg9+lg16lg27)=lg3lg22(lg23lg32+lg24lg33) =lg32lg2(3lg22lg3+4lg23lg3)=lg32lg2⋅17lg26lg3=1712.方法二:lg3 lg4(lg8lg9+lg16lg27)=log43(log98+log2716) =log223(log3223+log3324)=12log23(32log32+43log32)=12log23⋅176log32=1712.设10k<20192020<10k+1,k∈N∗所以k<lg20192020<k+1所以k<2020lg2019<k+1所以k<2020×3.305<k+1所以6675.1<k<6676.1因为k∈N∗所以k=6676所以20192020的位数为6677方法二:设20192020=N所以2020lg2019=lgN所以2020×3.305=lgN所以lgN=6676.1所以N=106676.1=100.1×106676因为1<100.1<10,所以N有6677位数,即20192020的位数为6677小提示:本题主要考查了对数的运算以及利用对数的运算求解数字位数的问题,需要取对数分析对数值进行分析,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1集合题型1:集合的概念,集合的表示1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .},01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( )A .()()A CBC U I UB .()()A B AC U I U C .()()A B B C U I UD .()A B C U I 4.下面有四个命题:(1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ; (3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; 其中正确命题的个数为( )A .0个B .1个C .2个D .3个题型2:集合的运算例1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( D )A .1B .1-C .1或1-D .1或1-或0例2. 已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B A ⊆,求m 的取值范围。

解:当121m m +>-,即2m <时,,B φ=满足B A ⊆,即2m <;当121m m +=-,即2m =时,{}3,B =满足B A ⊆,即2m =;当121m m +<-,即2m >时,由B A ⊆,得12215m m +≥-⎧⎨-≤⎩即23m <≤;∴3≤m变式:1.设222{40},{2(1)10}A x x x B x x a x a =+==+++-=,其中x R ∈,如果A B B =I ,求实数a 的取值范围。

A BC2.集合{}22|190A x x ax a =-+-=,{}2|560B x x x =-+=,{}2|280C x x x =+-= 满足,A B φ≠I ,,A C φ=I 求实数a 的值。

3.设U R =,集合{}2|320A x x x =++=,{}2|(1)0B x x m x m =+++=;若φ=B A C U I )(,求m 的值。

2.函数题型1.函数的概念和解析式例1.判断下列各组中的两个函数是同一函数的为( )⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x()F x =⑸21)52()(-=x x f ,52)(2-=x x f 。

A .⑴、⑵B .⑵、⑶C .⑷D .⑶、⑸例2.已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A .1B .1或32 C .1,32或 D例3.已知2211()11x x f x x --=++,则()f x 的解析式为( ) A .21x x + B .212x x +- C .212x x + D .21x x+-变式:1.设函数()23,(2)()f x x g x f x =++=,则()g x 的表达式是( )A .21x +B .21x -C .23x -D .27x +2.已知)0(1)]([,21)(22≠-=-=x xx x g f x x g ,那么)21(f 等于( ) A .15 B .1 C .3 D .30 3.12,x x 是关于x 的一元二次方程22(1)10x m x m --++=的两个实根,又2212y x x =+,求()y f m =的解析式及此函数的定义域。

4.若函数234(0)()(0)0(0)x x f x x x π⎧->⎪==⎨⎪<⎩,则((0))f f = .题型2 定义域和值域 例1.函数0y =____________例2+)1定义域是[]-23,,则y f x =-()21的定义域是( ) A .[]052, B. []-14, C. []-55, D. []-37,例3(1)函数2y = )A .[2,2]-B .[1,2]C .[0,2] D.[(2)函数222(03)()6(20)x x x f x x x x ⎧-≤≤⎪=⎨+-≤≤⎪⎩的值域是( )A .RB .[)9,-+∞C .[]8,1-D .[]9,1- 例4若函数234y x x =--的定义域为[0,]m ,值域为25[4]4--,,则m 的取值范围是( ) A .(]4,0 B .3[]2,4C .3[3]2, D .3[2+∞,) 变式:1.求下列函数的定义域 (1)y =(2)11122--+-=x x x y(3)xx y ---=111112.求下列函数的值域(1)x x y -+=43 (2)34252+-=x x y (3)x x y --=21 3.利用判别式方法求函数132222+-+-=x x x x y 的值域。

题型3 函数的基本性质 一.函数的单调性与最值例1.已知函数[]2()22,5,5f x x ax x =++∈-.① 当1a =-时,求函数的最大值和最小值;② 求实数a 的取值范围,使()y f x =在区间[]5,5-上是单调函数。

变式:1.若函数()2f x a x b =-+在[)0,x ∈+∞上为增函数,则实数,a b 的取值范围是 。

2.已知5)2(22+-+=x a x y 在区间(4,)+∞上是增函数,则a 的范围是( ) A .2a ≤- B .2a ≥-C .6-≥aD .6-≤a二。

函数的奇偶性例题1:.已知函数是奇函数,则常数=a解法一:Θf(x)是奇函数,定义域为R∴f(0)=0 即 0141=++a ∴=a 21-例题2:.已知函数b a bx ax x f +++=3)(2是偶函数,定义域为[]a a 2,1-, 则=)0(f (C )141)(++=x a x fA. B. C. 1 D. -1例题3.已知2)(35++-=bx ax x x f ,且17)5(=-f ,则)5(f 的值为( A ) A .-13 B .13 C .-19 D .19 练习.已知53()5(,,)f x ax bx cx a b c =+++是常数,且(5)9f =,则(5)f -的值为 1 .(2)已知)(x f 为R 上的奇函数,且0>x 时2()241f x x x =-++,则(1)f -=____3- __ 例题5:若定义在R 上的函数)(x f 满足:对任意R x x ∈21,,有1)()()(2121++=+x f x f x x f , 下列说法一定正确的是(C )A 、)(x f 是奇函数B 、)(x f 是偶函数C )(x f +1是奇函数D 、)(x f +1是偶函数练习:已知函数()y f x =的定义域为R ,且对任意,a b R ∈,都有()()()f a b f a f b +=+,求证:(1)函数()y f x =是奇函数.(2)函数是减函数证明: 由)0()()(),()()()()()(f x f x f x f x f x x f b f a f b a f =-+-+=-+=+即得是奇函数函数即得令)()()(0)0(),0()0()00(0x f y x f x f f f f f b a =∴-=-∴=+=+==函数的单调性证明函数单调性的步骤:第一步:设x 1、x 2∈给定区间,且x 1<x 2; 第二步:计算f (x 1)-f (x 2)至最简; 第三步:判断差的符号; 第四步:下结论.例题2. 函数2y x bx c =++((,1))x ∈-∞是单调函数时,b 的取值范围 ( ).A .2b ≥-B .2b ≤-C .2b >-D . 2b <- 练习:(1)若函数1)12(2+-+=x a x y 在区间(-∞,2]上是减函数,则实数a 的取值范围是(B)A .[-23,+∞) B .(-∞,-23] C .[25,+∞) D .(-∞,25](2) 函数2()2f x x x =-的单调增区间是( )3132A. (,1]-∞B. [1,)+∞C. RD.不存在(3) 在区间(,0)-∞上为增函数的是( )A .2y x =-B .2y x=C .||y x =D .2y x =-例题: 已知()f x 是定义在(1,1)-上的减函数,且(2)(3)0f a f a ---<. 求实数a 的取值范围.练习 (07福建)已知函数()x f 为R 上的减函数,则满足()11f x f <⎪⎪⎭⎫ ⎝⎛的实数x 的取值范围是(C )A.()1,1-B.()1,0C.()()1,00,1Y -D.()()+∞-∞-,11,Y 函数的单调性例题1.已知定义域为()(),00,-∞+∞U 的偶函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()0x f x ⋅>的解集为 . ()()1,01,-+∞U 练习:(1)已知定义在R 上的偶函数()f x 在(]0,∝-上是减函数,若0)21(=f ,则不等0)(log 4>x f 的解集是),2()21,0(+∞Y(2)设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是(D )A 、{}|303x x x -<<>或B 、{}|303x x x <-<<或C 、{}|33x x x <->或D 、{}|3003x x x -<<<<或练习:已知函数22()3px f x q x +=-是奇函数,且5(2)3f =-.(1)求函数()f x 的解析式;(2)判断函数()f x 在(0,1)上的单调性,并加以证明.解:(1)∵()f x 是奇函数,∴)x (f )x (f -=-,………2分即x3q 2px x 3q 2px 22-+-=++,整理得:x 3q x 3q +-=+ ∴q=0 ………4分 又∵35)2(f -=,∴3562p 4)2(f -=-+=, 解得p=2 …………6分 ∴所求解析式为x 32x 2)x (f 2-+= …………………………………………7分(2)由(1)可得x 32x 2)x (f 2-+==)x1x (32+-,设1021<<<x x , 则由于)]x 1x 1()x x [(32)]x 1x ()x 1x [(32)x (f )x (f 1212112221-+-=+-+=- =2121212*********x x x x 1)x x (32)1x x 1)(x x (32]x x x x )x x [(32-⨯-=--=-+-………13分 因此,当1x x 021≤<<时,1x x 021<<, 从而得到0)x (f )x (f 21<-即,)x (f )x (f 21<∴()f x 在(0,1)上递增. ………………………15分。

相关文档
最新文档