双曲线及其标准方程(带动画)很好

合集下载

双曲线及其标准方程式

双曲线及其标准方程式

双曲线及其标准方程式
双曲线是代数曲线中的一种,其标准方程常用于描述其形状。

标准方程式表示为:
(x^2/a^2) - (y^2/b^2) = 1 (双曲线的方程式)
其中x和y是坐标系中的变量,a和b是正实数,而a>b。

双曲线通常是对称于x轴和y轴的,并且具有两个分支。

当a和b相等时,双曲线变成一个特殊的形状,称为单位双曲线。

单位双曲线的标准方程变为:
(x^2/a^2) - (y^2/a^2) = 1 (单位双曲线的方程式)
双曲线在数学和物理中有广泛的应用,例如在电磁学、光学和力学等领域中描述抛物面、光学器件的形状和物体的运动等。

双曲线及其标准方程课件

双曲线及其标准方程课件

(3)当 k<0 时,方程为y42--x24k=1,表示焦点在 y 轴上的双曲线;
(4)当 0<k<1 时,方程为x42+y42=1,表示焦点在 x 轴上的椭圆; k
(5)当 k>1 时,方程为x42+y42=1,表示焦点在 y 轴上的椭圆. k
[一点通] 解决这类题的基本方法是分类讨论,在分
类讨论的过程中应做到不重不漏,选择适当的分界点.在
(3)若|F1F2|<2a,动点的轨迹不存在.
2.通过双曲线方程xa22-by22=1(焦点在 x 轴上)和ay22-xb22 =1(焦点在 y 轴上)(a>0,b>0)可以看出:如果 x2 项的系 数是正的,那么焦点在 x 轴上;如果 y2 项的系数是正的, 那么焦点在 y 轴上.对于双曲线,a 不一定大于 b,但是无 论双曲线的焦点在哪个轴上,方程中的三个量都满足 c2 =a2+b2.
[例3] 已知方程kx2+y2=4,其中k为实数,对于不同 范围的k值分别指出方程所表示的曲线类型.
[思路点拨] 解答本题可依据所学的各种曲线的标准形 式的系数应满足的条件进行分类讨论.
[精解详析] (1)当 k=0 时,y=±2,表示两条与 x 轴平行 的直线;
(2)当 k=1 时,方程为 x2+y2=4,表示圆心在原点,半径 为 2 的圆;
72 b2 =1,
解得a12=19, b12=116,
即 a2=9,b2=16.
∴所求双曲线的标准方程为y92-1x62 =1.
法二:∵双曲线的焦点位置不确定,
∴设双曲线方程为 mx2+ny2=1(mn<0). ∵P1,P2 在双曲线上,所以
4m+445n=1, 196×7m+16n=1,

双曲线定义与方程(带动画)

双曲线定义与方程(带动画)
(1)F1F2延长线和反向延长线(两条射线) (2)轨迹不存在 (3)线段F1F2的垂直平分线
F
1
M
o
F
2
3.双曲线的标准方程
1. 建系. 以F1,F2所在的直线为X轴, 如何求这优美的曲线的方程? 线段F1F 2的中点为原点建立直角坐 标系 2.设点. 设M(x , y),双曲线的焦 距为2c(c>0),F1(-c,0),F2(c,0) 3.列式. |MF1|
平面内与两个定点F1,F2的距离的差的绝对值 等于常数2a (小于︱F1F2︱) 的点的轨迹叫做双曲线. ① 两个定点F1、F2——双曲线的焦点;
② |F1F2|=2c ——焦距. 注意
M
(1)距离之差的绝对值
| |MF1| - |MF2| | = 2a
|MF1| - |MF2| = 2a
F
1
o
F2
x2 y2 2.已知方程 1 9k k 3 3 k 9且 k 6; (1)方程表示椭圆,则 k的取值范围是 __________ ______
小结 ----双曲线定义及标准方程
定义
| |MF1|-|MF2| | =2a(0 < 2a<|F1F2|)
y
M
M F2
y
图象
F1
o
F2
x
2 2
2
(c a ) x a y a (c a )
2 2 2 2 2 2 2 2
令c2-a2=b2
x y 2 1 2 a b
2
2
双曲线的标准方程
y
M
y
M F2 x
F
O
1
F
2
x
O

双曲线及其标准方程课件

双曲线及其标准方程课件
由已知2sinC=sinA+2sinB,
∴sinC-sinB=12sinA, 由正弦定理, 得|AB|-|AC|=12|BC|=2. ∴由双曲线的定义知,动点A的轨迹是以B,C为焦点的 双曲线右半支(除去与x轴的交点), ∴2c=4,2a=2. ∴c=2,a=1,b2=c2-a2=3. ∴动点A的轨迹方程为x2-y32=1(x>0,y≠0).
双曲线及其标准方程
1.双曲线的定义. 平面内与两个定点 F1,F2 的距离的差的绝对值等于常数 ( 小 于 |F1F2|) 的 点 的 轨 迹 叫 做 __________ , 这 两 个 定 点 叫 做 __________,两焦点间的距离叫做__________.
2.双曲线的标准方程. 焦点在x轴上时,双曲线的标准方程为_____________. 焦点在y轴上时,双曲线的标准方程为_____________. 以上两个标准方程中a,b,c满足关系______________
题型四 焦点三角形问题
例4 设P为双曲线x2-1y22 =1上的一点,F1,F2是该双曲
线的两个焦点,若|PF1|:|PF2|=3:2,则△PF1F2的面积为
()
A.6 3
B.12
C.12 3
D.24
分析 利用双曲线的定义和三角形的有关知识求解.
解 由已知得2a=2,又由双曲线的定义得, |PF1|-|PF2|=2, 又|PF1|:|PF2|=3:2, ∴|PF1|=6,|PF2|=4. 又|F1F2|=2c=2 13.
由余弦定理得cos∠F1PF2=622+×462×-452=0. ∴三角形为直角三角形. ∴S△PF1F2=12×6×4=12.
答案 B
规律技巧 利用双曲线的定义解决与焦点有关的问题.例 如,本例中的求三角形的面积时,一定要注意定义和三角形 的有关内容的结合,还可以利用余弦定理,同时要注意整体 思想的应用.

双曲线及其标准方程ppt课件

双曲线及其标准方程ppt课件
所以 2 mm 1 0 ,解得 m 2 或 m 1, 即实数 m 的取值范围是,2 1, .
总结一下
1.双曲线的定义 2.双曲线的标准方程
Fresh and simple general ppt template
谢谢观看
2.焦点在y轴上的双曲线的标准方程
如图,双曲线的焦距为 2c,焦点分别是
F1(0, c) , F2 (0,c) ,a,b 的意义同上,这时
双曲线的方程是
y2 a2
x2 b2
1(a
0, b
0)
,这个
方程也是双曲线的标准方程.
y
M
F2
x O
F1
双曲线标准方程
图形
y M x
F1 O F2
y M F2
3.2.1 双曲线及其标准方程
人教A版(2019)选择性必修一
学习目标
01 经历从具体情境中抽象出双曲线模型的过程 02 了解双曲线的定义、几何图形和标准方程
03 通过双曲线标准方程的推导过程理解数形结合思想
学习重点
双曲线的定义、标准方程
学习难点
双曲线标准方程的推导
新课导入
我们知道,平面内与两个定点F1,F2的距离的和等于常数的点的轨
由双曲线的定义,双曲线就是下列点的集合:
P {M || MF1 | | MF2 || 2a , 0 2a | F1F2 |} .
因为 | MF1 | (x c)2 y2 ,| MF2 | (x c)2 y2 , 所以 (x c)2 y2 (x c)2 y2 2a .①
类比椭圆标准方程的化简过程,化简①,得 (c2 a2 )x2 a2 y2 a2 (c2 a2 ) ,
x2 b2
1a

双曲线的标准方程

双曲线的标准方程

双曲线的标准方程双曲线是解析几何中的一类二次曲线,具有许多特殊的几何和代数性质。

本文将详细介绍双曲线的标准方程及其性质。

1. 双曲线的定义双曲线是指一组点P和一个点F,满足从P到F到一个定点D的距离差的绝对值等于一个定值e,即PF - PD = e。

双曲线可以通过椭圆的定义进行推导。

如果从椭圆上的固定点F到点P的距离之和等于一个定值2a,那么从F到P的距离差将等于2a - 2PF,即PF - PD = e,其中e = 2a - 2c,c为椭圆的其中一个焦点到椭圆中心的距离。

因此,双曲线可以看作是一个椭圆的镜像,是的焦点位置沿着中心轴移动了一段距离,从而形成的一组点。

2. 双曲线的标准方程双曲线的标准方程通常写作:x^2/a^2 - y^2/b^2 = 1 (a > 0, b > 0)这里的a和b分别是椭圆的半轴。

对于双曲线的方程,可以进一步推导出其他形式。

例如,将x和y交换,在方程中加上常数c,可以得到:-y^2/a^2 + x^2/b^2 = c这种形式叫做横向双曲线;另一种形式是纵向双曲线:y^2/a^2 - x^2/b^2 = 1这里的a和b是椭圆的半轴。

3. 双曲线的几何性质双曲线有一些有趣的几何性质,如下所示:(1) 双曲线具有两个分离的分支,这两个分支无穷远处相交于双曲线的渐近线。

(2) 双曲线的渐近线是其方程中不等于0的项所对应的直线。

(3) 双曲线对称于其两条渐近线。

(4) 双曲线移动或旋转后仍然是双曲线。

(5) 两个相交的双曲线组成了双曲线族。

(6) 双曲线上的点到两个焦点的距离之差等于常数e。

4. 双曲线的代数性质双曲线也有许多有趣的代数性质,例如:(1) 双曲线是一类二次曲线,它们的方程可以写成x^2 + y^2 + Ax + By + C = 0的形式。

(2) 双曲线的法线与其渐近线的夹角相等。

(3) 双曲线的切线与两个焦点之间的连线垂直。

(4) 不同的双曲线是正交的。

双曲线及其标准方程ppt课件

双曲线及其标准方程ppt课件

C.(0,-5),(0,5)
D.(0,- 7),(0, 7)
双曲线的定义
2
1.设 F1,F2 分别是双曲线 x2-24=1 的左、右焦点,P 是双曲线上的一点,且 3|PF1|=4|PF2|, 则△PF1F2 的面积等于 ( )
A.4 2
B.8 3
C.24
D.48
2.已知动点 P(x,y)满足 ( + 2)2 + 2- ( -2)2 + 2=2,则动点 P 的轨迹是 ( )
这两个定点叫做双曲线的焦点. 两焦点的距离叫做双曲线的焦距.
y
M
F1 o F2 x
如何理解绝对值?若去掉绝对值则图像有何变化?
03 双曲线的标准方程
1. 建系:如图建立直角坐标系xOy,使x轴经 过点F1,F2,并且点O与线段F1F2中点重合.
y M
F1 O F2
x
2.设点:设M(x , y),双曲线的焦距为2c(c>0),F1(-c,0),F2(c,0) 常数=2a
利用定义求轨迹方程
P P127 习题3.2 第5题
如图,圆O的半径为定长 ,A是圆O外一定点,P是圆上任
意一点,线段AP的垂直平分线l和直线OP相交于点Q,当
O
点P在圆O上运动时,点Q的轨迹是什么?为什么?
A Q
P115 习题3.1 第6题 如图,圆O的半径为定长 ,A是圆O内一定点,P是圆上 任意一点,线段AP的垂直平分线l和半径OP相交于点 Q,当点P在圆O上运动时,点Q的轨迹是什么?为什么?
A.椭圆 C.双曲线的左支
B.双曲线 D.双曲线的右支
双曲线的定义
22
【变式练习】
已知
P
是双曲线

双曲线及其标准方程ppt课件

双曲线及其标准方程ppt课件

F1 O F2
3.限式 |MF1| - |MF2|=±2a
4.代换 即 (x c)2 y2 (x c)2 y2 2a
5.化简
6
代数式化简得:
y
M (c2 a2) x2 a2 y2 a2 (c2 a2)
F1 O F2
可令:c2-a2=b2
x
代入上式得:b2x2-a2y2=a2b2
不存在
(4)已知A(-5,0),B(5,0),M点到A,B两点的距离之差 的绝对值为0,则M点的轨迹是什么?
线段AB的垂5直平分线
(三)合作探究,构建方程
双曲线标准方程推导
1.建系
以F1,F2所在的直线为x轴,线段F1F2的中 y 点为原点建立直角坐标系
M
2.设点
x
设M(x , y),则F1(-c,0),F. 2(c,0)
15
16
2
(二)注重细节,理解概念
双曲线定义:
平面内与两个定点F1,F2的距离的差的绝对 值等于非零常数(小于︱F1F2︱)的点的轨迹
叫做双曲线.
M
① 两个定点F1、F2——双曲线的焦点;
② |F1F2|=2c ——焦距.
F1 o F2
3
(二)注重细节,理解概念
思考:为什么要求 0<2a<2c? 演示
当2a=2c时,动点的轨迹是什么? 以点F1、F2为端点,方向指向F1F2外侧的两条射 线. 当2a>2c时,动点的轨迹是什么? 不存在 当2a=0时,动点的轨迹是什么? 线段F1F2的垂直平分线
x2 b2
(1 a
0, b
0)
问题:如何判断双曲线的焦点在哪个轴上呢?
(二次项系数为正,焦点在相应的轴8上)

双曲线的定义及其标准方程

双曲线的定义及其标准方程

双曲线的定义及其标准方程
双曲线是一个平面曲线,其形状类似于两个向外开口的抛物线。

它的定义是:点F(称为焦点)到平面上任意一点P的距离与点P到一条直线L(称为准线)的距离之差为定值e(称为离心率)的点P的轨迹。

双曲线的离心率e大于1。

双曲线的标准方程是:$$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$$
其中,a是双曲线的横轴长度的一半,b是双曲线的纵轴长度的一半。

焦点到准线的距离为c,有以下关系式:$$c=\sqrt{a^2+b^2}$$
双曲线有两条渐近线,分别是直线y=±b/a×x。

双曲线的形状和位置可以通过a、b和c的值来确定。

当a>b时,双曲线开口方向沿着横轴;当b>a时,双曲线开口方向沿着纵轴。

双曲线在数学和物理学中都有广泛的应用。

在数学中,双曲线是一种基本的曲线形式,被广泛用于微积分、代数和几何学中;在物理学中,双曲线的形状出现在许多问题中,如天体力学和电磁学中的场线。

双曲线的标准方程动态演示ppt课件

双曲线的标准方程动态演示ppt课件
思考:
方程 x2 y2 1 表示焦点在y轴双曲线时, 2m m1
则m的取值范围____m_______2__.
设M(x , y),则F1(-c,0),F2(c,0)
y
M
F1 O F2 x
3.列式 |MF1| - |MF2|=±2a
即 (x c)2 y2 (x c)2 y2 2a
4.化简
(x c)2 y2 (x c)2 y2 2a
2
2
(x c)2 y 2 2a (x c)2 y 2
x2 a2
y2 b2
1(a
b
0)
y2 a2
x2 b2
1(a
b
0)
x2 y2 1(a 0,b 0) a2 b2Βιβλιοθήκη y2 a2x2 b2
1(a
0,b
0)
F(±c,0) F(0,±c)
F(±c,0) F(0,±c)
a>b>0,a2=b2+c2
a>0,b>0,但a不一 定大于b,c2=a2+b2
∵焦点为 F1(5, 0), F2(5, 0)
∴可设所求方程为:
x2 a2
y2 b2
1
(a>0,b>0).
∵2a=6,2c=10,∴a=3,c=5.
所以点 P 的轨迹方程为 x2 y2 1 . 9 16
变式训练 1:已知两定点 F1(5, 0) , F2(5, 0) ,动点 P 满足 PF1 PF2 10 ,求动点 P 的轨迹方程. 解: ∵ F1F2 10 , PF1 PF2 10 ∴ 点 P 的轨迹是两条射线, 轨迹方程为 y 0( x ≥ 5或x ≤ 5) . 变式训练 2:已知两定点 F1(5, 0) , F2(5, 0) ,动点 P 满足 PF1 PF2 6 ,求动点 P 的轨迹方程.

双曲线及其标准方程ppt课件

双曲线及其标准方程ppt课件

课后提升
1.必做题:P127页课本习题3.2第1,2,5题
2. 思考题(选做):定位问题
某中心接到其正东、正西、正北方向三个观测点的报告,正西、
正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其
它两个观测点晚4秒。已知各观测点到该中心的距离都是1020m,试
确定该巨响发生的位置。
(假定声音传播的速度为340m/s,相关各点均在同一平面内。)



= 令 = −




你能在y轴上找一点B,使得|OB|=b吗?
1
验证
设点
2
坐标法
4
化简
列式
3
绝对值
教学过程分析
3
通过图象,生成定义
绘制图象,合作探究
2
1
类比启发,方程推导


4
5
类比推理,举一反三
列表对比,加深理解
教学过程分析
方程推导
在学生脑海里留下更加深刻的印象。
通过学生的自主学习、小组合作、师生互
动,让学生学会交流、表达、质疑、反思。
04
01
02
03




5.及时练习,巩固所学
6.回顾小结,思维提升
7.课后延伸,探究发现
教学过程分析
复习回顾,课题导入
复习回顾:
椭圆及其标准方程
创设情境
导入课题:双曲线及其标准方程
教学过程分析
3
通过图象,生成定义
绘制图象,合作探究
2
1
类比启发,方程推导
4
类比推理,举一反三
5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
方程
x y 2 1 2 a b
F ( ±c, 0)
2
2
y2 x2 2 1 2 a b
F(0, ± c)
2 2
焦点 a.b.c 的关 系
c a b
2
(c a ) x a y a (c a )
2 2 2 2 2 2 2 2
令c2-a2=b2
x y 2 1 2 a b
2
2
双曲线的标准方程
焦点在x轴上
y
M
焦点在y轴上
y
F2
M x
F
1
O
F
2
x
O
F1
2 2 x y y x 2 1 2 1 2 2 a b a b 2 2 2 (a 0,b 0)并且c =a b
焦点
F(±c,0)
F(±c,0)
F(0,±c)
a.b.c的关 系
F(0,±c)
a>0,b>0,但a不一 定大于b,c2=a2+b2
a>b>0,a2=b2+c2
小结 ----双曲线定义及标准方程
定义
| |MF1|-|MF2| | =2a(0 < 2a<|F1F2|)
y
M
M F2
y
图象
F1
o
F2
x
F1

定义 方程

双曲线
||MF1|-|MF2||=2a
x2 y 2 2 1(a 0, b 0) 2 a b y 2 x2 2 1(a 0, b 0) 2 a b
|MF1|+|MF2|=2a
x2 y2 2 1(a b 0) 2 a b y 2 x2 2 1(a b 0) 2 a b
F1
y
M
o
F2
x
- |MF2|= 2a _ 2a (x-c)2 + y2 = +

(x+c)2 + y2 -
4.化简.
(x c)2 y2 (x c)2 y2 2a
( (x c)2 y2 )2 ( (x c)2 y2 2a)2
y
M F1
o
cx a2 a (x c)2 y2
②常数大于|F1F2 |时 |MF1|-|MF2| >|F1F2| 是不可能的,因为三角 形两边之差小于第三边。此时无轨迹。 ③常数等于0时
∵若常数2a= |MF1|-|MF2| =0
F1 则|MF1|=|MF2| 此时点的轨迹是线段F1F2的垂直平 分线。 F2 M
3.双曲线的标准方程
1. 建系. 以F1,F2所在的直线为X轴, 如何求这优美的曲线的方程? 线段F1F 2的中点为原点建立直角坐 标系 2.设点. 设M(x , y),双曲线的焦 距为2c(c>0),F1(-c,0),F2(c,0) 3.列式.|MF1|
M
(1)距离之差的绝对值
F
| |MF1| - |MF2| | = 2a
(2)常数要大于0小于|F1F2|
1
o
F2
0<2a<2c
①常数等于|F1F2|时
P
Q
M M F1 F2 ||MF1|-|MF2||=|F1F2|时,M点一定在上图中的射线F1P, F2Q 上,此时点的轨迹为两条射线F1P、F2Q。
(1) a=_______ , c =_______ , b =_______
3
5
4
(2) 双曲线的标准方程为______________ (3)双曲线上一点P, |PF1|=10, 4或16 则|PF2|=_________
双曲线的标准方程与椭圆的 标准方程有何区别与联系?
双Hale Waihona Puke 线与椭圆之间的区别与联系画双曲线
演示实验:用拉链画双曲线
①如图(A), |MF1|-|MF2|=2a ②如图(B),
|MF2|-|MF1|=2a
由①②可得: | |MF1|-|MF2| | = 2a (差的绝对值)
上面 两条合起来叫做双曲线
根据实验及椭圆定义,你能给双曲线下定义吗?
2.双曲线的定义 回忆椭圆的定义
平面内与两个定点 F1, F 平面内与两个定点 F F2的距离的和为一个定 2的距离的差的绝对值 1, 等于常数 (小于︱ F1F2︱) 的点的轨迹叫做双曲线. 值(大于 ︱F1F2︱ )的点的轨迹叫做椭圆 ① 两个定点F1、F2——双曲线的焦点; ② |F1F2|=2c ——焦距. 注意
思考:如何由双曲线的标准方程来判断它的焦点 是在X轴上还是Y轴上?
x2 y2 y2 x2 1与 判断: 1 的焦点位置? 16 9 9 16
结论: 看
x , y 前的系数,哪一个为正,则
2
2
焦点在哪一个轴上。
例题分析
例 1. 已知双曲线的焦点为 F1(-5,0), F2(5,0) 双曲线上一点到焦点的距离差的 绝对值等于6,则
北京摩天大楼
巴西利亚大教堂
法拉利主题公园
花瓶
探索研究
1.回顾椭圆的定义?
Y
平面内与两个定点F1、F2的 距离的和等于常数(大于 |F1F2|)的点轨迹叫做椭圆。
M x, y
F1 c, 0
O
F2 c, 0 X
思考 : 如果把椭圆定义中的“距离之和”改为“距 离之差”,那么动点的轨迹会是怎样的曲线? 即“ 平面内与两个定点 F1 、 F2 的距离的差等于常数 的点的轨迹 ”是什么?
2
2
双曲线定义及标准方程
定义
| |MF1|-|MF2| | =2a(0 < 2a<|F1F2|)
y
M
M F2
y
图象
F1 o F2
x
F1
x
方程 焦点 a.b.c 的关系
x y 2 1 2 a b
2
2
y x 2 1 2 a b
2
2
F ( ±c, 0) F(0, ± c) c 2 a 2 b 2 (c a, c b, a与b的大小不确定)
相关文档
最新文档