双曲线及其标准方程课件优秀课件
合集下载
双曲线及其标准方程ppt课件
x2
y2
变式.给出曲线方程
+
=1.
4+k 1-k
(1)若该方程表示双曲线,求实数k的取值范围;
(2)若该方程表示焦点在y轴上的双曲线,求实数k的取值范围.
y2 x2
例 5.已知双曲线 C 的方程是 - =1,其上下焦点分别是 F2,
16 20
F1,点 M 在双曲线 C 上,且|MF1|=9,则|MF2|=________.
归纳总结
y
图形
y
P
P
x
O
F1
F1 O F2
方程
焦点
a,b,c之间的关系
F2
x
x2 y2
2 1(a 0, b 0)
2
a
b
y2 x2
2 1(a 0, b 0)
2
a
b
F1(-c,0),F2(c,0)
F1(0,-c),F2(0,c)
c2=a2+b2
a,b大小不定
椭圆与双曲线的区别
O
焦点在对应轴上
x2 y2
2 1(a 0, b 0)
2
a
b
① 方程用“-”号连接;
y
F2
F1
y2 x2
2 1(a 0, b 0)
2
a
b
② c2=a2+b2 ;
③分母是a2, b2, 且a>0, b>0,但a, b大小不定;
④ 如果x2的系数是正的,则焦点在x轴上;
如果y2的系数是正的,则焦点在y轴上.
x
F1 O
F2
结论:已知F1,F2分别是双曲线C:
双曲线及其标准方程 课件
(3)设双曲线的方程为 Ax2+By2=1,AB<0. ∵点 P,Q 在双曲线上,
∴92A956+A2+12652B5B==1,1,
解得AB==-19. 116,
∴双曲线的标准方程为y92-1x62 =1.
[规律方法] 1.求双曲线标准方程的步骤 (1)确定双曲线的类型,并设出标准方程; (2)求出 a2,b2 的值. 2.当双曲线的焦点所在坐标轴不确定时,需分焦点在 x 轴上和 y 轴上两 种情况讨论,特别地,当已知双曲线经过两个点时,可设双曲线方程为 Ax2 +By2=1(AB<0)来求解.
图 2-3-1
[思路探究]
建立平面直 角坐标系
→
由已知条件得 到边长的关系
→
判断轨迹 的形状
→
写出轨迹方程
[解] 以 AB 边所在的直线为 x 轴,AB 的垂直平分线为 y 轴,建立平面直
角坐标系,如图所示,则 A(-2 2,0),B(2 2,0).由正弦定理,得 sin A=|B2CR|,
sin B=|A2CR|,sin C=|A2RB|(R 为△ABC 的外接圆半径).
求双曲线的标准方程
例 2、根据下列条件,求双曲线的标准方程:
(1)a=4,经过点
A1,-4
310;
(2)与双曲线1x62 -y42=1 有相同的焦点,且经过点(6,5且焦点在坐标轴上.
[思路探究] (1)结合 a 的值设出标准方程的两种形式,将点 A 的坐标代 入求解.
|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cos 60°, 所以102=(|PF1|-|PF2|)2+|PF1|·|PF2|, 所以|PF1|·|PF2|=64, ∴S△F1PF2=12|PF1|·|PF2|·sin ∠F1PF2 =12×64× 23=16 3.
《双曲线及其标准方程》优质课比赛课件
动画
8.3 双曲线及其标准方程
引 定 入 义 剖析定义 方程推导
与椭圆比较
例题1 例题Biblioteka 例题2 例题2 练习1 练习1 练习2 练习2 作 业 小 结
推导方程
1、建系、设点: 、建系、设点:
以两定点所在直线为x轴 以两定点所在直线为 轴,其中点 为原点, 为原点,建立直角坐标系 y
y
M F1
O 0
动画
8.3 双曲线及其标准方程
引 定 入 义 剖析定义 方程推导
与椭圆比较
例题1 例题1 例题2 例题2 练习1 练习1 练习2 练习2 作 业 小 结
思考: 思考:
1、当2a=|F1F2|时,点M的轨迹是什么 动画 图形? 图形? 2、当2a>|F1F2|时,点M的轨迹是什么 图形? 图形? 3、当2a=0时,点M的轨迹是什么图形? 2a=0时 的轨迹是什么图形?
作业
课本第108页 一、习题8.3(课本第 页) 习题8 3 课本第 1,2,4 二、研究本节课开始提到的炸弹爆炸 问题,爆炸点为什么在双曲线上? 问题,爆炸点为什么在双曲线上?
8.3 双曲线及其标准方程
引 定 入 义 剖析定义 方程推导
与椭圆比较
例题1 例题1 例题2 例题2 练习1 练习1 练习2 练习2 作 业 小 结
小结
定义: 定义: 方程形式: 方程形式: ||MF1|-|MF2||=2a - (0<2a<|F1F2|)
x2 y 2 − 2 = 1(a > 0, b > 0) 2 a b
y
y 2 x2 − 2 = 1(a > 0, b > 0) 2 a b
y F2
图象: 图象:
8.3 双曲线及其标准方程
引 定 入 义 剖析定义 方程推导
与椭圆比较
例题1 例题Biblioteka 例题2 例题2 练习1 练习1 练习2 练习2 作 业 小 结
推导方程
1、建系、设点: 、建系、设点:
以两定点所在直线为x轴 以两定点所在直线为 轴,其中点 为原点, 为原点,建立直角坐标系 y
y
M F1
O 0
动画
8.3 双曲线及其标准方程
引 定 入 义 剖析定义 方程推导
与椭圆比较
例题1 例题1 例题2 例题2 练习1 练习1 练习2 练习2 作 业 小 结
思考: 思考:
1、当2a=|F1F2|时,点M的轨迹是什么 动画 图形? 图形? 2、当2a>|F1F2|时,点M的轨迹是什么 图形? 图形? 3、当2a=0时,点M的轨迹是什么图形? 2a=0时 的轨迹是什么图形?
作业
课本第108页 一、习题8.3(课本第 页) 习题8 3 课本第 1,2,4 二、研究本节课开始提到的炸弹爆炸 问题,爆炸点为什么在双曲线上? 问题,爆炸点为什么在双曲线上?
8.3 双曲线及其标准方程
引 定 入 义 剖析定义 方程推导
与椭圆比较
例题1 例题1 例题2 例题2 练习1 练习1 练习2 练习2 作 业 小 结
小结
定义: 定义: 方程形式: 方程形式: ||MF1|-|MF2||=2a - (0<2a<|F1F2|)
x2 y 2 − 2 = 1(a > 0, b > 0) 2 a b
y
y 2 x2 − 2 = 1(a > 0, b > 0) 2 a b
y F2
图象: 图象:
3-2-1双曲线及其标准方程 课件(共67张PPT)
【解析】 距离的差要加绝对值,否则只为双曲线的一支.若 F1,F2 表示双曲线的左、右焦点,且点 P 满足|PF1|-|PF2|=2a,则点 P 在右支上;若点 P 满足|PF2|-|PF1|=2a,则点 P 在左支上.
互动 2 在双曲线的定义中,必须要求“常数小于|F1F2|”, 那么“常数等于|F1F2|”“常数大于|F1F2|”或“常数为 0”时,动 点的轨迹是什么?
【解析】 (1)若“常数等于|F1F2|”时,此时动点的轨迹是以 F1,F2 为端点的两条射线 F1A,F2B(包括端点),如图所示.
(2)若“常数大于|F1F2|”,此时动点轨迹不存在. (3)若“常数为 0”,此时动点轨迹为线段 F1F2 的垂直平分线.
互动 3 已知点 P(x,y)的坐标满足下列条件,试判断下列各 条件下点 P 的轨迹是什么图形?
2.关于双曲线应注意的几个问题 (1)双曲线的标准方程与选择的坐标系有关,当且仅当双曲线 的中心在原点,焦点在坐标轴上时,双曲线的方程才具有标准形 式.
(2)如图,设 M(x,y)为双曲线上任意一点,若 M 点在双曲线 的右支上,则|MF1|>|MF2|,|MF1|-|MF2|=2a(0<2a<|F1F2|);若 M 在双曲线的左支上,则|MF1|<|MF2|,|MF1|-|MF2|=-2a,因 此得|MF1|-|MF2|=±2a,这与椭圆不同.
(3)列式:由|MF1|-|MF2|=±2a, 可得 (x+c)2+y2- (x-c)2+y2=±2a.①
(4)化简:移项,平方后可得 (c2-a2)x2-a2y2=a2(c2-a2). 令 c2-a2=b2,得双曲线的标准方程为xa22-yb22=1(a>0,b>0).② (5)从上述过程可以看到,双曲线上任意一点的坐标都满足方 程②;以方程②的解(x,y)为坐标的点到双曲线两个焦点(-c, 0),(c,0)的距离之差的绝对值为 2a,即以方程②的解为坐标的 点都在双曲线上.这样,就把方程②叫作双曲线的标准方程.
互动 2 在双曲线的定义中,必须要求“常数小于|F1F2|”, 那么“常数等于|F1F2|”“常数大于|F1F2|”或“常数为 0”时,动 点的轨迹是什么?
【解析】 (1)若“常数等于|F1F2|”时,此时动点的轨迹是以 F1,F2 为端点的两条射线 F1A,F2B(包括端点),如图所示.
(2)若“常数大于|F1F2|”,此时动点轨迹不存在. (3)若“常数为 0”,此时动点轨迹为线段 F1F2 的垂直平分线.
互动 3 已知点 P(x,y)的坐标满足下列条件,试判断下列各 条件下点 P 的轨迹是什么图形?
2.关于双曲线应注意的几个问题 (1)双曲线的标准方程与选择的坐标系有关,当且仅当双曲线 的中心在原点,焦点在坐标轴上时,双曲线的方程才具有标准形 式.
(2)如图,设 M(x,y)为双曲线上任意一点,若 M 点在双曲线 的右支上,则|MF1|>|MF2|,|MF1|-|MF2|=2a(0<2a<|F1F2|);若 M 在双曲线的左支上,则|MF1|<|MF2|,|MF1|-|MF2|=-2a,因 此得|MF1|-|MF2|=±2a,这与椭圆不同.
(3)列式:由|MF1|-|MF2|=±2a, 可得 (x+c)2+y2- (x-c)2+y2=±2a.①
(4)化简:移项,平方后可得 (c2-a2)x2-a2y2=a2(c2-a2). 令 c2-a2=b2,得双曲线的标准方程为xa22-yb22=1(a>0,b>0).② (5)从上述过程可以看到,双曲线上任意一点的坐标都满足方 程②;以方程②的解(x,y)为坐标的点到双曲线两个焦点(-c, 0),(c,0)的距离之差的绝对值为 2a,即以方程②的解为坐标的 点都在双曲线上.这样,就把方程②叫作双曲线的标准方程.
双曲线及其标准方程课件
(3)当 k<0 时,方程为y42--x24k=1,表示焦点在 y 轴上的双曲线;
(4)当 0<k<1 时,方程为x42+y42=1,表示焦点在 x 轴上的椭圆; k
(5)当 k>1 时,方程为x42+y42=1,表示焦点在 y 轴上的椭圆. k
[一点通] 解决这类题的基本方法是分类讨论,在分
类讨论的过程中应做到不重不漏,选择适当的分界点.在
(3)若|F1F2|<2a,动点的轨迹不存在.
2.通过双曲线方程xa22-by22=1(焦点在 x 轴上)和ay22-xb22 =1(焦点在 y 轴上)(a>0,b>0)可以看出:如果 x2 项的系 数是正的,那么焦点在 x 轴上;如果 y2 项的系数是正的, 那么焦点在 y 轴上.对于双曲线,a 不一定大于 b,但是无 论双曲线的焦点在哪个轴上,方程中的三个量都满足 c2 =a2+b2.
[例3] 已知方程kx2+y2=4,其中k为实数,对于不同 范围的k值分别指出方程所表示的曲线类型.
[思路点拨] 解答本题可依据所学的各种曲线的标准形 式的系数应满足的条件进行分类讨论.
[精解详析] (1)当 k=0 时,y=±2,表示两条与 x 轴平行 的直线;
(2)当 k=1 时,方程为 x2+y2=4,表示圆心在原点,半径 为 2 的圆;
72 b2 =1,
解得a12=19, b12=116,
即 a2=9,b2=16.
∴所求双曲线的标准方程为y92-1x62 =1.
法二:∵双曲线的焦点位置不确定,
∴设双曲线方程为 mx2+ny2=1(mn<0). ∵P1,P2 在双曲线上,所以
4m+445n=1, 196×7m+16n=1,
2.3.1 双曲线及其标准方程 课件(共23张ppt)
o
x
因 为 PA PB 340 2 680 0,所 以 x 0.
因此炮弹爆炸点的轨迹(双曲线)的方程为
x2 y2 1( x 0). 115 600 44 400
【举一反三】 1.若在A,B两地同时听到炮弹爆炸声,则炮弹爆炸点 的轨迹是什么? 解: 爆炸点的轨迹是线段AB的垂直平分线.
X
离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.
问题2:如果把椭圆定义中的“距离之和”改为“距
离之差”,那么点的轨迹是怎样的曲线?
即“平面内与两个定点F1,F2的距离的差等于非零常
数的点的轨迹 ”是什么?
看图分析动点M满足的条件: ①如图(A),
|MF1|-|MF2|=|F2F| =2a. ②如图(B),
解:
如图所示,建立直角坐标系xOy,使A,B两点在x
轴上,并且坐标原点O与线段AB的中点重合.
设爆炸点P的坐标为(x,y),则
PA PB 340 2 680,
y
A
P B
即 2a=680,a=340. 又 AB 800,
所以 2c=800,c=400,
b2 c 2 a 2 44 400,
3.列式 由定义可知,双曲线就是集合: P= {M
|||MF1
| - | MF2|| = 2a },
即
( x c )2 y 2 ( x c )2 y 2 2a .
2
4.化简 代数式化简得:(c 2 a 2) x 2 a 2 y a 2(c 2 a 2),
两 边 同 除 以 a 2 ( c 2 a 2 ), 得
x2 y2 2 1. 2 2 a c a
双曲线及其标准方程完整版课件
2
2
则双曲线的标准方程为20 − 16 =1.
(2)设双曲线方程为 mx2-ny2=1,
1
= 25 ,
49-72 = 1,
则有
解得
1
28-9 = 1,
= ,
75
2
2
则双曲线的标准方程为25 − 75 =1.
归纳总结
求双曲线的标准方程与求椭圆的标准方程的方法相似,可
以先根据其焦点位置设出标准方程,然后用待定系数法求出a,b
联立两方程解得 x=8(舍负),y=5 3,
所以 P(8,5 3),
kPA=tan∠PAx= 3,所以∠PAx=60°,
所以 P 点在 A 点的北偏东 30°方向.
当堂达标
1.已知两定点F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=2a,则当a=3和5时
,P点的轨迹为(
)
A.双曲线和一条直线
情景导学
双曲线也是具有广泛应用的一种圆锥曲线,如发电厂冷却塔的外形、通过声
音时差测定定位等都要用到双曲线的性质。本节我们将类比椭圆的研究方法研究双
曲线的有关问题。
问题导学
新知探究
如图,在直线
l 上取两个定点
在平面内,取定点
F1 , F 2,以点 F1 为圆心、线段
在以 F 2 为圆心、线段
我们知道,当点
2
2
解析:∵方程1+ + -2=1,∴(m-2)(m+1)<0,
解得-1<m<2,∴m的取值范围是(-1,2).
答案:D
)
4. 一块面积为12公顷的三角形形状的农场.如图所示△PEF,已知
1
tan∠PEF=
2
则双曲线的标准方程为20 − 16 =1.
(2)设双曲线方程为 mx2-ny2=1,
1
= 25 ,
49-72 = 1,
则有
解得
1
28-9 = 1,
= ,
75
2
2
则双曲线的标准方程为25 − 75 =1.
归纳总结
求双曲线的标准方程与求椭圆的标准方程的方法相似,可
以先根据其焦点位置设出标准方程,然后用待定系数法求出a,b
联立两方程解得 x=8(舍负),y=5 3,
所以 P(8,5 3),
kPA=tan∠PAx= 3,所以∠PAx=60°,
所以 P 点在 A 点的北偏东 30°方向.
当堂达标
1.已知两定点F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=2a,则当a=3和5时
,P点的轨迹为(
)
A.双曲线和一条直线
情景导学
双曲线也是具有广泛应用的一种圆锥曲线,如发电厂冷却塔的外形、通过声
音时差测定定位等都要用到双曲线的性质。本节我们将类比椭圆的研究方法研究双
曲线的有关问题。
问题导学
新知探究
如图,在直线
l 上取两个定点
在平面内,取定点
F1 , F 2,以点 F1 为圆心、线段
在以 F 2 为圆心、线段
我们知道,当点
2
2
解析:∵方程1+ + -2=1,∴(m-2)(m+1)<0,
解得-1<m<2,∴m的取值范围是(-1,2).
答案:D
)
4. 一块面积为12公顷的三角形形状的农场.如图所示△PEF,已知
1
tan∠PEF=
双曲线及其标准方程课件
音乐艺术
双曲线在音乐艺术中用于 创作优美的音乐旋律和和 声,特别是在处理音高和 音程时。
交通工程
双曲线在交通工程中用于 设计道路和轨道,特别是 在处理弯道和交叉口时。
04
双曲线的图像绘制
使用数学软件绘制双曲线
使用Ge双曲 线。用户只需在软件中输入双曲线的标准方程,即可自动生 成对应的双曲线图像。
05
双曲线的性质与方程 的关联
双曲线的性质与标准方程的关系
焦点距离
双曲线的标准方程中的系数与焦 点距离有关,决定了双曲线的开
口大小和方向。
渐近线
双曲线的标准方程中的系数决定了 渐近线的斜率和截距,反映了双曲 线的形状和位置。
离心率
双曲线的标准方程中的系数与离心 率有关,离心率决定了双曲线的开 口程度和形状。
推导结果
01
双曲线的标准方程为
$frac{x^2}{a^2}
-
frac{y^2}{b^2} = 1$。
02
其中$a > 0, b > 0$,且满足 $c^2 = a^2 + b^2$。
推导结论
双曲线是一种特殊的二次曲线,其标 准方程反映了双曲线的几何特性。
双曲线的焦点到曲线上任意一点的距 离之差为常数,这个常数等于两焦点 之间的距离的一半。
绘制双曲线
在工具箱中选择“双曲线”工具,然 后在绘图区域单击并拖动鼠标,即可 绘制出双曲线。用户可以根据需要调 整双曲线的参数和位置。
使用手工绘制双曲线
准备工具
准备一张纸、一支笔和一把直尺。
绘制过程
首先在纸上确定双曲线的中心和焦点,然后使用直尺和笔绘制出双曲线的渐近线。接着,使用笔和直尺在纸上绘 制出双曲线的上半部分。最后,使用对称性画出双曲线的下半部分。这种方法虽然比较传统,但对于理解双曲线 的几何意义非常有帮助。
双曲线及其标准方程ppt课件
C.(0,-5),(0,5)
D.(0,- 7),(0, 7)
双曲线的定义
2
1.设 F1,F2 分别是双曲线 x2-24=1 的左、右焦点,P 是双曲线上的一点,且 3|PF1|=4|PF2|, 则△PF1F2 的面积等于 ( )
A.4 2
B.8 3
C.24
D.48
2.已知动点 P(x,y)满足 ( + 2)2 + 2- ( -2)2 + 2=2,则动点 P 的轨迹是 ( )
这两个定点叫做双曲线的焦点. 两焦点的距离叫做双曲线的焦距.
y
M
F1 o F2 x
如何理解绝对值?若去掉绝对值则图像有何变化?
03 双曲线的标准方程
1. 建系:如图建立直角坐标系xOy,使x轴经 过点F1,F2,并且点O与线段F1F2中点重合.
y M
F1 O F2
x
2.设点:设M(x , y),双曲线的焦距为2c(c>0),F1(-c,0),F2(c,0) 常数=2a
利用定义求轨迹方程
P P127 习题3.2 第5题
如图,圆O的半径为定长 ,A是圆O外一定点,P是圆上任
意一点,线段AP的垂直平分线l和直线OP相交于点Q,当
O
点P在圆O上运动时,点Q的轨迹是什么?为什么?
A Q
P115 习题3.1 第6题 如图,圆O的半径为定长 ,A是圆O内一定点,P是圆上 任意一点,线段AP的垂直平分线l和半径OP相交于点 Q,当点P在圆O上运动时,点Q的轨迹是什么?为什么?
A.椭圆 C.双曲线的左支
B.双曲线 D.双曲线的右支
双曲线的定义
22
【变式练习】
已知
P
是双曲线
双曲线及其标准方程 课件
焦距
|F1F2|=2c,c2=__a_2+__b_2__
探究点一 双曲线的定义 问题 1 取一条拉链,拉开它的一部分,在拉开的两边上各
选择一点,分别固定在点 F1,F2 上,把笔尖放在点 M 处, 拉开闭拢拉链,笔尖经过的点可画出一条曲线,思考曲 线满足什么条件? 答案 如图,曲线上的点满足条件: |MF1|-|MF2|=常数;如果改变一下位置, 使|MF2|-|MF1|=常数,可得到另一条曲线.
结论:平面内与两个定点 F1、F2 的距离的差的绝对值等于 常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做 双曲线的焦点,两焦点间的距离叫做双曲线的焦距.
问题 2 双曲线的定义中强调平面内动点到两定点的距离 差的绝对值为常数,若没有绝对值,则动点的轨迹是什 么?
答案 若没有绝对值,动点的轨迹就成了双曲线的一 支.
因此炮弹爆炸点的轨迹(双曲线)方程为 115x2600-44y4200=1 (x>0).
小结 (1)解答与双曲线有关的应用问题时,不但要准确把 握题意,了解一些实际问题的相关概念,同时还要注意双 曲线的定义及性质的灵活应用. (2)实际应用问题要注意其实际意义以及在该意义下隐藏着 的变量范围.
(3)列式:由|MF1|-|MF2|=±2a,
可得 x+c2+y2- x-c2+y2=±2a.
①
(4)化简:移项,平方后可得
(c2-a2)x2-a2y2=a2(c2-a2).
令 c2-a2=b2,得双曲线的标准方程为
xa22-by22=1 (a>0,b>0).
②
(5)从上述过程可以看到,双曲线上任意一点的坐标都满足 方程②;以方程②的解(x,y)为坐标的点到双曲线两个焦点 (-c,0),(c,0)的距离之差的绝对值为 2a,即以方程②的解 为坐标的点都在双曲线上,这样,就把方程②叫做双曲线
3.2.1双曲线及其标准方程课件(人教版)
练习1:如果方程
−
+
+
= 表示双曲线,
求m的取值范围。
解:由 + + > ,得,m < -2或m > -1
所以m的取值范围为 −∞, − ∪ −, + ∞
练习巩固
练习1追问:如果方程
+
则 m 的取值范围为
−
+
m < -2
= 表示焦点在 y 轴的双曲线时,
故双曲线得标准方程为 2
−
2
3
=1
15
,
3
2),
例题解析
例4:已知A、B两地相距800m,在A地听到爆炸声比在B地晚2s,
且声速为340m/s,求炮弹爆炸点的轨迹方程。
解:建立平面直角坐标系,使A、B两点在x轴上,
并且坐标原点与A、B的中点重合
炮弹爆炸点P的坐标为(x,y)
则, − = 340 × 2 = 680,即,2a=680,a=340
−
2
16
=1
例题解析
例3:求满足条件的双曲线的标准方程,
已知焦点在x轴,且过P(- 2,- 3),Q(
解:双曲线的方程为 2 + 2 = 1( < 0)
因为点A、B在椭圆上
.
2 + 3 = 1
=1
所以 ൝15
解得 ൝ = − 1
+ 2 = 1
3
9
1
3
所以双曲线的方程为 2 − 2 = 1
轨迹不存在
M
F1
F2
课堂探究
生活中案例展示:拉链
课堂探究
焦点在x、y轴上的双曲线的标准方程
−
+
+
= 表示双曲线,
求m的取值范围。
解:由 + + > ,得,m < -2或m > -1
所以m的取值范围为 −∞, − ∪ −, + ∞
练习巩固
练习1追问:如果方程
+
则 m 的取值范围为
−
+
m < -2
= 表示焦点在 y 轴的双曲线时,
故双曲线得标准方程为 2
−
2
3
=1
15
,
3
2),
例题解析
例4:已知A、B两地相距800m,在A地听到爆炸声比在B地晚2s,
且声速为340m/s,求炮弹爆炸点的轨迹方程。
解:建立平面直角坐标系,使A、B两点在x轴上,
并且坐标原点与A、B的中点重合
炮弹爆炸点P的坐标为(x,y)
则, − = 340 × 2 = 680,即,2a=680,a=340
−
2
16
=1
例题解析
例3:求满足条件的双曲线的标准方程,
已知焦点在x轴,且过P(- 2,- 3),Q(
解:双曲线的方程为 2 + 2 = 1( < 0)
因为点A、B在椭圆上
.
2 + 3 = 1
=1
所以 ൝15
解得 ൝ = − 1
+ 2 = 1
3
9
1
3
所以双曲线的方程为 2 − 2 = 1
轨迹不存在
M
F1
F2
课堂探究
生活中案例展示:拉链
课堂探究
焦点在x、y轴上的双曲线的标准方程
双曲线及其标准方程 课件(人教版)
()D.45
解析:(1)因为由双曲线的定义有|PF1|-|PF2|=|PF2| =2a=2 2,
所以|PF1|=2|PF2|=4 2, |PF1|2+|PF2|2-|F1F2|2
则 cos ∠F1PF2= 2|PF1|·|PF2| =
(4 22)×24+(2×2 22)2 2-42=34. 答案:C
解:(1)法一:由题意知双曲线的两焦点为 F1(0,-
3),F2(0,3). 设双曲线方程为ay22-xb22=1(a>0,b>0), 将点 A(4,-5)代入双曲线方程得2a52-1b62=1. 又 a2+b2=9,解得 a2=5,b2=4. 所以双曲线的标准方程为y52-x42=1.
法二:||AF1|-|AF2||=| 20- 80|=2 5=2a,
[迁移探究 2] (变换条件)上例中将条件“|PF1|= 2|PF2|”改为“P→F1·P→F2=0”,则△F1PF2 的面积是 ________.
解:不妨设点 P 在双曲线的右支上,则|PF1|-|PF2|
=2a=2 2, 由于P→F1·P→F2=0,所以P→F1⊥P→F2.
所以在△F1PF2 中,有|PF1|2+|PF2|2=|F1F2|2, 即|PF1|2+|PF2|2=16,所以|PF1|·|PF2|=4, 所以 S△F1PF2=12|PF1|·|PF2|=2. 答案:2
双曲线及其标准方程
1.双曲线的定义 把平面内与两个定点 F1、F2 的距离的差的绝对值等 于常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点 叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.
温馨提示 把定常数记为 2a,当 2a<|F1F2|时,其轨迹是双曲线; 当 2a=|F1F2|时,其轨迹是以 F1、F2 为端点的两条射线(包 括端点);当 2a>|F1F2|时,其轨迹不存在.
双曲线及其标准方程ppt课件
F1 O F2
3.限式 |MF1| - |MF2|=±2a
4.代换 即 (x c)2 y2 (x c)2 y2 2a
5.化简
6
代数式化简得:
y
M (c2 a2) x2 a2 y2 a2 (c2 a2)
F1 O F2
可令:c2-a2=b2
x
代入上式得:b2x2-a2y2=a2b2
不存在
(4)已知A(-5,0),B(5,0),M点到A,B两点的距离之差 的绝对值为0,则M点的轨迹是什么?
线段AB的垂5直平分线
(三)合作探究,构建方程
双曲线标准方程推导
1.建系
以F1,F2所在的直线为x轴,线段F1F2的中 y 点为原点建立直角坐标系
M
2.设点
x
设M(x , y),则F1(-c,0),F. 2(c,0)
15
16
2
(二)注重细节,理解概念
双曲线定义:
平面内与两个定点F1,F2的距离的差的绝对 值等于非零常数(小于︱F1F2︱)的点的轨迹
叫做双曲线.
M
① 两个定点F1、F2——双曲线的焦点;
② |F1F2|=2c ——焦距.
F1 o F2
3
(二)注重细节,理解概念
思考:为什么要求 0<2a<2c? 演示
当2a=2c时,动点的轨迹是什么? 以点F1、F2为端点,方向指向F1F2外侧的两条射 线. 当2a>2c时,动点的轨迹是什么? 不存在 当2a=0时,动点的轨迹是什么? 线段F1F2的垂直平分线
x2 b2
(1 a
0, b
0)
问题:如何判断双曲线的焦点在哪个轴上呢?
(二次项系数为正,焦点在相应的轴8上)
双曲线及其标准方程优质课公开课一等奖课件省赛课获奖课件
M
F1 o F2
求双曲线方程:
M
1. 建系.
以F1,F2所在的直线为x轴,线段 F1F2的中点为原点建立直角坐标系
F1
F2
2.设点.设M(x , y),则F1(-c,0),F2(c,0)
3.限制条件 ||MF1| - |MF2||=2a
4.代入坐标
(x c)2 y2 (x c)2 y2 2a
坐标
F ( ±c, 0) ,F(0, ± c)
a.b.c的关系
a>b>0,b2=a2-c2 a>0,b>0,b2=c2-a2
作业:P61 A组 1, 2
检测练习:
练习1 若平面内两定点F1(- 4,0),F2(4, 0),且平面内一 点P满足|PF1|-|PF2|=4,求点P的轨迹方程.
x2 y2 1( x 0)
复习
1. 椭圆的定义
平面内与两定点的距离的 和 等于常数
(大于两定点间的距离) 的点的轨迹.
几何条件:
M
|MF1|+|MF2|=2a>|F1F2|
F1
F2
2. 问题:
平面内与两定点的距离的 差 等于常数 的点的轨迹是什么呢?
双曲线定义:
平面内与两个定点F1,F2的距离的差 的绝对值
等于常数(不大于︱F1F2︱的)点的轨迹叫做双曲线.
C.双曲线
D.两条射线
练习:
练习3 : 已知双曲线的焦点在x轴上,且通过点 A( 2, 3)
B( 15 , 2) 求双曲线的原则方程. 3
x2 y2 1 3
小结:
❖ 本节课都学了哪些知识; 你是如何得到的这些知识. ❖ P61 A组 1 2
a2 b2
F1 o F2
求双曲线方程:
M
1. 建系.
以F1,F2所在的直线为x轴,线段 F1F2的中点为原点建立直角坐标系
F1
F2
2.设点.设M(x , y),则F1(-c,0),F2(c,0)
3.限制条件 ||MF1| - |MF2||=2a
4.代入坐标
(x c)2 y2 (x c)2 y2 2a
坐标
F ( ±c, 0) ,F(0, ± c)
a.b.c的关系
a>b>0,b2=a2-c2 a>0,b>0,b2=c2-a2
作业:P61 A组 1, 2
检测练习:
练习1 若平面内两定点F1(- 4,0),F2(4, 0),且平面内一 点P满足|PF1|-|PF2|=4,求点P的轨迹方程.
x2 y2 1( x 0)
复习
1. 椭圆的定义
平面内与两定点的距离的 和 等于常数
(大于两定点间的距离) 的点的轨迹.
几何条件:
M
|MF1|+|MF2|=2a>|F1F2|
F1
F2
2. 问题:
平面内与两定点的距离的 差 等于常数 的点的轨迹是什么呢?
双曲线定义:
平面内与两个定点F1,F2的距离的差 的绝对值
等于常数(不大于︱F1F2︱的)点的轨迹叫做双曲线.
C.双曲线
D.两条射线
练习:
练习3 : 已知双曲线的焦点在x轴上,且通过点 A( 2, 3)
B( 15 , 2) 求双曲线的原则方程. 3
x2 y2 1 3
小结:
❖ 本节课都学了哪些知识; 你是如何得到的这些知识. ❖ P61 A组 1 2
a2 b2
选择必修 第三章 3.2.1 双曲线及其标准方程 课件(共23张PPT)
0),焦点F1,F2的坐标分别为(-c , 0) ,(c , 0).
又设||MF1|-|MF2||= 2a( a为大于0的常数, a<c).
由双曲线的定义,双曲线就是下列点的集合:
P={M|||MF1|-|MF2||=2a,0<a<|F1F2|}.
y
M
F1
O
F2 x
知新探究
y
设 M(x, y) 是双曲线上任意一点,双曲线的焦距为 2c( c >
拓展2:根据两个不同的观测点测得同一炮弹爆炸声的时间差,可以确定爆炸点在某
条曲线上,但不能确定爆炸点的准确位置. 而现实生活中为了安全,我们最关心的是
炮弹爆炸点的准确位置,怎样才能确定爆炸点的准确位置呢?
利用两个不同的观测点A, B测得同一点P发出信号的时间差, 可以确定点P所在
双曲线方程. 如果再增设一个观测点C,利用B、C(或A、C)两处测得的爆炸声的时
因为|PA|-|PB|=340×2=680>0,
所以点P的轨迹是双曲线的右支,因此x>340.
所以,炮弹爆炸点的轨迹方程为
2
115600
2
−
=1(x>340).
44400
P
A o
B x
知新探究
拓展1:若在A,B两地同时听到炮弹爆炸声,则炮弹爆炸点的轨迹是什么?
提示: 爆炸点的轨迹是线段AB的垂直平分线.
思考:
1.与两定点的距离的差的绝对值等于常数(当2a=|F1F2|时)的轨迹是什么?
在直线F1F2上且 以F1、F2为端点向外的两条射线.
2.与两定点的距离的差的绝对值等于常数(当2a>|F1F2| )时的轨迹是什么?
不存在
3.当||MF1|-|MF2||=2a=0时的轨迹是什么?
又设||MF1|-|MF2||= 2a( a为大于0的常数, a<c).
由双曲线的定义,双曲线就是下列点的集合:
P={M|||MF1|-|MF2||=2a,0<a<|F1F2|}.
y
M
F1
O
F2 x
知新探究
y
设 M(x, y) 是双曲线上任意一点,双曲线的焦距为 2c( c >
拓展2:根据两个不同的观测点测得同一炮弹爆炸声的时间差,可以确定爆炸点在某
条曲线上,但不能确定爆炸点的准确位置. 而现实生活中为了安全,我们最关心的是
炮弹爆炸点的准确位置,怎样才能确定爆炸点的准确位置呢?
利用两个不同的观测点A, B测得同一点P发出信号的时间差, 可以确定点P所在
双曲线方程. 如果再增设一个观测点C,利用B、C(或A、C)两处测得的爆炸声的时
因为|PA|-|PB|=340×2=680>0,
所以点P的轨迹是双曲线的右支,因此x>340.
所以,炮弹爆炸点的轨迹方程为
2
115600
2
−
=1(x>340).
44400
P
A o
B x
知新探究
拓展1:若在A,B两地同时听到炮弹爆炸声,则炮弹爆炸点的轨迹是什么?
提示: 爆炸点的轨迹是线段AB的垂直平分线.
思考:
1.与两定点的距离的差的绝对值等于常数(当2a=|F1F2|时)的轨迹是什么?
在直线F1F2上且 以F1、F2为端点向外的两条射线.
2.与两定点的距离的差的绝对值等于常数(当2a>|F1F2| )时的轨迹是什么?
不存在
3.当||MF1|-|MF2||=2a=0时的轨迹是什么?
双曲线及其标准方程概要课件
双曲线及其标准方程概 要课件
• 双曲线的定义与性质 • 双曲线的标准方程 • 双曲线的焦点与离心率 • 双曲线的渐近线与切线 • 双曲线的实际应用
01
双曲线的定义与性质
双曲线的定义
总结词
双曲线是由平面与双曲面相交形成的曲线,也可以由两定点和固定距离的点的轨 迹形成。
详细描述
双曲线是由平面与双曲面相交形成的曲线,其形状取决于平面的位置和双曲面的 形状。双曲线有两个分支,分别位于两个不同的平面上。双曲线也可以由两个定 点和固定距离的点的轨迹形成,其中固定距离称为焦距。
双曲线的焦点与离心率的关系
01
02
03
关系
推导
应用
04
双曲线的渐近线与切线
双曲线的渐近线
定义
双曲线的渐近线是与双曲线无限接近 但永不相交的直线。
几何意义
渐近线反映了双曲线的弯曲程度和方 向。
计算方法
对于标准方程$frac{x^2}{a^2} frac{y^2}{b^2} = 1$,渐近线方程为 $frac{x^2}{a^2} - frac{y^2}{b^2} = 0$。
双曲线的切线
定义
计算方法
几何意义
渐近线与切线的几何意义
相互关系 应用
05
双曲线的实际应用
双曲线在天文学中的应用
星体轨道计算
01
哈勃定律
02
宇宙膨胀理论
03
双曲线在物理学中的应用
声学波动 波动光学 量子力学
双曲线在其他领域的应用
经济预测
在经济领域,双曲线模型被用于预测经济趋势和周期性波动。
02
双曲线的标准方程
双曲线标准方程的推导
定义双曲线的焦点和准线
• 双曲线的定义与性质 • 双曲线的标准方程 • 双曲线的焦点与离心率 • 双曲线的渐近线与切线 • 双曲线的实际应用
01
双曲线的定义与性质
双曲线的定义
总结词
双曲线是由平面与双曲面相交形成的曲线,也可以由两定点和固定距离的点的轨 迹形成。
详细描述
双曲线是由平面与双曲面相交形成的曲线,其形状取决于平面的位置和双曲面的 形状。双曲线有两个分支,分别位于两个不同的平面上。双曲线也可以由两个定 点和固定距离的点的轨迹形成,其中固定距离称为焦距。
双曲线的焦点与离心率的关系
01
02
03
关系
推导
应用
04
双曲线的渐近线与切线
双曲线的渐近线
定义
双曲线的渐近线是与双曲线无限接近 但永不相交的直线。
几何意义
渐近线反映了双曲线的弯曲程度和方 向。
计算方法
对于标准方程$frac{x^2}{a^2} frac{y^2}{b^2} = 1$,渐近线方程为 $frac{x^2}{a^2} - frac{y^2}{b^2} = 0$。
双曲线的切线
定义
计算方法
几何意义
渐近线与切线的几何意义
相互关系 应用
05
双曲线的实际应用
双曲线在天文学中的应用
星体轨道计算
01
哈勃定律
02
宇宙膨胀理论
03
双曲线在物理学中的应用
声学波动 波动光学 量子力学
双曲线在其他领域的应用
经济预测
在经济领域,双曲线模型被用于预测经济趋势和周期性波动。
02
双曲线的标准方程
双曲线标准方程的推导
定义双曲线的焦点和准线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
和 等于常数
Y Mx,y
O
F 1 c,0
F 2c,0 X
|MF1|+|MF2|=2a(2a>|F1F2|)
2、椭圆的两种标准方程:
定义 图形
|MF1|+|MF2|=2a
y
y
M
F2
M
F1 o
F2 x
o
x
F1
焦点及位置 判定
焦 F 1 ( 点 c,0 )F ,2(c,0 )
焦 F 1 (0 点 , c)F ,2 (0 ,c)
焦点 a.b.c的关系
F(±c,0) F(0,±c)
a>b>0, c2=a2-b2
a最大
F(±c,0) F(0,±c)
a>0,b>0,但a不一定大于b, c2=a2+b2 c最大
共性: 1、两者都是平面内动点到两定点的距离问题; 2、两者的定点都是焦点; 3、两者定点间的距离都是焦距。
区别: 椭圆是距离之和; 双曲线是距离之差的绝对值。
此即为焦 点在x轴 上的双曲 线的标准 方程
y
M
若建系时,焦点在y轴上呢?
y
F1 O F2 x
O
x
F ( ±c, 0) F(0, ± c)
x2 a2
by22
1(a0,b0)
y2 a2
x2 b2
( 1a0,b0)
练习:写出以下双曲线的焦点坐标
( 1) x2y21,(2)x2y21
16 9
16 9
问题:如何判断双曲线的焦点在哪个轴上?
A.双曲线
B.双曲线的一支
C.两条射线 D.一条射线
3、 双曲线标准方程推导
求曲线方程的步骤:
y
1.建系
以F1,F2所在的直线为x轴,线段F1F2的中 点为原点建立直角坐标系
2.设点.
F1
M
O F2 x
设M(x , y),则F1(-c,0),F. 2(c,0)
3.限式 |MF1| - |MF2|=±2a
【思考2】说明在下列条件下动点M的轨迹各是什么图形?
(F1、F2是两定点, |MF1|-|MF2| =2a, |F1F2| =2c (0<a<c)
当|MF1|-|MF2|=2a时,点M的轨迹 双曲线的右支
;
当|MF2|-|MF1|=2a时,点M的轨迹 双曲线的左支 ;
若2a=2c,动点MM的轨迹 以F1、F2为端点的两条射线 ;
由①②可得: | |MF1|-|MF2| | = 2a
(差的绝对值)
上面 两条合起来叫做双曲线
根据实验及椭圆定义,你能给双曲线下定义吗?
2、双曲线定义
平面内与两个定点F1,F2的距离的差的绝对值 等于常数(小于︱F1F2︱)的点的轨迹叫做双曲线.
① 两个定点F1、F2——双曲线的焦点;
② |F1F2|=2c ——焦距.
(二次项系数为正,焦点在相应的轴上)
双曲线的标准方程与椭圆的 标准方程有何区别与联系?
双曲线与椭圆之间的区别与联系
定义 方程
椭圆
|MF1|+|MF2|=2a
x2 a2
by221(ab0)源自y2 a2bx22
1(ab0)
双曲线
||MF1|-|MF2||=2a x2 y2 1(a0,b0) a2 b2 y2 x2 a2 b2 1(a0,b0)
1.在作图的过程中哪些量是定量? 哪些量是不定量? 2.动点在运动过程中满足什么条件? 3.这个常数与|F1F2|的关系是什么? 4.动点运动的轨迹是什么? 5.若拉链上被固定的两点互换, 则出现什么情况?
①如图(A), |MF1|-|MF2|=|F2F|=2a
②如图(B), |MF2|-|MF1|=|F1F|=2a
思考问题:
平面内与两定点F1、F2的距离的 差 等于常数 的点的轨迹是什么呢?
2.3.1双曲线及其标准方程
1.了解双曲线标准方程的推导过程. 2.能根据条件熟练求出双曲线的标准方程. 3.掌握双曲线的定义与标准方程.
观察演示过程中的变量和不变量。
1、画双曲线
演示实验:用拉链画双曲线
观察画双曲线的过程思考问题
当堂训练:
1.已知方程 x2 y2 1表示椭圆,则 m
的取值范围是m__1___2___m____.
解: m10 2mm120m1m2且m32
若此方程表示双曲线,m 的取值范围?
解: (m1)(2m )0 m1或 m2
2的.(“Cab)<条0”件是方程 ax2+by2=1 表示双曲线
M
符号表示:
||MF1| - |MF2||=常数(小于|F1F2|) F1 o F2
注意 (1)距离之差的绝对值
| |MF1| - |MF2| | = 2a
(2)常数要小于|F1F2|大于0 0<2a<2c
【思考1】如何理解双曲线的定义?
【剖析】“常数要小于|F1F2|且大于 0” 这一条件可以用 “三角形的两边之差小于第三边”加以理解.“差的绝对值”这 条件是因为当|MF1|<|MF2|或|MF1|>|MF2|时,点 P 的轨迹为 双曲线的一支.而双曲线是由两个分支组成的,故在定义中 应为“差的绝对值”.
标准方程
a,b,c之间
的关系
x2 a2
by22
1(ab0)
a>b>0,a2=b2+c2
y2 x2 1(ab0) a2 b2
一.复习提问:
1、椭圆的定义
平面内与两定点F1、F2的距离的 和 等于常数
2a ( 2a > |F1F2| ) 的点的轨迹.
Y Mx,y
O
|MF1|+|MF2|=2a(2a>|F1F2|) F1c,0 F 2c,0 X
双曲线及其标准方程课件优秀 课件
反比例函数的图像 双曲线交通结构可缓拥堵
冷却塔
罗兰导航系统原理
全球卫星定位导航系统
2.3.1双曲线及其标准方程
1.了解双曲线标准方程的推导过程. 2.能根据条件熟练求出双曲线的标准方程. 3.掌握双曲线的定义与标准方程.
一.复习提问:
1、椭圆的定义
平面内与两定点F1、F2的距的 2a ( 2a > |F1F2| ) 的点的轨迹.
若2a>F21c,动点MF的2 轨迹不存在
F1
.
F2
若2a=0,动点M的是轨迹__线__段__F_1_F_2_的M__垂__直__平__分__线___.
因此,在应用定义时,首先要考查 2a与2c的大小 .
当堂训练
1.动点P到点M(-1,0)的距离与到点N(1,0)的距 离之差为2,则点P轨迹是( D )
4.代换 即 (x c )2 y 2(x c )2 y 2 2 a
5.化简
y
M 代数式化简得:
F1 O F2
x (c2 a 2 )x2 a 2y2 a 2(c2 a 2 )
可令:c2-a2=b2
代入上式得:b2x2-a2y2=a2b2
即:a x2 2b y22 ( 1a0,b0)
其中c2=a2+b2