力学性能检验.
钢管力学性能工艺性能检验报告
钢管力学性能工艺性能检验报告一、引言钢管是一种广泛应用于工程领域的材料,其力学性能和工艺性能的检验对于确保工程质量和安全至关重要。
本报告对一批钢管的力学性能和工艺性能进行了详细的检验和分析。
二、实验方法1.力学性能检验方法:-引伸计法测量材料的屈服强度、断口伸长率和断裂强度。
-硬度计测量材料的硬度。
-冲击试验测量材料的冲击韧性。
2.工艺性能检验方法:-焊接性能测试,可以通过断面观察、拉伸试验、硬度测量以及冲击试验等方法来评估钢管的焊缝质量。
-压力试验,对钢管进行内压和外压实施到一定压力下观察其破坏情况。
-管材的抗弯性能测试,通过将管材进行弯曲试验来评估其抗弯性能。
三、力学性能检验结果与分析1.屈服强度:通过引伸计法测量,得到平均值为XXXMPa,标准偏差为XXXX。
符合要求的屈服强度应大于规定值。
2.断口伸长率:通过引伸计法测量,得到平均值为XXX%,标准偏差为XXXX。
符合要求的断口伸长率应大于规定值。
3.断裂强度:通过引伸计法测量,得到平均值为XXXMPa,标准偏差为XXXX。
符合要求的断裂强度应大于规定值。
4.硬度:通过硬度计测量,得到平均值为XXXHRC,标准偏差为XXXX。
符合要求的硬度应在规定范围内。
5.冲击韧性:通过冲击试验测量,得到平均值为XXXJ,标准偏差为XXXX。
符合要求的冲击韧性应大于规定值。
根据以上结果分析可知,所测得的钢管的力学性能均符合要求,可满足工程实际应用的需求。
四、工艺性能检验结果与分析1.焊接性能:通过断面观察、拉伸试验、硬度测量以及冲击试验等多项检验方法评估钢管的焊缝质量。
经检验发现焊缝没有明显的缺陷、裂纹和气孔等问题,焊缝质量良好。
2.压力试验:对钢管进行内压和外压实施到规定压力下观察其破坏情况。
经试验发现钢管在规定压力下未发生破坏和泄漏现象,表明其具有良好的耐压性能。
3.抗弯性能:通过弯曲试验评估钢管的抗弯性能。
经试验发现钢管在规定弯曲角度下未发生断裂,表明其具有良好的抗弯性能。
金属材料力学性能检测
K为常数,通常取5.65或11.3,k=5.65时也称为短试样,此时的原始标 距应不少于15mm;k=11.3试样称为长试样 对于圆形试样,标距长度为工作直径d的5倍时为短试样,为10倍时为长 试样。但在特殊情况有关标准有规定时,也用4d或8d的试样
2 拉伸试样分类
物理意义是在于它反映了最大均匀变形的抗力
抗拉强度 — 是脆性材料选材的依据。 屈服强度与抗拉强度的比值σS / σb称为屈强比。 屈强比小,工程构件的可靠性高,说明即使外载荷或某些 意外因素使金属变形,也不至于立即断裂。但若屈强比过 小,则材料强度的有效利用率太低。
3.刚度
材料在外力作用下抵抗弹性变形的能力称为刚度。
塑性:指金属发生塑性变形而不被 破坏的能力。
载荷
作用在机件上的外力——载荷
静载荷 动载荷
静载荷:逐渐而缓慢地作用在工作上的力 如机床床身的压力、钢索的拉力
动载荷:包括冲击及交变载荷 如空气锤杆所受的冲击力、齿轮、弹簧
静拉伸试验(所加载荷为静载荷)
是一种较简单的力学性能试验,能够清楚地反映出材料受力 后所发生的弹性、弹塑性与断裂三个变形阶段的基本特性。 经拉伸试验对所测试的力学性能指标的测量稳定可靠,而且 理论计算方便,因此各国及国际组织都制定了完善的拉伸试 验方法标准,将拉伸试验方法列为力学性能试验中最基本、 最重要的试验项目。
布
氏
表示方法:硬度值+HBS(HBW)+D+F+t
硬 度
120HBS10/1000/30
压 痕
表示直径为10mm的钢球在1000kgf
载荷作用下保持30s测得的布氏硬度
值为120。
垫片力学性能检测
垫片的力学性能检验一:垫片的性能指标:为了确保垫片的质量到达国家标准的要求,有必要对影响垫片密封性能的压缩率、回弹率、密封泄漏率项目进行检验。
二:测试的原因和目的:垫片的质量不是表面就能看到的,常规检验只是外观和尺寸检验;对垫片内在的质量起决定作用的是垫片的压缩率、回弹率等性能指标。
而这些我们用肉眼是看不到的;只有通过力学性能检测,才能确认垫片的质量是否满足标准或现场的要求;所以垫片的理化性能检测尤为重要。
垫片的力学性能检验主要是压缩率、回弹率、泄露率。
垫片的压缩率及回弹率是评定垫片质量优劣的力学性能指标。
垫片在加载过程中的变形特性,是形成初始密封能力的重要条件,这与压缩率有很大关系,压缩率是垫片的重要性能指标,垫片压缩率过大,在正常安装预紧力下容易造成垫片结构破坏;垫片压缩率过小,使用时需要的初始安装预紧力较大,不易达到密封效果;而垫片的密封能力又主要取决于垫片的回弹能力或回弹率。
垫片的回弹率是垫片卸载后垫片恢复弹性的能力。
垫片的回弹率大,表明垫片的补偿能力强,密封效果好;一般来说,在满足压缩率要求的前提下,回弹率越高越好;而在满足回弹率标准要求的前提下,压缩率的测试值也是大些为好。
应选择密封性能好、压缩率适度且回弹率尽可能大的垫片。
泄漏率随垫片的压缩变形量而变化,具有较好的压缩回弹量的垫片,其密封性能也相应好一些;当然泄漏状况还与被密封介质的物性、工况条件、法兰密封面的粗糙程度、压紧应力以及垫片的基本特性、尺寸、加载卸载历程等诸多因素有关。
因此垫片的力学性能测试是非常重要的。
不同的垫片、不同的性能指标、不同制造标准做性能测试时试件的规格也不同;下面是根据标准整理一些主要垫片的数据(垫片的密封性能用泄漏率参数指标来衡量)试样名称试样制造标准试件规格压缩率回弹率应力松弛性能泄漏率管法兰用缠绕垫片GB/T4622JB/T90D-DN80 D-DN32 D-DN80柔性石墨金属波齿复合垫片GB/T19066 Φ120.5*Φ84*3.0Φ65.5*Φ50.5*2.5Φ120.5*Φ84*3.0大直径碳钢管法兰用缠绕垫片GB/T13403D-DN80 D-DN32 D-DN80管法兰用聚四氟乙烯包覆垫片SH3402HG20607HG20628GB/T13404外径*内经*厚度73*34*3外径*内经*厚度73*34*3外径*内经*厚度73*34*3管法兰用金属包覆垫片GB/T15601HG20609HG20630DN80 DN80 DN80管法兰用金属冲齿板柔性石墨复合垫GB/T19675 DN80PN2.0DN32PN2.0DN80PN2.0柔性石墨复合垫片HG20608HG20629JB/T6628正方形50*50长方形50*25DN80DN100四:抽样要求同一材料组合,同一公称压力等级的垫片亦以100片为一批,按上述规定的垫片规格和型式各抽取3片,没有试样规格的应按同一工艺制造足够数量的试样进行压缩、回弹性能、密封性能试验。
论金属材料力学性能检测的重要性
论金属材料力学性能检测的重要性辽宁大连116600摘要:改革后,在我国发展的背景下,带动了科学技术水平的进步,推动了我国各行业领域的进步。
金属材料是生产生活中最常用的材料之一,在社会发展中起着举足轻重的作用。
为了满足不同条件下的使用需求,就需要了解不同金属材料的各项力学性能,而拉伸试验、冲击试验、硬度试验等则是获得这些性能的有效手段。
这些试验的检测结果,可能受取样方向和位置、试样加工工艺、受力方向、加载速度、温度高低等因素的影响。
现通过识别可能影响结果的各种因素,并对其成因、影响程度、解决方法进行分析,力图减小这些因素的影响,确保金属材料拉伸试验结果的准确性和可靠性。
关键词:金属材料;拉伸试验;检测结果;影响因素引言金属材料原有的力学性能,就是人们最为熟知的机械性能,是指金属材料在受到各种外力作用的影响下对于形变或者是破坏产生抵抗的一种能力,也是各种金属材料进行不同形状制造和设计的重要依据。
通常而言,最为常用的机械性能指标包括了强度、硬度、冲击、韧性、塑性等各个方面。
为了保障金属材料的力学性能指标符合相关标准的具体要求,并为各种产品的制造提供基础支持,检测技术也随着技术要求的提高在不断发展变化。
检测试样是指在目标检测金属材料对象中切取合理数量的材料,在经过机床加工又或者是尚未经过机床加工但具备合格尺寸且满足具体实验工作要求的各种样品的统称。
取样和制备工作是否能得到科学有效的落实将会对金属材料力学性能指标的检测结果产生明显影响。
本文通过研究、探讨金属材料力学性能指标检测过程中试样的取样、制备和验收等各个环节的操作要点,以便为今后金属材料的力学性能指标检测的试样取样、制备工作实施优化提供参考。
1金属材料力学性能研究的重要性各类金属材料的应用体现在生产生活的各方面,人们根据自身需求的不同去探索不同的金属材料特性,从而保证每一种金属材料都能够物尽其用,切实解决人们的各种需求。
金属材料力学性能的研究对人类生产生活来说非常重要,具体体现在军事国防、居民生活以及企业生产三个方面,具体如下。
1 水泥物理力学性能检验
• • • • •
水泥取样方法:GB/T 12573-2008 水泥细度检验方法(筛析法): GB/T 1345-2005 水泥胶砂流动度测定方法:GB/T 2419-2005 水泥标准稠度用水量、凝结时间、安定性检验方法: GB/T1346-2011 水泥胶砂强度检验方法(ISO法):GB 17671-1999 水泥密度测定方法:GB/T 208-1994 水泥比表面积测定方法(勃氏法):GB/T 8074-2008 水泥化学分析:GB/T 176-2008 通用硅酸盐水泥:GB 175-2007
使用时注意:抗压夹具随着使用时间的增长,在做压力试验时其 强度值会逐步减少,因此在做好比对试验的前提下要注意更换, 日常使用时注意传压柱进行导向运动时垂直滑动而不发生摩擦和 晃动,上压板的球面应能自由滑动。
二、水泥胶砂强度检验方法( ISO法)
10 )试模:符合 JC/T726-2005《水泥胶砂试模》。重量: 6.25kg±0.25kg , 试模组装后模腔基本尺寸:长( A )为 160mm±0.8mm ,宽( B )为 40mm±0.2mm,深(C)为40.1mm±0.1mm,用前自检,日常使用注 意不要混用。 11)天平:精度应为±1g。 12)加水器:当使用自动滴管加225ml水时,滴定管的精度应为 225ml±1ml。
二、水泥胶砂强度检验方法( ISO法)
3、试验条件 1)试验室:试体成型试验室的温度应保持 20℃±2℃,相对湿度应 不低于50%。 2)养护箱:试体带模养护的养护箱或雾室温度保持在 20℃±1℃, 相对湿度不低于90%。 3)养护池:水的温度应在20℃±1℃。 养护池温度及试验室温、湿度每天至少记录一次,养护箱或雾室 的温度与相对湿度至少每4小时记录一次,在自动控制的情况下记 录次数可以酌减至一天二次。 6、胶砂配比: P· Ⅰ、 P· Ⅱ、 P· O 、 P· S 、 P· F 、 P· C 水泥每锅胶砂配比均为:中国 ISO标准砂 1350g±5g,水泥 450g±2g,水 225g±1g。 P· P(火山灰质硅酸盐)水泥每锅的砂及水泥的量不变,但加水量 必须按GB/T2419-2005《水泥胶砂流动度测定方法》测定其水泥的 流动度后来确定强度成型的加水量。(水泥胶砂流动度不小于 180mm,用0.01整倍数递增法)
水泥物理力学性能检验(整理后)
水泥物理力学性能检验杨利雄第一节水泥1.1基本知识1.1.1水泥的定义、用途及分类1、定义:凡细磨材料,加水后变为塑性浆体,既能在水中硬化又能在空气中硬化的水硬性胶凝材料统称为水泥。
2、用途:水泥属于无机水硬性胶凝材料,不仅可用于干燥环境中的工程,而且也可以用于潮湿环境及水中的工程,在建筑、交通、水利电力、能源矿山、国防、航空航天、农业等基础设施建筑工程中得到广泛应用。
3、分类:水泥的分类方法主要有以下两种。
按水泥的性能和用途分水泥按性能和用途分为通用水泥、专用水泥和特性水泥三大类,见表1.1-1.表1.1-1 水泥按性能和用途的分类(2)按水泥中主要水硬性物质分水泥按主要水硬性物质的分类见表1.1-2。
1.1.2水泥生产所用的原材料及主要化学组成1、原材料:硅酸盐系列水泥原材料分为生产硅酸盐水泥熟料的原材料、石膏和混合材料三类。
(1)硅酸盐系列水泥熟料的原材料①石灰石:石灰质原料采用天然石灰石、凝灰岩和贝壳等,主要提供水泥中的CaO。
②粘土:主要为黏土(或页岩、泥岩、粉砂岩、河泥等),其主要成分为SiO2,其次为Al2O3和少量Fe2O3。
③铁粉:铁矿粉采用赤铁矿,化学成分为Fe2O3,主要弥补黏土中铁质含量的不足。
(2)石膏:在生产水泥时,必须掺入适量石膏,以延缓水泥的凝结。
在硅酸盐水泥、普通硅酸盐水泥中石膏主要起缓凝作用;而在掺较多混合材料的水泥中,石膏还起激发混合材料活性的作用。
掺入的石膏主要为天然石膏、工业副产石膏(无水硫酸钙)等。
(3)混合材料:为了改善水泥的性能,调节水泥强度等级,提高水泥的产量,扩大水泥品种,降低成本,在生产水泥时加入的矿物质材料,称为混合材料。
混合材料分为活性混合材料和非活性混合材料两类,其种类、性能及常用品种见表1.1-3。
①粒化高炉矿渣。
它是高炉冶炼生铁的副产品,以硅酸钙和铝酸钙为主要成分的熔融物,经水淬成粒后的产品。
粒化高炉矿渣的化学成分主要为CaO、Al2O3 、SiO2 ,约占总质量的90%以上,另外还含有少量的MgO、Fe2O3 和一些硫化物。
铝合金金相组织检验与力学性能实验
实验1.31.4铝合金金相组织的观察及力学性能测定一、实验目的1. 巩固制备金相试样的方法与技术2. 了解各种加工工艺对铝合金显微组织以及力学性能(硬度)的影响二、实验内容1.对4种试样进行硬度测试本次试验采用的是TH320全洛氏硬度计。
洛氏硬度的试验原理:将压头(金刚石圆锥、钢球或硬质合金球)分两个步骤,在初试验力F 和主试验力F 先后作用下,压入试样表面,保持一定时间,卸除主试验方,保留初试验力,此时的压入深度为h ,在初试验力作用下的压入深度为h ,它们之差e (^h )来表示压痕深度的永久增量。
每压入0.002mm 为一个洛氏硬度单位。
°洛氏硬度试验原理图如图1所示样品测试面需要经过200号水砂纸磨光,以满足测试得粗糙度要求。
背面平整,测试面与背面没有明显歪斜。
测试过程中,总试验力的保持时间:5s ;主试验力卸除时间:2s 。
之所以选择5s 的总试验力保持时间,是考虑样品较软,但又没有明确的实验表明,铝合金样品在硬度测试过程中存在缓慢变形的明确说法,所以,选择居中的时间6至7s ,也是可以的。
本次实验所涉及的样品中内应当包括:铸态、固溶处理、固溶处理+轧制、固溶处理+轧制+时效,4种样品。
每个样品至少测试4点,第一点不计。
两相邻压痕中心之间的距离至少应为压痕直径的4倍,并且不应小于2mm ;任一压痕中心距离试样边缘的距离至少应为压痕直径的2.5倍,并且不应小于1mm 。
分别记录4种样品的硬度数据,并结合之后所观察得到的金相组织作出恰当分析。
2.制备、观察4种金相试样。
本次实验制备、显示一个样品,此样品是在之前的课程中制作的。
样品涉及4种工艺,具体参见下表: 工艺 编号 说明 铸造状态 1 每位学样品制备合格后, 固溶处理 2 除了察自己的样品,还需 固溶处理+轧制 3 要观察其他同学制备的其他固佑处J 效轧制+时 43种工艺的样品。
领取属于自己的铝合金样品后,按照金相样品制备的一般要求进行。
金属材料-力学性能及金相检验基础知识
拉伸曲线的类型
不同类型曲线上的上屈服强度和下 屈服强度(ReH和ReL)
塑性
• 是指在外力作用下,能引起金属永久变形而不发 生破断,在外力取消后仍能保持变形后的形状的 能力。 • 材料的塑性值也可以通过拉伸试验,在测得金属 材料强度的同时确定出来。通常塑性的高低用伸 长率(A、δ)和断面收缩率(Z、ψ)来衡量,其 单位为%。 • 伸长率表示拉断后试样的伸长量与原来标距长度 相比的百分数。 • 截面收缩率表示拉断后试样在断裂处的收缩面积 与原来横截面积相比的百分数。
压缩、弯曲、剪切试验
• 压缩试验与拉伸试验相似,只是受力方向相反。通常只用 于生铁、水泥等较脆的材料。抗压强度的符号是σbc ,单 位也是MPa(N/mm2)。 • 弯曲试验主要用于测定材料在弯曲力矩作用下的强度和塑 性,通常有两种加载方法:三点加载和四点加载,弯曲试 验的对象主要是对塑性变形很小或较脆的材料,在拉伸时 不易进行塑性变形测量的材料,如铸铁、硬质合金、工具 钢等,测量指标是抗弯强度和挠度。弯曲强度的符号是 σbb ,单位也是MPa(N/mm2),挠度符号是f,单位mm。 对于塑性很好的材料,弯曲试验没有什么意义,只在评定 材料工艺性能时进行冷弯试验,以观察其在弯曲到规定角 度时有无裂缝或断裂,借此评定材料的工艺质量,不进行 应力计算。试验方法是GB/T232《金属材料 弯曲试验方 法》。 • 剪切试验的对象是铆钉、销子等,其试验材料为塑性很好 的金属。剪切试验的目的是测出材料的最大错动力和相应 的应力,即剪切强度。
维氏硬度
• 表示方法:如,225HV1/20表示用1kgf(9.807N)试验力 保持20秒,测定的维氏硬度值为225。 • 对试样要求:试验面的制备要求较高,一般要求粗糙度不 大于0.2μm,但对于小负荷和显微维氏硬度试验,则要求 在0.1μm以下;而且试验面的加工也必须确保使表面产生 形变硬化。 • 优点:试验力可任意选择,可测厚薄不同的试样的厚度, 是测量最精确的一种试验方法。 • 缺点:试样制备与压痕测量较费时间,工作效率较低,只 适用于在试验室中进行,不适用大批量生产中的常规检验, 压痕较小,代表性差,受成分偏析和组织不均匀等缺陷影 响较大,因此所测硬度值的重复性差,分散度大。 • 虽然试验力可任意选择,硬度值可任意比较,但因压痕大 小不同,测量误差也不同,因此,在进行硬度值比较时, 应尽可能选择与原先测试那些试样硬度时相同的试验力。
力学性能检验规程
力学性能检验规程1.目的和适用范围为确保铸钢件和铸铁件力学性能符合产品标准的要求,明确力学性能试验程序和方法,特制定本文件。
本文件适用于本公司生产制造的力学性能检验。
2.引用文件GB/T228-2007金属材料拉伸试验室温试验方法GB/T229-1994金属夏比缺口冲击试验方法3.检验依据3.1在与顾客签订销售合同时,合同及技术协议中的各项技术要求均应成为出厂检验和试验的依据。
3.2按合同规则的图样及相关标准应是出厂检验和试验的依据。
3.3本文件第2章引用的各项文件均应成为出厂检验和试验的依据。
4.机械性能试验4.1打开试验软件,进入程序。
4.2新建试验:工具栏中点击“新建试验”,选择“拉伸试验”试验类型;选择“金属拉伸”试验;选择“圆形”试样类型;输入好相应组号点击确定,进入试验参数界面。
4.3输入试验参数:在“试验参数”栏中输入好直径.原始标距.引伸计标距等相观试验参数,输入完毕按键盘“Enter回车键”会根据直径的输入算出原始面积(要求试验人员了解,试验前参数相对应的试验后结果)。
4.4清零:控制“送油阀”,把作业台完全升起后再关闭“送油阀”由位移显示面板变化看出作业台的上升量,上伸过程中产生力值,需清零。
4.5装夹试样:在作业台定位状态下,调整钳口位置,装夹好试样。
4.6装夹引伸计需要用“引伸计”测变形,在装夹好试样后再装夹“引伸计一旦选择为“引伸计”后,在程序主界面〈速度显示面板〉下面会有“取下引伸计”提示。
!注意:检查〈试验参数〉中有无填入相应引伸计标距。
(标配引伸计标距为50mm,如不用引伸计则不必理会,系统默认为位移通道)4.7运行运行一切准备就绪后按“运行”开始试验。
人工控制“送油阀”加载。
!注意:观察主界面“力与变形曲线”,过了曲服后点击软件中“取下引伸计”后,方可把试样当中的“引伸计”卸掉。
(如果试验前没选择引伸计,而是以位移来测变形量,则不会出现该项)同时,如果程序设置了自动取下引伸计,则满足程序设定条件后,程序自动切换,并提示用户取下引伸计。
力学性能检验通用规程
力学性能检验通用规程1. 总则:本规程规定了压力容器所用钢材复检、焊接、试板力学性能检验和式样制备的要求,适用于钢材复验试样、产品焊接试板、焊接工艺评定、试板的制作和试样的制取及检2. 引用标准:本规程遵循下列标准,新标准公布实施后即以新标准为准。
GB/T228-2002《金属材料室温拉伸试验方法》GB/T229《金属夏比(V型缺口)冲击试验方法》GB232《金属材料弯曲试验方法》GB/T2975《钢及钢产品力学性能试验取样位置及试样制备》JB4726~4728《压力容器用钢锻件》JB4744《钢制压力容器产品焊接试板的力学性能检验》JB4708《钢制压力容器焊接工艺评定》3.原材料试样:3.1板材试样:3.1.1样坯取样位置、方向及规格:3.1.1.1钢板应在距边缘为板宽四分之一处切取样坯,见图1。
对于纵轧钢板,当产品标准没有规定取样方向时,应在钢板宽度1/4处切取横向样坯,如图2。
如钢板宽度不足, 样坯中心可以内移。
切取的样坯应做好标记移植。
3.1.1.2样坯的尺寸要保证从中切取足够数量的试样。
具体尺寸参照表1。
压制方向钢板压制方向图23.1.2试样和试样制备3.121切取试样时,必须防止试样金属因受热、加工硬化与扭曲变形而改变其内部组织的机械性能。
用气割法切取试样时,从样坯切割线到制成试样边缘,必须留出足够的加工余量,一般不小于20mm。
3.1.2.2钢板厚度小于或等于25mm时,拉力试样应制成板材试样,并保留原轧制表面, 试样形式及尺寸见图3,表2。
钢板厚度大于25mm时,可制成尽可能大的圆形试样,试样中心线尽可能接近板面<此时应尽量使试样头圆弧表面吻合与钢板表面,即在头部应保留不太显著的氧化皮,见图4,表3,表4。
77\ -1表矩形横截面比例试样(优先采用短试样,即k = 5.65 ;长试样则k = 11.3 ) mm注:1、Lo标距的标记应准确到土1%。
Lo +1.5-叮.2、试样原始横截面积So的测定应在试样标距两端及中间三处测量宽度和厚度,取用三处测得的最小横截面积。
力学性能试验
轴心抗压强度试验1、本试验方法适用于测定棱柱体混凝土试件的轴心抗压强度。
2、测定混凝土轴心抗压强度试验的试件应符合本标准第3章中的有关规定。
3、试验采用的试验设备应符合下列规定:1)轴心抗压强度试验所采用的压力试验机的精度应符合本标准4.3节的要求。
2)混凝土强度等级三C60时,试件周围应设防崩裂网罩。
当压力试验机上、下压板不符合本标准4.6.2条规定时,压力试验机上、下压板与试件之间应各垫以符合本标准第4.6节要求的钢垫板。
4、轴心抗压强度试验步骤应按下列方法进行:1)试件从养护地点取出后应及时进行试验,用干毛巾将试件表面与上下承压板面擦干净。
2)将试件直立放置在试验机的下压板或钢垫板上,并使试件轴心与下压板中心对准。
3)开动试验机,当上压板与试件或钢垫板接近时,调整球座,使接触均衡。
4)应连续均匀的加荷,不得有冲击。
所用加荷速度应符合本标准第6.0.4条中第3款的规定。
5)试件接近破坏而开始急剧变形时,应停止试验机油门,直至破坏。
然后记录破坏荷载。
5、试验结果计算及确定按下列方法进行:1)混凝土时间轴心抗压强度应按下式计算:Ff二—CP A式中f C P——混凝土轴心抗压强度(MPa);F—试件破坏荷载(N);A试件承压面积(mm2)。
混凝土轴心抗压强度计算值应精确至O.IMPa。
2)混凝土轴心抗压强度值的确定应符合本标准第6.0.5条中第2款的规定。
3)混凝土强度等级VC60时,用非标准试件测得的强度值均应乘以尺寸换算系数,其值为对200mm x200mm x400mm试件为1.05;对lOOmm x lOOmm x300mm试件为0.95.当混凝土强度等级三C60时,宜采用标准试件;使用非标准试件时,尺寸换算系数应由试验确定。
6、混凝土轴压抗压强度试验报告内容除应满足本标准第1.0.3条要求外,还应报告实测的混凝土轴心抗压强度值。
静力受压弹性模量试验1、本方法适用于测定棱性体试件的混凝土静力受压弹性模量(以下简称弹性模量)。
钢筋力学性能检测
目录1 总则2 术语、符号2.1术语2.2符号3 仪器设备4 操作规程4.1 一般规定4.2 钢筋力学性能检测4.3 钢筋焊接力学性能检测4.4 钢筋机械连接力学性能检测1 总则1.1 为贯彻建设部颁发的建设工程质量检测管理办法,结合我省实际情况,进一步提高和统一全省建筑工程材料见证取样检测中钢筋(含机械连接)的检测项目和试验操作程序,特制定本规程。
1.2 本规程适用于建筑工程材料见证取样检测中钢筋原材(如钢筋混凝土用热轧带肋钢筋、混凝土用热轧光圆钢筋、低碳钢热轧圆盘条、冷轧带肋钢筋、冷轧扭钢筋、冷拔螺旋钢筋等)、钢筋焊接(包括电阻点焊、闪光对焊、电渣压力焊、埋弧压力焊、电弧焊、气压焊等)以及钢筋机械连接的常规力学性能试验规程。
1.3 本规程涉及的钢筋(含机械连接)取样需由监理单位或建设单位认可,并采取切实有效的封样措施或同委托单位共同送至检测机构。
1.4 本规程规定的抽样数量应不小于该种产品应检测数量总和的30%,并至少不小于1组。
1.5 承担见证取样检测的机构必须同时具备以下条件:A.必须是取得省级以上技术监督部门计量认证的独立机构;B.检测机构应与所检工程的设计单位、监理单位、施工单位无隶属关系或其他利害关系;C. 必须具有健全、有效的管理体系和质量保证体系;D.必须有足够并且满足标准要求的仪器设备;E.必须有足够的并且持有山东省建设工程质量检测试验员上岗证书的人员。
1.6 钢筋(含机械连接)检测操作时,除遵守本规程外尚应符合国家和地方的现行有关技术标准的规定。
2.术语、符号2.1 术语2.1.1 标距:测量伸长用的试样圆柱或棱柱部分的长度。
2.1.2 原始标距(L0):施力前的试样标距。
2.1.3 断后标距(Lu):试样断裂后的标距。
2.1.4 平行长度(Lc):试样两头部或两夹持部分(部带头试样)之间平行部分的长度。
2.1.5 伸长:试验期间任一时刻原始标距(L0)的增量。
2.1.6 伸长率:原始标距的伸长与原始标距(L0)之比的百分率。
普通混凝土力学性能试验方法标准
4)、标准养护龄期为28d(搅拌加水开始计时)。
普通混凝土力学性能试验方法标准
2019/12/6
五、抗压强度试验
5.1 试验采用的试验设备应符合下列规 定
1. 混凝土立方体抗压强度试验所采用压力试验机应 符合本标准第4.3节的规定。
Hale Waihona Puke 普通混凝土力学性能试验方法标准
2019/12/6
3.2 振动台
1、振动台应符合《混凝土试验室用振动台》JG/T 3020中技术要求的规定。
2、应具有有效期内的计量检定证书。
普通混凝土力学性能试验方法标准
2019/12/6
3.3 压力试验机
1、压力试验机除应符合《液压式压力试验机 GB/T 3722 及《试验机通用技术要求 GB/T 2611 中技术要求外其测量精度为±1%试件破坏荷载应 大于压力机全量程的20%且小于压力机全量程的80%。
b. 试模应附着或固定在符合第4.2节要求的振动
台上,振动时试模不得有任何跳动,振动应持续到
表面出浆为止,不得过振。
普通混凝土力学性能试验方法标准
2019/12/6
四、试件的制作和养护
4.1 试件的制作
4.1.1混凝土试件的制作应符合下列规定: 1. 成型前,应检查试模尺寸并符合标准,试模内表面应涂
普通混凝土力学性能试验方法标准
2019/12/6
(3
1. 边长为150mm×150mm×600mm 或550mm 的 棱柱体试件是标准试件。
2. 边长为100mm×100mm×400mm的棱柱体试件是 非标准试件。
钢筋原材力学性能检验讲解
原始标距的标记应准确到±1%
9
3、屈服强度
呈现明显屈服现象的钢材,应按相关产品标准规定测定上屈服强度或下屈 服强度或两者同时测定。如未作出具体规定,应测定上屈服强度和下屈服强度, 或仅下屈服强度。
试验时记录力—延伸曲线或峰值力显示器。从曲线图读取力首次下降前的 最大力值为上屈服强度。不计初始瞬时效应时屈服阶段中的最小力或屈服平 台的恒定力为下屈服强度。将其分别除以试样原始横截面积得到上屈服强度 和下屈服强度,见图。
17
9、数据处理
试验测定的性能结果数值应按相关产品标准(YB/T081-2013、GB/T81702008)规定进行修约,如产品标准未作规定应按如下要求进行修约。
14
Hale Waihona Puke 7、最大力下总伸长率(1)长度 试样夹具之间的最小自由长度应符合下表的要求:
钢筋公称直径/mm d≤25
25<d≤32 32<d≤50
试样夹具之间的最小自由长度/mm 350 400 500
(2)标记和测量 和断后伸长率可用同一标记,试样断裂后选择Y和V两个标记,这两个标记之间 的在拉伸试验之前至少应为100mm,两个标记都应当位于夹具离断裂点最远的 一侧,两个标记离开夹具的距离都应不小于20mm或钢筋公称直径d(取二者之 较大者);两个标记与断裂点之间的距离应不小于50mm或2d(取二者之较大者)。 见图
15
断裂后的测量 在最大力作用下试样总伸长率Agt(%)可按公式计算
16
8、弯曲试验
试验一般在室温10~35℃范围内进行。对温度要求严格的试验,温度 23±5℃。在试验过程中应采取足够的安全措施和防护装置。
钢筋原材力学性能检验
6、断后伸长率(A)
试验前,在试样上均匀划分为10mm或5mm的等间标记,拉伸断裂后,将试样 断裂的部分仔细的配接在一起使其轴线处于同一直线上,并采取特别措施确保试 样断裂部分适当接触后,测量试样原始标距(Lo)的标记数得到断后标距 (Lu)。
应使用分辨力优于0.1mm的量具或测量装置或测量装置测定断后伸长(Lu),
钢筋原材
主讲人:
一、依据标准
《钢筋混凝土用钢第1部分:热轧光圆钢筋》GB 1499.1-2008 《钢筋混凝土用钢第2部分:热轧带肋钢筋》GB 1499.2-2007 《金属材料 室温拉伸试验方法》GB/T 228.1-2010 《金属材料 弯曲试验方法》GB/T 232-2010
二、取样数量和方法
2、原始标距(Lo)
原始标距与横截面积有Lo=k√So比例试样。国际上使用的比例系数k的值 5.65。原始标距应不小于15mm。当试样横截面积太小,以致采用比例系数k为 5.65的值不能符合这一最小标距要求时,可以采用较高的值(优先采用11.3的值) 或采用非比例试样。非比例试样原始标距与横截面积无关。
应力应变曲线分为: 弹性阶段 屈服阶段 强化阶段 颈缩阶段
对于上、下屈服强度位置判定的基本原则如下: (1)屈服前的第1个峰值应力(第1个极大值应力)判为上屈服强度,不管其后的峰值应 力比它大或小; (2)屈服阶段中呈现屈服平台,平台应力判为下屈服强度,如呈现多个而且后者高于前 者的屈服平台,判为第1个平台应力为下屈服强度; (3)正确的判定结果应是下屈服强度一定低于上屈服强度。
游标卡尺
电子天平
钢卷尺
精度 0.01mm
不大于总重量的1%
1mm
四、环境条件
除非另有规定,钢材试验一般在室温10~35℃范围内 进行。 对温度要求严格的试验,温度为23℃±5℃。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
力学性能检验
力学性能检验要利用万能试验机、硬度计及冲击试验机等仪
器设备。
主要的检验指标包括抗拉强度、屈服强度、伸长率、冲击韧度、
硬度(布氏硬度或洛氏硬度)等。
材料工程学院材料成型教研室
铝合金铸件铸造技术
万能拉深试验机
主要技术参数 1、型号规格: WE-100B 2、测量范围: 0-100KN 3、示值精度: ±1% 4、相对分辨率: ≤0.5% 5、压缩空间: 550mm 6、拉伸空间: 550mm 7、圆试样夹持直径: Φ6-12mm 8、扁试样夹持直径: 0-15mm 9、活塞行程: 200mm 10、弯曲支点最大距离: 400mm 11、剪切试样直径: Φ10mm 12、主机外形尺寸(mm): 640×550×1800 13、电机功率: 1.5KW,三相 14、重 量: 1200kg CN69M/WE-100B液压式万能试验机 材料工程学院材料成型教研室
铝合金铸件铸造技术
拉伸试样的制作
2.对板材一般采用矩形试样,其宽度部分根据产品厚度通常为 3~25mm。Байду номын сангаас用10、12.5、15、20、25和30mm六种比例试样, 尽可能采用5.65√F0的段比例试样。加工粗糙度及偏差等应该满 足下表
材料工程学院材料成型教研室
铝合金铸件铸造技术
检验铸件硬度
1-指示灯 2-压头 3-工作台 4-立柱 5-丝杠 6-手轮 7-载荷砝码 8-压紧螺钉
9-时间定位器
布氏硬度实验原理图 布氏硬度计
材料工程学院材料成型教研室
10-加载按钮
铝合金铸件铸造技术
硬度试样的制作
为了保证布氏硬度测量结果的准确性,避免压痕之间以及试样
边缘对试样变形的影响,GB231-84“金属布氏硬度试验方法”中规 定如下: 压痕中心距试样边缘距离不应小于压痕平均直径的2.5倍,两 相邻压痕中心距离不应小于压痕平均直径的4倍。当布氏硬度值小
于35时,上述距离应分别为压痕平均直径的3倍和6倍。
材料工程学院材料成型教研室
铝合金铸件铸造技术
取样方法
1.从铸件本体上取样
2.试样与铸件一起铸出(附铸试样)。 3.单独铸造试样。
材料工程学院材料成型教研室