八年级数学下册第一章 练习题

合集下载

初中八年级数学下册的第一章测试卷试题参考答案

初中八年级数学下册的第一章测试卷试题参考答案

北师大版八年级数学下册第一章测试题参照答案一、选择题(每题3分,共30分)1.当x1时,多项式x2kx1的值小于0,那么k的值为[].2A.k 33C.k33 2B.k2D.k222.同时知足不等式x x3的整数x是[].21和6x13x42A.1,2,3 B .0,1,2,3C.1,2,3,4D.0,1,2,3,43.若三个连续正奇数的和不大于27,则这样的奇数组有[ ].A.3组B.4组C.5组D.6组4.假如b a0,那么[].A.11B.11C.11D.b a a b a b a b5.某数的2倍加上5不大于这个数的3倍减去4,那么该数的范围是[].A.x9B.x9C.x9D.x96.不等式组3x10[].2x7的正整数解的个数是A.1B.2C.3D.42x3(x3)17.对于x的不等式组3x2x a有四个整数解,则a的取值范围是[].4A.11a5B.11a54242C.11a5D.11a542428.已知对于x的不等式组x a b的解集为3x5,则b的值为[].2x a2b1aA.-2B.1C.-4D.1249.不等式组x2x64,那么m的取值范围是[].x m的解集是xA.m4B.m4C.m4D.m410.现用甲、乙两种运输车将46吨抗旱物质运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超出 10辆,则甲种运输车起码应安排[].A .4辆B.5辆C.6辆D .7辆二、填空题(每题 3分,共30 分)1 .若代数式t1t1的值不小于-3,则t 的取值范围是_________.522 .不等式3x k 0的正数解是1,2,3,那么k 的取值范围是________.3 .若,则x 的取值范围是________.4 .若ab ,用“<”或“>”号填空:2a______ab ,ba_____.335 .若|x1|1,则x 的取值范围是_______.x16 .假如不等式组x 5有解,那么m 的取值范围是_______.xm7 .若不等式组2xa1的解集为 1x1,那么(a3)(b3)的值等于_______.x 2b 38 .函数y 15x1 ,y2 1x 1,使y 1 y 2的最小整数是________.229 .假如对于x 的不等式(a1)x a 5和2x4 的解集同样,则a 的值为________.10 .一次测试共出 5道题,做对一题得一分,已知 26人的均匀分许多于分,最低的得 3分,起码有3人得4分,则得 5分的有_______人.三、解答题(本大题,共40分)1 .(此题8分)解以下不等式(组):7(x 5) 2(x,3x22x11)15(1)1;(2)2x13x1.5332x y m2.(此题8分)已知对于x,y的方程组的解为非负数,求整数m的值.5x 3y313.(此题6分)若对于x的方程3(x4) 2a 5的解大于对于x的方程(4a1)x a(3x4)的43解,求a的取值范围.4.(此题8分)有人问一位老师,他所教的班有多少学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生念外语,还剩下不足6位同学在操场踢足球”.试问这个班最罕有多少位学生?5.(此题10分)某食品厂生产的一种巧克力糖每千克成本为方案一:若直接给本厂设在武汉的门市部销售,则每千克售价为24元,其销售方案有以下两种:32元,但门市部每个月需上缴有关花费2400元;方案二:若直接批发给当地商场销售,则出厂价为每千克28元.若每个月只好按一种方案销售,且每种方案都能按月销售完当月产品,设该厂每个月的销售量为xkg.(1)你若是厂长,应怎样选择销售方案,可使工厂当月所获收益更大?2)厂长看到会计送来的第一季度销售量与收益关系的报表后(下表),发现该表填写的销售量与实质有不符之处,请找出不符之处,并计算第一季度的实质销量总量.一月二月三月销售量(kg)5506001400收益(元)200024005600四、探究题(每题10,共20分)1.甲从一个鱼摊上买了三条鱼,均匀每条a元,又从另一个鱼摊上买了两条鱼,均匀每条b元,以后他又以每条a b元的价钱把鱼所有卖给了乙,请问甲会赚钱仍是赔钱?并说明原由.22.跟着教育改革的不停深入,素质教育的全面推动,某市中学生利用假期参加社会实践活动的愈来愈多.王伟同学在本市丁牌企业实习时,计划发展部给了他一份实习作业:在下述条件下规划出下月的产量.若是企业生产部有工人200名,每个工人每2小时可生产一件丁牌产品,每个工人的月劳动时间不超出192小时,本月将节余原料60吨,下个月准备购进300吨,每件丁牌产品需原料20千克.经市场检查,估计下个月市场对丁牌产品需求量为16000件,企业准备充足保证市场需求.请你和王伟同学一同规划出下个月产量范围.北师大版八年级数学下册第一章测试题参照答案一、选择题1.C2.B3.B提示:设三个连续奇数中间的一个为 x ,则(x 2) x (x 2) 27 .解得 x9.因此x 2 7 .因此 x2只好取1,3,5,7.4.C5.B6.C7.B2x 3(x 3) 1提示:不等式组3x 2x a 的解集为8x24a .42x 3(x 3) 1由于不等式组3x2x a 有四个整数解,因此12 2 4a 13 .4解得11 a54.28.A提示:不等式组x a b的解集为ab xa 2b 1.2xa 2b21a b 3a3a 2b 1由题意,得5解得.2b6则b31.a629.B10.C二、填空题371.t32.9k12提示:不等式3xk0的解集为xk1,2,3,因此.由于不等式3xk0的正数解是33k.因此9k12.433.x3或x2x20x20提示:由题意,得30或30x x前一个不等式的解集为x 3,后一个不等式的解集为 x2 4.<,>5.x16.m57.-2提示:不等式组2x a1的解集为32bxa1x2b3,由题意,得232b1a1a1解得b221因此(a3)(b3)(13)(23)2.8.09.710.22提示:设得5分的有x人,若最低得3分的有1人,得4分的有25-x人,则5x3(25x)428,解得x.应取最小整数解,得x=22.三、解答题1.解:(1)去分母,得3(3x2)5(2x1)15.去括号,得9x610x515移项,归并同类项,得x4.两边都除以-1,得x4.7(x5)2(x1),①15(2)2x13x1.②320解不等式①,得x2.解不等式②,得x5.2因此,原不等式组的解集是x5 .2x ymx 31 3m22.解:解方程组得.5x 3y 5m3131y231 3m231 31由题意,得解得315m.5m 032由于m 为整数,因此 m 只好为 7,8,9,10.3.解:由于方程3(x4) 2a 5的解为x2a 7 ,方程(4a1)xa(3x4)的解为3 43x16 a .由题意,得 2a716 a .解得a 7 .333184.解:设该班共有x 位同学,则x(xx x )6.∴3x6 .∴x56.又∵x ,x,x ,x都是正整数,则24 7282x 是2,4,7的最小公倍数.∴x28.4 7故该班共有学生 28人.5.解:(1)设收益为y 元.方案1:y 1 (32 24)x 24008x2400, 方案2:y 2 (28 24)x4x .当8x24004x当8x24004x当8x24004x时, 时,时,x600;x 600 ;x 600 .即当x 600时,选择方案 1; 当x600时,任选一个方案均可;当x600时,选择方案2.(2)由(1)可知当x600时,收益为2400元.一月份收益 2000<2400,则x 600,由4x=2000,得x=500,故一月份不符. 三月份收益 5600>2400,则x600,由8x24005600,得x=1000,故三月份不符.二月份x 600切合实质.故第一季度的实质销售量 =500+600+1000=2100(kg ).四、探究题1.解:买5条鱼所花的钱为:3a 2b ,卖掉 5条鱼所得的钱为:5 ab5(a2 b).则5(ab) (3a2b) ba .222当ab 时,ba 0,因此甲会赔钱.2当ab 时,ba 0,因此甲会赚钱.2当ab 时,ba 0,因此甲不赔不赚.22.解:设下个月生产量为 x 件,依据题意,得2x 192 200, 20x (60 300) 1000, 解得 16000 x18000.即下个月生产量许多于 16000件,不x 16000.多于18000件.爱人者,人恒爱之;敬人者,人恒敬之;宽以济猛,猛以济宽,政是以和。

八年级下册数学前两章练习题

八年级下册数学前两章练习题

八年级下册数学前两章练习题第一章《三角形的证明》部分一、选择题1.已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是A.7㎝ B.9㎝C.12㎝或者9㎝ D.12㎝2. 如图,在△ABC和△DEF中,已知AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件是A.∠A=∠DB.∠ACB=∠FC.∠B=∠DEFD.∠ACB=∠D3.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为A.30°B.36°C.45°D.70°4.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC,其中正确结论的个数是A.1个B.2个C.3个D.4个BC A5. 到三角形三个顶点的距离相等的点是三角形的交点.A. 三个内角平分线B. 三边垂直平分线C. 三条中线D. 三条高二、填空题1.如果等腰三角形的有一个角是80°,那么顶角是度.2.如图,△ABC中,∠C=90°,∠A=30° ,BD平分∠ABC交AC于D,若CD=2cm,则AC= .3.已知⊿ABC中,∠A =0,角平分线BE、CF交于点O,则∠4.在△ABC中,∠A=40°,AB=AC ,AB的垂直平分线交AC与D,则∠DBC的度数为.05.等腰三角形一腰上的高与另一腰的夹角为30,腰长为6,则其底边上的高是。

三.解答题1.如图,DC⊥CA,EA⊥CA, CD=AB,CB=AE.求证:△BCD≌△EAB.ECB A2.如图,△ABC中,∠B=90°,AB=BC,AD是△ABC的角平分线,若BD=1, A求DC.3.如图,∠A=∠D=90°,AC=BD.求证:OB=OC;1 04.如图,在△ABD和△ACE中,有下列四个等式:①AB=AC ②AD=AE ③∠1=∠ ④BD=CE.以其中三个条件为已知,填入已知栏中,一个为结论,填入下..面求证栏中,使之组成一个真命题,并写出证明过程。

八年级下册数学第一章测试题及答案

八年级下册数学第一章测试题及答案

八年级下册数学第一章测试题及答案八年级下册数学第一章测试题及答案八年级即将升入初三,对于学习要记好公式,认真对待!以下是店铺收集整理了八年级下册数学第一章测试题及答案,供大家参考借鉴,希望可以帮助到有需要的朋友。

1.已知:两直线平行,内错角相等;已知:两直线平行,同位角相等;等量代换。

2.证明:∵AD//CB,∴∠ACD=∠CAD.∵CB=AD,CA=AC,∴△ABC≌△CDA(SAS).3.证明:(1)∵AB=AC,∴∠ABC=∠ACB.∵∠ABD=∠ACE,∴∠ABC-∠ABD=∠ACB-∠ACE,∴∠DBC=∠ECB,即∠OBC=∠OCB.∴OB=OC(等角对等边).(2)在△ABD和△ACE中,∴△ABD≌△ACE(ASA),∴AD=AE.∵AB=AC,∴AB-AE=AC-AD,即BE=CD.4.证明:∵BD,CE为△ABC的.高,且BD=CE,又BC=BC,∴Rt△BCD≌Rt△CBE(HL),∴∠ABC=∠ACB.∴AB=AC,即△ABC是等腰三角形.5.解:在Rt△ABC中,∵∠BAC=90°,AB=AC=a,∴BC=√2a.∵AD⊥BC,∴BD=1/2BC=√2/2a.∵AD⊥BC,∠B=45°,∴AD=BD=√2/2a.6.解:①Rt△AOD≌Rt△AOE .证明:∵高BD,CE交于点O,∴∠ADO=∠AEO=90°.∵OD=OE,AO=AO,∴Rt△AOD≌Rt△AOE(HL).②Rt△BOE≌Rt△COD.证明:由①知∠BEO=∠CDO=90°,又∵OE=OD且∠BOE=∠COD,∴△BOE≌△COD(ASA).③Rt△BCE≌Rt△CBD.证明:由②知∠BEC=∠CDB=90°,BE=CD且BC=CB,∴Rt△BCE≌Rt△CBD(HL).④△ABM≌△ACM.证明:由③知∠ABC=∠ACB,由①知∠BAM=∠CAM,又∵AM=AM,∴△ABM≌△ACM(AAS).⑤Rt△ABD≌Rt△ACE.证明:∵∠ADB=∠AEC=90°,∠BAD=∠CAE,又由①知AE=AD,∴△ABD≌Rt△ACE(ASA).⑥△BOM≌△COM.证明:由①知∠AOE=∠AOD,由②知∠BOE=∠COD,∴∠AOE+∠BOE=∠AOD+∠COD,即∠AOB=∠AOC,∴∠BOM=∠COM.由③知∠BOC=∠OCB,又∵OM=OM.∴△BOM≌△COM(AAS).7.已知:在△ABC中,AB=AC,求证:∠B与∠C都是锐角。

北师大版八年级数学下册第一章特殊的平行四边形专项测试题-附答案解析(一)

北师大版八年级数学下册第一章特殊的平行四边形专项测试题-附答案解析(一)
正方形应是N的一部分,也是 的一部分,
矩形形、正方形、菱形都属于平行四边形,
它们之间的关系是: .
二、填空题(本大题共有5小题,每小题5分,共25分)
16、已知矩形的一条对角线长 ,则另一条对角线的一半是 .
【答案】4
【解析】解:
根据矩形的对角线相等,另一条对角线长 ,则另一条对角线的一半是 .
故正确答案是 .
14、将四根长度相等的细木条首尾相接,用钉子钉成四边形 ,转动这个四边形,使它形状改变,当 时,如图 ,测得 ,当 时,如图 , ( )
A.
B.
C.
D.
15、如图所示,设 表示平行四边形, 表示矩形, 表示菱形, 表示正方形,则下列四个图形中,能表示它们之间关系的是( )
A.
B.
C.
D.
二、填空题(本大题共有5小题,每小题5分,共25分)
四条边相等的四边形是菱形,不一定是正方形,该说法错误,符合题意;
对角线相等的菱形是正方形,该说法正确,不符合题意;
对角线垂直的矩形是正方形,该说法正确,不符合题意.
故正确答案选:四条边相等的四边形是正方形.
3、矩形、菱形、正方形都具有的性质是( ).
A. 对角线互相垂直
B. 对角线平分每一组对角
C. 对角线互相平分
6、 在 中, , 是边 上一点, 交 于点 , 交 于点 ,若要使四边形 是菱形,只需添加条件( ).
A.
B.
C.
D.
【答案】C
【解析】解:只需添加

四边形 是平行四边形
四边形 是菱形
故正确答案是:
7、过矩形 的四个顶点作对角线 、 的平行线分別交于 、 、 、 四点,则四边形 是().

北师大版八级数学下册第一章测试题及答案.docx

北师大版八级数学下册第一章测试题及答案.docx

北八(下)第一章 1.4-1.6 章节水平测试题一、填空题:(每题3 分,共 24 分)1 .已知不等式5(x2)8 6(x1) 7的最小整数解为方程 2x ax4 解,则 a 值是 .2 .已知3(5x2) 54x 6( x 1) ,化简 x 1 1 x = .3 . a 取正整数 时,方程4 . k 为整数时,方程3x a 7 的解是负整数.5x 2k x 4 的解在 1 和 3 之间.7. 如果三角形的三边长分别是3 cm 、 (1-2 a ) cm 、 8 cm ,那么 a 的取值范围是 ________.8. 如图,某航空公司托运行李的费用与托运行李的重量的关系为一次函数,由图可知行李的重量只要不超过 ________ 千克,就可以免费托运.二、选择题:(每题 3 分,共 24 分)9 .不等式 3( x -2) ≤ x +4 的非负整数解有几个()A . 4B . 5C . 6D .无数个11110 .不等式 4x - 4x4 的最大的整数解为 ( )A . 1B . 0C . -1D .不存在A . 5B . 4C . 3D .无数个A. a= 3 b = 5B. a = -3 b =-5C. a= -3 b = 5D. a =3 b = -55x3m m1513 .若方程42 4 的解是非正数,则m 的取值范围是().A m 3B m 2C m 3D m 214 .七年级( 3 )班同学假日外出游玩,要拍合影留念,若一张彩色底片要0.57 ,冲印一张要 0.35元,每人预定要一张,花钱不超过0.45 元,则参加合影的同学至少有()个人?A 5 B.6 C.7 D.82x y1015.如果关于 x、 y 的方程组3x y 5a的解满足 x > 0且 y < 0 ,则实数 a 的取值范围是().A2<a<3B-3<a<2C-2 < a <3D-3<a<-216. 某单位准备和一个体车主或一国营出租车公司中的一家签订月租车合同,设汽车每月行驶 x 千米,个体车主收费y 1元,国营出租车公司收费为y 2元,观察下列图象可知,当x ()时,选用个体车较合算.A.x<1500B. x=1500C. x>1200D. x > 1500三、解答题:(共30 分)17 (10分)解下列不等式(组),并把解集在数轴上表示出来:13x 51 2 x1(1)236( 2)18. (10分)已知 5 x -2 y= 6 ,当 x 满足 6 ≤ 7 x -1 < 13时,请确定 y 的取值范围.19.( 10 分)如果方程组,m的值表示在数轴上.是多少?3x y 13mx3y1m的解满足x+y>0,求m的取值范围,并把四、综合探究题:(22 分)20.( 10 分)某公司在甲、乙两座仓库分别有农用车12 辆和 6 辆,现需调往 A 县 10辆,调至 B 县 8 辆,已知从甲仓库调往 A 县和 B 县的费用分别 40 元和 80 元;从乙仓库调 往 A 县和 B 县的费用分别为 30 元和 50 元.( 1)设从乙仓库调往 A 县农用车 x 辆.求总运费 y 与 x 的函数关系式.( 2)若要求总运费不超过 900 元.问共有几种调配方案?( 3)求出总运费最低的调运方案,最低运费是多少?21.( 12 分)某企业现有工人 80 人,平均每人每年可创产值 a 元 . 为适应市场经济改革,现决定从中分流一部分人员从事服务行业 . 分流后企业工人平均每人每年创造产值可增加30% ,服务行业人员平均每人每年可创产值2.5 a 元 . 要使分流后企业工人的全年总产值不低于原来全年总产值,而且服务行业人员全年创产值不低于原企业全年总产值的一半. 假设你是企业管理者,请你确定分流到服务行业的人数.五、备选题22. 弟弟上午八点钟出发步行去郊游, 速度为每小时 4 千米; 上午十点钟哥哥从同一地点骑自行车去追弟弟 . 如果哥哥要在上午十点四十分之前追上弟弟,问哥哥的速度至少是多少?23. 某初一新生中,有若干住宿生,分住若干间宿舍,若每间住每间住 7 人,则有一间不空也不满.求住宿生人数.4 人,则有21 人无处住;若24. 某商场计划投入一笔资金采购一批紧销商品,经过市场调查发现:如果月初出售可获利15%,并把本利再投资其他商品, 到月末又可获利 10%,如果月末出售可获利 30%.但要付出仓储费用 700 元.请问:根据商场的资金状况,如何购销获利较多?新 课 标 第一网参考答案:一、1 .a4(提示: x 3 ,则最小的整数解是 x2 ,原方程 4 2a 4 .∴ a 4 )2 . -2(提示:不等式的解集是x1,∴x 11 xx 1 (1 x)2 )a 7x3a7 0 , a 7 ,∴3 .4 , 1 (解方程,∵ 符合条件的 a 值是 4 , 1 )k 2k 23x3 ,即134 . 2 , 3 , 4 ,5 ,6 (∵)5. a ≤26. 2 ≤ x < 57. -5 < a < -2 8. 20二、9 .C 10 .B11.B 12.D13 .A (提示: x m3.∵ x 0∴m 3 0即m3 )14.B ( 6 人 提示:设至少 x 人合影,依题意,得0.57 0.35x 0.45x )2x y 10x2 a15.C 提示:解方程组3x y5a得这个方程组的解是y 2a 62 a0∵x > 0 且 y <0 ,∴2a6016.D解得: -2 < a <3三、 17. (1 )18.解法一:由20x7( 2) x≤1(数轴略)新课标第一网6 ≤ 7x -1 < 13 得: 1 ≤x <26 2 y由 5 x-2 y = 6得: x = 5 ,6 2 y∴ 1 ≤5< 2则 5 ≤ 6 +2 y <10-1 ≤ 2 y< 41∴- 2≤ y < 2解法二:由 6 ≤ 7x -1 < 13 得: 1 ≤ x < 25x 6由 5 x-2 y = 6 得: y =2∵ 1 ≤ x < 2 ,5 ≤ 5x < 10-1 ≤ 5x -6 < 415x6∴- 2≤2<21即- 2≤ y< 23x y 1 3m①19.由方程组x 3y 1 m②①+②得 :4 x +4 y = 2 + 2m ,1 m∴x + y=21 m∵x + y> 0 ,∴2>0,解得 : m > -120.小于或等于11km,大于 10km.(提示:设甲、乙两地间距离为x km .根据题意,得16 1.2(x 5)1017.2∴10 x 11)21.解:设分流x 人从事服务行业,则剩余(80- x ) 人从事企业生产.(1 30%)a(80 x)80 a12.5ax80a2根据题意得:1.3ax24a即 2.5ax 40a6x1813∴x 16又∵ x是整数∴x = 16 ,17 或 18即可分流16 人或 17人、 18 人去从事服务行业.五、 22.解:设哥哥的速度为x 千米 / 小时4040根据题意得:60 x≥4(2+ 60 )解得: x ≥16答:哥哥的速度至少是16 千米 / 小时.23.解:设有 x 间宿舍,则总人数为(4x+21)人.由题意得:解不等式①得x>7.28解不等式②得x<3.28∴这个不等式组的解集是7<x<3.∵房间数只能取正整数.∴ x=8或9.当x=8时,人数:4×8+21=53(人)当x=9时,人数:4×9+21=57(人)24. 解:设商场投入资金x元,第一种投资情况下,获总利用y1元表示.第 2 种投资情况下获总利用 y2元表示.由题意得: y1= x(1+15%)(1+10%)- xy1=0. 265x.y2= x(1+30%)- x-700y2=0. 3x-700(1)当y1>y2时, 0. 265x> 0. 3x- 700,x< 2000;(2)当y1=y2时, 0. 265x= 0. 3x- 700,x= 2000;(3)当y1<y2时, 0. 265x< 0. 3x- 700,x> 2000.答:( 1)当投资超过 2000 元时,选择第二种投资方式;(2)当投资为 2000 元时,两种选择都行;(3)当投资在 2000 元内时,选择第一种投资方式.新课标第一网。

北师大版八年级数学下册第一章测试卷及答案

北师大版八年级数学下册第一章测试卷及答案

北师大版八年级数学下册第一章测试卷及答案一、选择题(共10小题,每小题3分,共30分)1.若等腰三角形的顶角为40°,则它的底角度数为( )A.40° B.50° C.60° D.70°2.已知等腰三角形两边长是8 cm和4 cm,那么它的周长是( )A.12 cm B.16 cm C.16 cm或20 cm D.20 cm3. 已知在△ABC中,AB≠AC,求证:∠B≠∠C.若用反证法来证明这个结论,可假设( )A.∠A=∠B B.AB=BC C.∠B=∠C D.∠A=∠C4.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A.3,4, 5 B.1,2, 3 C.6,7,8 D.2,3,45.如图,已知AB⊥BD,CD⊥BD,若用“HL”判定Rt△ABD和Rt△CDB全等,则需要添加的条件是( )A.AD=CB B.∠A=∠C C.BD=DC D.AB=CD6.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=( )A.40° B.50° C.60° D.75°7.如图,在△ABC中,AB=AC,AD平分∠BAC,点E是AD上的点,且AE=EC,若∠BAC=45°,BD=3,则CE的长为( )A.3 B.3 2 C.2 3 D.48.为了加快灾后重建的步伐,某市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址( )A.仅有一处B.有四处 C.有七处D.有无数处9.如图,在四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.∠ADC=30°,AD=3,BD=5,则CD的长为( )A .3 2B .4C .2 5D .4.510. 如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC 交AB 于点E ,交AC 于点F ,过点O 作OD ⊥AC 于点D ,下列结论:①EF =BE +CF ;②∠BOC =90°+12∠A ;③点O 到△ABC 各边的距离都相等;④设OD =m ,AE +AF =n ,则S △AEF =mn ;⑤S △EOB =S FOC .其中,正确的有( )A .2个B .3个C .4个D .5个二.填空题(共8小题,每小题3分,共24分)11.如图,在△ABC 中,∠C =40°,CA =CB ,则△ABC 的外角∠ABD =________.12. 如图,在△ABC 中,AB =AC =BC =4,AD 平分∠BAC ,点E 是AC 的中点,则DE 的长为________.13.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:____________________________________________,该逆命题是________(填“真”或“假”)命题. 14.如图,已知直线l 1∥l 2,将等边三角形如图放置,若∠α=40°,则∠β=________.15.若△ABC 的三边长分别为a ,b ,c ,则下列条件中能判定△ABC 是直角三角形的有________个. ①∠A =∠B -∠C ;②∠A ∶∠B ∶∠C =3∶4∶5;③a 2=(b +c )(b -c );④a ∶b ∶c =5∶12∶13. 16.如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB .若AC =2,DE =1,则S △ACD =________.17.如图,E是等边三角形ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE是________三角形.18.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(点E在BC上,点F在AC上)折叠,点C与点O恰好重合,则∠OEC的度数为________.三.解答题(共7小题, 66分)19.(8分) 如图,△ABC,△CDE均为等边三角形,连接BE,AD交于点O,BE与AC交于点P.求证:∠AOB =60°.20.(8分) 如图,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,O是BD与CE的交点,求证:BO=CO.21.(8分) 如图,四边形ABCD是长方形,用尺规作∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连接QD,在新图形中,你发现了什么?请写出一条.22.(8分)如图,已知等腰三角形ABC中,AB=AC,点D,E分别在边AB,AC上,且AD=AE,连接BE,CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A,F的直线垂直平分线段BC.23.(10分)如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于点F,PA=PC.(1)求证:∠PCB+∠BAP=180°;(2)若BC=12 cm,AB=6 cm,PA=5 cm,求BP的长.24.(10分) 如图,点P是等边三角形ABC内一点,AD⊥BC于点D,PE⊥AB于点E,PF⊥AC于点F,PG⊥BC于点G.求证:AD=PE+PF+PG.25.(14分) 如图,已知△ABC是边长为6 cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速运动,其中点P运动的速度是1 cm/s,点Q运动的速度是2 cm/s,当点Q到达点C时,P,Q 两点都停止运动,设运动时间为ts,解答下列问题:(1)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(2)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t;若不能,请说明理由.参考答案1-5DDCBA 6-10BBABB 11. 110° 12. 213. 如果两个三角形的面积相等,那么这两个三角形全等;假 14. 20° 15. 3 16.1 17. 等边 18. 108°19. 证明:∵△ABC 和△ECD 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠ACE =∠DCE +∠ACE ,即∠ACD =∠BCE ,在△ACD 和△BCE 中,⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE(SAS),∴∠CAD=∠CBE ,∵∠APO =∠BPC ,∴∠AOP =∠BCP =60°,即∠AOB =60°.20.证明:∵AB =AC ,∴∠ABC =∠ACB.∵BD ⊥AC ,CE ⊥AB ,∴∠BDC =∠CEB =90°,在△BCE 和△CBD 中,⎩⎪⎨⎪⎧∠ABC =∠ACB ,∠CEB =∠BDC =90°,BC =CB ,∴△BCE ≌△CBD(AAS),∴∠BCE =∠CBD ,∴BO =CO. 21. 解:如图所示.发现:QD =AQ 或∠QAD =∠QDA 等22. 解:(1)∠ABE =∠ACD.理由:在△ABE 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,∠A =∠A ,AE =AD ,∴△ABE ≌△ACD ,∴∠ABE =∠ACD(2)连接AF.∵AB =AC ,∴∠ABC =∠ACB ,由(1)可知∠ABE =∠ACD ,∴∠FBC =∠FCB ,∴FB =FC ,∵AB =AC ,∴点A ,F 均在线段BC 的垂直平分线上,即直线AF 垂直平分线段BC23.解:(1)证明:过点P 作PE ⊥AB 于点E ,∵∠1=∠2,PF ⊥BC ,PE ⊥AB ,∴PE =PF.在△APE 和△CPF 中,⎩⎪⎨⎪⎧PA =PC ,PE =PF ,∴△APE ≌△CPF(HL),∴∠PAE =∠PCB.∵∠PAE +∠PAB =180°,∴∠PCB +∠BAP =180°. (2)∵△APE ≌△CPF ,∴AE =FC ,∵BC =12 cm ,AB =6 cm ,∴AE =12×(12-6)=3 (cm),BE =AB +AE =6+3=9 (cm),在Rt △PAE 中,PE =52-32=4 (cm),在Rt △PBE 中,PB =92+42=97 (cm).24. 证明:连接PA ,PB ,PC ,如图.∵AD ⊥BC 于点D ,PE ⊥AB 于点E ,PF ⊥AC 于点F ,PG ⊥BC 于点G ,∴S △ABC =12×BC ×AD ,S △PAB =12×AB ×PE ,S △PAC =12×AC ×PF ,S △PBC =12×BC ×PG . ∵S △ABC =S △PAB +S △PAC +S △PBC ,∴12×BC ×AD =12(AB ×PE +AC ×PF +BC ×PG ).∵△ABC 是等边三角形,∴AB =BC =AC ,∴BC ×AD =BC ×(PE +PF +PG ),∴AD =PE +PF +PG .25. 解:(1)当点Q 到达点C 时,PQ 与AB 垂直.理由:∵点Q 到达点C 时,BQ =BC =6 cm ,∴t =62=3.∴AP =3 cm.∴BP =AB -AP =3 cm =AP .∴点P 为AB 的中点.∴PQ ⊥AB .(2)能.∵∠B =60°,∴当BP =BQ 时,△BPQ 为等边三角形.∴6-t =2t ,解得t =2.∴当t =2时,△BPQ 是等边三角形.。

北师版八年级数学下册第一章达标测试卷含答案

北师版八年级数学下册第一章达标测试卷含答案

北师版八年级数学下册第一章达标测试卷一、选择题(每题3分,共30分)1.若等腰三角形的底角为40°,则它的顶角度数为()A.40°B.50°C.60°D.100°2.下列条件中,不能得到等边三角形的是()A.有两个外角相等的等腰三角形是等边三角形B.三边都相等的三角形是等边三角形C.有一个角是60°的等腰三角形是等边三角形D.有两个内角是60°的三角形是等边三角形3.已知在△ABC中,AB≠AC,求证:∠B≠∠C.若用反证法来证明这个结论,可假设()A.∠A=∠B B.AB=BC C.∠B=∠C D.∠A=∠C 4.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.3,4, 5 B.1,2, 3 C.6,7,8 D.2,3,4 5.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC于点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°(第5题)(第6题)(第7题)6.如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.107.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,且AD交BC于点D,DE⊥AB于点E,则下列说法错误的是()A.∠CAD=30°B.AD=BD C.BE=2CD D.CD=ED 8.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD (第8题)(第9题)(第10题)9.如图,在△ABC中,分别以点A和点B为圆心,大于12AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A.7 B.14 C.17 D.2010.如图,在△ABC中,AD平分∠BAC,DE⊥AB,DF⊥AC,E,F为垂足,则下列四个结论:①∠DEF=∠DFE;②AE=AF;③DA平分∠EDF;④EF垂直平分AD.其中结论正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共30分)11.如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD=________.(第11题)(第12题)(第14题)12.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是________.13.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:____________________________________________,该逆命题是________(填“真”或“假”)命题.14.如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β=________. 15.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的平分线.”他这样做的依据是________________________.(第15题)(第16题)(第18题)16.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边长分别为6 m和8 m,斜边长为10 m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是________.17.等腰三角形ABC中,BD⊥AC,垂足为点D,且BD=12AC,则等腰三角形ABC一个底角的度数为________.18.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D,E,AD =3,BE=1,则DE=________.19.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠A′C′B′=90°,AC=BC =3,则B′C的长为________.(第19题)(第20题)20.如图,等边三角形ABC的边长为12,AD是BC边上的中线,M是AD上的动点,E是AC边上的一点.若AE=4,则EM+CM的最小值为________.三、解答题(21题8分,26题12分,其余每题10分,共60分)21.已知:∠ABC,射线BC上一点D(如图所示).求作:等腰三角形PBD,使线段BD为等腰三角形PBD的底边,点P在∠ABC 的内部,且点P到∠ABC两边的距离相等.(要求:请用直尺、圆规作图,不写作法,但要保留作图痕迹)22.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:△ADE ≌△CFE.23.如图,锐角三角形ABC的两条高BE,CD相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.24.如图,在4×4的正方形网格中,每个小正方形的边长均为1,线段AB的端点在格点上,按要求画图.(1)在图①中画出一个面积为4的等腰三角形ABC(点C在格点上),使A,B,C中任意两点都不在同一条网格线上;(2)在图②中画出一个面积为5的直角三角形ABD(点D在格点上),使A,B,D中任意两点都不在同一条网格线上.25.如图,已知△ABC是边长为6 cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速运动,其中点P运动的速度是1 cm/s,点Q 运动的速度是2 cm/s,当点Q到达点C时,P,Q两点都停止运动,设运动时间为t s,解答下列问题:(1)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(2)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t;若不能,请说明理由.26.数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°) 张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同.如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x 的取值范围.答案一、1.D 2.A 3.C 4.B5.C点拨:∵AB=AC,∠A=30°,∴∠ACB=12×(180°-30°)=75°.∵∠1=∠A+∠AED=145°,∴∠AED=145°-30°=115°.∵a∥b,∴∠AED=∠2+∠ACB.∴∠2=115°-75°=40°.6.C7.C8.D9.C10.C点拨:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,DE=DF.∴∠DEF=∠DFE.∵AD=AD,∴Rt△ADE≌Rt△ADF.∴AE=AF,∠ADE=∠ADF.∴AD垂直平分EF.∴①②③正确,④不正确.二、11.110°12.313.如果两个三角形的面积相等,那么这两个三角形全等;假14.20°15.角的内部到角的两边的距离相等的点在角的平分线上16.6 m17.45°或15°或75°点拨:如图①,AC是底边,AB=CB.∵BD⊥AC,∴AD=CD=12AC.∵BD=12AC,∴AD=BD.∴∠A=∠ABD=45°.如图②,BC是底边,AB=AC,∴∠ABC=∠C.∵BD=12AC,∴BD=12AB.又∵BD⊥AC,∴∠BAD=30°.∵∠BAD=∠ABC+∠C=2∠C,∴∠C=15°.如图③,BC是底边,同理可得∠A=30°,∴∠ABC=∠C=12×(180°-∠A)=75°.若AB是底边,同理可得等腰三角形ABC底角的度数为15°或75°.综上,等腰三角形ABC一个底角的度数为45°或15°或75°.18.2点拨:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∠DAC+∠DCA=90°.∵∠ACB=90°,∴∠ECB+∠DCA=90°.∴∠DAC=∠ECB.又∵AC=CB,∴△ACD≌△CBE.∴AD=CE=3,CD=BE=1.∴DE=CE-CD=3-1=2.19.3 320.47点拨:如图,在AB上截取AE′=AE=4,连接CE′,CE′与AD交于点M,连接ME,易知此时EM+CM的值最小,即为线段CE′的长度.过点C作CF ⊥AB,垂足为F.∵△ABC是等边三角形,∴AF=12AB=6,∴CF=AC2-AF2=63,E′F=AF-AE′=2,∴CE′=CF2+E′F2=47.即EM+CM的最小值为47.三、21.解:如图,△PBD为所求作的三角形.22.证明:∵FC∥AB,∴∠A=∠FCE,∠ADE=∠F.又∵DE=FE,∴△ADE≌△CFE.23.(1)证明:∵OB=OC,∴∠OBC=∠OCB.∵BE,CD是两条高,∴∠BDC=∠CEB=90°.又∵BC=CB,∴△BDC≌△CEB(AAS).∴∠DBC=∠ECB.∴AB=AC,即△ABC是等腰三角形.(2)解:点O在∠BAC的平分线上.理由:∵△BDC≌△CEB,∴DC=EB.∵OB=OC,∴OD=OE.又∵∠BDC=∠CEB=90°,∴点O在∠BAC的平分线上.24.解:(1)如图①所示.(2)如图②所示.25.解:(1)当点Q到达点C时,PQ与AB垂直.理由:∵点Q到达点C时,BQ=BC=6 cm,∴t=62=3.∴AP=3 cm.∴BP=AB-AP=3 cm=AP.∴点P为AB的中点.∴PQ⊥AB.(2)能.∵∠B=60°,∴当BP=BQ时,△BPQ为等边三角形.∴6-t=2t,解得t=2.∴当t=2时,△BPQ是等边三角形.26.解:(1)若∠A为顶角,则∠B=(180°-80°)÷2=50°;若∠A为底角,∠B为顶角,则∠B=180°-2×80°=20°;若∠A为底角,∠B为底角,则∠B=80°.故∠B为50°或20°或80°.(2)分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个.②当0<x<90时,若∠A 为顶角,则∠B =⎝ ⎛⎭⎪⎫180-x 2°; 若∠A 为底角,∠B 为顶角,则∠B =(180-2x )°;若∠A 为底角,∠B 为底角,则∠B =x °.当180-x 2≠180-2x 且180-2x ≠x 且180-x 2≠x ,即x ≠60时,∠B 有三个不同的度数.综上所述,当0<x <90且x ≠60时,∠B 有三个不同的度数.。

八下数学第一章练习题

八下数学第一章练习题

八下数学第一章练习题一、选择题(每题3分,共15分)1. 若a,b,c是三角形的三边长,且满足a² + b² = c²,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形2. 已知x² - 5x + 6 = 0,求x的值,正确的选项是:A. x = 2 或 x = 3B. x = -2 或 x = 3C. x = 2 或 x = -3D. x = -2 或 x = -33. 某商品的进价为每件40元,标价为每件60元,商店允许最低价为标价的60%,那么该商品最多可以打几折出售?A. 6折B. 7折C. 8折D. 9折4. 一个数的平方根是正数还是负数?A. 正数B. 负数C. 0D. 无法确定5. 如果一个多项式f(x) = ax³ + bx² + cx + d,其中a,b,c,d 都是整数,且f(1) = 2,f(2) = 10,f(3) = 36,那么f(4)的值是多少?A. 80B. 92C. 100D. 104二、填空题(每题2分,共10分)6. 一个直角三角形的两条直角边分别为3和4,其斜边的长度是_________。

7. 如果一个数的立方根等于它本身,那么这个数可以是_________。

8. 一个数的相反数是-8,那么这个数是_________。

9. 如果一个数的绝对值是5,那么这个数可以是_________或_________。

10. 若a,b,c是三角形的三边长,且满足a + b > c,那么这个三角形是_________三角形。

三、计算题(每题10分,共30分)11. 计算下列表达式的值:(2x³ - 3x² + 4x - 5) - (5x³ - x²+ 2x - 1),其中x = 2。

12. 已知一个直角三角形的两条直角边分别为6和8,求斜边的长度。

八年级数学下第一章练习题

八年级数学下第一章练习题

⼋年级数学下第⼀章练习题⼋年级数学练习题学校:___________姓名:___________班级:___________考号:___________⼀、选择题(本⼤题共18⼩题,共54.0分)1.如图,△ABC中,∠A=30°,∠C=90°,AB的垂直平分线交AC于D点,交AB于E点,则下列结论错误的是()A.DE=DCB.AD=DBC.AD=BCD.BC=AE2.如图,在R t△ABC中,∠C=90°,BD是⾓平分线,若CD=m,AB=2n,则△ABD 的⾯积是()A.mnB.5mnC.7mnD.6mn3.直⾓三⾓形两锐⾓的平分线相交得到的钝⾓为()A.150oB.135oC.120oD.120o或135o4.如果⼀个等腰三⾓形的⼀个⾓为30°,则这个三⾓形的顶⾓为()A.120°B.30°C.90°D.120°或30°5.如图,在△ABC中,CD⊥AB于点D,BE⊥AC于点E,F为BC的中点,DE=5,BC=8,则△DEF的周长是()A.21B.18C.13D.156.已知⼀个等腰三⾓形有两内⾓的度数之⽐为1:4,则这个等腰三⾓形顶⾓的度数为() A.20° B.120° C.20°或120° D.36°7.如图,△ABC中,∠A=2∠B,CD⊥AB于点D,已知AB=10,AD=2,则AC的长为() A.5 B.6 C.7 D.88.O是等边△ABC内的⼀点,OB=1,OA=2,∠AOB=150°,则OC的长为()A. B. C. D.39.在△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6B.8C.10D.1210.如图,在△ABC中,AB边上的中垂线DE分别交AB、BC于点E、D,连接AD,若△ADC的周长为7cm,AC=2cm,则BC的长为()cm.A.4B.5C.3D.以上答案都不对11.如图,PM=PN,MQ为△PMN的⾓平分线.若∠MQN=72°,则∠P的度数是() A.18° B.36° C.48° D.60°12.如图,AD 是△ABC的⾓平分线,DF⊥AB,垂⾜为F,DE=DG,△ADG和△AED 的⾯积分别为60和35,则△EDF的⾯积为()A.25B.5.5C.7.5D.12.513.如图,在△ABC中,AB=AC,AD⊥BC于点D,则下列结论不⼀定成⽴的是() A.AD=BD B.BD=CD C.∠1=∠2 D.∠B=∠C14.如图,在△ABC中,∠C=90°,AD平分∠BAC与BC边交于点D,BD=2CD,若点D到AB的距离等于5cm,则BC的长为()A.5B.10C.15D.⽆法确定15.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC 的⾯积是28cm2,AB=20cm,AC=8cm,则DE的长是()A.4cmB.3cmC.2cmD.1cm16.如图,R t△ABC中,∠C=90°,AC=4,BC=3,DE是AC边的中垂线,分别交AC,AB于点E,D,则△DBC的周长为()A.6B.7C.8D.917.某市在旧城改造中,计划在⼀块如图所⽰的△ABC空地上种植草⽪以美化环境,已知∠A=150°,这种草⽪每平⽅⽶售价a元,则购买这种草⽪⾄少需要()A.300a元B.150a元C.450a元D.225a元18.在△ABC中,∠A:∠B:∠C=1:2:3,AB=6cm,则BC的值是()A.6cmB.4cmC.3cmD.3cm⼆、填空题(本⼤题共16⼩题,共48.0分)19.如图,在R t△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为 ______ .20.等腰三⾓形⼀腰上的⾼线与另⼀腰夹⾓为50°,则该三⾓形的顶⾓____ .21.如果等腰三⾓形的两个⾓的⽐是2:5,那么底⾓的度数为______ .22.如图,AD是△ABC的BC边上的中线,DE∥AB,若AB=5,则DE的长为____.23.已知等腰三⾓形△ABC的⼀个外⾓等于130°,则底⾓为 ______ .24.如图,DE是△ABC中AC边上的垂直平分线,若BC=9,AB=11,则△EBC的周长为 ______ .25.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是 ______ ;(2)若∠BAC=128°,则∠DAE的度数是____ .26.如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D.已知BD:CD=3:2,点D到AB的距离是6,则BC的长是 ______ .27.如图,若AD=AE,BE=CD,∠1=∠2,∠1=110°,∠BAE=60°那么∠CAE=____°.28.等腰三⾓形的周长是24,其中⼀边长是10,则腰长是 ______ .=24,则△DBC的29.如图BD是△ABC的⼀条⾓平分线,AB=8,BC=4,且S△ABC⾯积是 ______ .30.在△ABC 中,BC=12cm ,AB 的垂直平分线与AC 的垂直平分线分别交BC 于点D 、E ,且DE=4cm ,则AD+AE= ______ cm .31.在⼀个内⾓为20°的等腰三⾓形中,它的⼀腰上的⾼与另⼀腰的夹⾓为 ______ .32.如图,在△ABC 中,∠C=90°,BC=3,AC=4,BD 平分∠AB C 交AC 于点D ,则点D 到AB 的距离为 ______ .33.若△ABC 的周长为12,∠A 和∠B 的平分线相交于点P ,点P 到边AB 的距离为1,则△ABC 的⾯积为 ______ .34.在△ABC 中,∠C=90°,∠A=30°,AB=16,则AC 等于 ______ .三、解答题(本⼤题共6⼩题,共48.0分)35.如图,在△ABC,AB=AC ,点D 、E 在BC 上,BD=CE .试说明:∠1=∠2.36.如图△ABC 中,AB=BC ,∠B=36°,BC 的垂直平分线DE交AB 于D ,垂⾜为E ,试说明:BD=CD=AC .37.如图, AC 平分∠B AD ,CE ⊥AB CF ⊥AD 且BC=CD 求证:BE=DF38.(1)已知等腰三⾓形的⼀边长等于8cm ,⼀边长等于9cm ,求它的周长;(2)等腰三⾓形的⼀边长等于6cm ,周长等于28cm ,求其他两边的长.39.已知:如图,AB ⊥BC DC ⊥B C∠EAB =∠CED=60°AB=3,CE=4 .求AD 的长40.如图,在△ABC 中AB=AC ,AD 是平分∠BAC ,且∠EB C=∠E=60°.BE=6 ED=2 求BC 的长.41、已知∠1=∠2,∠3=∠4 ,求证:①∠5=∠6 ②AC ⊥BD ,BE=CE42.等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP=∠ACQ ,BP=CQ ,问△APQ 是什么形状的三⾓形?试说明你的结论.3 A B C DE 1 2 4 5 6B。

北师大版八年级下学期数学第一章三角形的证明同步练习题

北师大版八年级下学期数学第一章三角形的证明同步练习题

新北师大版八年级下学期《第一章三角形的证明》同步测试题一、选择题1、用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设【】A、a不垂直于cB、a,b都不垂直于cC、a⊥bD、a与b相交2、有下列四个命题:①等腰三角形两腰上的中线相等,②等腰三角形两腰上的高相等,③等腰三角形两底角的平分线相等,④等腰三角形底边上的中点到两腰的距离相等. 正确的命题的个数有【】 A、1个B、2个C、3个D、4个3、如图,△A BC中,∠B=∠BAD,∠ADC=∠C,BD=5,DC=m,则AC是【】A、4B、m-5C、5D、m+54、下列图形中,两个三角形一定全等的是【】A、含80°角的两个锐角三角形 B、边长为20cm的两个等边三角形 C、腰长对应相等的两个等腰三角形 D、有一个钝角对应相等的两个等腰三角形5、在证明“在△ABC中至多有一个直角或钝角”时,第一步应假设【】A、三角形中至少有一个直角或钝角B、三角形中至少有两个直角或钝角C、三角形中没有直角或钝角D、三角形中三个角都是直角或钝角6、下列命题中正确的个数是【】①等腰三角形的两腰相等;②等腰三角形的两底角相等;③等腰三角形底边上的中线与底边上的高重合;④只有两条边相等的等腰三角形是轴对称图形,对称轴有1条.A、1个B、2个 C、3个 D、4个7、等腰三角形的一个外角是120°,一边长为acm,那么它的周长是【】A、3acmB、2acmC、acmD、无法确定8、如图,在∠AOB的两边上截取AO=BO,CO=DO,连接AD,BC交于点P,则下列结论正确的是:(1)△AOD≌△BOC;(2)△APC≌△BPD;(3)点P在∠AOB的平分线上【】A、只有(1) B、只有(2)C、只有(1)(2)D、(1)(2)(3)9、如图,∠AOB和一条定长线段a,在∠AOB内找一点P,使P到OA,OB的距离都等于a,作法如下:(1)作OB的垂线NH,使NH=a,H为垂足.(2)过N作NM∥OB.(3)作∠AOB的平分线OP,与NM交于P.(4)点P即为所求.其中(3)的依据是【】A、平行线之间的距离处处相等 B、到角的两边距离相等的点在角的平分线上 C、角的平分线上的点到角的两边的距离相等 D、到线段的两个端点距离相等的点在线段的垂直平分线上10、△ABC中,若,则此三角形为【】三角形. A、等腰B、直角C、等腰直角 D、等边11、如图,已知△ABC是等边三角形,点O是BC上任意一点,OE、OF分别与两边垂直,等边三角形的高为1,则OE+OF的值为【】 A、B、1 C、2 D、不确定12、已知等边三角形的面积是,则它的高是【】A、cmB、cmC、cmD、cm13、Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①BE+CF=BC;②;③=AD·EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是【】A、1个B、2个C、3个D、4个14、如图所示,AD平分∠BAC,AD=BD,AC=AB,则【】A、AC⊥CDB、AC=2CDC、AC=BDD、BD=2CD15、如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,,则y关于x的函数图象大致为【】A、B、C、D、二、填空题16、等边三角形的每个内角都等于______________________.17、如图,已知∠A=∠D=90°,若要依据“HL”证明△ABC≌△DCB,应添加条件_________ ___________ _____;若要依据“AAS”证明△ABC≌△DCB,应添加的条件是_________________________________.18、等腰三角形是轴对称图形,它的对称轴是__________________.19、如图,在△ABC中,AB=AC,∠B=40°,则∠A=____________.20、如图,在△ABC中,AB=AC,D、E、F分别为边BC、AB、AC上的点,且BE=CD,CF=BD.若∠A=40°,则∠EDF=______°.21、在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,则∠B 等于_______________度.22、△ABC中,AB=AC,若BC=CD=DE=EF=FA,则∠A=______°.23、如图,AC平分∠BAD,CE⊥AB,且2AE=AB+AD,∠ADC=146°,则∠BCE=___________°.三、解答题24、(1)小丽同学说“每一个定理不一定都有逆定理,因为逆命题不一定正确.”你认为她的说法正确吗?如果不正确,应如何改正?25、写出命题“平行于同一条直线的两条直线互相平行”的逆命题,并判定这对互逆命题的真假.26、如下图所示,在△ABC中,∠ACB=120°,CD平分∠ACB,AE∥DC,交BC的延长线于点E,试说明△ACE是等边三角形.27、如图,△ABC中,∠A=60°,高BD、CE交于M,MD=5,ME=7. 求BD、CE的长.28、如图,△ABC中,AB=AC,∠A=100°,BD平分∠ABC交AC于D.求证:AD+BD=BC.四、证明题29、求证:在一个三角形中,如果两个角不等,那么它们所对的边也不等.30、如图所示,AB=AC,DB=DC,AD的延长线交BC于点E.求证:BE=EC.31、写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).已知:如图,____________________________________.求证:______________________________________________________.证明:32、如图所示,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB于E,DF⊥AC于F.求证:∠B=∠C.33、如图,△ABC中,从点C向∠BAC的平分线引垂线,垂足为点E,设AE交BC于点D,且AB=AD.求证:.五、应用题34、如图是某市部分街道示意图,AB=BC=AC,CD=CE=DE,A、B、C、D、E、F、G、H为“公共汽车”停靠点,“公共汽车甲”从A站出发,按照A、H、G、D、E、C、F的顺序到达F站,“公共汽车乙”从B站出发,沿F、H、E、D、C、G的顺序到达G站.如果甲、乙分别从A、B 站同时出发,在各站耽误的时间忽略不计,两车的速度一样,试问哪一辆汽车先到达指定站?为什么?35、有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案 D D C B B D A D B C B C C A B题号16 17 18 19 20 21 22 23答案60AB=DC或AC=DB;∠ABC=∠DCB或∠ACB=∠DBC顶角平分线所在直线100°7070或2020 5624)、解:她的说法正确,理由如下:命题有真假命题之分,而定理是经过证明后得出的正确的命题,命题正确时逆命题不一定正确,即定理的逆命题不一定是真命题,所以虽然每个命题都有逆命题,但每个定理不一定存在逆定理,只有当原定理的逆命题是真命题时,原定理的逆命题才能称为逆定理.25)、【解答】1、逆命题:“如果两条直线互相平行,那么这两条直线都与第三条直线平行”,该命题是假命题;而原命题是真命题.26)、【解答】1、因为CD平分∠ACB,∠ACB=120°,所以∠ACE=180°-∠ACB=60°,且.因为AE∥DC,所以∠ACD=∠CAE,∠BCD=∠E.所以∠CAE=∠E=∠ACE=60°.所以△ACE是等边三角形.27)、【解答】解:∵BD⊥AC,∴∠ADB=90°.又∵∠A=60°,∴∠ABD=90°-60°=30°,同理可得∠ACE=30°,在Rt△BEM中,∠EBM=30°,∠BEM=90°,∴BM=2ME.∵ME=7,∴BM=14.同理由MD=5,得CM=2MD=10,∴BD=BM+MD=19,CE=CM+EM=10+7=17. CE取点F,使DE=DF.∵AB=AC,∠A=100°,∴∠ABC=∠C==40°.∵BD平分∠ABC,∴∠ABD=∠DBE=20°.∵在△ABD和△EBD中,AB=EB,∠ABD=∠DBE,BD=BD,∴△ABD≌△EBD,∴∠BED=∠A=100°,∴∠DEF=180°-100°=80°.∵DE=DF,∴∠DFE=∠DEF=80°,∴∠BDF=180°-80°-20°=80°,∴BD=BF,∠DFC=180°-80°=100°,∴∠FDC=180°-100°-40°=40°,∴DF=FC,∴DF=FC=DE=AD,∴BC=BF+FC=BD+AD.29)、【解答】1、证明:假设在一个三角形中,这两个不等的角所对的边相等,根据等边对等角,它们所对的两个角也相等,这与已知条件相矛盾,说明假设不成立,所以在一个三角形中,如果两个角不等,那么它们所对的边也不等.30)、【解答】1、证明:因为AB=AC,BD=DC,AD=AD,所以∠BAE=∠CAE.又因为AB=AC,所以BE=EC.31)、【解答】解:在△ABC中,∠B=∠C,求证:AB=AC.证明:过点A作AD⊥BC于D,∴∠ADB=∠ADC=90°,在△ABD和△ACD中,∴△ABD≌△ACD(AAS),∴AB=AC.32)、【解答】1、∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF.又∵BD=CD,∠DEB=∠DFC=90°,∴(Rt)△DEB≌(Rt)△DFC(HL).∴∠B=∠C.33)、【解答】1、分别延长AB,CE交于点F.∵AE平分∠FAC,∴∠FAE=∠CAE.∵∠FAE=∠CAE,∠AEF=∠AEC=90°,AE=AE,∴△AEF≌△AEC(AS A),∴AF=AC,EF=EC.又过点E作EG∥AF,交BC于点G,∴,∠ABD=∠DGE.∵AB=AD,∠ABD=∠ADB=∠GDE=∠DGE,∴DE=EG,∴AE=AD+DE=AB+EG====. 所以△ABC与△ECD均为等边三角形,且∠ACE=60°.在△ACD和△BCE中,AC=BC,∠ACD=∠BCE=120°,CD=CE,所以△ACD≌△BCE(SAS).所以AD=BE,∠1=∠2.在△BCF和△ACG中,∠1=∠2,BC=AC,∠BCF=∠ACG=60°,所以△BCF≌△ACG(ASA).所以CF=CG.又因为DE+EC=ED+CD,所以AD+DE+EC+CF=BE+ED+CD+CG.即甲、乙两车同时到达指定站.35)、【解答】1、解:在Rt△ABC中,∠ACB=90°,AC=8,BC=6,由勾股定理有AB=10.扩充部分为Rt△ACD,扩充成等腰△ABD,应分以下三种情况:①如图1,当AB=AD=10时,可求CD=CB =6.得△ABD的周长为32m.②如图2,当AB=BD=10时,可求CD=4.由勾股定理,得.得△ABD的周长为m.如图③,当AB为底时,设AD=BD=x,则CD=x-6,由勾股定理,得.得△ABD 的周长为m.====Word行业资料分享--可编辑版本--双击可删====。

(突破训练)湘教版八年级下册数学第1章 直角三角形含答案

(突破训练)湘教版八年级下册数学第1章 直角三角形含答案

湘教版八年级下册数学第1章直角三角形含答案一、单选题(共15题,共计45分)1、如图,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC,则下列结论:①AD=BC;②∠ACE=∠ABC;③∠ECD+∠EBC=∠BEC;④∠CEF=∠CFE.其中正的是()A.①②B.①③④C.①②④D.①②③④2、如图,点O1是△ABC的外心,以AB为直径作⊙O恰好过点O1,若AC=2,BC=4 ,则AO1的长是()A.3B.C.2D.23、下列以线段a、b、c的长为边的三角形中,不能构成直角三角形的是()A. B.C. D.4、小幸学习了在数轴上画出表示无理数的点的方法后,进行以下练习:首先画出数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3.以点O为圆心,OB为半径作弧,交数轴正半轴于点P,则点P所表示的数介于()A.3和3.5之间B.3.5和4之间C.4和4.5之间D.4.5和5之间5、如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE。

将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF。

下列结论:①△=。

其中正确结论的个数是ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC()个A.1B.2C.3D.46、如图,在△ABC中,∠ABC,∠ACB的平分线相交于点O,连接 AO并延长,交BC于点D,OH⊥BC于点H;若∠BAC=60°,OH=3cm,则OA=()A.6cmB.5cmC.4cmD.3cm7、如图,若和的面积分别为、,则()A. B. C. D.无法确定8、如图所示,DE⊥AB,DF⊥AC,AE=AF,则下列结论成立的是()A.BD=CDB.DE=DFC.∠B=∠CD.AB=AC9、如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cmB.5 cmC.5.8 cmD.6 cm10、如图,一次函数的图像与轴,轴分别交于点,点,过点作直线将分成周长相等的两部分,则直线的函数表达式为()A. B. C. D.11、一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为()A.50°B.60°C.70°D.80°12、在等腰梯形ABCD中,AB∥CD,DC = 3 cm,∠A=60°,BD平分∠ABC,则这个梯形的周长是( )A.21 cm;B.18 cm;C.15cm;D.12 cm;13、如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC长为半径作圆弧交边AB于点D.若 AC=3,BC=4.则BD的长是()A.2B.3C.4D.514、下列命题中,错误的是()A.矩形的对角线互相平分且相等B.对角线互相垂直的四边形是菱形 C.三角形的三条角平分线相交于一点,并且这点到三条边的距离相等 D.到一条线段两个端点距离相等的点在这条线段的垂直平分线上15、如果两个直角三角形的两条直角边对应相等,那么这两个直角三角形全等,依据为()A.AASB.SASC.HLD.SSS二、填空题(共10题,共计30分)16、如图所示,中,,BD是角平分线,,垂足是E,,,则DE的长为________cm.17、三角形的三边长为a、b、c,且满足等式(a+b)2﹣c2=2ab,则此三角形是________三角形(直角、锐角、钝角).18、如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短的直角边长为a,较长的直角边长为b,那么(a+b)2的值为________19、勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是把图1放入长方形内得到的,,AB=3,AC=4,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为________.20、如图,在△ABC中,CD⊥AB交AB于点D,BE⊥AC交AC于点E,F为BC的中点,BC = 10,DE = 8,则△DEF的面积为________.21、如图,正方形B的面积是________.22、如图,在由边长为1的25个小正方形组成的正方形网格上有一个△ABC,在这个网格上画一个与△ABC相似,且面积最大的△A1B1C1(A1, B1, C1,三点都在格点上).则这个三角形的面积是________23、如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是________ .24、如图,在矩形ABCD,BE平分,交AD于点E,F是BE的中点,G是BC的中点,连按EC,若,,则FG的长为________。

八年级下册湘教版数学第一章-直角三角形测试题

八年级下册湘教版数学第一章-直角三角形测试题

八年级下册湘教版数学第一章直角三角形测试题考试时间:120分钟满分:120分第Ⅰ卷客观题阅卷人一、单选题(共10题;共30分)得分1.Rt△ABC中,∠C=90o ,∠A为30o,CB长为5cm,则斜边上的中线长是()A. 15cmB. 10cmC. 5cmD. 2.5cm2.在△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于点D,若AC=6,则BD=()A. 6B. 3C. 9D. 123.在△ABC内取一点P使得点P到△ABC的三边距离相等,则点P应是△ABC的哪三条线交点()A. 高B. 角平分线C. 中线D. 垂直平分线4.如图,Rt△ABC中,∠B=90°,∠ACB=60°,延长BC到D,使CD=AC。

则AC:BD=()A. 1:1B. 3:1C. 4:1D. 2:35.下面关于两个直角三角形全等的判定,不正确的是()A. 斜边和一锐角对应相等的两个直角三角形全等B. 两条直角边对应相等的两个直角三角形全等C. 斜边和一条直角边对应相等的两个直角三角形全等D. 两个面积相等的直角三角形全等6.下列可使两个直角三角形全等的条件是()A. 一条边对应相等B. 斜边和一直角边对应相等C. 一个锐角对应相等D. 两个锐角对应相等7.如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交AB于E,交BC于F,若S四边形面积=9,则AB的长为()A. 3B. 6C. 9D. 188.下列四个条件,能够证明两个直角三角形全等的是()A. 两条边分别对应相等B. 一条边、一个锐角分别对应相等C. 两个锐角分别对应相等D. 两条直角边分别对应相等9.如图,在△ABC中,∠A=60°,BE⊥AC,垂足为E,CF⊥AB,垂足为F,点D是BC的中点,BE,CF交于点M,如果CM=4,FM=5,则BE等于( )A. 14B. 13C. 12D. 1110.如图,已知∠AOB是直角,∠AOC是锐角,ON平分∠AOC,OM平分∠BOC,则∠MON是()A. 45ºB. 45º+∠AOCC. 60°-∠AOCD. 不能计算第Ⅱ卷主观题阅卷人二、填空题(共10题;共30分)得分11.如图所示,点D在AC上,∠BAD=∠DBC,△BDC的内部到∠BAD两边距离相等的点有________个,△BDC内部到∠BAD的两边、∠DBC两边等距离的点有________个.12.在直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为________.13.叙述点在角平分线上的判定是________.14.如图,Rt△ABC中,∠ABC=90°,D为AC的中点,AC=10,则BD=________。

八年级数学下第一章测试卷

八年级数学下第一章测试卷

一、选择题(每题3分,共30分)1. 下列各数中,正数是()A. -3.5B. -2C. 0D. 1.52. 在下列各数中,有理数是()A. √2B. πC. 1/3D. √-13. 下列各数中,无理数是()A. 3.14B. √9C. 1/2D. √-44. 下列各数中,既是正数又是整数的是()A. -5B. 0C. 1D. -25. 下列各数中,绝对值最小的是()A. -3B. 3C. -2D. 26. 若a=3,b=-2,则a-b的值是()A. 1B. -1C. 5D. -57. 若a=5,b=-3,则|a-b|的值是()A. 2B. 8C. 5D. 38. 若|a|=5,|b|=3,则a+b的最大值是()A. 8B. 5C. 2D. 39. 若|a|=8,|b|=6,则a-b的最小值是()A. 2B. 4C. 8D. -1010. 若|a|=10,|b|=8,则a+b的取值范围是()A. -18≤a+b≤18B. 0≤a+b≤18C. -8≤a+b≤8D. -18≤a+b≤2二、填空题(每题5分,共20分)11. 若a=3,b=-2,则a+b的值是__________。

12. 若|a|=5,|b|=3,则|a-b|的值是__________。

13. 若a=5,b=-3,则|a-b|+|a+b|的值是__________。

14. 若|a|=8,|b|=6,则a+b的取值范围是__________。

15. 若|a|=10,|b|=8,则a-b的取值范围是__________。

三、解答题(每题10分,共30分)16. (1)求下列各数的相反数:-5,2/3,-√4。

(2)求下列各数的绝对值:-3,√9,0。

17. (1)若a=-3,b=2,求a+b,a-b,|a-b|的值。

(2)若a=5,b=-3,求|a-b|+|a+b|的值。

18. (1)若|a|=8,|b|=6,求a+b的取值范围。

(2)若|a|=10,|b|=8,求a-b的取值范围。

(完整版)八年级数学下册第一章数学测试题

(完整版)八年级数学下册第一章数学测试题

3 5 八年级数学下册第一章测试题班级姓名 得分一、选择题(30分) 1、下列说法正确的有()(1) 一个锐角及斜边对应相等的两个直角三角形全等。

(2) 一个锐角及一条直角边对应相等的两个直角三角形全等。

(3) 两个锐角对应相等的两个直角三角形全等。

(4) 有两条边分别相等的两个直角三角形全等。

(5) 有斜边和一条直角边对应相等的两个直角三角形全等。

A 、 2个B 、3个C 、 4个D 、 5个2.以下命题的逆命题属于假命题的是()A 、两个角相等的三角形是等腰三角形。

B 、全等三角形的对应角相等。

C 、两直线平行,内错角相等。

D 、直角三角形两锐角互3.已知等边三角形的高为2 ,则它的边长为( )A.4B.3C.2D.54.在△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,最短边BC = 4 cm ,则最长边AB 的长是()A.5 cmB.6 cmC. cmD.8 cm5. 等腰三角形的底边长为a ,顶角是底角的4倍,则腰上的高是()A.3 a B.23 a C.33a D. 1 a 6 26、在平面直角坐标系xoy 中,已知A (2,–2),在y 轴上确定点P ,使△AOP为等到腰三角形,则符合条件的点P 共有( )A.2个B.3个C. 4个D.5个7、角平分线的尺规作图,其根据是构造两个全等三角形,由作图可知:判断所构造的两个三角形全等的依据是( )A 、HLB 、AASC 、ASAD 、SAS8. 如图,由∠1=∠2,BC=DC ,AC=EC ,得△ABC≌△EDC的根据是()A 、SASB 、ASAC 、AASD 、SSS第8题如图,∠AOP °,PC∥OA , C=4,则PD 的9. 如图,已知: AB ∥ C D ,AB=CD ,若要使△ABE≌△CDF,仍需添加一个条件,下列条件中,哪一个不能使△ABE≌△CDF的是()A 、∠A=∠D ;B 、BF=CE;C 、AE∥DF;D 、AE=DF 。

八年级下册数学第一章测试题

八年级下册数学第一章测试题

北师大版八年级下册数学测试题一.选择题(共10小题)1.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或202.(2016•枣庄)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC 与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5° C.20°D.22.5°3.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5° D.52.5°4.一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对5.(2016•泰安)如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°6.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.37.如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2 B.3∠1﹣∠2=180°C.∠1+3∠2=180°D.2∠1+∠2=180°8.如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A.110°B.120°C.130°D.140°9.如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF=()A.55°B.60°C.65°D.70°10.如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n 的度数为()A.B.C.D.二.填空题(共10小题)11.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.12.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为.13.在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为.14.等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为.15.如图,在△ABC中,AB=AC,D为BC上一点,CD=AD,AB=BD,则∠B的大小为.16.已知:等腰三角形ABC的面积为30m2,AB=AC=10m,则底边BC的长度为.17.如果两个等腰三角形的腰长相等、面积也相等,那么我们把这两个等腰三角形称为一对合同三角形.已知一对合同三角形的底角分别为x°和y°,则y=.(用x的代数式表示)18.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A 的路径,以2cm每秒的速度运动,设运动时间为t秒,当t为时,△ACP是等腰三角形.19.等腰三角形两内角度数之比为1:2,则它的顶角度数为.20.如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为.三.解答题(共10小题)21.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.22.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.23.如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.24.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.25.如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB 于E.求证:△BDE是等腰三角形.26.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC 于点F.求证:△ABC是等腰三角形.27.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?28.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.29.如图,△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证GD=GE.30.已知:如图,△ABC中,AB=AC=6,∠A=45°,点D在AC上,点E在BD上,且△ABD、△CDE、△BCE均为等腰三角形.(1)求∠EBC的度数;(2)求BE的长.北师大版八年级下册数学第一章周测试题参考答案与试题解析一.选择题(共10小题)1.(2016•贺州)一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或20【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选C.2.(2016•枣庄)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC 与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5° C.20°D.22.5°【解答】解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=∠A=×30°=15°.故选A.3.(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5° D.52.5°【解答】解:∵AC=CD=BD=BE,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=50°,∴∠B=25°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣25°)=77.5°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故选D.4.(2016•湘西州)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对【解答】解:当4cm为等腰三角形的腰时,三角形的三边分别是4cm,4cm,5cm符合三角形的三边关系,∴周长为13cm;当5cm为等腰三角形的腰时,三边分别是,5cm,5cm,4cm,符合三角形的三边关系,∴周长为14cm,故选C5.(2016•泰安)如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.6.(2016•雅安)如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3【解答】解:过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:A.7.(2016•孝感模拟)如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2 B.3∠1﹣∠2=180°C.∠1+3∠2=180°D.2∠1+∠2=180°【解答】解:∵∠1=∠3,∠B=∠C,∠1+∠B+∠3=180°,∴2∠1+∠C=180°,∴2∠1+∠1﹣∠2=180°,∴3∠1﹣∠2=180°.故选B.8.(2016•鞍山二模)如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A.110°B.120°C.130°D.140°【解答】解:∵∠A=40°,∴∠ACB+∠ABC=180°﹣40°=140°,又∵∠ABC=∠ACB,∠1=∠2,∴∠PBA=∠PCB,∴∠1+∠ABP=∠PCB+∠2=140°×=70°,∴∠BPC=180°﹣70°=110°.故选A.9.(2016春•乳山市期末)如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF=()A.55°B.60°C.65°D.70°【解答】解:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,,∴△DBE≌△ECF(SAS),∴∠EFC=∠DEB,∵∠A=50°,∴∠C=(180°﹣50°)÷2=65°,∴∠CFE+∠FEC=180°﹣65°=115°,∴∠DEB+∠FEC=115°,∴∠DEF=180°﹣115°=65°.故选:C.10.(2016•六盘水)如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n的度数为()A.B.C.D.【解答】解:∵在△ABA1中,∠A=70°,AB=A1B,∴∠BA1A=70°,∵A1A2=A1B1,∠BA1A是△A1A2B1的外角,∴∠B1A2A1==35°;同理可得,∠B2A3A2=17.5°,∠B3A4A3=×17.5°=,∴∠A n﹣1A n B n﹣1=.故选:C.二.填空题(共10小题)11.(2016•淮安)已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是10.【解答】解:因为2+2<4,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=10,答:它的周长是10,故答案为:1012.(2016•通辽)等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为69°或21°.【解答】解:分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°﹣48°=42°,∵AB=AC,∴∠ABC=∠C=(180°﹣42°)=69°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°﹣48°=42°,∴∠BAC=180°﹣42°=138°,∵AB=AC,∴∠ABC=∠C=(180°﹣138°)=21°;综上所述:等腰三角形底角的度数为69°或21°.故答案为:69°或21°.13.(2016•厦门校级模拟)在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为16或8.【解答】解:∵BD是等腰△ABC的中线,可设AD=CD=x,则AB=AC=2x,又知BD将三角形周长分为15和21两部分,∴可知分为两种情况①AB+AD=15,即3x=15,解得x=5,此时BC=21﹣x=21﹣5=16;②AB+AD=21,即3x=21,解得x=7;此时等腰△ABC的三边分别为14,14,8.经验证,这两种情况都是成立的.∴这个三角形的底边长为8或16.故答案为:16或8.14.(2016•哈尔滨模拟)等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为35°或20°.【解答】解:在△ABC中,AB=AC,①当∠A=70°时,则∠ABC=∠C=55°,∵BD⊥AC,∴∠DBC=90°﹣55°=35°;②当∠C=70°时,∵BD⊥AC,∴∠DBC=90°﹣70°=20°;故答案为:35°或20°.15.(2016•红桥区二模)如图,在△ABC中,AB=AC,D为BC上一点,CD=AD,AB=BD,则∠B的大小为36°.【解答】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,又∵∠B+∠BAD+∠BDA=180°,∴5∠B=180°,∴∠B=36°,故答案为:36°.16.(2016•哈尔滨校级模拟)已知:等腰三角形ABC的面积为30m2,AB=AC=10m,则底边BC的长度为2或6.【解答】解:作CD⊥AB于D,则∠ADC=∠BDC=90°,△ABC的面积=AB•CD=×10×CD=30,解得:CD=6,∴AD==8m;分两种情况:①等腰△ABC为锐角三角形时,如图1所示:BD=AB﹣AD=2m,∴BC==2;②等腰△ABC为钝角三角形时,如图2所示:BD=AB+AD=18m,∴BC==6;综上所述:BC的长为2或6.故答案为:2或6.17.(2016•黄浦区三模)如果两个等腰三角形的腰长相等、面积也相等,那么我们把这两个等腰三角形称为一对合同三角形.已知一对合同三角形的底角分别为x°和y°,则y=x或90°﹣x.(用x的代数式表示)【解答】解:∵两个等腰三角形的腰长相等、面积也相等,∴腰上的高相等.①当这两个三角形都是锐角或钝角三角形时,y=x,②当两个三角形应该是锐角三角形,一个是钝角三角形时,y=90°﹣x.故答案为x或90°﹣x.18.(2016•河南模拟)如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,设运动时间为t秒,当t为3,6或6.5或7.2时,△ACP是等腰三角形.【解答】解:由题意可得,第一种情况:当AC=CP时,△ACP是等腰三角形,如右图1所示,∵在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,∴CP=6cm,∴t=6÷2=3秒;第二种情况:当CP=PA时,△ACP是等腰三角形,如右图2所示,∵在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,∴AB=10cm,∠PAC=∠PCA,∴∠PCB=∠PBC,∴PA=PC=PB=5cm,∴t=(CB+BP)÷2=(8+5)÷2=6.5秒;第三种情况:当AC=AP时,△ACP是等腰三角形,如右图3所示,∵在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,∴AP=6cm,AB=10cm,∴t=(CB+BA﹣AP)÷2=(8+10﹣6)÷2=6秒;第四种情况:当AC=CP时,△ACP是等腰三角形,如右图4所示,作CD⊥AB于点D,∵∠ACB=90°,AC=6cm,BC=8cm,tan∠A==,∴,AB=10cm,设CD=4a,则AD=3a,∴(4a)2+(3a)2=62,解得,a=,∴AD=3a=,∴t==7.2s故答案为:3,6或6.5或7.2.19.(2016春•东港市期末)等腰三角形两内角度数之比为1:2,则它的顶角度数为36°或90°.【解答】解:在△ABC中,设∠A=x,∠B=2x,分情况讨论:当∠A=∠C为底角时,x+x+2x=180°解得,x=45°,顶角∠B=2x=90°;当∠B=∠C为底角时,2x+x+2x=180°解得,x=36°,顶角∠A=x=36°.故这个等腰三角形的顶角度数为90°或36°.故3答案为:36°或90°.20.(2016•河北模拟)如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为8.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠GEF=∠FGE=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.故答案为8.三.解答题(共10小题)21.(2016•西城区一模)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.【解答】证明:∵AB=AC,AD是BC边上的中线,∴BD=BC,AD⊥BC,∵BE=BC,∴BD=BE,∵AE⊥BE,∴AB平分∠EAD.22.(2016•徐州模拟)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.【解答】证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°,在Rt△ABD和Rt△BAC中,,∴Rt△ABD≌Rt△BAC(HL),∴∠DBA=∠CAB,∴OA=OB,即△OAB是等腰三角形.另外一种证法:证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°在Rt△ABD和Rt△BAC中∴Rt△ABD≌Rt△BAC(HL)∴AD=BC,在△AOD和△BOC中,∴△AOD≌△BOC(AAS),∴OA=OB,即△OAB是等腰三角形.23.(2016春•太仓市期末)如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.【解答】解:∵AB=BD,∴∠BDA=∠A,∵BD=DC,∴∠C=∠CBD,设∠C=∠CBD=x,则∠BDA=∠A=2x,∴∠ABD=180°﹣4x,∴∠ABC=∠ABD+∠CDB=180°﹣4x+x=105°,解得:x=25°,所以2x=50°,即∠A=50°,∠C=25°.24.(2016春•埇桥区期末)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.【解答】解:(1)∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠ACB=70°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=20°;(2)∵在△ABC中,AB=AC,∠A=70°,∴∠ABC=∠ACB=55°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=35°;(3)∠NMB=∠A.理由:∵在△ABC中,AB=AC,∴∠ABC=∠ACB=,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=∠A.25.(2016春•鄄城县期末)如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.【解答】解:(1)∵AD平分∠BAC,DE∥AC,∴∠EAD=∠CAD,∠EDA=∠CAD,∴∠EAD=∠EDA,∵BD⊥AD,∴∠EBD+∠EAD=∠BDE+∠EDA∴∠EBD=∠BDE,∴DE=BE,∴△BDE是等腰三角形.26.(2016春•深圳校级期中)如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.求证:△ABC是等腰三角形.【解答】证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HF),∴∠B=∠C,∴△ABC为等腰三角形.27.(2016春•吉安校级月考)如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?【解答】解:(1)当点D在BC的中点时,DE=DF,理由如下:∵D为BC中点,∴BD=CD,∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,在△BED和△CFD中,∴△BED≌△CFD(AAS),∴DE=DF.(2)DE+DF=CG.证明:连接AD,则S△ABC=S△ABD+S△ACD,即AB•CG=AB•DE+AC•DF,∵AB=AC,∴CG=DE+DF.(3)当点D在BC延长线上时,(1)中的结论不成立,但有DE﹣DF=CG.理由:连接AD,则S△ABD=S△ABC+S△ACD,即AB•DE=AB•CG+AC•DF∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG.同理当D点在CB的延长线上时,则有DE﹣DF=CG,说明方法同上.28.(2015•北京)如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.【解答】证明:∵AB=AC,AD是BC边上的中线,BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD=∠BAD,∴∠CBE=∠BAD.29.(2015秋•当涂县期末)如图,△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证GD=GE.【解答】证明:过E作EF∥AB交BC延长线于F.∵AB=AC,∴∠B=∠ACB,∵EF∥AB,∴∠F=∠B,∵∠ACB=∠FCE,∴∠F=∠FCE,∴CE=EF,∵BD=CE,∴BD=EF,在△DBG与△GEF中,,∴△DGB≌△EGF(AAS),∴GD=GE.30.(2015秋•顺义区期末)已知:如图,△ABC中,AB=AC=6,∠A=45°,点D在AC上,点E在BD上,且△ABD、△CDE、△BCE均为等腰三角形.(1)求∠EBC的度数;(2)求BE的长.【解答】解:(1)∵AB=AC=6,∠A=45°,∴∠ABC=∠ACB=67.5°,∵△ABD是等腰三角形,AD=BD,∴∠ABD=∠A=45°,∴∠EBC=∠ABC﹣∠ABD=22.5°;(2)∵∠A=∠ABD=45°,∴∠ADB=∠CDE=90°,∵AB=6,∴BD=AB•cos45°=3,设DE=x,则CD=DE=x,∴EC==x,∵BE=EC=x,∴x+x=3,解得:x=6﹣3,∴BE=6﹣6.。

初二下册数学第一章练习题

初二下册数学第一章练习题

初二下册数学第一章练习题本章练习题共分为四个部分:选择题、填空题、计算题和应用题。

请同学们认真阅读题目,按照要求作答。

一、选择题(每题5分,共30分)1. 若a=5,b=3,则下列式子的值为:A. a+bB. a-bC. abD. a/b2. 已知三角形ABC,∠A = 60°,BC = 8 cm,AC = 10 cm,则AB的长度为:A. 2 cmB. 4 cmC. 6 cmD. 8 cm3. 下列哪个不是素数?A. 2B. 7C. 11D. 154. 若(-x)^2 = 16,求x的值。

A. -2B. 2C. -4D. 45. 已知直角三角形的斜边长为10 cm,其中一条直角边的长为6 cm,则另一条直角边的长为:A. 4 cmB. 8 cmC. 9 cmD. 12 cm6. 若一个完全平方数的个位数字是3,则十位数是:A. 0B. 2C. 6D. 9二、填空题(每题10分,共50分)1. 若x = 5,y = -2,则2x - 3y = ________。

2. 在一个年度运动会上,男生人数是女生人数的3倍,若女生人数是150人,则男生人数是 ________人。

3. 一个三角形的两条边长分别为7 cm和9 cm,它的周长是________ cm。

4. 若a是一个正整数,a + 3 > 5,则a的最小值是 ________。

5. 如果A:B = 4:7,且B = 28,则A = ________。

6. 若(-2)2n-1 = 64,则n的值为 ________。

三、计算题(每题15分,共90分)1. 计算下列各式的值:a) 32 - 14b) 18 ÷ (6 - 3)c) 5 × (4 + 2)2. 改写下列式子,使得等号两边的值相等:a) 2 + 3 + 4 + 5 = 14b) 8 - 5 + 2 - 1 = 43. 求下列各组数的最小公倍数:a) 5, 10, 15b) 8, 12, 204. 某班级有60人,其中男生人数的三分之一,女生人数比男生人数少10人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:(1)AF=BD,证△ACF≌△BCD(SAS) (2)仍成立 (3)AF+BF′=AB, 证明:由(1)知AF=BD,易证: △ACD≌△BCF′(SAS), ∴BF′=AD,∴AF+BF′=BD+AD=AB
三、解答题(共48分)
13.(10分)如图,AC⊥BC,BD⊥AD,AC,BD相交于点O, AC=BD. (1)求证:BC=AD; (2)求证:△OAB是等腰三角形.
AB=BA 解:证明:在 Rt△ADB 与 Rt△BCA 中,∠D=∠C=90°, , AC=BD
∴Rt△ABD≌Rt△BAC(HL),∴BC=AD (2)由(1)得∠DBA=∠CAB,∴OA=OB,即△OAB 是等腰三角形
16.(14分)(1)操作发现:如图①,D是等边△ABC边BA上一 动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边 △DCF,连接AF.你能发现AF与BD之间的数量关系吗? 并证明你发现的结论; (2)类比猜想:如图②,当动点D运动至等边△ABC边BA的延长线上 时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立? (3)深入探究:如图③,当动点D在等边△ABC边BA上运动时(点D与 点B不重合),连接DC,以DC为边在BC上方,下方分别作等边 △DCF和等边△DCF′,连接AF,BF′,探究AF,BF′与AB有何 数量关系?并证明你探究的结论.
检测内容:1.1-1.2 得分________ 卷后分________ 评价________ 一、选择题(每小题4分,共32分) 1.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°, AB=AC,若∠1=20°,则∠2的度数为( B ) A.25° B.65° C.70° D.75° 2.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边. 若 (a-2)2+ b-2+|c-2 2|= =0 0,则此三角形是( A A) ) A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.钝角三角形 3.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别 是△ABC,△BCD的角平分线,则图中的等腰三角形有( A ) A.5个 B.4个 C.3个 D.2个
第1题图
第3题图
4.如图,下列三角形中,若AB=AC,则能被直线分 成两个小等腰三角形的是( D )
A.①②③ B.①②④ C.②③④ D.①③④ 5.如图,轮船从B处以每小时50海里的速度沿南偏 东30°方向匀速航行,在B处测得灯塔A位于南偏东 75°方向上,轮船航行半小时到达C处,在C处观测 灯塔A位于北偏东60°方向上, 则C处与灯塔A的距离是( D ) A.45海里 B.35海里 C.50海里 D.25海里 第5题图

15.(12分)如图,把长方形纸片ABCD沿EF折叠,使点 B落在边AD上的点B′处,点A落在点A′处. (1)求证:B′E=BF; (2)设AE=a,AB=b,BF=c,试猜想a,b,c之间的 一种关系,并给予证明.
解:(1)证明:由题意得B′F=BF, ∠B′FE=∠BFE.又∵AD∥BC,∴∠B′EF=∠BFE, ∴∠B′FE=∠B′EF,∴B′F=B′E,∴B′E=BF (2)a,b,c的关系为a2+b2=c2,连接BE,则BE=B′E 由(1)知B′E=BF=c,∴BE=c, ∵AE2+AB2=BE2,又∵AE=a,AB=b, ∴a2+b2=c2(若写a+b>c也可以)
第7题图
二、填空题(每小题5分,共20分) 9.命题“两条直线相交只有一个交点”的逆命题 真 命题. 是 只有一个交点的两条直线一定相交 ,它是 10.等边三角形的边长是2 cm,则它的面积是 3 cm2. 11.如图,将一个有45°角的三角板的直角顶点放在 一张宽为4 cm的纸带边沿上,另一个顶点在纸带的另 一边沿上,测得三角板的一边与纸带的一边所在的直线 8 成30°角,则三角板的直角边的长为____cm. 12.在△ABC中,AB=2,BC=1,∠ABC=45°, 以AB为边作等腰直角三角形ABD,使∠ABD=90°, 连接CD,则线段CD的长为 5或 13 .
6.已知∠AOB=30°,点P在∠AOB内部,P1与P关于 OB对称,P2与P关于OA对称,则P1,O,P2三点所构 成的三角形是( D ) A.直角三角形 B. 钝角三角形 C.等腰三角形 D.等边三角形 7.某市在旧城改造中,计划在一块如图所示的△ABC 空地上种植一草皮以美化环境,已知∠A=150°,这 种草皮每平方米售价a元,则购买这种草皮至少需要( B ) A.300a元 B.150a元 C.450a元 D.225a元 8.等腰三角形一腰上的高与另一腰的夹角为20°,则 顶角的度数是( C ) A.70° B.110°C.70°或110° D.20°或160°
14.(12分)如图,△ABC为等边三角形, ∠1=∠2=∠3. (1)求∠BEC的度数; (2)△DEF是等边三角形吗?请说明理由.
解:(1)∠BEC=∠ADE+∠DFE =∠ABD+∠2+∠CAF+∠1 =∠ABC+∠BAC=60°+60°=120° (2)是等边三角形.理由:由(1)知 ∠DEF=180°-120°=60°. 同理∠EDF=∠DFE=60°, ∴△DEF是等边三角形
相关文档
最新文档