(完整word版)人教版第十六章二次根式教案

合集下载

(完整版)新人教版八年级数学下册第16章二次根式教案

(完整版)新人教版八年级数学下册第16章二次根式教案

课题:16.1二次根式1 课型:新授 一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。

2、掌握二次根式有意义的条件。

3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。

三、学习过程(一)自学导航(课前预习)(1)已知a x =2,那么a 是x 的______;x 是a 的______, 记为_____,a 一定是____数。

(2)4的算术平方根为2,用式子表示为=__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。

(二)合作交流(小组互助) (1)16的平方根是 ;(2)一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h (单位:米)满足关系式25t h =。

如果用含h 的式子表示t ,则t = ; (3)圆的面积为S ,则圆的半径是 ; (4)正方形的面积为3-b ,则边长为 。

思考:16,5h ,πs ,3-b 等式子的实际意义.说一说他们的共同特征.定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____________。

1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。

所以,在二次根式a 中,字母a 必须满足 ,4a 才有意义。

3、根据算术平方根意义计算 :(1) 2)4( (2)(3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: ,其中0≥a ,4、由公式)0()(2≥=a a a ,我们可以得到公式a =2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。

人教版八年级数学下册第16章二次根式全章教案

人教版八年级数学下册第16章二次根式全章教案

人教版八年级数学第16章单元计划一、课前导学:学生自学课本2-3页内容,并完成下列问题 1. 温故而知新:(1)如果一个数x 的平方等于a ,即2x =a ,那么x 叫做a 的 ,记为x = , (2)如果一个非负数x 的平方等于a ,即2x =a (0≥x ),那么非负数x 叫做a 的 ,记为x = , (3)计算下列各式的值:= ,= ,= ,= ,= ,2)9(= ,2.一般地我们把形如 ( )叫做二次根式,a 叫做_____________, 3. 试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3, 16-, 34,5-, )0(3≥a a , 12+x4.根据算术平方根意义计算 :(1) 2)4( (2) (3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: (0≥a ), 5.计算:(1)2)23( (2)2)52(- 二、合作、交流、展示: 1.理解二次根式概念(1)二次根式a 中,字母a 必须满足 ; (2)二次根式与算术平方根有何关系呢?年级 八年级 课题 16.1二次根式(1) 课型 新授教 学 目 标知识技能1.理解二次根式的概念,能判断一个式子是不是二次根式;2. 掌握二次根式有意义的条件;3. 掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a 过程方法培养观察、归纳能力,理解分类讨论思想,培养思维的严密性.情感态度激发学生学习数学的兴趣,培养合作意识.教学重点 二次根式有意义的条件;二次根式的性质. 教学难点 灵活运用性质)0(0≥≥a a 解题. 教法学案导学学法探究、合作教学媒体多 媒 体教 学 过 程 设 计2)3(________)(2=a(3)当0≥a 时,a 是什么数?【归纳】二次根式的双重非负性: 2.当x 取何值时,下列各二次根式有意义(1)43-x ; (2)x 322- (3)2)2(-x(4)x --213. 若20a -=,则 2a b -= ,4.已知,求xy的值.【收获感悟】: , 三、巩固与应用1. 若x -在实数范围内有意义,则x 为( ),A.正数B.负数C.非负数D.非正数 2.当x 时,二次根式x 35-有意义,3. 在式子xx+-121中,x 的取值范围是____________.4.在实数范围内因式分解:①72-x ② 4a 2-115有意义,则a 的值为___________.6.已知42-x +y x +2=0,则=-y x _____________.7.已知+3,求y x 的值.8.拓展提高:已知a 、b =b +4,求a 、b 的值. 四、小结:1.二次根式的概念: ;2.二次根式的性质:(1) ,(2) ; 3.巧用非负数解题. 五、作业:《作业本》第1页. 六、课后反思:一、课前导学:学生自学课本第4页内容,并完成下列问题 1. 计算:24= =20观察其结果与根号内幂底数的关系,归纳得到:当=≥2,0a a 时 2.计算:-2)4(==观察其结果与根号内幂底数的关系,归纳得到:当=<2,0a a 时 3.【归纳】二次根式的性质:=2a =4.化简下列各式:(1)=22.0 (2)=-2)3.0( (3)=-2)4( (4)()22a = (0<a )5.代数式:用基本运算符号把 连接起来的式子叫做代数式. 二、合作、交流、展示:1.理解二次根式三条基本性质:(1( ) (2)()=2a ( ) (3) =2a教 学 过 程 设 计2.【讨论】二次根式的性质:)0()(2≥=a a a 与a a =2有什么区别与联系?3.化简下列各式(1))0(42≥x x (2)4x (3))3()3(2≥-a a4.已知2<x <3,化简:3)2(2-+-x x5.已知a 、b 、c 在数轴上的位置如图所示,化简b b c c a a ---++-22)(.三、巩固与应用 1. 课本第4页练习2; 2.2)4(-π= ;3.a 、b 、c 为三角形的三条边,则=--+-+c a b c b a 2)(________;4.你能运用公式a a =2比较53与34的大小吗?5.当x = 时,代数式43x +有最小值,其最小值是 ; 6.拓展提高:(1)已知0<x <1,化简:4)1(2+-xx -4)1(2-+xx(2)已知实数a 满足a a a =-+-2014)2013(2,求22013-a 的值. 四、小结:1.二次根式的性质: , , ; 2.灵活运用二次根式的性质解题. 五、作业:《作业本》第2页. 六、课后反思:一、课前导学:学生自学课本6-7页内容,并完成下列问题1、探究 ⑴ 计算下列各式,观察计算结果:①4×9=______ ,94⨯=_______②16 ×25 =_______ ,2516⨯=_______ ③100 ×36 =_______ , 36100⨯=_______⑵ 仔细观察上题中的规律,猜想b a •= ()0,0≥≥b a (二次根式乘法法则)再例举两个例子验证你的猜想: ; 2、计算2×3 = ;5×6= ;274•= ;123•= 3、乘法公式反过来得到:=ab ()0,0≥≥b a , 4、填空:⑴=•=⨯=24248 ; =•=⨯=292918 ;⑵请你用上述方法化简下列二次根式: 12= ;27= ;48= ; 72= ; 98= ; 250x = ;二、合作、交流、展示:1.二次根式的乘法法则:b a •= , 注意:乘法法则成立的条件是: (为什么?) 2、积的算术平方根的性质(乘法法则的逆向运用)=ab教 学 过 程 设 计注意:⑴性质成立的条件是: (为什么?)⑵如何化简:()()94-⨯-? 3、例题1 计算:⑴3127⨯ ⑵4510152⨯ ⑶1531372⨯-例题2 化简:⑴()()8116-⨯- ⑵3225b a ⑶4499ab ⑷2212b a【收获感悟】:如何进行二次根式的化简 ,例题3 计算:⑴714⨯ ⑵10253⨯ ⑶ xy x 31122⨯-三、巩固与应用1、等式1112-=-•+x x x 成立的条件是( )A .x ≥1B .x ≥-1C .-1≤x ≤1D .x ≥1或x ≤-1 2、下列各等式成立的是( ). A .45×25=85B .53×42=205 C.53×22=106 D . yx y x +=+22 4、不改变式子的值,把根号外的数移到根号里面: ⑴=32 ; ⑵313= ;⑶ -=625、比较下列两数的大小:⑴ ⑵⑶-32-6、已知一个三角形的一条边长为502,这条边上的高为83,求这个三角形的面积.7、计算:(1)68×(-26); (2 8、(拓展)化简⑴a a1 ⑵aa 1-四、小结:1.二次根式的乘法法则: ;2.积的算术平方根的性质: , 五、作业:《作业本》第3页. 六、课后反思:一、课前导学:学生自学课本第8-9页内容,并完成下列问题 1、写出二次根式的乘法法则和积的算术平方根的性质b a •= ,=ab2、计算: (1)38×(-46) (2)3612ab ab ⨯3、填空: (1; (2;(3; (4. 你能发现什么规律呢?一般地,对二次根式的除法规定:二次根式的除法法则 商的算术平方根的性质 4、计算:(1)312 (2)16141÷5、化简:(1)257 (2)932 (3))0,0(42522≥>b a ab 二、合作、交流、展示:仿照课本例题利用二次根式的除法法则和商的算术平方根的性质完成以下题目教 学 过 程 设 计1、计算: (1 (2 (3)52154【温馨提示】:当二次根式前面有系数时,类比单项式除以单项式法则进行计算:即系数之商作为商的系数,被开方数之商为被开方数。

人教版八年级数学下册16.1二次根式(教案)

人教版八年级数学下册16.1二次根式(教案)
人教版八年级数学下册16.1二次根式(教案)
一、教学内容
本节课选自人教版八年级数学下册第16.1节,主题为“二次根式”。教学内容主要包括以下两个方面:
1.二次根式的概念与性质:理解二次根式的定义,掌握二次根式的性质,如乘除法则、平方差公式等。
2.二次根式的化简与运算:学会化简二次根式,掌握二次根式的加减乘除运算方法,并能解决实际问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的概念。二次根式是形如$\sqrt{a}$的表达式,其中$a$为非负实数。它是解决非整数平方问题的重要工具,广泛应用于数学和实际生活。
2.案例分析:接下来,我们来看一个具体的案例。例如,计算矩形的对角线长度,通过二次根式的应用,我们可以轻松解决这一问题。
(5)实际应用:运用二次根式解决实际问题,如计算面积、体积等。
2.教学难点
(1)理解二次根式的定义:部分学生可能对根号下的数必须为非负实数这一点理解不透彻,需要通过实例进行解释。
(2)掌握二次根式的性质:乘除法则、平方差公式等性质的理解和运用是难点,如$\sqrt{a^2}=|a|$,学生容易忽略绝对值符号。
(4)二次根式的化简方法,如:$\sqrt{18}=\sqrt{9}\cdot\sqrt{2}=3\sqrt{2}$;
(5)二次根式的加减运算,如:$\sqrt{3}+\sqrt{5}$,$\sqrt{3}-\sqrt{5}$等;
(6)运用二次根式解决实际问题。
二、核心素养目标
1.培养学生的数学抽象能力:通过二次根式的学习,使学生能够从具体问题中抽象出数学表达式,理解数学符号的含义,提高数学表达与交流能力。
3.重点难点解析:在讲授过程中,我会特别强调二次根式的定义和性质这两个重点。对于难点部分,如二次根式的化简和运算,我会通过举例和比较来帮助大家理解。

新人教版八年级数学下册《十六章 二次根式 16.1 二次根式 章前引言及二次根式》教案_27

新人教版八年级数学下册《十六章 二次根式  16.1 二次根式  章前引言及二次根式》教案_27

16.1.1二次根式教学内容二次根式的概念及其运用教学目标知识与技能目标:a ≥0)的意义解答具体题目. 过程与方法目标:提出问题,根据问题给出概念,应用概念解决实际问题.情感与价值目标:通过本节的学习培养学生:发展学生观察、分析、发现问题的能力. 教学重难点1.重点:理解二次根式的概念;2.难点:确定二次根式中字母的取值范围教法:讲练结合法: 在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。

学法:1、类比的方法 通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。

2、练习法 采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。

媒体设计:PPT 课件,展台。

学习过程一、展示学习目标:1. 二次根式的概念2.二次根式有意义的条件3二次根式的双重非负性二.设置问题情境,引入新课:1求下列各数的平方根和算术平方根(1)9(2)0.64(3)0总结:a (a ≥0)的平方根是a (a ≥02.解决问题(1) 面积为 S 的正方形边长为________。

(2).面积为 b -5 的正方形边长为________。

(3). 圆桌的面积为 S ,则半径为________(4).若圆桌的面积为 S +3,则半径为________(5)关系式 h = 5t 2 (t > 0)中,用含有 h 的式子表示 t ,则 t = ________。

总结以上式子有何特征二次根式的概念:a像这样一些正数的算术平方根的式子,我们就把它称二次根式。

因此,一般地,我们把形如(a≥0三.探究新课1.指出二次根式有意义的条件被开方数大于等于零。

提问:二次根式在什么情况下无意义学生讨论后得出:被开方数小于零2.指出下列哪些是二次根式?学生自主完成小练习:辨别下列式子,哪些是二次根式?三.练习四.小结1. 二次根式的概念2.二次根式有意义的条件3二次根式的双重非负性五.作业课本第5页第一题。

第16章《二次根式》整章(教案)

第16章《二次根式》整章(教案)
针对本节课的教学,我认为在以下几个方面进行改进:
1.加强对二次根式乘除法运算的讲解,通过对比练习,使学生更好地掌握运算规则。
2.增加与实际生活相关的案例,培养学生的数学建模能力。
3.提高小组讨论的参与度,鼓励学生发表自己的观点,提高课堂互动性。
4.设计更多针对难点的练习题,帮助学生突破学习难点。
5.在课堂总结环节,加入互动性游戏或竞赛,提高学生的记忆效果。
3.重点难点解析:在讲授过程中,我会特别强调二次根式的性质和运算规则这两个重点。对于难点部分,如二次根式的乘除法和加减法,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次根式相关的实际问题,如计算特定图形的面积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用几何图形拼凑出$\sqrt{9}$和$\sqrt{16}$,演示二次根式的基本原理。
第16章《二次根式》整章(教案)
一、教学内容
第16章《二次根式》整章,教学内容如下:
1.二次根式的概念及性质;
2.二次根式的乘除法运算;
3.二次根式的加减法运算;
4.最简二次根式;
5.二次根式的化简与证明;
6.二次根式的实际应用。
本章将通过具体实例,引导学生掌握二次根式的性质与运算方法,培养学生运用数学知识解决实际问题的能力。同时,注重提高学生的逻辑思维和运算能力,为后续学习打下坚实基础。
其次,在实践活动和小组讨论中,我发现部分学生在解决实际问题时,将问题抽象为二次根式的数学模型的能力较弱。针对这一问题,我计划在今后的教学中,加入更多与实际生活相关的案例,引导学生学会将实际问题转化为数学模型。
此外,学生在小组讨论中的参与度还有待提高。在今后的教学中,我会更加注重激发学生的讨论兴趣,鼓励他们积极发表自己的观点,提高课堂互动性。

人教版初中数学八年级下册第十六章:二次根式(全章教案)

人教版初中数学八年级下册第十六章:二次根式(全章教案)

第十六章二次根式教材简析本章的内容主要包括:二次根式的概念和性质、二次根式的乘除、二次根式的加减.在中考中,本章重在考查二次根式的概念和性质以及运用二次根式的运算法则进行化简、求值.教学指导【本章重点】二次根式的性质和运算.【本章难点】灵活运用二次根式的性质及运算法则进行相关的化简与实数的简单运算.【本章思想方法】1.掌握类比思想.如:类比算术平方根的概念理解二次根式的性质,类比整式的运算法则理解二次根式的运算法则.2.掌握分类讨论思想.如:在进行二次根式的化简时,当被开方数中有字母且没有给出字母的取值范围时,应考虑对字母的取值进行分类讨论.3.体会整体思想.如:在求含有二次根式的代数式的值时,有时从整体角度考虑,将已知条件和待求值的式子进行变形后整体代入求值.课时计划16.1二次根式2课时16.2二次根式的乘除2课时16.3二次根式的加减2课时16.1二次根式第1课时二次根式的概念教学目标一、基本目标【知识与技能】理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围和二次根式的取值范围.【过程与方法】经历观察、比较、总结二次根式概念和被开方数取值范围的过程,发展学生的归纳概括能力.【情感态度与价值观】经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用意识.二、重难点目标【教学重点】二次根式的概念,二次根式有意义的条件.【教学难点】求二次根式中字母的取值范围.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P2~P3的内容,完成下面练习.【3 min反馈】1.一个正数有两个平方根;0的平方根为0;在实数范围内,负数没有平方根.因此,在实数范围内开平方时,被开方数只能是正数或0.2.一般地,我们把形如a(a≥0)的式子叫做二次根式,“”称为二次根号.3.下列式子中,不是二次根式的是(B)A.45B.-3C.a2+3D.2 3环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】下列各式中,哪些是二次根式,哪些不是二次根式?11,-5,(-7)2,313,15-16,3-x(x≤3),-x(x≥0),(a-1)2,-x2-5,(a-b)2(ab≥0).【互动探索】(引发学生思考)要判断一个根式是不是二次根式,一是看根指数是不是2,二是看被开方数是不是非负数.【解答】因为11,(-7)2,15-16=130,3-x(x≤3),(a-1)2,(a-b)2(ab≥0)中的根指数都是2,且被开方数均为非负数,所以都是二次根式.313的根指数不是2,-5,-x(x≥0),-x2-5的被开方数都小于0,所以不是二次根式.【互动总结】(学生总结,老师点评)判断一个式子是不是二次根式,要看所给的式子是否具备以下条件:(1)带二次根号;(2)被开方数是非负数.【例2】当x________,x+3+1x+1在实数范围内有意义.【互动探索】(引发学生思考)二次根式有意义要满足什么条件?本题是否还要考虑其他条件?【分析】要使x+3+1x+1在实数范围内有意义,必须同时满足被开方数x+3≥0和分母x+1≠0,解得x≥-3且x≠-1.【答案】≥-3且x≠-1【互动总结】(学生总结,老师点评)使一个代数式有意义的未知数的取值范围通常要考虑三种情况:一是分母不为零,二是偶次方根的被开方数为非负数,三是零次幂的底数不为零.活动2巩固练习(学生独学)1.下列式子中,是二次根式的是(A)A.-7B.3 7C.x D.x 2.使式子-(x-5)2有意义的未知数x有(B) A.0 个B.1 个C.2 个D.无数个3.当x是多少时,2x+3x+x2在实数范围内有意义?解:依题意,得⎩⎪⎨⎪⎧2x +3≥0,x ≠0,解得⎩⎪⎨⎪⎧x ≥-32,x ≠0.∴当x ≥-32且x ≠0时,2x +33+x 2在实数范围内没有意义.活动3 拓展延伸(学生对学)【例3】若实数x 、y 满足y >x -2+6-3x +3,求|y -3|-(x -y )2的值.【互动探索】要求|y -3|-(x -y )2的值,需确定出x 、y 的取值范围.根据式子y >x -2+6-3x +3,可以确定出x 、y 的取值范围.【解答】由题意,得x -2≥0且6-3x ≥0, 解得x =2,则y >3.故|y -3|-(x -y )2=y -3-y +2=2-3=-1.【互动总结】(学生总结,老师点评)利用二次根式有意义的条件求出x 的值,从而确定y 的取值范围,然后利用二次根式的性质化简代数式.环节3 课堂小结,当堂达标 (学生总结,老师点评)二次根式⎩⎪⎨⎪⎧概念有意义的条件——被开方数是非负数练习设计请完成本课时对应训练!第2课时 二次根式的性质教学目标一、基本目标 【知识与技能】理解a (a ≥0)是一个非负数、(a )2=a (a ≥0)和a 2=a (a ≥0),并利用它们进行计算和化简;了解代数式的概念.【过程与方法】在明确(a )2=a (a ≥0)和a 2=a (a ≥0)的算理的过程中,感受数学的实用性;通过小组合作交流,培养学生的合作意识.【情感态度与价值观】通过二次根式的相关计算,进而解决一些实际问题,培养学生解决问题的能力. 二、重难点目标 【教学重点】 二次根式的性质. 【教学难点】运用二次根式的性质进行有关计算.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P3~P4的内容,完成下面练习. 【3 min 反馈】1.(1)当a >0时,a 表示a ;(2)当a =0时,a 表示0概括:一般地,a (a ≥0)是一个非负数.2.教材P3“探究”,根据算术平方根的意义填空: (1)(4)2=4; (2)2=2;⎝⎛⎭⎫132=13; (0)2=0. (2)一般地,(a )2=a (a ≥0). 3.教材P4“探究”,填空: (1)22=2;0.012=0.01; ⎝⎛⎭⎫232=23; 02=0.(2)一般地,a 2=a (a ≥0).教师点拨:二次根式的三个性质:(1)a (a ≥0)是一个非负数;(2)(a )2=a (a ≥0);(3)a 2=a (a ≥0).4.用基本运算符号把数或表示数的字母连结起来的式子,我们称这样的式子为代数式. 5.计算:0.019 6×22 500=21;549=73. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:(1)( 1.5)2; (2)(25)2; (3)16; (4)(-5)2.【互动探索】(引发学生思考)一个非负数的算术平方根的平方等于什么?当二次根式的被开方数是一个完全平方数,开方时有什么规则?【解答】(1)()1.52 =1.5. (2)(25)2=22×(5)2=4×5=20. (3)16=(42)=4. (4)()-52=52=5.【互动总结】(学生总结,老师点评)一个非负数的算术平方根的平方等于这个非负数.当二次根式的被开方数是一个完全平方数时,a 2=||a =⎩⎨⎧a ()a ≥0;-a()a <0.【例2】化简下列二次根式. (1)8a 3b (a ≥0,b ≥0); (2)(-36)×169×(-9).【互动探索】(引发学生思考)根据开方的定义化简.注意:二次根式的结果是最简二次根式.【解答】(1)8a 3b =22·a 2·2ab =(2a )2·2ab =2a 2ab . (2)(-36)×169×(-9)=36×169×9=6×13×3=234.【互动总结】(学生总结,老师点评)(1)若被开方数中含有负因数,则应先化成正因数;(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(式),即化为最简二次根式.活动2 巩固练习(学生独学) 1.下列各式正确的是( D ) A .(-4)×(-9)=-4×-9 B .16+94=16×94C .449=4×49D .4×9=4×92.计算:(1)(9)2; (2)-(3)2; (3)64; (4)a 2+2a +1. 解:(1)9. (2)-3. (3)8. (4)a 2+2a +1=()a +12=||a +1.当a ≥-1时,原式=a +1;当a <-1时,原式=-a-1.3.已知实数a 、b 在数轴上的位置如图所示,化简:(a +1)2+2(b -1)2-|a -b |.解:从数轴上a 、b 的位置关系,可知-2<a <-1,1<b <2,且b >a ,故a +1<0,b -1>0,a -b <0,原式=|a +1|+2|b -1|-|a -b |=-(a +1)+2(b -1)+(a -b )=b -3.活动3 拓展延伸(学生对学)【例3】 已知a 、b 、c 是△ABC 的三边长,化简(a +b +c )2-(b +c -a )2+(c -b -a )2. 【互动探索】根据三角形的三边关系,得出b +c >a ,b +a >c .根据二次根式的性质得出含有绝对值的式子,然后去绝对值符号合并即可.【解答】∵a 、b 、c 是△ABC 的三边长,∴b +c >a ,b +a >c ,∴原式=|a +b +c |-|b +c -a |+|c -b -a |=a +b +c -(b +c -a )+(b +a -c )=a +b +c -b -c +a +b +a -c =3a +b -c .【互动总结】(学生总结,老师点评)解答本题的关键是根据三角形的三边关系得出不等关系,进行变换后,结合二次根式的性质进行化简.环节3 课堂小结,当堂达标 (学生总结,老师点评)二次根式的性质⎩⎪⎨⎪⎧a ≥0(a ≥0)(a )2=a (a ≥0)a 2=|a |=⎩⎪⎨⎪⎧a (a ≥0)a (a <0)练习设计请完成本课时对应训练!16.2二次根式的乘除第1课时二次根式的乘法教学目标一、基本目标【知识与技能】理解a·b=ab(a≥0,b≥0),ab=a·b(a≥0,b≥0),并利用它们进行计算和化简.【过程与方法】经历“探索——发现——猜想——验证”的过程,引导学生体会合情推理与演绎推理的相互依赖、相互补充的关系;培养学生用规范的数学语言进行表达的习惯和能力.【情感态度与价值观】鼓励学生积极参与数学活动,激发学生的好奇心和求知欲,体验数学活动中的探索和创新,感受数学的严谨性.二、重难点目标【教学重点】二次根式的乘法运算法则.【教学难点】运用二次根式的乘法运算法则进行简单的运算.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P6~P7的内容,完成下面练习.【3 min反馈】1.教材P6“探究”,计算下列各式,观察计算结果,你能发现什么规律?(1)4×9=6,4×9=6;(2)16×25=20,16×25=20;(3)25×36=30,25×36=30.a≥0,b≥0.规律:一般地,二次根式的乘法法则是a·b=ab()2.把a·b=ab反过来,就得到ab=a·b,利用它可以进行二次根式的化简.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算:(1)3×5; (2)13×27; (3)9×27; (4)12× 6. 【互动探索】(引发学生思考)利用二次根式的乘法运算法则进行计算. 【解答】(1)3×5=15. (2)13×27=13×27=9=3. (3)9×27=9×27=92×3=9 3. (4)12×6=12×6= 3. 【互动总结】(学生总结,老师点评)利用二次根式的乘法运算法则进行计算时,注意被开方数必须是非负数.【例2】化简:(1)9×16; (2)16×81; (3)81×100; (4)4a 2b 3; (5)54.【互动探索】(引发学生思考)利用二次根式积的算术平方根的性质进行化简时,需要注意什么?【解答】(1)9×16=9×16=3×4=12. (2)16×81=16×81=4×9=36. (3)81×100=81×100=9×10=90. (4)4a 2b 3=4·a 2·b 3=2·a ·b 2·b =2ab b . (5)54=9×6=32×6=3 6.【互动总结】(学生总结,老师点评)积的算术平方根是二次根式乘法法则的逆用,注意被开方数必须是非负数.活动2 巩固练习(学生独学)1.等式x +1·x -1=x 2-1成立的条件是( A ) A .x ≥1 B .x ≥-1 C .-1≤x ≤1 D .x ≥1或x ≤-12.计算: (1)12×3; (2)23×315; (3)23×3512×5936. 解:(1)6. (2)310. (3)18.3.判断下列各式是否正确,不正确的请予以改正: (1)(-4)×(-9)=-4×-9; (2)41225×25=4×1225×25=4×1225×25=412=8 3. 解:(1)不正确.改正:(-4)×(-9)=4×9=36=6. (2)不正确. 改正:41225×25=11225×25=11225×25=112=47. 活动3 拓展延伸(学生对学) 【例3】比较大小:(1)35与53; (2)-413与-511.【互动探索】由于根号外的因数不为1,可以将根号外的因数移到根号内,再比较被开方数的大小.【解答】(1)35=9×5=45, 53=25×3=75. 因为45<75,所以35<5 3. (2)-413=-16×13=-208, -511=-25×11=-275.因为208<275,所以-208>-275,所以-413>-511.【互动总结】(学生总结,老师点评)要比较两个二次根式的大小,可以先运用二次根式的乘法运算法则,将根号外的数移到根号内,再比较被开方数的大小.环节3 课堂小结,当堂达标 (学生总结,老师点评)练习设计请完成本课时对应训练!第2课时二次根式的除法教学目标一、基本目标【知识与技能】1.理解ab=ab(a≥0,b>0)和ab=ab(a≥0,b>0)及利用它们进行运算;2.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.【过程与方法】通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.【情感态度与价值观】在经历二次根式除法运算法则的过程中,获得成就感,建立学习数学的信心和兴趣.二、重难点目标【教学重点】最简二次根式的概念,二次根式的除法运算法则.【教学难点】二次根式商的算术平方根的运用.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P8~P10的内容,完成下面练习.【3 min反馈】(一)二次根式的除法1.教材P8“探究”,计算下列各式,观察计算结果,你能发现什么规律?(1)49=23,49=23;(2)1625=45,1625=45;(3)3649=67,3649=67.规律:一般地,二次根式的除法法则是ab=ab()a≥0,b>0.2.把ab=ab反过来,就得到ab=ab()a≥0,b>0,利用它可以进行二次根式的化简.(二)最简二次根式1.观察教材P8~P9例4、例5、例6中各小题的最后结果,比如22,310,2aa等,可以发现这些式子有如下两个特点:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.2.在二次根式的运算中,一般要把最后结果化为最简二次根式,并且分母中不含二次根式.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算:(1)123;(2)32÷18;(3)14÷116;(4)648.【互动探索】(引发学生思考)利用二次根式的除法运算法则进行计算.【解答】(1)原式=123=4=2 .(2)原式=32÷18=32×8=3×4=2 3.(3)原式=14÷116=14×16=4=2.(4)原式=648=8=2 2.【互动总结】(学生总结,老师点评)利用二次根式的除法运算法则进行计算时,注意被开方数必须是非负数,结果必须是最简二次根式.【例2】化简:(1)364;(2)64b29a2;(3)35;(4)22-1.【互动探索】(引发学生思考)利用二次根式的除法运算法则和商的算术平方根的性质将二次根式进行化简.【解答】(1)原式=364=38.(2)原式=64b29a2=8b3a.(3)原式=35=3×55×5=155.(4)原式=2×()2+1()2-1()2+1=2+22-1=2+ 2. 【互动总结】(学生总结,老师点评)利用二次根式的除法运算法则和商的算术平方根的性质将二次根式进行化简时,注意将结果化为最简二次根式.活动2 巩固练习(学生独学) 1.计算113÷213÷125的结果是( A ) A .27 5B .27C . 2D .272.如果xy(y >0)是二次根式,那么化为最简二次根式是( C ) A .xy(y >0) B .xy (y >0) C .xyy(y >0) D .以上都不对3.化简: (1)483; (2)0.7; (3)23-1; (4)6-56+5. 解:(1)4. (2)7010. (3)3+1. (4)11-230. 活动3 拓展延伸(学生对学) 【例3】已知9-x x -6=9-xx -6,且x 为偶数,求(1+x )x 2-5x +4x 2-1的值.【互动探索】等式形式符合商的算术平方根公式→确定x 的取值范围→化简所求式子【解答】由题意,得⎩⎪⎨⎪⎧ 9-x ≥0,x -6>0,即⎩⎪⎨⎪⎧x ≤9,x >6,∴6<x ≤9.∵x 为偶数,∴x =8, ∴原式=(1+x )(x -4)(x -1)(x +1)(x -1)=(1+x )x -4x +1=(1+x )x -4(x +1)=(1+x )(x -4). ∴当x =8时,原式=4×9=6.【互动总结】(学生总结,老师点评)根据商的算术平方根的性质化简时,分子中被开方数是非负数,分母中被开方数是正数.环节3课堂小结,当堂达标(学生总结,老师点评)练习设计请完成本课时对应训练!16.3二次根式的加减第1课时二次根式的加减教学目标一、基本目标【知识与技能】通过合并被开方数相同的二次根式,会进行二次根式的加法与减法运算.【过程与方法】在分析问题的过程中,渗透对二次根式加减法的理解,再总结经验,用它来指导二次根式的计算和化简.【情感态度与价值观】鼓励学生积极参与数学活动,体会合作学习的先进性.二、重难点目标【教学重点】会将二次根式化为最简二次根式,掌握二次根式加减法的运算.【教学难点】运用二次根式的加减运算解决问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P12~P13的内容,完成下面练习.【3 min反馈】1.一般地,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.2.计算下列各式.(1)22+32;(2)28-38+58;(3)7+27+9×7;(4)33-23+ 2.解:(1)原式=(2+3)2=5 2.(2)原式=(2-3+5)8=48=8 2.(3)原式=7+27+37=(1+2+3)7=67.(4) 原式=(3-2)3+2=3+ 2.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算: (1)27+13+12; (2)32+48-8+3; (3)3⎝⎛⎭⎫22-63+ 1.5-223;(4)()6-222+()23-1()23+1.【互动探索】(引发学生思考)运用二次根式的加减法法则及乘法公式进行计算,在计算时要注意哪些问题?【解答】(1)27+13+12=33+33+23=1633. (2)32+48-8+3=32+43-22+3=2+5 3. (3)3⎝⎛⎭⎫22-63+ 1.5-223=26-2+62-223=326-53 2.(4)()6-222+()23-1()23+1=6-412+8+()12-1=25-8 3.【互动总结】(学生总结,老师点评)计算二次根式的加减法时,先把二次根式化为最简二次根式,再合并同类二次根式.计算二次根式的混合运算时,注意运算顺序.【例2】已知a -5-2+b -5+2=0,求a 2+b 2+7的值.【互动探索】(引发学生思考)根据算术平方根的非负性,可得a =5+2,b = 5-2,然后再代入求值即可.【解答】由题意,得a -5-2=0,b -5+2=0,解得a =5+2,b =5-2,a 2+b 2+7=5+4+45+5+4-45+7=5.【互动总结】(学生总结,老师点评)此题主要考查了二次根式的加减,关键是掌握算术平方根具有非负性.活动2 巩固练习(学生独学) 1.计算32-2的值是( D ) A .2 B .3 C . 2D .2 22.若最简二次根式3a -8与17-2a 可以合并,则a =5. 3.计算: (1)348-913+312; (2)(48+20)+(12-5). 解:(1)=15 3. (2)63+ 5. 活动3 拓展延伸(学生对学)【例3】已知4x 2+y 2-4x -6y +10=0,求23x 9x +y 2x y 3-x 21x -5x yx的值. 【互动探索】先将已知等式进行变形,把它配成完全平方式,得(2x -1)2+(y -3)2=0,即可求出x 、y 的值.再根据二次根式的加减运算,先把各项化成最简二次根式,再合并同类二次根式,最后代入求值.【解答】∵4x 2+y 2-4x -6y +10=4x 2-4x +1+y 2-6y +9=(2x -1)2+(y -3)2=0,∴x =12,y =3. 原式=23x 9x +y 2x y3-x 21x+5x y x=2x x +xy -x x +5xy =x x +6xy . 当x =12,y =3时,原式=12×12+632=24+3 6. 【互动总结】(学生总结,老师点评)化简求值时一般是先化简为最简二次根式,再代入求值.化简时不能跨度太大,缺少必要的步骤易造成错解.环节3 课堂小结,当堂达标 (学生总结,老师点评)二次根式的加减法则:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.练习设计请完成本课时对应训练!第2课时 二次根式的混合运算教学目标一、基本目标 【知识与技能】掌握含有二次根式的混合运算和含有二次根式的乘法公式的应用. 【过程与方法】复习整式运算知识并将该知识应用于含有二次根式的混合运算. 【情感态度与价值观】理解知识间的类比,进一步体会数学学习方法的重要性. 二、重难点目标 【教学重点】熟练地进行二次根式的混合运算,进一步提高运算能力. 【教学难点】正确地运用二次根式混合运算法则及运算律进行运算,并把结果化简.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P14的内容,完成下面练习. 【3 min 反馈】1.二次根式的混合运算顺序与整式的混合运算顺序一样,即先乘方,再乘除,最后加减,有括号的先算括号里面的.2.在二次根式的运算中,多项式乘法法则和乘法公式仍然适用. 3.计算: (1)13×27; (2)35; (3)80-45; (4)(25-2)2. 解:(1)3. (2)155. (3) 5. (4)22-410. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)12223×9145÷35; (2)⎝⎛⎭⎫312-213+48÷23+⎝⎛⎭⎫132;(3)2-(3+2)÷3.【互动探索】(引发学生思考)如何进行二次根式的混合运算? 【解答】(1)原式=12×9×83×145×53=12×9×229= 2. (2)原式=⎝⎛⎭⎫63-233+43÷23+13=2833×123+13=143+13=5. (3)原式=2-3+23=2-1-233.【互动总结】(学生总结,老师点评)二次根式的混合运算顺序与整式的混合运算顺序一样,即先乘方,再乘除,最后加减,有括号的先算括号里面的.【例2】计算:(1)(2+3-6)(2-3+6); (2)(2-1)2+22(3-2)(3+2); (3)⎝⎛⎭⎫6-1332-3424×(-26).【互动探索】(引发学生思考)(1)利用平方差公式进行计算即可;(2)先利用完全平方公式和平方差公式进行计算即可;(3)利用乘法分配律进行计算即可.【解答】(1)原式=[2+(3-6)][2-(3-6)]=(2)2-(3-6)2=2-(9-218)=2-9+62=-7+6 2.(2)原式=2-22+1+22×(3-2)=2-22+1+22=3. (3)原式=⎝⎛⎭⎫6-66-326×(-26)=-236×(-26)=8. 【互动总结】(学生总结,老师点评)利用乘法公式进行二次根式混合运算的关键是熟记常见的乘法公式;在二次根式的混合运算中,整式乘法的运算律同样适用.活动2 巩固练习(学生独学) 1.下列计算:①(2)2=2;② (-2)2=2;③(-23)2=12;④(2+3)( 2-3)=-1.其中正确的有( D )A .1个B .2个C .3个D .4个2.如果(2+2)2=a +b 2(a ,b 为有理数),则a = 6,b = 4. 3.计算: (1)(6+8)×3; (2)(46-32)÷22; (3)(5+6)(3-5); (4)(10+7)(10-7).解:(1)32+2 6.(2)23-32.(3)13-3 5.(4)3.活动3拓展延伸(学生对学)【例3】先化简,再求值:1x+y+1y+yx x+y,其中x=5+12,y=5-12.【互动探索】化简式子→代入x、y的值进行计算【解答】1x+y+1y+yx(x+y)=xyxy(x+y)+x(x+y)xy(x+y)+y2xy(x+y)=xy+x(x+y)+y2xy(x+y)=(x+y)2xy(x+y)=x+y xy.当x=5+12,y=5-12时,x+y=5,xy=1,所以原式= 5.【互动总结】(学生总结,老师点评)求代数式的值,如果直接代入计算比较繁琐,可以根据式子特点,整体代入进行计算.环节3课堂小结,当堂达标(学生总结,老师点评)二次根式的混合运算同整式的混合运算顺序相同,乘法公式和乘法法则同样适用.练习设计请完成本课时对应训练!。

人教版数学八年级下册16章《二次根式》单元整体教学设计

人教版数学八年级下册16章《二次根式》单元整体教学设计
3.互动评价:鼓励学生互相批改、评价,共同进步。
(五)总结归纳
在总结归纳环节,我将引导学生回顾本节课所学内容,总结二次根式的性质、化简方法和运算规则。
1.回顾总结:请学生回顾本节课所学的内容,总结二次根式的性质、化简方法和运算规则。
2.归纳提升:引导学生发现数学规律,提高数学思维能力。
3.反馈评价:教师对学生的学习情况进行反馈,给予鼓励和指导,激发学生的学习动力。
-学会化简二次根式,包括分解质因数、提取平方因子等方法,使二次根式达到最简形式。
2.学会解决实际问题中涉及二次根式的计算,如长度、面积和体积的计算等。
-能够将实际问题转化为数学问题,建立二次根式相关的数学模型。
-运用二次根式的运算方法解决实际问题,培养将数学知识应用于实际生活的能力。
3.了解二次根式在几何图形中的应用,如勾股定理等。
4.运算讲解:详细讲解二次根式的乘除法运算规则,通过例题使学生熟练掌握运算方法。
(三)学生小组讨论
在小组讨论环节,我将组织学生进行合作学习,共同探讨二次根式的性质、化简和运算规则。
1.分组讨论:将学生分成若干小组,每组选一个组长,负责组织讨论。
2.讨论主题:每组针对二次根式的性质、化简方法和运算规则进行讨论,探讨解决实际问题的方法。
3.拓展应用:
-探究题:让学生自主探索二次根式在几何图形中的其他应用,如圆的面积、体积计算等,并撰写探究报告。
-研究性学习:小组合作,选择一个与二次根式相关的研究主题,如二次根式在建筑、工程中的应用,进行深入研究,并制作PPT进行课堂分享。
-数学阅读:推荐阅读相关数学历史资料,了解二次根式的历史背景和发展过程,拓宽学生的数学视野。
五、作业布置
为了巩固学生对二次根式的理解和应用,作业布置将包括基础巩固、能力提升和拓展应用三个层次,确保学生在课后能够自主复习、巩固所学知识,并提高解决问题的能力。

八年级数学下册 第十六章 二次根式教案 (新版)新人教版

八年级数学下册 第十六章 二次根式教案 (新版)新人教版

第十六章二次根式16.1二次根式第1课时二次根式的概念和性质1.二次根式的概念和应用.2.二次根式的非负性.重点二次根式的概念.难点二次根式的非负性.一、情景导入师:(多媒体展示)请同学们看屏幕,这是东方明珠电视塔.电视节目信号的传播半径r/km与电视塔高h/km之间有近似关系r=2Rh(R为地球半径).如果两个电视塔的高分别为h1km,h2km,那么它们的传播半径之比为多少?同学们能化简这个式子吗?由学生计算、讨论后得出结果,并提问.生:半径之比为2Rh12Rh2,暂时我们还不会对它进行化简.师:那么怎么去化简它呢?这要用到二次根式的运算和化简.如何进行二次根式的运算?如何进行二次根式的化简?这将是本章所学的主要内容.二、新课教授活动1:知识迁移,归纳概念(多媒体演示)用含根号的式子填空.(1)17的算术平方根是________;(2)如图,要做一个两条直角边长分别为7 cm和4 cm的三角形,斜边长应为________cm;(3)一个长方形的围栏,长是宽的2倍,面积为130 m2,则它的宽为________m;(4)面积为3的正方形的边长为________,面积为a的正方形的边长为____________;(5)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时的高度h(单位:m)满足关系h=5t2.如果用含有h的式子表示t,则t=________.【答案】(1)17 (2)65 (3)65 (4) 3 a(5)h 5活动2:二次根式的非负性(多媒体展示)(1)式子a表示的实际意义是什么?被开方数a满足什么条件时,式子a才有意义?(2)当a>0时,a________0;当a=0时,a________0;二次根式是一个________.【答案】(1)a的算术平方根,被开方数a必须是非负数(2)>=非负数老师结合学生的回答,强调二次根式的非负性.当a>0时,a表示a的算术平方根,因此a>0;当a=0时,a表示0的算术平方根,因此a=0.也就是说,当a≥0时,a≥0.三、例题讲解【例】当x 是怎样的实数时,x -2在实数范围内有意义? 解:由x -2≥0,得x≥2.所以当x≥2时,x -2在实数范围内有意义. 四、巩固练习1.已知a -2+b +12=0,求-a 2b 的值.【答案】a -2≥0,b +12≥0,又∵它们的和为0,∴a -2=0且b +12=0,解得a =2,b =-12.∴-a 2b =-22×(-12)=2.2.若x ,y 使x -1+1-x -y =3有意义,求2x +y 的值. 【答案】-1 五、课堂小结1.本节课主要学习了二次根式的概念.形如a (a≥0)的式子叫做二次根式,“ ”称为二次根号.2.二次根式的被开方数必须是什么数才有意义?a (a≥0)又是什么数?1.本节课的教学过程中,通过创设情境,给出实例,学生积极主动探索,教师引导与启发,师生互动,体现教师的组织者、引导者与合作者地位.2.注重知识之间的衔接,在温故知新的过程中引出新知,讲练结合旨在巩固学生对新知的理解.第2课时 二次根式的化简1.理解(a)2=a(a≥0),并能利用它进行计算和化简.2.通过具体数据的解答,探究a 2=a(a≥0),并利用这个结论解决具体问题.重点理解并掌握(a)2=a(a≥0),a 2=a(a≥0)以及它们的运用. 难点探究结论.一、复习导入教师复习口述上节课的重要内容,并板书: 1.形如a (a≥0)的式子叫做二次根式. 2.a (a≥0)是一个非负数.那么,当a≥0时,(a)2等于什么呢?下面我们一起来探究这个问题. 二、新课教授 活动1:(多媒体演示)根据算术平方根的意义填空:(4)2=________;(2)2=________;(13)2=________;(52)2=________;(0.01)2=________;(0)2=________.由学生计算、讨论得出结果,并提问部分过程,教师进行点评. 老师点评:4是4的算术平方根,根据算术平方根的意义,4是一个平方等于4的非负数,因此(4)2=4.同理:(2)2=2;(13)2=13;(52)2=52;(0.01)2=0.01;(0)2=0.所以归纳出:(a)2=a(a≥0).【例1】教材第3页例2 活动2:(多媒体展示)填空: 22=________;0.12=________;(13)2=________;(37)2=________; (212)2=________;02=________. 教师点评:根据算术平方根的意义,我们可以得到:22=2;0.12=0.1;(13)2=13;(37)2=37;(212)2=212;02=0. 所以归纳出:a 2=a(a≥0).【例2】教材第4页例3 教师点评:当a≥0时,a 2=a ;当a≤0时,a 2=-a. 三、课堂小结本节课应理解并掌握(a)2=a(a≥0)和a 2=a (a≥0)及其运用,同时应理解a 2=-a(a≤0).1.注意前后知识之间的联系,在复习旧知的过程中导入本节课的教学内容.按照由特殊到一般的规律,降低学生理解的难度.2.在总结二次根式性质的过程中,由学生经过观察、分析的过程,让学生在交流活动中体会成功.16.2 二次根式的乘除第1课时 二次根式的乘法理解并掌握a ·b =ab (a≥0,b ≥0),a·b=a ·b (a≥0,b ≥0),会利用它们进行计算和化简.重点a ·b =ab (a≥0,b ≥0),a·b=a ·b (a≥0,b ≥0)及它们的运用. 难点利用逆向思维,导出a·b=a ·b (a≥0,b ≥0).一、创设情境,导入新课活动1:发现探究(多媒体展示)填空:(1)4×9=________________________________________________________________________,4×9=________________________________________________________________________;(2)25×16=________________________________________________________________________,25×16=________________________________________________________________________;(3)19×36=________________________________________________________________________,19×36=________________________________________________________________________;(4)100×0=________________________________________________________________________,100×0=________________________________________________________________________.生:(1)4×9=6,4×9=6;(2)25×16=20,25×16=20;(3)19×36=2,19×36=2;(4)100×0=0,100×0=0.试一试,参考上面的结果,比较四组等式的大小关系.生:上面各组中两个算式的结果相等.二、新课教授活动2:总结规律结合刚才的计算,学生分组讨论,教师提问部分学生,最后教师综合学生的答案,加以点评,归纳出二次根式的乘法法则.教师点评:1.被开方数都是非负数.2.两个非负数算术平方根的积等于它们积的算术平方根.一般地,二次根式的乘法法则为:a·b=ab(a≥0,b≥0)由等式的对称性,反过来:ab=a·b(a≥0,b≥0)活动3:讲练结合教材第6~7页例题三、巩固练习完成课本第7页的练习.【答案】课本练习第1题:(1)10;(2)6;(3)23;(4)2.第2题:(1)77;(2)15;(3)2y;(4)4bc ac.第3题:4 5.四、课堂小结本节课应掌握:a ·b =ab (a≥0,b ≥0),ab =a ·b (a≥0,b ≥0)及其应用.1.创设情境,给出实例.学生积极主动探索,教师引导启发,按照由特殊到一般的规律,降低学生理解的难度.2.在二次根式乘法法则的形成过程中,由学生大胆猜测,经过思考、分析、讨论的过程,让学生在交流中体会成功. 第2课时 二次根式的除法理解a b =ab(a≥0,b >0)和a b =ab(a≥0,b >0),会利用它们进行计算和化简.重点 理解并掌握a b=ab(a≥0,b >0),a b =ab(a≥0,b >0),利用它们进行计算和化简.难点归纳二次根式的除法法则.一、复习导入 活动1:1.由学生回答二次根式的乘法法则及逆向等式. 2.填空(多媒体展示).(1)925=________,925=________;(2)164=________,164=________; (3)8149=________,8149=________; (4)3664=________,3664=________. 二、新课教授 活动2:先由学生对上面的结果进行比较,观察每组两个算式结果的大小关系,并总结规律. 教师点评:一个非负数的算术平方根除以一个正数的算术平方根,等于它们商的算术平方根. 一般地,二次根式的除法法则是: a b=a b (a≥0,b >0)由等式的对称性,反过来: a b =ab (a≥0,b >0) 【例】教材第8~9页例题 三、巩固练习课本第10页练习第1题. 【答案】(1)3 (2)2 3 (3)33(4)2a 四、课堂小结本节课应掌握a b =a b (a≥0,b >0)和a b=a b(a≥0,b >0)及其应用.1.创设情境,复习二次根式的乘法,旨在类比学习二次根式的除法,培养学生继续探究的兴趣.2.二次根式除法的学习过程,按照由特殊到一般的规律,由学生经历思考、讨论、分析的过程,让学生大胆猜测,使学生在交流中体会成功.第3课时 最简二次根式最简二次根式的概念、利用最简二次根式的概念和性质进行二次根式的化简和运算.重点最简二次根式的运用. 难点会判断这个二次根式是否是最简二次根式.一、复习导入(学习活动)请同学们完成下列各题.(请四位同学上台板书)计算:(1)23;(2)2618;(3)82a ;(4)x3x 2y.教师点评:(1)23=63;(2)2618=233;(3)82a =2a a ;(4)x 3x 2y=xy y .二、新课教授教师点评:上面这些式子的结果具有如下两个特点: 1.被开方数不含分母.2.被开方数中不含能开得尽方的因数或因式.师:我们把满足上述两个条件的二次根式,叫做最简二次根式.(教师板书) 教师强调:在二次根式的运算中,一般要把最后结果化为最简二次根式. 【例1】判断下列式子是不是最简二次根式,为什么?(1)3xy 12x ;(2)25a 3a 3;(3)1x;(4)0.2a.解:(1)被开方数中有因数12,因此它不是最简二次根式;(2)被开方数中有开得尽方的因式a 2,因此它不是最简二次根式;(3)被开方数中有分母,因此它不是最简二次根式;(4)被开方数中有因数0.2,它不是整数,所以它不是最简二次根式.【例2】化简:(1)278;(2)12x 2y 3(x ≥0);(3)a 2b 4+a 4b 2(ab≥0).解:(1)278=27×28×2=916×6=346; (2)12x 2y 3=4x 2y 2·3y =2xy 3y ;(3)a 2b 4+a 4b 2=a 2b 2(b 2+a 2)=ab a 2+b 2. 【例3】教材第9页例7 三、课堂小结1.本节课应掌握最简二次根式的特点及其运用.2.二次根式的运算结果要化为最简二次根式.1.注重知识的前后联系,温故而知新.让学生积极主动地探索,教师引导和启发,使学生在经过思考、讨论和分析的过程后,获得新知,体会学习的乐趣.2.前两个例题旨在加强对最简二次根式的理解,第三个例题让学生灵活运用二次根式解决实际问题.16.3 二次根式的加减第1课时 二次根式的加减理解并掌握二次根式加减的方法,并能用二次根式加减法法则进行二次根式的加减运算.重点理解并掌握二次根式加减计算的方法. 难点二次根式的化简、合并被开方数相同的最简二次根式.一、复习导入 (学生活动) 1.计算:(1)x +2x ;(2)3a -2a +4a ;(3)2x 2-3x 2+5x 2;(4)2a 2-4a 2+3a.2.教师点评:上面的运算实际上就是以前所学习的合并同类项,合并同类项就是字母连同指数不变,系数相加减.二、新课教授 (学生活动)1.类比计算,说明理由.(1)2+22;(2)38-28+48; (3)32+8;(4)23-33+12. 2.教师点评:(1)2+22=(1+2)2=32;(2)38-28+48=(3-2+4)8=58=102;(3)虽然表面上2与8的被开方数不同,不能当作被开方数相同,但8可化为22,32+8=32+22=(3+2)2=52;(4)同样12可化为23,23-33+12=23-33+23=(2-3+2)3= 3. 所以在用二次根式进行加减运算时,如果被开方数相同则可以进行合并,因此可将二次根式先化为最简二次根式,比较被开方数是否相同.因此可得:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.【例1】教材第13页例1 【例2】教材第13页例2 三、巩固练习教材第13页练习第1,2题.【答案】第1题:(1)不正确,两边不相等;(2)不正确,两边不相等;(3)正确.第2题:(1)-47;(2)35;(3)102-33;(4)36+142.四、课堂小结本节课应掌握进行二次根式加减运算时,先把不是最简二次根式的化成最简二次根式,再把相同被开方数的最简二次根式进行合并.1.创设情境,给出实例.由学生主动参与,经过思考、讨论、分析的过程,老师加以启发和引导,类比得出二次根式的加减运算法则.2.两个例题,旨在帮助学生理解并掌握二次根式的加减运算法则.尤其是例2,要按照两个步骤进行计算,培养了学生利用概念、法则进行计算和化简的严谨态度和科学精神.第2课时 二次根式的加减乘除混合运算含有二次根式的式子进行加减乘除混合运算和含有二次根式的多项式乘法公式的应用.重点二次根式的加减乘除混合运算. 难点由整式运算知识迁移到含二次根式的运算.一、复习导入(学生活动):请同学们完成下列各题. 计算:(1)(3x 2+2x +2)·4x;(2)(4x 2-2xy)÷(-2xy); (3)(3a +2b)(3a -2b);(4)(2x +1)2+(2x -1)2. 二、新课教授由于整式运算中的x ,y ,a ,b 是字母,它的意义十分广泛,可以代表一切,当然也可以代表二次根式,因此整式中的运算规律也适用于二次根式,下面我们就使用这些规律来进行计算.【例1】计算:(1)(8+3)×6; (2)(42-36)÷2 2.分析:二次根式仍然满足整式的运算规律,所以可直接用整式的运算规律. 解:(1)(8+3)×6=8×6+3× 6 =48+18=43+32; (2)(42-36)÷2 2=42÷22-36÷22=2-323.【例2】计算:(1)(2+3)(2-5); (2)(5+3)(5-3);(3)(3-2)2.分析:第(1)题可类比多项式乘以多项式法则来计算,第(2)题把5当作a ,3当作b ,就可以类比(a +b)(a -b)=a 2-b 2,第(3)题可类比(a -b)2=a 2-2ab +b 2来计算.解:(1)(2+3)(2-5)=(2)2+32-52-15 =2+32-52-15 =-13-22;(2)(5+3)(5-3)=(5)2-(3)2=5-3=2;(3)(3-2)2=(3)2-2×3×2+(2)2=5-2 6. 三、巩固练习教材第14页练习第1,2题.【答案】第1题:(1)6+10;(2)4+22;(3)11+55;(4)4.第2题:(1)9;(2)a -b;(3)7+43;(4)22-410.四、课堂小结本节课应掌握利用整式运算的规律进行二次根式的乘除、乘方等运算.1.情境引入,复习整式运算的知识,旨在迁移到利用乘法公式进行含二次根式算式的运算,培养学生继续探究的兴趣.2.例题的设计,旨在帮助学生理解乘法公式在二次根式运算中的应用.。

人教版八年级数学下册第16章二次根式(教案)一

人教版八年级数学下册第16章二次根式(教案)一
-二次根式的估算:估算二次根式的值需要学生具备一定的数感和近似计算能力,这对于一些学生来说是一个边长为\(\sqrt{4}\)的正方形和一个边长为\(\sqrt{-4}\)的虚构图形,通过比较正方形的实际存在来说明二次根式非负性的重要性。
-教学难点2举例:对比\(\sqrt{8}\)和\(\sqrt{6}\),解释为什么\(\sqrt{8}\)可以化简为\(2\sqrt{2}\),因为8是2的平方的倍数,而6则不是任何整数的平方的倍数,因此不能化简。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的概念。二次根式是形如√a(a≥0)的表达式,它是表示非负数平方根的一种数学表达方式,对于解决实际问题和某些数学问题具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了二次根式在几何中的应用,例如计算非整数边长的正方形面积。
三、教学难点与重点
1.教学重点
-二次根式的概念:强调根号下的数必须是非负数,以及二次根式的书写规范。
-二次根式的性质:掌握二次根式的非负性、乘除法运算法则,如\(\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}\)。
-二次根式的化简:学会将二次根式化简至最简形式,如\(\sqrt{18} = \sqrt{9 \cdot 2} = 3\sqrt{2}\)。
3.增强学生数学建模素养,培养学生运用二次根式解决实际问题的能力,如对二次根式的估算,使学生能够将数学知识应用于生活实际。
4.培养学生直观想象能力,通过二次根式的图形表示,使学生能够形象地理解二次根式的概念及其运算规律,提高数学思维品质。
5.培养学生数学抽象素养,使学生能够从具体的二次根式实例中抽象出一般性规律,形成数学的一般概念。

人教版八年级下册第十六章二次根式16.3二次根式的加减教案

人教版八年级下册第十六章二次根式16.3二次根式的加减教案
-通过投影或黑板,记录并讨论各小组的发现和结论。
7.总结回顾(用时5分钟)
-点评学生在活动中的表现,强调二次根式加减法的核心知识点。
-回答学生疑问,巩固本节课的学习内容。
五、教学反思
今天我们在课堂上学习了二次根式的加减法,整体来看,学生对这部分知识的掌握情况还是不错的。但在教学过程中,我也注意到了一些问题。
5.培养学生问题解决能力,使学生能够运用所学知识分析并解决生活中的二次根式问题,增强数学实践素养。
三、教学难点与重点
1.教学重点
本节课的核心内容如下:
(1)掌握二次根式的加减法运算法则,能够熟练进行相关运算。
(2)了解同类二次根式的概念,并能够判断和合并同类二次根式。
(3)运用二次根式的加减法解决实际问题,提高数学应用能力。
最后,我觉得在课堂教学过程中,要更加注重因材施教,关注每一个学生的学习情况。对于学习有困难的学生,要给予更多的关心和指导,帮助他们克服困难,提高学习兴趣。
-难点2:面对不同根式的二次根式,如√3与√2,需要引导学生如何通过乘以适当的因数将其化为同类,例如:√3 × √2与√2 × √2,从而完成加减运算。
-难点3:在解决实际问题时,如计算不规则图形的面积,学生需要从问题中提取关键信息,建立数学模型,并运用二次根式的加减法求解。
教学过程中,教师应针对这些难点,采取适当的策略和方法,如使用直观图形、举例说明、分步骤引导等,帮助学生理解并掌握这些难点内容,确保学生能够透彻理解并运用所学知识。
4.掌握同类二次根式的概念,能够判断并合并同类二次根式。
具体内容包括:
(1)例题讲解:讲解二次根式加减法运算的步骤及注意事项。
(2)课堂练习:让学生独立完成教材16.3节的练习题,巩固所学知识。

(完整版)新人教版第16章二次根式全章教案

(完整版)新人教版第16章二次根式全章教案

4 第十六章 二次根式第 1 课时16.1 二次根式(1)教学内容二次根式的概念及其运用教学目标1、知识与技能:理解二次根式的概念,并利用 a (a≥0)的意义解答具体题目.2、过程与方法:提出问题,根据问题给出概念,应用概念解决实际问题.经历观察、比较,总结二次根式概念和被开方数取值的过程,发展学生的归纳概括能力。

3、情感态度与价值观:经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识。

教学重难点1.重点:形如 a (a≥0)的式子叫做二次根式的概念;2.难点:利用“ a (a≥0)”解决具体问题教学准备:彩色粉笔、小黑板教学过程一、复习引入(1)已知 x 2 = a ,那么 a 是 x 的______; x 是 a 的______, 记为____,a 一定是_____数。

(2)4 的算术平方根为 2,用式子表示为 =__________;正数 a 的算术平方根为_______,0 的算术平方根为_______;式子 a ≥ 0(a ≥ 0) 的意义是。

思考:教材 P2 思考二、探索新知很明显 3, s , 65, h ,都是一些正数的算术平方根.像这样一些正数的算术平方根的5式子,我们就把它称二次根式.因此,一般地,我们把形如 a (a≥0)的式子叫做二次根 式,“”称为二次根号.“思考:(1)-1 有算术平方根吗? (2)0 的算术平方根是多少?(3)当 a<0, a 有意义吗?三、例题讲解例 1.下列式子,哪些是二次根式,哪些不是二次根式:2 、3 3 、 1 、 x(x>0)、 0 、 4 2 、 - 2 、 1 、 x + y (x≥0,y•≥0). x x + y分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或 0.解:二次根式有: 2 、 x (x>0)、 0 、、 - 2 、、 x + y (x≥0,y•≥0).不是二次根式的有: 3 3 、 1 、 4 2 、 1 .xx + y例2 (教材 P2 例 1)当 x 是怎样的实数时, x - 2 在实数范围内有意义?解:由 x - 2 ≥0,得:x≥2。

完整word版,人教版新课标2015年八年级下册数学第十六章二次根式教案

完整word版,人教版新课标2015年八年级下册数学第十六章二次根式教案

八年级下册数学第十六章二次根式16. 1二次根式(1)(第一课时)教学目的:1、 了解二次根式的概念;2、 了解二次根式的基本性质;3、 通过二次根式原概念和性质的探究,提高数学探究能力和归纳表达能力。

重点:二次根式的概念和基本性质难点:二次根式的基本性质的灵活运用。

教学过程:1.求下列二次根式中字母 k 的取值范围:检测:求二次根式中 x 的取值范围:教学目的:1、理解二次根式的性质:教学过程: 阅读P69-P71内容,完成两个探究填空,理解、识记两个公式。

公式1 : __________________________________例 1. (1) 当x 是怎样的实数时,x 2在头数范围内有意义?(2) 当x 是怎样的实数时, x 2 在头数范围内有意义? (3) 当x 是怎样的实数时, x 3 在头数范围内有意义?归纳总结:\ x :当n 为奇数时,x >0时' x 有意义n当n 为偶数时,x 为任意实数时 X都有意义(1)R(3) 2k+ 1(4) k 2 + 22.当X 分别取下列值时,求二次根式.1- x 的值:(1)x= 0;(2)x= 1; (3)x= - 1.(1). x 4 (2) : x21 (3)(1) ..a (a >0)是非负数; (2)(■- a) 2 =a (a 》0) ; (3) . a 2 =a (a >0) 2、会运用其进行相关计算。

重点:会运用.a (a > 0)是非负数、 (I a ) 2 =a (a >0)、P a 2 =a (a > 0)进行相关运算。

难点:理解a (a > 0)是非负数、22(■- a ) =a (a 》0 )、 ■. a =a (a 》5 x 2/xA 、4—2aB 、0C 、2a — 4D 、44、..(2)2化简的结果是(b )(A) - 2(B) 2(C) ± 2(D) 45、使代数式8 a ■■ a 有意义的a 的范围是()(A ) a 0(B ) a 0(C ) a 06、 若 x 1, x y0,则 x 2006y 2005的值为: ( )(A ) 0(B ) 1(C ) -1(D )27、下列各式中一定成立的是()、m 2A 、 ( 3.7) 2 (、35)2B 、 (m)2(D )不存在公式2 : _____________________________________ 例1计算: (1) ( 45 ) 2 (2) ( 2・.5 ) 2练习:1、( 2 .、3 ) 2 2、( 3、.. 2 ) 2 3、( 2.5 ) 24、(5、.. 2 ) 2例2化简:⑵5)216. 1 二次根式(2)(第二 三课时)教学目的:复习二次根式的概念、 二次根式的基本性质 ■. a (a > 0)是非负数、(•- a ) 2=a (a > 0)、 丁孑=3 (a >0),能熟练运用其进行相关计算。

最新人教版数学八年级下册第十六章---二次根式教案(全章)

最新人教版数学八年级下册第十六章---二次根式教案(全章)

第十六章—二次根式一、二次根式1.概念:一般的,形如√a(a≥0)的式子叫做二次根式。

二次根式应满足两个条件,即含有二次根号且被开方数大于或等于0.注意:二次根式√a的被开方数a可以是数,也可以是式子,单笔与满足a≥0。

2.性质:性质:2|a|.例题:1.当x是怎样的实数时,√x−2在实数范围内有意义?2.当a是怎样的实数时,下列各式在实数范围内有意义?(1)√a−1(2)√2a+3;(3)√−a(4)√5−a3.计算(1)(√)2(2)(2√)2(3)(4)2(4)(2)2(5)22(6)21.0(7)26(8)23二、二次根式的乘除1.二次根式的乘法(1)法则:√ab =√a.√b(a≥0, b≥0)注意:a,b可以是一个具体的数,也可以是含字母的代数式。

(2)拓展:二次根式的乘法法则可以推广到多个二次根式相乘,即√a.√b.√c =√abc(a≥0, b≥0,c≥0)。

(3)误区警示:二次根式相乘的结果要化简成最简的二次根式或整式。

(4)最简二次根式:A.定义:一般的,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式叫最简二次根式。

B.识别一个二次根式是否是最简二次根式,主要依据两点:○1被开方数中的因数是整数,因式是整式;○2被开方数中不含能开的尽方的因数或因式。

例题:1.计算.(1)3×5(2)√1×√(3)√×√73(4)√16×81(5)√4a2b3(6)√×√(7)√3×√12(8)√4×√6(9)√5×√6(10)√288 ×√172 (11)√3 ×√6 (12)18×21(13)25×51 (14)16×41 (15)18×91 2.化简.(1)√8 (2)√12 (3)√18(4)√20 (5)√24 (6)√28(7)√32 (8)√36 (9)√40(10)√42 (11)√44 (12)√(13)√48 (14)√50 (15)√90(16)√108 (17)√112 (18)√120(19)√(20)√ (21)√(22)√160 (23)√225 (24)√180(25)√200 (26)√144 (27)√2.二次根式的除法 (1)法则:b aba(a ≥0, b ≥0),相反√a b =√a √b (a ≥0, b ≥0)也成立。

新人教版第16章二次根式全章教案

新人教版第16章二次根式全章教案

第16章二次根式单元教学计划教材内容1、本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式。

2、本单元在教材中的地位和作用:二次根式是数与代数中重要内容之一。

前面学生较系统地学习了有理数及其运算;学习了平方根和算术平方根、立方根的概念、用根号表示数的平方根、立方根;知道了开方与乘方互为逆运算,会用平方运算和立方运算求某些非负数的平方根以及某些数的立方根。

教学目标1、知识与技能(1)理解二次根式的概念。

(2)理解a(a≥0)是一个非负数,(a)2=a(a≥0),2a=a(a≥0)。

(3)掌握a·b=ab(a≥0,b≥0),ab=a·bab=ab(a≥0,b>0),ab=ab(a≥0,b>0)。

(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减。

2、过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念。

再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简。

(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算。

(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简。

(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念。

利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的。

3、情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力。

教学重点1、二次根式(a≥0)的内涵。

a(a≥0)是一个非负数;(a)2=a(a≥0);2a=a(a≥0)及其运用。

2、二次根式乘除法的规定及其运用。

3。

最简二次根式的概念。

4。

二次根式的加减运算。

教学难点1、对a(a≥0)是一个非负数的理解;对等式(a)2=a(a≥0)及2a=a(a≥0)的理解及应用。

人教版八年级下册 第十六章 二次根式的概念及其性质教案

人教版八年级下册  第十六章 二次根式的概念及其性质教案
27
例 9 合并下列各式中的同类二次根式:
(1) 2 2 1 3 1 2 3 ; (2) 3 xy a xy b xy 23
变式练习:1.判断下列各组中的二次根式是不是同类二次根式:
A. 32, 50, 2 1 ; 18
B. 4x3,2 2x, 8x2 x 0;
C. 3x, 3a2x3 a 0, xy2 y 0
A.它是一个正数 C.是最简二次根式 21.下列二次根式中,最简二次根式是
B.是一个无理数 D.它的最小值是 3
() ()
A. 3a 2
B. 1 3
C. 153
能力提升
22.若 x y y2 4y 4 0 ,求 xy 的值。
D. 143
23. 当 a 取什么值时,代数式 2a 1 1取值最小,并求出这个最小值。
6.若 x 在实数范围内有意义,则 x 为( )。
A.正数 B.负数 C.非负数
D.非正数
7.化简下列各式
(1) 4x2 (x 0)
(2) x4
(3) (a 3)2 (a 3)
8. ( 4)2 =
9. a、b、c 为三角形的三条边,则 (a b c)2 b a c ________.
10. 已知 2<x<3,化简: (x 2)2 x 3
课后作业 【基础巩固】
1.下列各式中 15 、 3a 、 b2 1 、 a2 b2 、 m2 20 、 144 ,二次根式的个数是( ).
A.4 B.3 C.2 D.1
2.(- 3 )2=________.
3.使式子 x 4 有意义的条件是
① a 0(a 0) ②( a )2= a ( a ≥0);

a(a 0) a 2 |a| 0(a 0)

人教版数学八年级下册第十六章《数学活动——二次根式的应用》教案

人教版数学八年级下册第十六章《数学活动——二次根式的应用》教案

人教版数学八年级下册第十六章《数学活动——二次根式的应用》教案一. 教材分析人教版数学八年级下册第十六章《数学活动——二次根式的应用》主要介绍了二次根式的性质和运算方法。

本章内容是学生对二次根式知识的巩固和拓展,旨在培养学生运用二次根式解决实际问题的能力。

二. 学情分析学生在学习本章内容前,已经掌握了二次根式的基本性质和运算方法。

但部分学生对二次根式的应用和解题策略还不够熟悉,需要老师在教学中给予引导和启发。

三. 教学目标1.理解二次根式的应用背景和意义;2.掌握二次根式在实际问题中的应用方法;3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.二次根式在实际问题中的运用;2.灵活运用二次根式解决复杂问题。

五. 教学方法1.实例分析法:通过具体例子引导学生了解二次根式的应用;2.问题驱动法:提出问题,引导学生思考和探讨,激发学生的学习兴趣;3.合作交流法:鼓励学生分组讨论,分享解题心得,提高学生的合作能力。

六. 教学准备1.准备相关例题和练习题;2.制作课件,展示二次根式的应用实例;3.准备一些实际问题,用于课堂讨论。

七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如测量物体长度、计算物体体积等,引导学生思考二次根式在实际问题中的应用。

2.呈现(10分钟)教师通过课件展示二次根式的应用实例,让学生了解二次根式在实际问题中的作用。

同时,引导学生总结二次根式的性质和运算方法。

3.操练(10分钟)教师提出一些练习题,让学生独立完成。

题目难度可分为简单、中等、困难三个层次,以满足不同学生的需求。

教师在学生解题过程中给予个别辅导,帮助学生巩固所学知识。

4.巩固(10分钟)教师学生进行小组讨论,分享解题心得。

让学生在讨论中加深对二次根式应用的理解,提高合作能力。

5.拓展(10分钟)教师提出一些综合性的问题,引导学生运用二次根式解决实际问题。

鼓励学生发挥创造力,提出多种解题方案。

6.小结(5分钟)教师总结本节课的主要内容,强调二次根式在实际问题中的应用方法和注意事项。

人教版八年级数学下册第十六章 二次根式(全章)教案

人教版八年级数学下册第十六章  二次根式(全章)教案

16.1 二次根式[学习目标]理解二次根式的概念,并利用(a≥0)的意义解答具体题目.教学重点:形如(a≥0)的式子叫做二次根式的概念教学难点:利用“(a≥0)”解决具体问题.教法:1、引导发现法: 2、讲练结合法:学法:1、类比的方法、2、阅读的方法、3、分组讨论法4、练习法[学习过程]一、板书课题(一)讲述:同学们,我们来学习 16.1 二次根式二、出示目标(一)过渡语:要达到什么教学目标呢?请看投影:(二)屏幕显示学习目标理解二次根式的概念,并利用(a≥0)的意义解答具体题目.三、指导自学(一)过渡语:怎样才能当堂达到学习目标呢?请同学们按照指导认真自学.(二)出示自学自导自学指导认真看课本P2全部内容:1.思考“思考1、2”中的问题,完成思考1中的问题,理解二次根式的概念及二次根式有无意义的条件。

2.注意例题1的格式和步骤。

3.讨论回答思考2中的问题。

.如有疑问,可请教同桌或举手问老师.5分钟后,比谁能做对与例题类似的题.四、先学(一)学生看书,教师巡视,师督促每一位学生认真、紧张的自学,鼓励学生质疑问难.(二)过渡语:同学们,看完的请举手?懂了的请举手?好,下面就比一比,看谁能正确做出检测题.(三)检测 : P.3 练习1、2题。

学生练习,教师巡视。

(收集错误进行二次备课)五、后教教师引导学生评议、订正。

归纳小结:1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.五、当堂训练:一、选择题1.下列各式中①;②;③;④;⑤;⑥一定是二次根式的有()个。

A . 1 个 B. 2个 C. 3个 D. 4个2. 若,则b的值为()A.0 B.0或1 C.b≤3 D.b≥33.已知一个正方形的面积是5,那么它的边长是()A .5BC D.以上皆不对二、填空题1.形如________的式子叫做二次根式. 2.面积为a的正方形的边长为________. 3.负数________平方根.三、综合提高题1.若+有意义,则=_______.2.使式子有意义的未知数x有()个.A.0 B.1 C.2 D.无数3.当x是多少时,+在实数范围内有意义?4. 已知y=++5,求的值.教学反思:16.1 二次根式(2)[学习目标]理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.教学重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.教学难点:导出(a≥0)是一个非负数;•用探究()2=a(a≥0).教法:1、引导发现法: 2、讲练结合法:学法:1、类比的方法2、阅读的方法3、分组讨论法4、练习法[学习过程]一、板书课题:16.1 二次根式(2)讲述:同学们,我们来学习16.1 二次根式(2)二、出示目标(一)过渡语:要达到什么教学目标呢?请看投影:(二)屏幕显示学习目标理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.三、指导自学(一)过渡语:怎样才能当堂达到学习目标呢?请同学们按照指导认真自学.(二)出示自学自导自学指导认真看课本P.3“探究”至例2结束。

人教版八年级数学下册 第16章 16.1 二次根式 教案

人教版八年级数学下册 第16章 16.1 二次根式 教案

二次根式教学目标1.使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;2.熟练地进行二次根式的加、减、乘、除混合运算.教学重点和难点重点:含二次根式的式子的混合运算.难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子.教学过程设计一、复习1.请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各式成立的条件.指出:二次根式的这些基本性质都是在一定条件下才成立的,主要应用于化简二次根式.2.二次根式的乘法及除法的法则是什么?用式子表示出来.指出:二次根式的乘、除法则也是在一定条件下成立的.把两个二次根式相除,计算结果要把分母有理化.3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:4.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:二、例题例1 x取什么值时,下列各式在实数范围内有意义:分析:(1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;(3)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;(4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零.x≥-2且x≠0.解因为n2-9≥0,9-n2≥0,且n-3≠0,所以n2=9且n≠3,所以例3分析:第一个二次根式的被开方数的分子与分母都可以分解因式.把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3-a≥0和1-a>0.解:因为1-a>0,3-a≥0,所以a<1,|a-2|=2-a.(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)≥0.这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的.问:上面的代数式中的两个二次根式的被开方数的式子如何化为完全平方式?分析:先把第二个式子化简,再把两个式子进行通分,然后进行计算.解注意:所以在化简过程中,例6:分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷.a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),三、课堂练习1.选择题:A.a≤2B.a≥2C.a≠2D.a<2A.x+2 B.-x-2C.-x+2D.x-2A.2x B.2a C.-2x D.-2a2.填空题:4.计算:四、小结1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.3.运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件.4.通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.五、作业1.x是什么值时,下列各式在实数范围内有意义?2.把下列各式化成最简二次根式:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十六章 二次根式课题:16.1二次根式 课型:新授课 教学目标:1、理解二次根式的定义,会用算术平方根的概念解释二次根式的意义2、会确定二次根式有意义的条件,知道a (a ≥0)是非负数,并会运用会进行二次根式的平方运算,3、会对被开方数为平方数的二次根式进行化简通过探究()2a 和2a 所含运算、运算顺序、运算结果分析,归纳并掌握性质教学重点: 1.a 有意义的条件. 2.a ≥0时a ≥0的应用. 3.()2a 和2a 的运算、化简教学难点:当a <0时2a 的化简教学过程:一、复习引入在七年级实数中,已经用到过简单的二次根式,在本章中将系统地学习二次根式的运算。

二、探究新知(一)定义及非负性活动1、填空,完成课本思考1:65,S ,2,5h 活动2、观察其形式上的共同点,被开方数的共同点,说明各式所表示的共同意义.活动3、给出二次根式的定义,介绍二次根式的读法.活动4、思考下列问题: ①9的运算结果是3,9是不是二次根式?3是不是?②定义中为什么要加a ≥0?若a<0,a 表示什么?有无意义?③当 a=0时,a 表示什么?结果是什么?当 a>0时,a 表示什么?可不可能为负数?a (a ≥0)是什么样的数呢?例1、当x 是怎样的实数时,下列二次根式有意义?在下列二次根式有意义的情况下,其运算结果是怎样的实数?2-x , 11+x , 32+x练习:1、课本思考2:当x 是怎样的实数时,2x ,3x 有意义? 1、若m x -=-2,则x 和m 的取值范围是x_____;m______.2、已知053=-++y x ,求y x ,的值各是多少?(二)两个运算性质 活动5、完成课本探究1活动6、对()2a 中的运算顺序、运算结果进行分析,归纳出:一个非负数先开方再平方,结果不变. 练习:课本例2活动7、完成课本探究2活动8、对2a 中的运算顺序、运算结果进行分析,归纳出:一个非负数先平方再开方,结果不变;一个负数先平方再开方结果为相反数.练习:课本例3补充练习:1、化简:2)4(-π,2)32(-;2、直角三角形的三边分别为a ,b ,c ,其中c 为斜边,则式子()2a -()2c 与式子2)(c a -有什么关系?三、课堂训练完成课本中两个练习.1、m m =-1 成立的条件是_______.2、m m =+1成立的条件是_______.四、小结归纳1、二次根式的概念及“被开方数非负”的条件和“运算结果非负”的性质.2、二次根式的两个运算性质,平方为“父对象”,开方为“子对象”.3、简单介绍代数式的概念.4、重复演示课件呈现练习题,供学生记录.五、作业设计必做:P5:1、2、3、4、5、6选做:P5:7、8、9、10教学反思教学课题:16.2二次根式的乘除(第1课时) 教学课型:新授课教学目标:1.会运用二次根式乘法法则进行二次根式的乘法运算2.会利用积的算术平方根性质化简二次根式经历观察、比较、概括二次根式乘法公式,通过公式的双向性得到积的算术平方根性质.3.通过例题分析和学生练习,达成目标1,2,认识到乘法法则只是进行乘法运算的第一步,之后如果需要化简,进行化简,并逐步领悟被开方数的最优分解因数或因式的方法教学重点:双向运用ab b a =⋅(a ≥0,b≥0)进行二次根式乘法运算教学难点:被开方数的最优分解因数或因式的方法教学过程一、复习引入:上节课学习了二次根式的定义和三个性质,这节课开始学习二次根式的运算,先来学习乘法运算二、探究新知(一)二次根式乘法法则活动1、1.填空,完成课本探究12.用1中所发现的规律比较大小36436⨯;26活动2、给出二次根式的乘法法则活动3、思考下列问题:①公式中为什么要加a ≥0, b≥0?②两个二次根式相乘其实就是 不变, 相乘 ③c b a ⋅⋅(a ≥0, b≥0,c≥0)=练习:课本例1,在(1)(2)之后补充 (3)a a 4⋅归纳:运算的第一步是应用二次根式乘法法则,最终结果尽量简化(二)积的算术平方根性质活动4.将二次根式乘法公式逆用得到积的算术平方根性质完成课本例2,在(1)(2)之间补充48归纳:化简二次根式实质就是先将被开方数因数分解或因式分解,然后再将能开的尽方的因数或因式开方后移到根号外.例3. 计算:(1)714⨯ (2)10253⨯;(3)xy x 313⋅ 分析:(1)第一步被开方数相乘,不必急于得出结果,而是先观察因式或因数的特点,再确定是否需要利用乘法交换律和结合律以及乘方知识将被开方数的积变形为最大平方数或式与剩余部分的积,最后将最大平方数或式开方后移到根号外.(2)运用乘法交换律和结合律将不含根号的数或式与含根号的数或式分别相乘,再把这两个积相乘.,之后同(1)三、课堂训练完成课本练习.补充:1.1112-=-⋅+x x x 成立,求x 的取值范围. 2.化简:()03≤-x y x四、小结归纳1.二次根式乘法公式的双向运用;2.进行二次根式乘法运算的一般步骤,观察式子特点灵活选取最优解法五、作业设计必做:P10:1、3(1)(2)、4补充作业:1.计算: (1)57⨯; (2)2731⨯;(3)155⨯; (4)8423⨯ 2.化简(1)3227y x ; (2)ab a 1832⋅教学课题:16.2二次根式的乘除(第2课时) 教学课型:新授课教学目标:1.会运用二次根式除法法则进行二次根式的除法运算.2.会利用商的算术平方根性质化简二次根式.3.理解最简二次根式概念,知道二次根式的运算中,一般要把最后结果化为最简二次根式.4通过例题分析和学生练习分母有理化方法进行二次根式除法教学重点:双向运用0)b 0( ≥≥=、a ba b a进行二次根式除法运算 教学难点:能使用分母有理化方法进行二次根式的除法运算教学过程:一、复习引入导语设计:上节课学习了二次根式的乘法,这节课学习二次根式的除法运算.二、探究新知(一)二次根式除法法则活动1、1.填空,完成课本探究12.用1中所发现的规律比较大小;活动2、给出二次根式的除法法则活动3、思考下列问题: ①公式中为什么要加a ≥0, b>0?②两个二次根式相除其实就是 不变, 相除 练习:课本例4,在(1)(2)之后补充 (3)a a ÷34归纳:运算的第一步是应用二次根式除法法则,最终结果尽量简化.(二)商的算术平方根性质活动4.将二次根式除法公式逆用得到商的算术平方根性质完成课本例5归纳:化简被开方式含有分数线的二次根式,就是将分子的算术平方根做分子,分母的算术平方根做分母,再利用积的算术平方根分别化简.例6. 计算:(1)53 (2)2723;(3)a28分析:第一步可以把被开方数相除,然后告诉学生被开方数中不能含有分母,数必须是整数,利用分数的基本性质将分母变成完全平方数,开方后移到根号外;也可以直接模仿分数的基本性质和公式a a =2)(,)0,0(≥≥=⋅b a ab b a ,以去掉分母中的根号.(三)最简二次根式概念活动5、让学生观察所做习题结果,总结归纳结果的特点,得到最简二次根式的概念.分析概念:1.被开方数不含分母的含义指-----因数是整数,因式是整式;2.被开方数中不能含开得尽方的因数是指----被开方数不能分解出完全平方数;被开方数中不含开得尽方的因式是指----被开方数的每一个因式的指数都小于根指数2,因此,每一个因式的指数都是1.完成课本例7 补充:化简2442y x y x +注意:被开方数是和式时,结果不等于各加数的算术平方根的和.三、课堂训练完成课本练习.补充: 1.1111-+=-+x x x x 成立,求x的取值范围.2.找出下列根式中的最简二次根式3xx 8 26x 22y x + 1.03.判断下列等式是否成立34916+=+ 56952= 2323= 212214= 四、小结归纳1.二次根式除法公式的双向运用;2.进行二次根式除法运算的一般步骤,观察式子特点灵活选取最优解法.3.最简二次根式概念五、作业设计必做:P10:2、3(3)(4)、5、6、7选做:P11:8、9、10教学课题:16.3二次根式的加减(第1课时) 教学课型:新授课教学目标:1.知道在有理数范围内成立的运算律在实数范围内仍然成立.2.能熟练将二次根式化简成最简二次根式.3.会运用二次根式加减法法则进行二次根式的加减运算教学重点:二次根式加减法运算方法教学难点:二次根式的化简,合并被开方数相同的最简二次根式教学过程一、复习引入上节课学习了二次根式的乘除法,这节课学习二次根式的加减法运算.二、探究新知(一)二次根式加减法法则活动1、类比计算,说明理由① 2a +3a ; 2322+. ② 2a -3a ;2322-. ③123+ ;1812+ ○412515-+思考:(1)在有理数范围内成立的运算律,在实数范围内能否继续使用?(2)二次根式的加减运算与整式的加减运算相同之处是什么?(3) 什么样的二次根式能够合并?(4)模仿整式的加减运算怎样进行二次根式的加减运算?活动2、给出二次根式的加减法法则分析法则:二次根式加减时,先将非最简二次根式化为最简二次根式,再逆用乘法分配律将被开方数相同的二次根式进行合并.被开方数不同的最简二次根式不能合并,作为最后结果中的部分.练习:①课本例1,补充 (3)182- (4)821- ②课本例2,补充 ⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛-6812124 分析说明: ①中补充(3)结果为负,(4)含分数线,作为例1,例2的过渡。

②中补充括号前是负号的.(二)二次根式加减的应用1.课本引例分析:这个实际问题的解决方法可能不同,还可以先估算两个正方形的边长,,再把它们的和与木板的长比较.三、课堂训练完成课本练习补充:1.下列各组二次根式中,化简后被开方式相同的是() A.2ab ab 与 B. 2222n m n m -+与 C.n m mn 11+与 D.29984343b a b a 与 2.二次根式的计算为什么先学乘除,后学加减?还有哪块知识也是如此?四、小结归纳1.进行二次根式加减运算的一般步骤.2.二次根式的熟练化简.3.二次根式加减的实际应用.五、作业设计必做:P15:1、2、3选做:5补充作业:计算:(1)223-; (2)27122+;(3)2918-; (4)x x 2242+; (5)3222x a x -; (6)23218+-; (7)108965475-+-; (8))272(43)32(21--+教学课题:16.3二次根式的加减(第2课时) 教学课型:新授课教学目标:1.在有理数的混合运算及整式的混合运算的基础上,使学生了解二次根式的混合运算与以前所学知识的关系,在比较中求得方法,并能熟练地进行二次根式的混合运算2.对二次根式的混合运算与整式的混合运算及有理数的混合运算作比较,注意运算的顺序及运算律在计算过程中的作用.并感受数的扩充过程中运算性质和运算律的一致性以及数式通性.3.在运算中运用多项式的乘法法则和整式的乘法公式,体会二次根式的运算与整式的运算的联系. 教学重点:混合运算的法则,运算律的合理使用教学难点:灵活运用运算律、乘法公式等技巧,使计算简便教学过程一、复习引入导语设计:到目前为止,我们已经学习了二次根式的乘除、加减运算,这节课来学习二次根式的混合运算.二、探究新知(一)二次根式混合运算法则活动1、类比计算,说明理由①(2a +3b)a ; ( 3322+)6 ②(2a +3b)(a -b); ()()3262+- ③(3a b-4a 2 )÷a ; ()3126÷+思考:(1)在有理数范围内成立的运算律,在实数范围内能否继续使用?(2)二次根式的混合运算与整式的混合运算相同之处是什么?(3)左边式子中的字母a 、b 可以表示二次根式吗?(4)模仿整式的混合运算怎样进行二次根式的混合运算?活动2、给出二次根式的混合运算的一般步骤.分析法则:(1)进行二次根式混合运算时,运算顺序与实数运算类似,先算乘方,再算乘除,最后算加减,有括号的先算括号里面的(或先去掉括号).(2)对于二次根式混合运算,原来学过的所有运算律、运算法则仍然适用,整式、分式的运算法则仍然适用。

相关文档
最新文档