八年级数学下册第一章专题训练(附答案)
初二下册数学第一章练习题
初二下册数学第一章练习题本文旨在解答初二下册数学第一章的练习题,共分为四大部分:选择题、填空题、计算题和解答题。
通过仔细解答这些问题,你将能够更好地巩固所学的数学知识。
选择题1. 下列哪个数字是2.15的近似数?A. 1.9B. 2.05C. 2.2D. 2.252. 半径为5cm的圆的面积是多少?A. 25π cm²B. 10π cm²C. 5π cm²D. 2.5π cm²3. 假设一辆汽车以每小时60公里的速度行驶,那么在5小时内这辆汽车行驶的距离是多少?A. 200公里B. 250公里C. 300公里D. 350公里填空题1. 将√25写成带封闭包围的真分数。
2. 一个矩形的长度是12cm,宽度是4cm,它的周长是多少?3. 一个箱子的体积是1000立方厘米,它的长、宽、高分别是10cm、8cm和x cm。
求x的值。
计算题1. 计算:12 + 24 ÷ 6 - (5 - 2)²。
2. 一个长方形的面积是72平方厘米,宽度是6厘米,求其长度。
3. 某种商品原价为200元,打5折出售。
请计算折扣后的价格。
解答题1. 请列举并解释三种在计算中常用的数学符号。
2. 假设今天是星期三,再过100天是星期几?3. 请画出一个半径为3cm的圆。
计算并标记其周长和面积。
这里只是给出了初二下册数学第一章练习题的一部分,通过详细解答这些题目,你可以更好地理解和掌握数学知识。
希望你能够认真完成每一道题目,并与老师或同学一起交流讨论,以加深对数学的理解和应用能力。
祝你学业进步!。
八年级下册数学第一章测试题及答案
八年级下册数学第一章测试题及答案八年级下册数学第一章测试题及答案八年级即将升入初三,对于学习要记好公式,认真对待!以下是店铺收集整理了八年级下册数学第一章测试题及答案,供大家参考借鉴,希望可以帮助到有需要的朋友。
1.已知:两直线平行,内错角相等;已知:两直线平行,同位角相等;等量代换。
2.证明:∵AD//CB,∴∠ACD=∠CAD.∵CB=AD,CA=AC,∴△ABC≌△CDA(SAS).3.证明:(1)∵AB=AC,∴∠ABC=∠ACB.∵∠ABD=∠ACE,∴∠ABC-∠ABD=∠ACB-∠ACE,∴∠DBC=∠ECB,即∠OBC=∠OCB.∴OB=OC(等角对等边).(2)在△ABD和△ACE中,∴△ABD≌△ACE(ASA),∴AD=AE.∵AB=AC,∴AB-AE=AC-AD,即BE=CD.4.证明:∵BD,CE为△ABC的.高,且BD=CE,又BC=BC,∴Rt△BCD≌Rt△CBE(HL),∴∠ABC=∠ACB.∴AB=AC,即△ABC是等腰三角形.5.解:在Rt△ABC中,∵∠BAC=90°,AB=AC=a,∴BC=√2a.∵AD⊥BC,∴BD=1/2BC=√2/2a.∵AD⊥BC,∠B=45°,∴AD=BD=√2/2a.6.解:①Rt△AOD≌Rt△AOE .证明:∵高BD,CE交于点O,∴∠ADO=∠AEO=90°.∵OD=OE,AO=AO,∴Rt△AOD≌Rt△AOE(HL).②Rt△BOE≌Rt△COD.证明:由①知∠BEO=∠CDO=90°,又∵OE=OD且∠BOE=∠COD,∴△BOE≌△COD(ASA).③Rt△BCE≌Rt△CBD.证明:由②知∠BEC=∠CDB=90°,BE=CD且BC=CB,∴Rt△BCE≌Rt△CBD(HL).④△ABM≌△ACM.证明:由③知∠ABC=∠ACB,由①知∠BAM=∠CAM,又∵AM=AM,∴△ABM≌△ACM(AAS).⑤Rt△ABD≌Rt△ACE.证明:∵∠ADB=∠AEC=90°,∠BAD=∠CAE,又由①知AE=AD,∴△ABD≌Rt△ACE(ASA).⑥△BOM≌△COM.证明:由①知∠AOE=∠AOD,由②知∠BOE=∠COD,∴∠AOE+∠BOE=∠AOD+∠COD,即∠AOB=∠AOC,∴∠BOM=∠COM.由③知∠BOC=∠OCB,又∵OM=OM.∴△BOM≌△COM(AAS).7.已知:在△ABC中,AB=AC,求证:∠B与∠C都是锐角。
浙教版八年级数学下册第一章单元测试卷(含答案)
浙教版八年级数学下册第一章单元测试卷(含答案)一、单选题1.计算4√12+3√13−√8的结果是()A.√3+√2B.√3C.√33D.√3−√22.已知是正整数,则实数n的最大值为()A.12B.11C.8D.33.如果最简根式√3a−8与√17−2a是同类二次根式,那么使√4a−2x有意义的x的取值范围是()A.x≤10B.x≥10C.x<10D.x>104.已知a=√2+1,b=√2−1,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方值相等5.已知x为实数,化简√−x3−x√−1x的结果为()A.(x−1)√−x B.(−1−x)√−x C.(1−x)√−x D.(1+x)√−x6.如果√−53−x是二次根式,那么x 应适合的条件是()A.x ≥3B.x ≤3C.x >3D.x <37.若等腰三角形的两边长分别为√50和√72,则这个三角形的周长为()A.11√2B.16√2或17√2C.17√2D.16√28.若√x−1+√x+y=0,则x2005+y2005的值为:()A.0B.1C.-1D.29.设等式√a(x−a)+√a(y−a)=√x−a−√a−y在实数范围内成立,其中a、x、y是两两不同的实数,则3x2+xy−y2x2−xy+y2的值是()A.3B.13C.2D.5 310.“分母有理化”是我们常用的一种化简的方法,2+√32−√3=(2+√3)(2+√3)(2−√3)(2+√3)=7+4√3,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于√3+√5√3−√5,设x= √3+√5√3−√5,易知√3+√5> √3−√5,故x>0,由x2= (√3+√5−√3−√5)2= 3+√5+3−√5−2√(3+√5)(3−√5)=2,解得x= √2,即√3+√5−√3−√5=√2。
根据以上方法,化简√3−√2√3+√2√6−3√3√6+3√3后的结果为()A.5+3 √6B.5+ √6C.5-√6D.5-3 √6二、填空题11.化简√14−8√3=12.化简√−a3=.13.若实数a=12−√3,则代数式a2−4a+4的值为.14.已知,y=√(x−3)2+4−x,当x分别取1,2,3,…,2021时,所对应的y值的总和是. 15.已知实数a满足|2014-a|+ √a−2015=a,那么a-20142+1的值是.16.若实数a,b,c满足关系式√a−9+b+√9−a−b=√4a−c+4b,则c的平方根为. 17.观察下列等式:①√3+1=√3−1(√3+1)(√3−1)=√3−12;②1√5+√3=√5−√3(√5+√3)(√5−√3)=√5−√32③√7+√5=√7−√5(√7+√5)(√7−√5)=√7−√52…参照上面等式计算方法计算:1+√3√3+√5√5+√7+⋯3√11+√101=.18.如果(x﹣√x2−2008)(y﹣√y2−2008)=2008,求3x2﹣2y2+3x﹣3y﹣2007=.19.已知a、b为有理数,m、n分别表示5−√7的整数部分和小数部分,且amn+bn2=1,则2a+b=.20.若实数x,y,m满足等式√3x+5y−3−m+(2x+3y−m)2=√x+y−2−√2−x−y,则m+4的算术平方根为.三、计算题21.先化简,再求值:[(√x+√y)(√x−√y)√x+√y√xy(√y−√x)÷√x−√y√xy,其中x=1,y=2.22.已知:x=√3+√2√3−√2,y=√3−√2√3+√2,求x3−xy2x4y−2x3y2+x2y3的值.四、综合题23.设a= √8−x,b=2,c= √6.(1)当a有意义时,求x的取值范围;(2)若a,b,c为直角三角形ABC的三边长,试求x的值.24.解答题.(1)已知x=√7+1,x的整数部分为a,小数部分为b,求ab的值.(2)已知a−b=√3+√2,b−c=√3−√2,求a2+b2+c2−ab−bc−ca的值.25.王老师让同学们根据二次根式的相关内容编写一道题,以下是王老师选出的两道题和她自己编写的一道题.先阅读,再回答问题.(1)小青编的题,观察下列等式:√3+1=√3(√3+1)(√3−1)=2(√3−1)(√3)2−12=2(√3−1)3−1=√3−1√5+√3=√5√3)(√5+√3)(√5−√3)=2(√5−√3)(√5)2−(√3)2=2(√5−√3)5−3=√5−√3直接写出以下算式的结果:√7+√5=;√2n+1+√2n−1(n为正整数)=;(2)小明编的题,由二次根式的乘法可知:(√3+1)2=4+2√3,(√5+√3)2=8+2√15,(√a+√b)2=a+b+2√ab(a≥0,b≥0)再根据平方根的定义可得√4+2√3=√3+1,√8+2√15=√5+√3,√a+b+2√ab=√a+√b(a≥0,b≥0)直接写出以下算式的结果:√6+2√5=,√4−2√3=,√7+4√3=:(3)王老师编的题,根据你的发现,完成以下计算:(√3+1√5+√3+√7+√5+√9+√7√11+√9)⋅√12+2√1126.阅读下列解题过程:例:若代数式√(2−a)2+√(a−4)2=2,求a的取值.解:原式=|a﹣2|+|a﹣4|,当a<2时,原式=(2﹣a)+(4﹣a)=6﹣2a=2,解得a=2(舍去);当2≤a<4时,原式=(a﹣2)+(4﹣a)=2,等式恒成立;当a≥4时,原式=(a﹣2)+(a﹣4)=2a﹣6=2,解得a=4;所以,a的取值范围是2≤a≤4.上述解题过程主要运用了分类讨论的方法,请你根据上述理解,解答下列问题:(1)当3≤a≤7时,化简:√(3−a)2+√(a−7)2=;(2)请直接写出满足√(a−1)2+√(a−6)2=5的a的取值范围;(3)若√(a+1)2+√(a−3)2=6,求a的取值.27.阅读下列材料,然后回答问题,在进行二次根式的化简与运算时,我们有时会碰上如如2√3+1一样的式子,其实我们还可以将其进一步化简:√3+1=2×(√3−1)(√3+1)(√3−1)=2(√3−1)(√3)2−12=√3−1(1)以上这种化简的步骤叫做分母有理化.√3+1还可以用以下方法化简:2√3+1=3−1√3+1=(√3)2−12√3+1=(√3+1)(√3−1)√3+1=√3−1(2)(1)请参照(1)(2)的方法用两种方法化简:√7+√5方法一:√7+√5=方法二:2√7+√5=(2)直接写出化简结果:2√13+√11=2√15+√13=(3)计算:2√5+√2+2√8+√5+2√11+√8+…+2√32+√29+2√35+√3228.甲是第七届国际数学教育大会的会徽,会徽的主体图案是由图乙中的一连串直角三角形演化而成的,其中OA1=A1A2=A2A3=…=A7A8=1.细心观察图形,认真分析下列各式,然后解答问题:(√1)2+1=2,S1=√12;(√2)2+1=3,S2=√22;(√3)2+1=4,S3=√32;….(1)请用含有n(n是正整数)的等式表示上述变化规律,并计算出OA10的长;(2)求出S12+S22+S32+⋯+S102的值.参考答案1.【答案】B2.【答案】B3.【答案】A4.【答案】C5.【答案】C6.【答案】C7.【答案】B8.【答案】A9.【答案】B10.【答案】D11.【答案】2√2−√612.【答案】−a √−a .13.【答案】314.【答案】202715.【答案】201616.【答案】±617.【答案】√101−1218.【答案】119.【答案】2.520.【答案】321.【答案】解: [4(√x+√y)(√x−√y)√x+√y √xy(√y−√x)÷√x−√y √xy= [4x−y √x+√y √xy(√y−y ⃗⃗ )]×√xy √x−√y= 4x−y ×√xy √x−√y √x+√y √xy(√x−√y)√xy √x−√y = √xy (√x−√y)(x−y)√x+√y(√x−√y)2= √xy (√x−√y)(x−y)(√x+√y)2(√x−√y)2(√x+√y)= √xy−(√x+√y)2(√x−√y)(x−y)= √x−√y)2(√x−√y)(x−y)= −(√x−√y)x−y= √y−√xx−y;将x=1,y=2代入得:原式= √2−11−2=1−√2.22.【答案】解:x=5+2 √6,y=5-2 √6,xy=1,x+y=10,x-y=4 √6,原式=x+yxy(x−y)=512√623.【答案】(1)解:8- x≥0,∴x≤8(2)解:若a是斜边,则有(√8−x)2=22 +(√6)2,8-x=10,解得x=-2.若a为直角边,则有( √8−x)2+22=( √6)2,∴8-x+4=6,解得x=6.∵x都满足x≤8,∴x的值为-2或6.24.【答案】(1)解:∵22<(√7)2<32,∴2<√7<3,∴3<√7+1<4,∵x的整数部分是a,小数部分是b,∴a=3,b=√7+1−3=√7−2,∴ab=√7−2=√7(√7−2)(√7+2)=√7+2(2)解:∵a−b=√3+√2,b−c=√3−√2,∴a−c=√3+√2+√3−√2=2√3,∴a2+b2+c2−ab−bc−ac=12(2a2+2b2+2c2−2ab−2bc−2ac) =12[(a−c)2+(a−b)2+(b−c)2]=12[(2√3)2+(√3+√2)2+(√3−√2)2]=12×(12+3+2√6+2+3−2√6+2)=12×22=11.25.【答案】(1)√7−√5;√2n+1−√2n−1(n为正整数)(2)√5+1;√3−1;2+√3(3)解:(2√3+1+2√5+√32√7+√52√9+√7+2√11+√9)⋅√12+2√11=(√3−1+√5−√3+√7−√5+√9−√7+√11−√9)(√11+1)=(√11−1)(√11+1)=10 26.【答案】(1)4(2)1≤a≤6(3)解:原式=|a+1|+|a﹣3|,当a<﹣1时,原式=﹣(a+1)+(3﹣a)=2﹣2a=6,解得a=﹣2;当﹣1≤a<3时,原式=(a+1)+(3﹣a)=4,等式不成立;当a≥3时,原式=(a+1)+(a﹣3)=2a﹣2=6,解得a=4;所以,a的值为﹣2或4.27.【答案】(1)√7−√5;√7−√5(2)√13−√11;√15−√13(3)解:√5+√2+√8+√5+√11+√8+…+√32+√29+√35+√32=2(√5−√2)3+2(√8−√5)3+2(√11−√8)3+···+2(√32−√29)3+2(√35−√32)3 =23(√5−√2+√8−√5+√11−√8+···+√32−√29+√35−√32)=23(√35−√2)=2√35−2√2328.【答案】(1)解:∵OA1=1= √1,OA1=A1A2=A2A3=…=A7A8=1,∴OA22= OA12+A1A22=1+1=2,∴OA2= √2,S1=12⋅OA1⋅A1A2=12×√1×1=√12,∵OA32= OA22+A2A32=(√2)2+1=3,∴OA3=√3,S2=12⋅OA2⋅A2A3=12×√2×1=√22,∵OA42= OA32+A3A42=(√3)2+1=4,∴OA4=2,S3=12⋅OA3⋅A3A4=12×√3×1=√32,⋯,∴OA n2=OA n−12+A n−1A n2=(√(n−1))2+1=n,S n=12⋅OA n⋅A n A n+1=12×√n×1=√n2,∴OA102= (√(10−1))2+1=10,∴OA10= √10,∴含有n (n 是正整数)的等式表示上述变化规律为: (√(n −1))2+1=n ,OA 10的长为 √10 ; (2)解:由(1)知: S n =√n 2, ∴S 1=√12 , S 2=√22 , S 3=√32 , ⋯ , S 10=√102 , ∴S 12+S 22+S 32+⋯+S 102 = (√12)2+(√22)2+(√32)2+⋯+(√102)2 = 554 .。
2020-2021学年北师大版八年级下册数学 第一章 三角形的证明 单元测试(含解析)
第一章三角形的证明单元测试一.选择题1.在等腰△ABC中,∠A=70°,则∠C的度数不可能是()A.40°B.55°C.65°D.70°2.如图,在等腰三角形△ABC中,AC=BC,AC边上的垂直平分线分别交AC,BC于点D 和点E,若∠BAE=45°,DE=2,则AE的长度为()A.2B.3C.3.5D.43.如图,△ABC是等边三角形,点D是AC的中点,DE⊥BC,CE=3,则AB等于()A.11B.12C.13D.144.如图,△ABC中,BC=10,AC﹣AB=4,AD是∠BAC的角平分线,CD⊥AD,则S△BDC 的最大值为()A.40B.28C.20D.105.如图,△ABC中,∠ACB=90°,∠CAB=60°,动点P在斜边AB所在的直线m上运动,连结PC,那点P在直线m上运动时,能使图中出现等腰三角形的点P的位置有()A.6个B.5个C.4个D.3个6.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,则AB等于()A.2B.3C.4D.67.如图,在Rt△ABC中,∠BAC=90°,点D在BC上,过D作DF⊥BC交BA的延长线于F,连接AD,CF,若∠CFE=32°,∠ADB=45°,则∠B的大小是()A.32°B.64°C.77°D.87°8.如图,DE是△ABC中AC边的垂直平分线,若BC=4cm,AB=5cm,则△EBC的周长为()A.8cm B.9cm C.10cm D.11cm9.如图,在△ABC中,∠B=15o,∠C=30o,MN是AB的中垂线,PQ是AC的中垂线,已知BC的长为,则阴影部分的面积为()A.B.C.3D.10.如图,在△ABC中,∠BAC=90°,AD是BC边上的高,BE是AC边的中线,CF是∠ACB的角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积=△BCE的面积;②∠F AG=∠FCB;③AF=AG;④BH=CH.A.①②③④B.①②③C.②④D.①③二.填空题11.如图,已知△ABC中,AB=AC,BD⊥AC于D,∠A=50°,则∠DBC的度数是.12.等腰三角形ABC中,∠A=4∠B.若∠A为底角,则∠C=°.13.如图,在△ABC中,AB=AC.AD是BC边上的中线,点E在边AB上,且BD=BE.若∠BAC=100°,则∠ADE的大小为度.14.如图,在Rt△ABC中,∠ABC=90°,CD⊥AB,垂足为点D,∠DCB=30°,BD=1,则AB的长为.15.如图,在Rt△ABC中,∠A=90°,∠B=30°,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为.16.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上.若AB=5cm,BC=6cm,则AC=,DE=.17.如图所示,在△ABC中,DE、MN是边AB、AC的垂直平分线,其垂足分别为D、M,分别交BC于E、N,且DE和MN交于点F.(1)若∠B=20°,则∠BAE=;(2)若∠EAN=40°,则∠F=;(3)若AB=8,AC=9,设△AEN周长为m,则m的取值范围为.18.如图,在△ABC中AB的垂直平分线交AB于点D,交线段BC于点E.BC=6,AC=5,则△ACE的周长是.19.如图,AD垂直平分BC于点D,EF垂直平分AB于点F,点E在AC上,BE+CE=20cm,则AB=.20.如图,Rt△ABC中,∠C=90°,∠BAC的角平分线AE与AC的中线BD交于点F,P 为CE中点,连结PF,若CP=2,S△BFP=15,则AB的长度为.三.解答题21.如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=40°.求:(1)∠ADC的大小;(2)∠BAD的大小.22.如图,△ABC中,∠ABC=∠ACB,点D、E分别在AB、AC上,DE∥BC,BE,CD 交于点F.(1)求证:DC=EB;(2)在不添加任何辅助线的情况下,请直接写出图中所有的等腰三角形.23.如图,已知Rt△ABC中,∠ACB=90°,∠A=30°,AC边上的垂直平分线DE交AB 于点D,交AC于E.求:(1)∠BCD的度数;(2)若DE=3,求AB的长.24.如图,在Rt△ABC中,∠ACB=90°,∠CAB=2∠B,AD平分∠CAB.(1)求∠CAD的度数;(2)延长AC至E,使CE=AC,求证:DB=DE.25.如图,在△ABC中,∠ACB为直角,AB上的高CD及中线CE恰好把∠ACB三等分,若AC=20,求△ABC的两锐角及AD、DE、EB各为多少?26.(1)如图1,求证:三角形的三条角平分线相交于一点,并且这一点到三边的距离相等;(2)如图2,若∠ABC的平分线与∠ACB外角∠ACD的平分线相交于点P,连接AP,若∠BAC=62°,则∠P AC是度.27.如图,已知四边形ABCD中,∠ABC与∠BCD的平分线交于点O,作OE⊥AB于点E,OF⊥CD于点F.求证:OE=OF.28.如图(1)将三角板ABC与∠DAE摆放在一起,射线AE与AC重合,射线AD在三角形ABC外部,其中∠ACB=30°,∠B=60°,∠BAC=90°,∠DAE=45°.固定三角板ABC,将∠DAE绕点A按顺时针方向旋转,如图(2),记旋转角∠CAE=α.(1)当α为60°时,在备用图(1)中画出图形,并判断AE与BC的位置关系,并说明理由;(2)在旋转过程中,当0°<α<180°,∠DAE的一边与BC平行时,求旋转角α的值;(3)在旋转过程中,当0°<α≤90°时,探究∠CAD与∠BAE之间的关系.(温馨提示:对于任意△ABC,都有∠A+∠B+∠C=180°)参考答案一.选择题1.解:当∠A=∠C时,∠C=70°;当∠A=∠B=70°时,∠C=180°﹣∠A﹣∠B=40°;当∠B=∠C时,∠C=∠B=(180°﹣∠A)=55°;即∠C的度数可以是70°或40°或55°,故选:C.2.解:设∠C=x.∵DE垂直平分线段AC,∴EA=EC,∴∠EAC=∠C=x,∴∠AEB=∠EAC+∠C=2x,∵CA=CB,∴∠B=∠CAB=45°+x,在△ABE中,∵∠BAE+∠B+∠AEB=180°,∴45°+45°+x+2x=180°,∴x=30°,∵∠EDC=90°,DE=2,∴AE=EC=2DE=4,故选:D.3.解:∵△ABC是等边三角形,∴AB=AC,∠C=60°,∵DE⊥BC,∴∠DEC=90°,∴CD=2CE=6,∵点D是AC的中点,∴AC=2CD=12,∴AB=AC=12,故选:B.4.解:如图:延长AB,CD交于点E,∵AD平分∠BAC,∴∠CAD=∠EAD,∵CD⊥AD,∴∠ADC=∠ADE=90°,在△ADE和△ADC中,,∴△ADE≌△ADC(ASA),∴AC=AE,DE=CD;∵AC﹣AB=4,∴AE﹣AB=4,即BE=4;∵DE=DC,∴S△BDC=S△BEC,∴当BE⊥BC时,S△BDC最大,即S△BDC最大=××10×4=10.故选:D.5.解:如图所示:以B为圆心,BC长为半径画弧,交直线m于点P4,P2,以A为圆心,AC长为半径画弧,交直线m于点P1,P3,边AC和BC的垂直平分线都交于点P3位置,因此出现等腰三角形的点P的位置有4个,故选:C.6.解:∵在Rt△ABC中,∠A=30°,BC=2,∴AB=2CB=4,故选:C.7.解:如图,取CF的中点T,连接DT,AT.∵∠BAC=90°,FD⊥BC,∴∠CAF=∠CDF=90°,∴AT=DT=CF,∴TD=TC=TA,∴∠TDA=∠TAD,∠TDC=∠TCD,∵∠ADB=45°,∴∠ADT+∠TDC=135°,∴∠ATC=360°﹣2×135°=90°,∴AT⊥CF,∵CT=TF,∴AC=AF,∴∠AFC=45°,∴∠BFD=45°﹣32°=13°,∵∠BDF=90°,∴∠B=90°﹣∠BFD=77°,故选:C.8.解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=AB=5cm,∴△EBC的周长=BC+BE+CE=5+4=9(cm).故选:B.9.解:∵MN是AB的中垂线,PQ是AC的中垂线,AN=BN,AQ=CQ,∴∠BAN=∠B=15°,∠CAQ=∠C=30°,∴∠ANQ=∠B+∠BAN=30°,∠AQN=∠C+∠CAQ=60°,∴∠NAQ=90°,∴BN=AN=NQ,AQ=CQ=NQ,∵BC=,∴NQ+NQ+NQ=3+,∴NQ=2,∴AN=,AQ=1,∴阴影部分的面积=AN•AQ==,故选:B.10.解:∵BE是AC边的中线,∴AE=CE,∵△ABE的面积=,△BCE的面积=AB,∴△ABE的面积=△BCE的面积,故①正确;∵AD是BC边上的高,∴∠ADC=90°,∵∠BAC=90°,∴∠DAC+∠ACB=90°,∠F AG+∠DAC=90°,∴∠F AG=∠ACB,∵CF是∠ACB的角平分线,∴∠ACF=∠FCB,∠ACB=2∠FCB,∴∠F AG=2∠FCB,故②错误;∵在△ACF和△DGC中,∠BAC=∠ADC=90°,∠ACF=∠FCB,∴∠AFG=180°﹣∠BAC﹣∠ACF,∠AGF=∠DGC=180°﹣∠ADC﹣∠FCB,∴∠AFG=∠AGF,∴AF=AG,故③正确;根据已知不能推出∠HBC=∠HCB,即不能推出HB=HC,故④错误;即正确的为①③,故选:D.二.填空题11.解:∵AB=AC,∴∠C=∠ABC,∵∠A=50°.∴∠C=∠ABC===65°,∵BD⊥AC,∴∠BDC=90°,∴∠DBC=90°﹣∠C=90°﹣65°=25°.故答案为:25°.12.解:设∠B=x°,当∠A是底角时,∠A=∠C=4∠B=4x°,∵∠A+∠B+∠C=180°,∴4x+x+4x=180,解得x=20,∴∠C=80°故答案为:80.13.解:∵AB=AC,∠BAC=100°,∴∠B=∠C=(180°﹣∠BAC)=40°,∵BD=BE,∴∠BDE=∠BED=(180°﹣∠B)=70°,∵AB=AC,AD⊥BC,∴∠ADB=90°,∴∠ADE=∠ADB﹣∠BDE=90°﹣70°=20°,故答案为:20.14.解:在Rt△ABC中,∠ABC=90°,∠DCB=30°,∴2BD=BC,∵CD⊥AB,∴∠A=∠DCB=30°,∴2BC=AB,∴AB=4BD,∵BD=1,∴AB=4.故答案为:4.15.解:在Rt△ABC中,∠A=90°,∠B=30°,∴∠ACB=60°,∵MN∥BC,∴∠AMN=∠B=30°,∵∠A=90°,AN=1,∴MN=2AN=2,∵MN平分∠AMC,∠AMN=30°,∴∠AMC=∠NMC=60°,∵CM平分∠ACB,∠ACB=60°,∴∠ACM=ACB=30°,∴∠ACM=∠NMC,∴MNCN=2,∴AC=AN+CN=1+2=3,∵在Rt△ABC中,∠A=90°,∠B=30°,∴BC=2AC=2×3=6,16.解:∵BC=6cm,∴BD=DC=3(cm),∵AD⊥BC,BD=DC,AB=5cm,∴AC=AB=5(cm),∵点C在AE的垂直平分线上,∴EC=AC=5(cm),∴DE=DC+EC=8(cm),故答案为:5cm;8cm.17.解:(1)∵DE是线段AB的垂直平分线,∴EA=EB,∴∠BAE=∠B=20°;(2))∵DE、MN是边AB、AC的垂直平分线,∴AE=BE,AN=CN,∴∠BAE=∠B,∠CAN=∠C,∵∠EAN=40°,∠B+∠BAE+∠EAN+∠CAN+∠C=180°,∴∠BAE+∠CAN=70°,∴∠BAC=∠BAE+∠CAN+∠EAN=110°,∵∠ADF=∠AMF=90°,∴∠F=360°﹣∠ADF﹣∠AMF﹣∠BAC=360°﹣90°﹣90°﹣110°=70°;(3)∵DE、MN是边AB、AC的垂直平分线,∴AE=BE,AN=CN,∴△AEN的周长=AE+EN+AN=BE+EN+CN=BC,在△ABC中,AB=8,AC=9,∴9﹣8<BC<9+8,∴1<m<17.故答案为:(1)20°;(2)70°;(3)1<m<17.18.解:∵DE是AB的垂直平分线,∴EA=EB,∴△ACE的周长=AC+CE+EA=AC+CE+EB=AC+CB=11,19.解:∵EF垂直平分AB于点F,∴AE=BE,∵BE+CE=20cm,∴AE+CE=20cm,即AC=20cm,∵AD垂直平分BC于点D,∴AB=AC=20cm,故答案为:20cm.20.解:过E作EG⊥AB于G,连接CF,∵P为CE中点,∵S△EFP=S△CFP,设S△EFP=S△CFP=y,∵BD是AC边上的中线,∴设S△CDF=S△AFD=z,∵S△BFP=15,∴S△BCD=15+y+z,∴S△ABC=2S△BCD=30+2y+2z,∵S△ACE=S△ACF+S△CEF=2y+2z,∴S△ABE=S△ABC﹣S△ACE=30+2y+2z﹣(2y+2z)=30,∵AE是∠CAB的角平分线,∴EG=CE=2CP=4,∴S△ABE=AB•EG=30,∴AB=15,故答案为:15.三.解答题21.解:(1)∵AB=AC,D是BC边上的中点,∴AD⊥BC,即∠ADC=90°;(2)∵∠B=40°,∴∠BAD=50°.22.(1)证明:∵∠ABC=∠ACB,∴AB=AC,∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴∠ADE=∠AED,∴AD=AE,∴AB=AD=AC=AE,即BD=CE,在△DBC和△ECB中,,∴△DBC≌△ECB(SAS),∴DC=EB;(2)解:图中所有的等腰三角形为△ABC、△ADE、△DEF、△BCF,理由如下:由(1)得:AB=AC,AD=AE,△DBC≌△ECB,∴△ABC、△ADE是等腰三角形,∠BCD=∠CBE,∴△BCF是等腰三角形,BF=CF,∵DE∥BC,∴∠FDE=∠BCD,∠FED=∠CBE,∴∠FDE=∠FED,∴△DEF是等腰三角形,FE=FD.23.解:(1)∵AC边上的垂直平分线是DE,∴CD=AD,DE⊥AC,∴∠A=∠DCA=30°,∵∠ACB=90°,∴∠BCD=∠ACB﹣∠DCA=90°﹣30°=60°,(2)∵∠B=60°∴∠BCD=∠B=60°∴BD=CD,∴BD=CD=AD=AB,∵DE=3,DE⊥AC,∠A=30°,∴AD=2DE=6,∴AB=2AD=12.24.证明:(1)∵∠ACB=90°,∴∠CAB+∠B=90°,又∵∠CAB=2∠B,∴∠B=30°,∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠DAB=30°;(2)∵∠DAB=30°=∠B,∴AD=DB,∵AC=EC,∠ACB=90°,∴AD=DE,∴DE=DB.25.解:∵△ABC中,∠C为直角,AB上的高CD及中线CE恰好把∠ACB三等分,∴∠ACD=∠DCE=∠ECB=30°,又∵CD⊥AB,AC=20,∴∠A=60°,AD=10,∵∠ACB为直角,∴∠B=30°∵AC=20,∴AB=40,∵CE是△ABC中线,∴AE=BE=20,∴DE=10.26.解:(1)已知:△ABC.求证:∠ABC、∠BCA、∠ACB三个角的平分线相交于点F,且点F到三边的距离相等.证明:如图,作∠ABC的角平分线FB,作∠BCA的角平分线FC,两条线相交于点F,作FG⊥AB于点G,FD⊥BC边于点D,FE⊥AC于点E,∵点F是∠ABC平分线上的一点,∴FG=FD,同理可得,FD=FE,∴FG=FD=FE(等量代换),∴点F在∠BAC的平分线上,∴三角形的三条角平分线相交于一点,并且这一点到三边的距离相等;(2)解:延长BA,作PN⊥BD于N,PF⊥BA于F,PM⊥AC于M,∵CP平分∠ACD,∴∠ACP=∠PCD,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,∴∠F AP=∠P AC,∴∠F AC=2∠P AC,∵∠F AC+∠BAC=180°,∴2∠P AC+∠BAC=180°,∴∠P AC=(180°﹣∠BAC)=(180°﹣62°)=59°.故答案为:59.27.证明:作OG⊥BC,∵∠ABC的平分线,OE⊥AB,OG⊥BC,∴OE=OG,∵∠BCD的平分线,OF⊥CD,OG⊥BC,∴OF=OG,∴OE=OF.28.解:(1)当α为60°时,AE⊥BC,如图(1),设AE与BC交于点F,∵∠CAE=α=60°,∠ACB=30°,∴∠AFC=90°,∴AE⊥BC;(2)当AD∥BC时,如图(2),∠DAC=∠C=30°,∵∠DAE=45°,∴∠CAE=α=15°;当AE∥BC时,如图(3),∠B=∠EAB=60°,∴∠CAE=α=∠BAC+∠EAB=150°,故旋转角α的值为15°或150°;(3)①如(2),当α≤45°时,α+∠BAE=90°,α+∠CAD=45°,∴∠BAE﹣∠CAD=45°;②如图(1),当45°<α<90°时,∵∠DAE+∠CAD+∠BAE=90°,∠DAE=45°,∴∠CAD+∠BAE=45°.。
八年级下册数学第一单元难题大全(附答案)
八年级下册数学第一单元难题大全(附答案)类型之一分式的概念1.若分式2a+1存有意义,则a的值域范围就是( )A.a=0B.a=1C.a≠-1D.a≠02.当a________时,分式1a+2有意义.3.若式子2x-1-1的值零,则x=________.4.求出使分式|x|-3(x+2)(x-3)的值为0的x的值.类型之二分式的基本性质5.a,b为有理数,且ab=1,设P=aa+1+bb+1,Q=1a+1+1b+1,则P____Q(填“>”、“<”或“=”).类型之三分式的排序与化简6.化简1x-3-x+1x2-1(x-3)的结果是( )A.2B.2x-1C.2x-3D.x-4x-17.化简x(x-1)2-1(x-1)2的结果就是______________.8.化简:1+1x÷2x-1+x2x.9.先化简:1-a-1a÷a2-1a2+2a,再挑选出一个最合适的值代入排序.10.先化简,后求值:x-1x+2x2-4x2-2x+1÷1x2-1,其中x2-x=0.类型之四整数指数幂11.计算:(1)(-1)-|-7|+9×(7-π)0+15-1;(2)(m3n)-2(2m-2n-3)-2÷(m-1n)3.类型之五科学记数法12.在日本核电站事故期间,我国某监测点监测至极微量的人工放射性核素碘-131,其浓度为0.贝克/立方米.数据“0.”用科学记数法可以则表示为__________________.类型之六解分式方程13.分式方程12x2-9-2x-3=1x+3的意指( )A.x=3B.x=-3C.难解D.x=3或-314.解方程:2x-1=1x-2.15.解方程:23x-1-1=36x-2.类型之七分式方程的应用16.李明至离家2.1千米的学校出席九年级联欢会,至学校时辨认出表演道具还放到家中,此时距联欢会已经开始除了42分钟,于是他立即步行匀速回家,在家拎道具用了1分钟,然后立即匀速骑著自行车回到学校,未知李明骑著自行车的速度就是步行速度的3倍,且李明骑著自行车至学校比他从学校步行到家譬如了20分钟.(1)李明步行的.速度是多少米/分?(2)李明若想在联欢会已经开始前赶往学校?17.为了提高产品的附加值,某公司计划将研发生产的件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工顺利完成这批产品比乙工厂单独加工顺利完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,谋:甲、乙两个工厂每天分别能够加工多少件新产品.答案解析1.C2.≠-23.34.【解析】要使分式的值为0,必须使分式的分子为0,且分母不为0,即|x|-3=0且(x+2)(x-3)≠0.求解:必须并使未知的分式的值0,x应当满足用户|x|-3=0且(x+2)(x-3)≠0.由|x|-3=0,得x=3或x=-3,检验言:当x=3时,(x+2)(x-3)=0,当x=-3时,(x+2)(x-3)≠0,所以满足条件的x的值就是x=-3.5.=6.B 【解析】原式=1x-3-1x-1(x-3)=1-x-3x-1=x-1x-1-x-3x-1=2x-1.7.1x-18.求解:原式=x+1x÷x2-1x=x+1x×x(x+1)(x-1)=1x-1.9.解:原式=1-a-1a×a(a+2)(a+1)(a-1)=1-a+2a+1=-1a+1.当a=3时,原式=-13+1=-14.(a的值域为0,±1,-2外的任一值)10.【解析】本题是一道含有分式乘除混合运算的分式运算,先化简,然后把化简后的最简结果与已知条件相结合,不难发现计算方法.求解:原式=x-1x+2(x+2)(x-2)(x-1)2(x+1)(x-1)1=(x-2)(x+1)=x2-x-2.当x2-x=0时,原式=0-2=-2.11.【解析】先算乘方,再算秦九韶.解:(1)原式=-1-7+3+5=0;(2)原式=m-6n-22-2m4n6÷m-3n3=14m-6+4-(-3)n-2+6-3=14mn.12.9.63×10-513.C 【解析】方程的两边同乘(x+3)(x-3),得12-2(x+3)=x-3,解得x=3.检验:当x=3时,(x+3)(x-3)=0,即x=3不是原分式方程的解,故原方程难解.14.解:方程两边都乘(x-1)(x-2),得2(x-2)=x-1,回去括号,得2x-4=x-1,移项,得x=3.经检验,x=3就是原方程的求解,所以原分式方程的解是x=3.15.求解:方程两边同时乘6x-2,得4-(6x-2)=3,化简,得-6x=-3,解得x=12.检验:当x=12时,6x-2≠0,所以x=12是原方程的解.16.【解析】(1)成正比关系:从学校步行回家所用的时间-从家赶往学校所用的时间=20分钟;(2)比较回家挑道具所用总时间与42分的大小.解:(1)设李明步行的速度是x米/分,则他骑自行车的速度是3x米/分,根据题意,得x-x=20,Champsaurx=70,经检验,x=70是原方程的解,所以李明步行的速度就是70米/分后.(2)因为+×70+1=41(分)<42(分),所以李明能够在联欢会已经开始前赶往学校.17.【解析】本题的等量关系为:甲工厂单独加工完成这批产品所用天数-乙工厂单独加工完成这批产品所用天数=10;乙工厂每天加工的数量=甲工厂每天加工的数量×1.5,则若设甲工厂每天加工x件产品,那么乙工厂每天加工1.5x件产品,根据题意可分别表示出两个工厂单独加工完成这批产品所用天数,进而列出方程求解.求解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,依题意,得x-.5x=10,Champsaurx=40,经检验x=40是原方程的根,所以1.5x=60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.。
北师大版数学八年级下册第一章达标检测卷参考答案及试卷解析(2套)
北师大版数学八年级下册第一章达标检测卷(1)一、选择题1.如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE2.若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm3.如图,△ABD是以BD为斜边的等腰直角三角形,△BCD中,∠DBC=90°,∠BCD=60°,DC中点为E,AD与BE的延长线交于点F,则∠AFB的度数为()A.30°B.15°C.45°D.25°4.某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠C的度数为()A.48°B.40°C.30°D.24°5.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB的长为()A.2a B.2 a C.3a D.6.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.2 B.3 C.D.47.已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.68.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°9.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A .40°B .36°C .30°D .25°10.如图,OP 是∠AOB 的平分线,点P 到OA 的距离为3,点N 是OB 上的任意一点,则线段PN 的取值范围为( )A .PN <3B .PN >3C .PN ≥3D .PN ≤311.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD=4,AB=15,则△ABD 的面积是( )A .15B .30C .45D .6012.如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( )A .1:1:1B .1:2:3C .2:3:4D .3:4:5二、填空题13.等腰三角形的一个内角为100°,则顶角的度数是 .14.如图,已知在△ABC 中,DE 是BC 的垂直平分线,垂足为E ,交AC 于点D ,若AB=6,AC=9,则△ABD的周长是.15.如图1是一把园林剪刀,把它抽象为图2,其中OA=OB.若剪刀张开的角为30°,则∠A=度.16.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b的代数式表示△ABC的周长为.17.如图,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE垂直平分AB,垂足为E点,请任意写出一组相等的线段.三、解答题18.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA.19.如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.20.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,DE⊥AC于点E,BF∥DE交CD于点F.求证:DE=BF.21.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.22.已知:如图,四边形ABCD中,对角线AC,BD相交于点O,AB=AC=AD,∠DAC=∠ABC.(1)求证:BD平分∠ABC;(2)若∠DAC=45°,OA=1,求OC的长.23.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.求证:直线AD是线段CE的垂直平分线.北师大版数学八年级下册第一章达标检测卷(1)参考答案与试卷解析1.如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE【考点】KH:等腰三角形的性质.【专题】选择题【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【解答】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠A=∠EBC,故选C.【点评】本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.2.若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm【考点】KH:等腰三角形的性质;K6:三角形三边关系.【专题】选择题【分析】分为两种情况:2cm是等腰三角形的腰或2cm是等腰三角形的底边,然后进一步根据三角形的三边关系进行分析能否构成三角形.【解答】解:若2cm为等腰三角形的腰长,则底边长为10﹣2﹣2=6(cm),2+2<6,不符合三角形的三边关系;若2cm为等腰三角形的底边,则腰长为(10﹣2)÷2=4(cm),此时三角形的三边长分别为2cm,4cm,4cm,符合三角形的三边关系;故选A.【点评】此题考查了等腰三角形的两腰相等的性质,同时注意三角形的三边关系:三角形任意两边之和大于第三边.3.如图,△ABD是以BD为斜边的等腰直角三角形,△BCD中,∠DBC=90°,∠BCD=60°,DC中点为E,AD与BE的延长线交于点F,则∠AFB的度数为()A.30°B.15°C.45°D.25°【考点】KP:直角三角形斜边上的中线;KW:等腰直角三角形.【专题】选择题【分析】根据直角三角形的性质得到BE=CE,求得∠CBE=60°,得到∠DBF=30°,根据等腰直角三角形的性质得到∠ABD=45°,求得∠ABF=75°,根据三角形的内角和即可得到结论.【解答】解:∵∠DBC=90°,E为DC中点,∴BE=CE=CD,∵∠BCD=60°,∴∠CBE=60°,∴∠DBF=30°,∵△ABD是等腰直角三角形,∴∠ABD=45°,∴∠ABF=75°,∴∠AFB=180°﹣90°﹣75°=15°,故选B.【点评】本题考查了直角三角形的性质,等腰直角三角形的性质,熟练掌握直角三角形的性质是解题的关键.4.某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠C的度数为()A.48°B.40°C.30°D.24°【考点】KH:等腰三角形的性质;JA:平行线的性质.【专题】选择题【分析】先根据平行线的性质,由AB∥CD得到∠1=∠BAE=45°,然后根据三角形外角性质计算∠C的度数.【解答】解:∵AB∥CD,∴∠1=∠BAE=48°,∵∠1=∠C+∠E,∵CF=EF,∴∠C=∠E,∴∠C=∠1=×48°=24°.故选D.【点评】本题考查了等腰三角形的性质,平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.5.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB的长为()A.2a B.2 a C.3a D.【考点】KP:直角三角形斜边上的中线.【专题】选择题【分析】根据勾股定理得到CE=a,根据直角三角形的性质即可得到结论.【解答】解:∵CD⊥AB,CD=DE=a,∴CE=a,∵在△ABC中,∠ACB=90°,点E是AB的中点,∴AB=2CE=2a,故选B.【点评】本题考查了直角三角形斜边上的中线,三角形内角和定理的应用,能求出AE=CE是解此题的关键,注意:直角三角形斜边上的中线等于斜边的一半.6.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.2 B.3 C.D.4【考点】KF:角平分线的性质.【专题】选择题【分析】作PE⊥OA于E,根据角平分线的性质解答.【解答】解:作PE⊥OA于E,∵点P是∠AOB平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD=2,故选:A.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.7.已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.6【考点】KI:等腰三角形的判定.【专题】选择题【分析】根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形.故选B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.8.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°【考点】KH:等腰三角形的性质;KG:线段垂直平分线的性质.【专题】选择题【分析】根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A=∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.【点评】此题主要考查线段的垂直平分线的性质和等腰三角形的性质;利用三角形外角的性质求得求得∠BDC=60°是解答本题的关键.本题的解法很多,用底角75°﹣30°更简单些.9.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A.40°B.36°C.30°D.25°【考点】KH:等腰三角形的性质.【专题】选择题【分析】根据AB=AC可得∠B=∠C,CD=DA可得∠ADB=2∠C=2∠B,BA=BD,可得∠BDA=∠BAD=2∠B,在△ABD中利用三角形内角和定理可求出∠B.【解答】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,又∵∠B+∠BAD+∠BDA=180°,∴5∠B=180°,∴∠B=36°,故选B.【点评】本题主要考查等腰三角形的性质,掌握等边对等角是解题的关键,注意三角形内角和定理和方程思想的应用.10.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()A.PN<3 B.PN>3 C.PN≥3 D.PN≤3【考点】KF:角平分线的性质.【专题】选择题【分析】作PM⊥OB于M,根据角平分线的性质得到PM=PE,得到答案.【解答】解:作PM⊥OB于M,∵OP是∠AOB的平分线,PE⊥OA,PM⊥OB,∴PM=PE=3,∴PN≥3,故选:C.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.11.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【考点】KF:角平分线的性质.【专题】选择题【分析】判断出AP 是∠BAC 的平分线,过点D 作DE ⊥AB 于E ,根据角平分线上的点到角的两边距离相等可得DE=CD ,然后根据三角形的面积公式列式计算即可得解.【解答】解:由题意得AP 是∠BAC 的平分线,过点D 作DE ⊥AB 于E ,又∵∠C=90°,∴DE=CD ,∴△ABD 的面积=AB•DE=×15×4=30,故选B .【点评】本题考查了角平分线上的点到角的两边距离相等的性质以及角平分线的画法,熟记性质是解题的关键.12.如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( )A .1:1:1B .1:2:3C .2:3:4D .3:4:5【考点】KF :角平分线的性质.【专题】选择题【分析】利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20,30,40,所以面积之比就是2:3:4.【解答】解:利用同高不同底的三角形的面积之比就是底之比可知选C . 故选C .【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质及三角形的面积公式.做题时应用了三个三角形的高时相等的,这点式非常重要的.13.等腰三角形的一个内角为100°,则顶角的度数是.【考点】KH:等腰三角形的性质.【专题】填空题【分析】根据100°角是钝角判断出只能是顶角,然后根据等腰三角形两底角相等解答.【解答】解:∵100°>90°,∴100°的角是顶角,故答案为:100°.【点评】本题考查了等腰三角形两底角相等的性质,先判断出100°的角是顶角是解题的关键.14.如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E,交AC于点D,若AB=6,AC=9,则△ABD的周长是.【考点】KG:线段垂直平分线的性质.【专题】填空题【分析】根据线段的垂直平分线的性质得到DB=DC,根据三角形的周长公式计算即可.【解答】解:∵DE是BC的垂直平分线,∴DB=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=15,故答案为:15.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.如图1是一把园林剪刀,把它抽象为图2,其中OA=OB.若剪刀张开的角为30°,则∠A=度.【考点】KH:等腰三角形的性质.【专题】填空题【分析】根据等腰三角形的性质和三角形的内角和即可得到结论.【解答】解:∵OA=OB,∠AOB=30°,∴∠A=(180°﹣30°)=75°,故答案为:75.【点评】本题考查了等腰三角形的性质,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.16.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b的代数式表示△ABC的周长为.【考点】KH:等腰三角形的性质;KG:线段垂直平分线的性质.【专题】填空题【分析】由题意可知:AC=AB=a+b,由于DE是线段AC的垂直平分线,∠BAC=36°,所以易证AE=CE=BC=b,从可知△ABC的周长;【解答】解:∵AB=AC,BE=a,AE=b,∴AC=AB=a+b,∵DE是线段AC的垂直平分线,∴AE=CE=b,∴∠ECA=∠BAC=36°,∵∠BAC=36°,∴∠ABC=∠ACB=72°,∴∠BCE=∠ACB﹣∠ECA=36°,∴∠BEC=180°﹣∠ABC﹣∠ECB=72°,∴CE=BC=b,∴△ABC的周长为:AB+AC+BC=2a+3b故答案为:2a+3b.【点评】本题考查线段垂直平分线的性质,解题的关键是利用等腰三角形的性质以及垂直平分线的性质得出AE=CE=BC,本题属于中等题型.17.如图,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE垂直平分AB,垂足为E点,请任意写出一组相等的线段.【考点】KG:线段垂直平分线的性质;KF:角平分线的性质.【专题】填空题【分析】根据线段的垂直平分线的性质解答即可.【解答】解:∵DE垂直平分AB,∴BE=EA,故答案为:BE=EA.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA.【考点】KF:角平分线的性质;KD:全等三角形的判定与性质.【专题】解答题【分析】根据角平分线上的点到角的两边的距离相等可得AM=BM,然后利用“HL”证明Rt△AOM和Rt△BOM全等,根据全等三角形对应边相等可得OA=OB,再根据等边对等角的性质即可得证.【解答】证明:∵OM平分∠POQ,MA⊥OP,MB⊥OQ,∴AM=BM,在Rt△AOM和Rt△BOM中,,∴Rt△AOM≌Rt△BOM(HL),∴OA=OB,∴∠OAB=∠OBA.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,等边对等角的性质,熟记性质是解题的关键.19.如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.【考点】KH:等腰三角形的性质;KG:线段垂直平分线的性质.【专题】解答题【分析】(1)证得△ABE≌△ACD后利用全等三角形的对应角相等即可证得结论;(2)利用垂直平分线段的性质即可证得结论.【解答】解:(1)∠ABE=∠ACD;在△ABE和△ACD中,,∴△ABE≌△ACD,∴∠ABE=∠ACD;(2)∵AB=AC,∴∠ABC=∠ACB,由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC,∵AB=AC,∴点A、F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC.【点评】本题考查了等腰三角形的性质及垂直平分线段的性质的知识,解题的关键是能够从题目中整理出全等三角形,难度不大.20.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,DE⊥AC于点E,BF∥DE交CD于点F.求证:DE=BF.【考点】KF:角平分线的性质;JA:平行线的性质.【专题】解答题【分析】根据角平分线的定义得到∠1=∠2,根据角平分线的性质得到DE=BD,∠3=∠4,由平行线的性质得到3=∠5,于是得到结论.【解答】证明:∵CD平分∠ACB,∴∠1=∠2,∵DE⊥AC,∠ABC=90°∴DE=BD,∠3=∠4,∵BF∥DE,∴∠4=∠5,∴∠3=∠5,∴BD=BF,∴DE=BF.【点评】本题考查了角平分线的性质,平行线的性质,等腰三角形的判定和性质,熟练掌握角平分线的性质是解题的关键.21.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.【考点】KI:等腰三角形的判定;JA:平行线的性质.【专题】解答题【分析】直接利用平行线的性质得出∠1=∠3,进而利用角平分线的定义结合互余的性质得出∠B=∠BDE,即可得出答案.【解答】证明:∵DE∥AC,∴∠1=∠3,∴∠1=∠2,∴∠2=∠3,∵AD⊥BD,∴∠2+∠B=90°,∠3+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形.【点评】此题主要考查了平行线的性质以及角平分线的定义,正确得出∠2=∠3是解题关键.22.已知:如图,四边形ABCD中,对角线AC,BD相交于点O,AB=AC=AD,∠DAC=∠ABC.(1)求证:BD平分∠ABC;(2)若∠DAC=45°,OA=1,求OC的长.【考点】KF:角平分线的性质;JB:平行线的判定与性质.【专题】解答题【分析】(1)根据等腰三角形的性质、平行线的性质以及角平分线的定义证明;(2)过点O作OE⊥BC于E,根据角平分线的性质得到OE=OA,根据勾股定理计算即可.【解答】(1)证明:∵AB=AC,∴∠ABC=∠ACB,∴∠DAC=∠ACB.∴AD∥BC,∴∠ADB=∠CBD.又∵AB=AD,∴∠ADB=∠ABD.∴∠ABD=∠CBD.∴BD平分∠ABC;(2)解:过点O作OE⊥BC于E,∵∠DAC=45°,∠DAC=∠ABC,∴∠ABC=∠ACB=45°,∴∠B AC=90°,∵BD平分∠ABC,∴OE=OA=1.在Rt△OEC中,∠ACB=45°,OE=1,∴OC=.【点评】本题考查的是角平分线的性质、等腰三角形的性质、勾股定理的应用,掌握角的平分线上的点到角的两边的距离相等是解题的关键.23.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.求证:直线AD是线段CE的垂直平分线.【考点】KF:角平分线的性质;KD:全等三角形的判定与性质;KG:线段垂直平分线的性质;KN:直角三角形的性质.【专题】解答题【分析】由于DE⊥AB,易得∠AED=90°=∠ACB,而AD平分∠BAC,易知∠DAE=∠DAC,又因为AD=AD,利用AAS可证△AED≌△ACD,那么AE=AC,而AD平分∠BAC,利用等腰三角形三线合一定理可知AD⊥CE,即得证.【解答】证明:∵DE⊥AB,∴∠AED=90°=∠ACB,又∵AD平分∠BAC,∴∠DAE=∠DAC,∵AD=AD,∴△AED≌△ACD,∴AE=AC,∵AD平分∠BAC,∴AD⊥CE,即直线AD是线段CE的垂直平分线.【点评】本题考查了线段垂直平分的定义、全等三角形的判定和性质、等腰三角形三线合一定理,解题的关键是证明AE=AC.北师大版数学八年级下册第一章达标检测卷(2)一、选择题1.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°2.如图,将三角形△ABC绕着点C顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A的度数是()A.35°B.65°C.55°D.25°3.如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对4.已知:如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,CM是斜边AB上的中线,将△ACM沿直线CM折叠,点A落在点A1处,CA1与AB交于点N,且AN=AC,则∠A的度数是()A.30°B.36°C.50°D.60°5.如图,在△ABC中,∠C=60°,∠B=50°,D是BC上一点,DE⊥AB于点E,DF ⊥AC于点F,则∠EDF的度数为()A.90°B.100°C.110° D.120°6.如图,在△ABC中,∠ACB=90°,CD是AB边上的高线,图中与∠A互余的角有()A.0个 B.1个 C.2个 D.3个7.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A.3cm B.4cm C.6cm D.9cm8.在直角△ABC中,∠C=30°,斜边AC的长为5cm,则AB的长为()A.4cm B.3cm C.2.5cm D.2cm9.如果直角三角形中30°角所对的直角边是1cm,那么另一条直角边长是()A.1cm B.2cm C.cm D.3cm10.10(1分)(2014春•九龙坡区校级期中)等腰三角形一腰上的高等于这腰的一半,则这个等腰三角形的顶角等于()A.30°B.60°C.30°或150°D.60°或120°11.如图,BE、CF分别是△ABC的高,M为BC的中点,EF=5,BC=8,则△EFM 的周长是()A.21 B.18 C.13 D.1512.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A.59°B.60°C.56°D.22°13.在Rt△ABC中,∠C=90°,AB=2,则AB2+BC2+CA2的值为()A.2 B.4 C.8 D.1614.如图,在三角形纸片ABC中,AC=6,∠A=30°,∠C=90°,将∠A沿DE折叠,使点A与点B重合,则折痕DE的长为()A.1 B.C.D.215.如图,在Rt△ABC中,CD是斜边AB上的中线,则图中与CD相等的线段有()A.AD与BD B.BD与BC C.AD与BC D.AD、BD与BC16.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.1317.如图,在Rt△ABC中,∠C=90°,AB=5cm,D为AB的中点,则CD等于()A.2cm B.2.5cm C.3cm D.4cm二、填空题18.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=.19.如图,△ABC中,∠C=90°,AC﹣BC=2,△ABC的面积为7,则AB=.20.如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则AC=.21.如图:△ABC中,∠ACB=90°,CD是高,∠A=30°,BD=3cm,则AD=cm.22.如图,△ABC是等腰直角三角形,AB=BC,已知点A的坐标为(﹣2,0),点B的坐标为(0,1),则点C的坐标为.23.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD=.24.已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为.25.若直角三角形两直角边的比为3:4,斜边长为20,则此直角三角形的面积为.三、解答题26.如图,在△ABC中,∠B=2∠C,且AD⊥BC于D,求证:CD=AB+BD,27.如图,已知在△ABC中,∠ACB=90°,CD为高,且CD,CE三等分∠ACB,(1) 求∠B的度数;(2) 求证:CE是AB边上的中线,且CE=AB,28.如图,AD∥BC,BD平分∠ABC,∠A=120°,∠C=60°,AB=CD=4cm,求:(1) AD的长;(2) 四边形ABCD的周长.29.已知锐角△ABC中,CD,BE分别是AB,AC边上的高,M是线段BC的中点,连接DM,EM.(1) 若DE=3,BC=8,求△DME的周长;(2) 若∠A=60°,求证:∠DME=60°;(3) 若BC2=2DE2,求∠A的度数.北师大版数学八年级下册第一章达标检测卷(2)参考答案与试卷解析1.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°【考点】K8:三角形的外角性质.【专题】选择题【分析】先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可得出结论.【解答】解:∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°﹣45°﹣120°=15°.故选A.【点评】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.2.如图,将三角形△ABC绕着点C顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A的度数是()A.35°B.65°C.55°D.25°【考点】R2:旋转的性质.【专题】选择题【分析】根据旋转的性质,可得知∠ACA′=35°,从而求得∠A′的度数,又因为∠A的对应角是∠A′,则∠A度数可求.【解答】解:∵△ABC绕着点C时针旋转35°,得到△AB′C′∴∠ACA′=35°,∠A'DC=90°∴∠A′=55°,∵∠A的对应角是∠A′,即∠A=∠A′,∴∠A=55°.故选C.【点评】本题考查了旋转的性质,根据旋转的性质,图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动.其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变.解题的关键是正确确定对应角.3.如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对【考点】KF:角平分线的性质;KW:等腰直角三角形.【专题】选择题【分析】由∠C=90°,根据垂直定义得到DC与AC垂直,又AD平分∠CAB交BC 于D,DE⊥AB,利用角平分线定理得到DC=DE,再利用HL证明三角形ACD与三角形AED全等,根据全等三角形的对应边相等可得AC=AE,又AC=BC,可得BC=AE,然后由三角形BED的三边之和表示出三角形的周长,将其中的DE换为DC,由CD+DB=BC进行变形,再将BC换为AE,由AE+EB=AB,可得出三角形BDE的周长等于AB的长,由AB的长可得出周长.【解答】解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.故选A.【点评】此题考查了角平分线定理,垂直的定义,直角三角形证明全等的方法﹣HL,利用了转化及等量代换的思想,熟练掌握角平分线定理是解本题的关键.4.已知:如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,CM是斜边AB上的中线,将△ACM沿直线CM折叠,点A落在点A1处,CA1与AB交于点N,且AN=AC,则∠A的度数是()A.30°B.36°C.50°D.60°【考点】PB:翻折变换(折叠问题).【专题】选择题【分析】首先证明∠ACN=∠ANC=2∠ACM,然后证明∠A=∠ACM即可解决问题.【解答】解:由题意知:∠ACM=∠NCM;又∵AN=AC,∴∠ACN=∠ANC=2∠ACM;∵CM是直角△ABC的斜边AB上的中线,∴CM=AM,∴∠A=∠ACM;由三角形的内角和定理知:∠A+2∠A+2∠A=180°,∴∠A=36°,故选:B.【点评】该命题考查了翻折变换及其应用问题;解题的关键是根据翻折变换的性质找出图形中隐含的等量关系;灵活运用有关定理来分析、判断、推理或解答.5.如图,在△ABC中,∠C=60°,∠B=50°,D是BC上一点,DE⊥AB于点E,DF ⊥AC于点F,则∠EDF的度数为()A.90°B.100°C.110° D.120°【考点】KN:直角三角形的性质.【专题】选择题【分析】由三角形内角和定理求得∠A=70°;由垂直的定义得到∠AED=∠AFD=90°;然后根据四边形内角和是360度进行求解.【解答】解:如图,∵在△ABC中,∠C=60°,∠B=50°,∴∠A=70°.∵DE⊥AB于点E,DF⊥AC于点F,∴∠AED=∠AFD=90°,∴∠EDF=360°﹣∠A﹣∠AED﹣∠AFD=110°.故选:C.【点评】本题考查了直角三角形的性质.注意利用隐含在题中的已知条件:三角形内角和是180°、四边形的内角和是360°.6.如图,在△ABC中,∠ACB=90°,CD是AB边上的高线,图中与∠A互余的角有()A.0个 B.1个 C.2个 D.3个【考点】KN:直角三角形的性质.【专题】选择题【分析】由“直角三角形的两锐角互余”,结合题目条件,找出与∠A互余的角.【解答】解:∵∠ACB=90°,CD是AB边上的高线,∴∠A+∠B=90°,∠A+∠ACD=90°,∴与∠A互余的角有2个,故选C.【点评】此题考查了直角三角形的性质,直角三角形的两锐角互余.7.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A.3cm B.4cm C.6cm D.9cm【考点】KO:含30度角的直角三角形;KG:线段垂直平分线的性质.【专题】选择题【分析】求出AE=BE,推出∠A=∠1=∠2=30°,求出DE=CE=3cm,根据含30度角的直角三角形性质求出即可.【解答】解:∵DE垂直平分AB,∴AE=BE,∴∠2=∠A,∵∠1=∠2,∴∠A=∠1=∠2,∵∠C=90°,∴∠A=∠1=∠2=30°,∵∠1=∠2,ED⊥AB,∠C=90°,∴CE=DE=3cm,在Rt△ADE中,∠ADE=90°,∠A=30°,∴AE=2DE=6cm,故选C.【点评】本题考查了垂直平分线性质,角平分线性质,等腰三角形性质,含30度角的直角三角形性质的应用,关键是求出∠A=30°和得出DE的长.8.在直角△ABC中,∠C=30°,斜边AC的长为5cm,则AB的长为()A.4cm B.3cm C.2.5cm D.2cm【考点】KO:含30度角的直角三角形.【专题】选择题【分析】由题意可得,∠B是直角,AB=AC,直接代入即可求得AB的长.【解答】解:∵△ABC为直角三角形,∠C=30°,∴AB=AC=2.5,故选C.【点评】此题考查的是直角三角形的性质,30°的直角边所对的直角边等于斜边的一半.9.如果直角三角形中30°角所对的直角边是1cm,那么另一条直角边长是()A.1cm B.2cm C.cm D.3cm【考点】KO:含30度角的直角三角形.【专题】选择题【分析】根据勾股定理和直角三角形中30°角所对的直角边是斜边的一半求另一条直角边长.【解答】解:∵直角三角形中30°角所对的直角边是1cm,∴该直角三角形的斜边是2cm,∴另一条直角边长是:=;故选C.【点评】本题考查了含30度角的直角三角形.在直角三角形中,30°角所对的直角边是斜边的一半.10.等腰三角形一腰上的高等于这腰的一半,则这个等腰三角形的顶角等于()A.30°B.60°C.30°或150°D.60°或120°【考点】KO:含30度角的直角三角形;KH:等腰三角形的性质.【专题】选择题【分析】分为两种情况:①高BD在△ABC内时,根据含30度角的直角三角形性质求出即可;②高CD在△ABC外时,求出∠DAC,根据平角的定义求出∠BAC 即可.【解答】解:①如图,∵BD是△ABC的高,AB=AC,BD=AB,∴∠A=30°,②如图,∵CD是△ABC边BA 上的高,DC=AC,∴∠DAC=30°,∴∠BAC=180°﹣30°=150°,综上所述,这个等腰三角形的顶角等于30°或150°.故选:C.【点评】本题考查了等腰三角形性质和含30度角的直角三角形性质的应用,主要考查学生能否求出符合条件的所有情况,注意:一定要分类讨论.11.如图,BE、CF分别是△ABC的高,M为BC的中点,EF=5,BC=8,则△EFM 的周长是()A.21 B.18 C.13 D.15【考点】KP:直角三角形斜边上的中线.【专题】选择题【分析】根据“BE、CF分别是△ABC的高,M为BC的中点”得到FM=EM=BC,所以△EFM的周长便不难求出.【解答】解:∵BE、CF分别是△ABC的高,M为BC的中点,∴在Rt△BCE中,EM=BC=4,在Rt△BCF中,FM=BC=4,∴△EFM的周长=EM+FM+EF=4+4+5=13,故选C.【点评】本题利用直角三角形斜边上的中线等于斜边的一半.12.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()。
北师大版八年级下册数学第一章三角形的证明单元测试题(含详细解析)
北师大版八年级下册数学第一章三角形的证明单元测试题一.选择题(共12小题)1.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3B.4C.6D.52.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.363.已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或104.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.25.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为()A.18cm B.22cm C.24cm D.26cm6.如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm7.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.8.如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°9.若一个等腰三角形至少有一个内角是88°,则它的顶角是()A.88°或2°B.4°或86°C.88°或4°D.4°或46°10.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.811.如图,在Rt△ABC中,∠ACB=30°,CD=4,BD平分∠ABC,交AC于点D,则点D到BC的距离是()A.1B.2C.D.12.如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°二.填空题(共6小题)13.如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为_________.14.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是_________.15.如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=_________.16.如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO= _________.17.在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是_________.18.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB= _________度.三.解答题(共12小题)19.如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.20.如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.21.如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.22.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.23.如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点,求证:CE=DE.24.如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.25.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.26.已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.27.如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.28.如图,Rt△ABC中,∠C=90°,AC=6,∠A=30°,BD平分∠ABC交AC于点D,求点D到斜边AB的距离.29.如图,在△ABC中,∠CAB=90°,AB=3,AC=4,AD是∠CAB的平分线,AD交BC于D,求BD的长.30.如图,四边形ABCD中,AB=BC,AB∥CD,∠D=90°,AE⊥BC于点E,求证:CD=CE.参考答案与试题解析一.选择题(共12小题)1.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3B.4C.6D.5考点:角平分线的性质.专题:几何图形问题.分析:过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.解答:解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.2.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.36考点:线段垂直平分线的性质.分析:根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.解答:解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.3.已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或10考点:等腰三角形的性质;非负数的性质:偶次方;非负数的性质:算术平方根;解二元一次方程组;三角形三边关系.分析:先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.解答:解:∵|2a﹣3b+5|+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.点评:本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.4.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.2考点:直角三角形斜边上的中线;勾股定理;勾股定理的逆定理.专题:几何图形问题.分析:连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.解答:解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选:B.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.5.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为()A.18cm B.22cm C.24cm D.26cm考点:线段垂直平分线的性质.分析:根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,然后求出△ABD的周长=AB+BC,再求出AC的长,然后根据三角形的周长公式列式计算即可得解.解答:解:∵DE是AC的垂直平分线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵AE=4cm,∴AC=2AE=2×4=8cm,∴△ABC的周长=AB+BC+AC=14+8=22cm.故选B.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,求出△ABD的周长=AB+BC是解题的关键.6.如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm考点:线段垂直平分线的性质;勾股定理.专题:探究型.分析:连接AD,先由三角形内角和定理求出∠BAC的度数,再由线段垂直平分线的性质可得出∠DAB的度数,根据线段垂直平分线的性质可求出AD的长及∠DAC的度数,最后由直角三角形的性质即可求出AC的长.解答:解:连接AD,∵DE是线段AB的垂直平分线,BD=15,∠B=15°,∴AD=BD=10,∴∠DAB=∠B=15°,∴∠ADC=∠B+∠DAB=15°+15°=30°,∵∠C=90°,∴AC=AD=5cm.故选C.点评:本题考查的是直角三角形的性质及线段垂直平分线的性质,熟知线段垂直平分的性质是解答此题的关键.7.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.分析:由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.解答:解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE==,∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选:C.点评:此题考查了等腰三角形的性质与判定、含30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,注意掌握数形结合思想的应用.8.如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°考点:线段垂直平分线的性质.专题:计算题.分析:设∠CAE=x,则∠EAB=3x.根据线段的垂直平分线的性质,得AE=CE,再根据等边对等角,得∠C=∠CAE=x,然后根据三角形的内角和定理列方程求解.解答:解:设∠CAE=x,则∠EAB=3x.∵AC的垂直平分线交AC于D,交BC于E,∴AE=CE.∴∠C=∠CAE=x.根据三角形的内角和定理,得∠C+∠BAC=180°﹣∠B,即x+4x=140°,x=28°.则∠C=28°.故选A.点评:此题综合运用了线段垂直平分线的性质、等腰三角形的性质以及三角形的内角和定理.9.若一个等腰三角形至少有一个内角是88°,则它的顶角是()A.88°或2°B.4°或86°C.88°或4°D.4°或46°考点:等腰三角形的性质.分析:分88°内角是顶角和底角两种情况讨论求解.解答:解:88°是顶角时,等腰三角形的顶角为88°,88°是底角时,顶角为180°﹣2×88°=4°,综上所述,它的顶角是88°或4°.故选C.点评:本题考查了等腰三角形的两底角相等的性质,难点在于要分情况讨论.10.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.8考点:线段垂直平分线的性质;勾股定理;矩形的性质.专题:计算题.分析:根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=CE,设CE=x,表示出ED的长度,然后在Rt△CDE中,利用勾股定理列式计算即可得解.解答:解:∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD﹣AE=4﹣x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4﹣x)2,解得x=2.5,即CE的长为2.5.故选:C.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,把相应的边转化为同一个直角三角形的边是解题的关键.11.如图,在Rt△ABC中,∠ACB=30°,CD=4,BD平分∠ABC,交AC于点D,则点D到BC的距离是()A.1B.2C.D.考点:角平分线的性质;含30度角的直角三角形;勾股定理.分析:根据直角三角形两锐角互余求出∠ABC=60°,再根据角平分线的定义求出∠ABD=∠DBC=30°,从而得到∠DBC=∠ACB,然后利用等角对等边的性质求出BD的长度,再根据直角三角形30°角所对的直角边等于斜边的一半求出AD,过点D作DE⊥BC于点E,然后根据角平分线上的点到角的两边的距离相等解答即可.解答:解:∵Rt△ABC中,∠ACB=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠DBC=∠ACB,∴BD=CD=4,在Rt△ABD中,∵∠ABD=30°,∴AD=BD=×4=2,过点D作DE⊥BC于点E,则DE=AD=2.故选B.点评:本题考查了角平分线上的点到角的两边的距离相等的性质,30°角所对的直角边等于斜边的一半的性质,以及等角对等边的性质,小综合题,但难度不大,熟记各性质是解题的关键.12.如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°考点:等腰三角形的性质.专题:几何图形问题.分析:根据此题的条件,找出等腰三角形,找出相等的边与角度,设出未知量,找出满足条件的方程.解答:解:∵AC=AE,BC=BD∴设∠AEC=∠ACE=x°,∠BDC=∠BCD=y°,∴∠A=180°﹣2x°,∠B=180°﹣2y°,∵∠ACB+∠A+∠B=180°,∴100+(180﹣2x)+(180﹣2y)=180,得x+y=140,∴∠DCE=180﹣(∠AEC+∠BDC)=180﹣(x+y)=40°.故选D.点评:根据题目中的等边关系,找出角的相等关系,再根据三角形内角和180°的定理,列出方程,解决此题.二.填空题(共6小题)13.如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为15.考点:角平分线的性质.专题:几何图形问题.分析:要求△ABD的面积,现有AB=7可作为三角形的底,只需求出该底上的高即可,需作DE⊥AB于E.根据角平分线的性质求得DE的长,即可求解.解答:解:作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3.∴△ABD的面积为×3×10=15.故答案是:15.点评:此题主要考查角平分线的性质;熟练运用角平分线的性质定理,是很重要的,作出并求出三角形AB边上的高时解答本题的关键.14.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是2.考点:含30度角的直角三角形;线段垂直平分线的性质.分析:根据同角的余角相等、等腰△ABE的性质推知∠DBE=30°,则在直角△DBE中由“30度角所对的直角边是斜边的一半”即可求得线段BE的长度.解答:解:∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°,∵∠F=30°,∴∠A=∠F=30°(同角的余角相等).又∵AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°,∴直角△DBE中,BE=2DE=2.故答案是:2.点评:本题考查了线段垂直平分线的性质、含30度角的直角三角形.解题的难点是推知∠EBA=30°.15.如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=55°.考点:角平分线的性质.分析:首先过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,由△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,易证得AE是∠CAH的平分线,继而求得答案.解答:解:过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,∵△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,∴EH=EF,EG=EF,∴EH=EG,∴AE是∠CAH的平分线,∵∠BAC=70°,∴∠CAH=110°,∴∠CAE=∠CAH=55°.故答案为:55°.点评:此题考查了角平分线的性质与判定.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.16.如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO= 4:5:6.考点:角平分线的性质.专题:压轴题.分析:首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.解答:解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(AB•OD):(BC•OF):(AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.点评:此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.17.在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是15°.考点:线段垂直平分线的性质;等腰三角形的性质.分析:由DE垂直平分AC,∠A=50°,根据线段垂直平分线的性质,易求得∠ACD的度数,又由AB=AC,可求得∠ACB的度数,继而可求得∠DCB的度数.解答:解:∵DE垂直平分AC,∴AD=CD,∴∠ACD=∠A=50°,∵AB=AC,∠A=50°,∴∠ACB=∠B==65°,∴∠DCB=∠ACB﹣∠ACD=15°.故答案为:15°.点评:此题考查了线段垂直平分线的性质与等腰三角形的性质.此题比较简单,注意数形结合思想的应用.18.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB= 72度.考点:线段垂直平分线的性质;菱形的性质.专题:计算题.分析:欲求∠CPB,可根据菱形、线段垂直平分线的性质、对称等方面去寻求解答方法.解答:解:先连接AP,由四边形ABCD是菱形,∠ADC=72°,可得∠BAD=180°﹣72°=108°,根据菱形对角线平分对角可得:∠ADB=∠ADC=×72°=36°,∠ABD=∠ADB=36度.EP是AD的垂直平分线,由垂直平分线的对称性可得∠DAP=∠ADB=36°,∴∠PAB=∠DAB﹣∠DAP=108°﹣36°=72度.在△BAP中,∠APB=180°﹣∠BAP﹣∠ABP=180°﹣72°﹣36°=72度.由菱形对角线的对称性可得∠CPB=∠APB=72度.点评:本题开放性较强,解法有多种,可以从菱形、线段垂直平分线的性质、对称等方面去寻求解答方法,在这些方法中,最容易理解和表达的应为对称法,这也应该是本题考查的目的.灵活应用菱形、垂直平分线的对称性,可使解题过程更为简便快捷.三.解答题(共12小题)19.如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.考点:线段垂直平分线的性质.分析:先根据线段垂直平分线的性质得出AD=CD,故可得出BD+AD=BD+CD=BC,进而可得出结论.解答:解:∵DE垂直平分,∴AD=CD,∴BD+AD=BD+CD=BC=11cm,又∵AB=10cm,∴△ABD的周长=AB+BC=10+11=21(cm).点评:本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.20.如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.考点:等腰三角形的性质.专题:证明题.分析:根据三线合一定理证明CF平分∠ACB,然后根据CF平分∠ACB,根据邻补角的定义即可证得.解答:证明:∵CD=CA,E是AD的中点,∴∠ACE=∠DCE.∵CF平分∠ACB,∴∠ACF=∠BCF.∵∠ACE+∠DCE+∠ACF+∠BCF=180°,∴∠ACE+∠ACF=90°.即∠ECF=90°.∴CE⊥CF.点评:本题考查了等腰三角形的性质,顶角的平分线、底边上的中线和高线、三线合一.21.如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.考点:含30度角的直角三角形;相似三角形的判定与性质.专题:计算题.分析:延长DA,CB,交于点E,可得出三角形ABE与三角形CDE相似,由相似得比例,设AB=x,利用30角所对的直角边等于斜边的一半得到AE=2x,利用勾股定理表示出BE,由BC+BE表示出CE,在直角三角形DCE中,利用30度角所对的直角边等于斜边的一半得到2DC=CE,即可求出AB的长.解答:解:延长DA,CB,交于点E,∵∠E=∠E,∠ANE=∠D=90°,∴△ABE∽△CDE,∴=,在Rt△ABE中,∠E=30°,设AB=x,则有AE=2x,根据勾股定理得:BE==x,∴CE=BC+BE=4+x,在Rt△DCE中,∠E=30°,∴CD=CE,即(4+x)=3,解得:x=,则AB=.点评:此题考查了相似三角形的判定与性质,含30度直角三角形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.22.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.考点:角平分线的性质;勾股定理.分析:(1)根据角平分线性质得出CD=DE,代入求出即可;(2)利用勾股定理求出AB的长,然后计算△ADB的面积.解答:解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.点评:本题考查了角平分线性质和勾股定理的运用,注意:角平分线上的点到角两边的距离相等.23.如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点,求证:CE=DE.考点:直角三角形斜边上的中线.专题:证明题.分析:由于AB是Rt△ABC和Rt△ABD的公共斜边,因此可以AB为媒介,再根据斜边上的中线等于斜边的一半来证CE=ED.解答:证明:在Rt△ABC中,∵E为斜边AB的中点,∴CE=AB.在Rt△ABD中,∵E为斜边AB的中点,∴DE=AB.∴CE=DE.点评:本题考查的是直角三角形的性质:在直角三角形中,斜边上的中线等于斜边的一半.24.如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.考点:等腰三角形的性质;三角形中位线定理;相似三角形的判定与性质.专题:几何综合题.分析:(1)在等腰△ACD中,CF是顶角∠ACD的平分线,根据等腰三角形三线合一的性质知F是底边AD的中点,由此可证得EF是△ABD的中位线,即可得到EF∥BC的结论;(2)易证得△AEF∽△ABD,根据两个相似三角形的面积比(即相似比的平方),可求出△ABD的面积,而四边形BDFE的面积为△ABD和△AEF的面积差,由此得解.解答:(1)证明:∵在△ACD中,DC=AC,CF平分∠ACD;∴AF=FD,即F是AD的中点;又∵E是AB的中点,∴EF是△ABD的中位线;∴EF∥BC;(2)解:由(1)易证得:△AEF∽△ABD;∴S△AEF:S△ABD=(AE:AB)2=1:4,∴S△ABD=4S△AEF=6,∴S△AEF=1.5.∴S四边形BDFE=S△ABD﹣S△AEF=6﹣1.5=4.5.点评:此题主要考查的是等腰三角形的性质、三角形中位线定理及相似三角形的判定和性质.25.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.考点:直角三角形全等的判定;全等三角形的性质.专题:证明题.分析:此题根据直角梯形的性质和CE⊥BD可以得到全等条件,证明△ABD≌△BCE,然后利用全等三角形的性质证明题目的结论.解答:证明:∵AD∥BC,∴∠ADB=∠DBC.∵CE⊥BD,∴∠BEC=90°.∵∠A=90°,∴∠A=∠BEC.∵BD=BC,∴△ABD≌△BCE.∴AD=BE.点评:本题考查了直角三角形全等的判定及性质;此题把全等三角形放在梯形的背景之下,利用全等三角形的性质与判定解决题目问题.26.已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.考点:等腰三角形的性质;全等三角形的判定与性质.专题:计算题;证明题.分析:根据已知利用SAS判定△ABE≌△CBF,由全等三角形的对应边相等就可得到AE=CF;根据已知利用角之间的关系可求得∠EFC的度数.解答:(1)证明:在△ABE和△CBF中,∵,∴△ABE≌△CBF(SAS).∴AE=CF.(2)解:∵AB=BC,∠ABC=90°,∠CAE=30°,∴∠CAB=∠ACB=(180°﹣90°)=45°,∠EAB=45°﹣30°=15°.∵△ABE≌△CBF,∴∠EAB=∠FCB=15°.∵BE=BF,∠EBF=90°,∴∠BFE=∠FEB=45°.∴∠EFC=180°﹣90°﹣15°﹣45°=30°.点评:此题主要考查了全等三角形的判定方法及等腰三角形的性质等知识点的掌握情况;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.27.如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.考点:角平分线的性质;全等三角形的判定与性质;线段垂直平分线的性质.专题:几何综合题;压轴题.分析:(1)根据AD是∠EAF的平分线,那么DE=DF,如果证得EA=FA,那么我们就能得出AD是EF的垂直平分线,那么就证得EF⊥AD了.因此证明EA=FA是问题的关键,那么就要先证得三角形AED和AFD全等.这两个三角形中已知的条件有∠EAD=∠FAD,一条公共边,一组直角,因此两三角形全等,那么就可以得出EA=AF了.(2)要求AD的长,在直角三角形AED中,有了DE的值,如果知道了∠ADE或∠EAD的度数,那么就能求出AD了.如果DE∥AC,那么∠EAC=90°,∠EAD=45°,那么在直角三角形AED中就能求出AD的长了.解答:(1)证明:∵AD是∠EAF的平分线,∴∠EAD=∠DAF.∵DE⊥AE,DF⊥AF,∴∠DEA=∠DFA=90°又AD=AD,∴△DEA≌△DFA.∴EA=FA∵ED=FD,∴AD是EF的垂直平分线.即AD⊥EF.(2)解:∵DE∥AC,∴∠DEA=∠FAE=90°.又∠DFA=90°,∴四边形EAFD是矩形.由(1)得EA=FA,∴四边形EAFD是正方形.∵DE=1,∴AD=.点评:本题考查了全等三角形的判定,角平分线的性质,线段垂直平分线的性质等知识点.本题中利用全等三角形得出线段相等是解题的关键.。
(完整版)北师大版八年级下册数学第一章测试题
2017—2018 学年度第二学期阶段性测试题八年级下册数学(第一章)出题人:分数:注意事项1.本试卷满分150 分,考试时间120 分钟。
2.请将密封线内的项目填写清楚。
3.请在密封线外答题。
题号一二三总分得分一、选择题(每小题3 分,共36 分)1、已知△ABC 的三边长分别是 6cm、8cm、10cm,则△ABC 的面积是()A.24cm2B.30cm2C.40cm2D.48cm22、已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是()A.7㎝B.9㎝C.12㎝或者9㎝D.12㎝3、面积相等的两个三角形()A.必定全等B.必定不全等C.不一定全等D.以上答案都不对4、△ABC中,AB = AC,BD 平分∠ABC交AC 边于点D,∠BDC= 75°,则∠A的度数为()A 35°B 40°C 70°D 110°5、如图,△ABC中,AC=BC,直线l 经过点C,则 ( )A.l 垂直ABB.l 平分ABC.l 垂直平分ABD.不能确定6、已知△ABC中,AB=AC,AB 的垂直平分线交 AC 于D,△ABC和△DBC的周长分别是60 cm 和38 cm,则△ABC的腰和底边长分别为 ( ) A.24 cm 和12 cm B.16 cm 和22 cm C.20 cm 和16 cm D.22 cm 和 16 cm7、下列条件中能判定△ABC≌△DEF的是( )A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠B=∠E,∠C=∠FC.AC=DF,∠B=∠F,AB=DE D.∠B=∠E,∠C=∠F,AC=DF8、下列命题中正确的是( )A.有两条边相等的两个等腰三角形全等B.两腰对应相等的两个等腰三角形全等C.两角对应相等的两个等腰三角形全等D.一边对应相等的两个等边三角形全等9、对“等角对等边”这句话的理解,正确的是( )A.只要两个角相等,那么它们所对的边也相等B.在两个三角形中,如果有两个角相等,那么它们所对的边也相等C.在一个三角形中,如果有两个角相等,那么它们所对的边也相等D.以上说法都是错误的10、△ABC 中,AB=AC,BD 平分∠ABC 交 AC 于点 D,∠BDC=75°,则∠A的度数为()A. 35°B. 40°C. 70°D. 110°11、如图,D 在AB 上,E 在AC 上,且∠B=∠C,那么补充下列一个B条件后,仍无法判断△ABE≌△ACD的是()DA E CA. AD=AEB. ∠AEB=∠ADCC. BE=CDD. AB=AC 图 5图图12、如图,AD∥BC,∠ABC的平分线 BP 与∠BAD的平分线 AP 相交于点P,作PE⊥AB于点E,若PE=2,则两平行线 AD 与BC 间的距离为()A. 2B. 3C. 4D. 5二、填空题。
2021-2022学年度北师大版八年级数学下册第一章三角形的证明专题训练试题(含解析)
北师大版八年级数学下册第一章三角形的证明专题训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题的逆命题是假命题的是()A.同旁内角互补,两直线平行B.对于有理数a,如果3a>0,那么a>0C.有两个内角互余的三角形是直角三角形D.在任何一个直角三角形中,都没有钝角2、一副三角板如图放置,点A在DF的延长线上,∠D=∠BAC=90°,∠E=30°,∠C=45°,若BC//DA,则∠ABF的度数为()A.15°B.20°C.25°D.30°3、如图,AB DF ∥,AC CE ⊥于点C ,BC 与DF 交于点E ,若20A ∠=︒,则CED ∠等于( )A .20°B .50°C .70°D .110°4、如图,等边△AAA 中,D 为AC 中点,点P 、Q 分别为AB 、AD 上的点,4BP AQ ==,3QD =,在BD 上有一动点E ,则PE QE +的最小值为( )A .7B .8C .10D .125、如图,等腰△AAA 中,AB AC =,120BAC ∠=︒,AD DC ⊥于D ,点O 是线段AD 上一点,点P 是BA 延长线上一点,若OP OC =,则下列结论:①30APO DCO ∠+∠=︒;②APO DCO ∠=∠;③POC △是等边三角形;④AB OA AP =+.其中正确的是( )A .①③④B .①②③C .②③④D .①②③④6、下列命题成立的有( )个.①等腰三角形两腰上的中线相等;②有两边及其中一边上的高线分别相等的两个三角形全等;③三角形纸片中,AB =8cm ,BC =6cm ,AC =5cm .沿过点B 的直线折叠这个三角形使点C 落在AB 边上的点E 处,折痕为BD .则△AED 的周长为7cm ;④AD 是△ABC 的角平分线,则S △ABD :S △ACD =AB :AC .A .1B .2C .3D .47、下列命题是假命题的是( )A .直角三角形两锐角互余B .有三组对应角相等的两个三角形全等C .两直线平行,同位角相等D .角平分线上的点到角两边的距离相等8、如图,在△ABC 中,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧交于两点,过这两点作直线交AC 于点E ,交BC 于点D ,连接AD .若△ADB 的周长为15,AE =4,则△ABC 的周长为( )A .17B .19C .21D .239、如图,ABC DEC ≌△△,点E 在线段AB 上,75B ∠=︒,则ACD ∠的度数为( )A .20°B .25°C .30°D .40°10、如图,已知Rt △ABC 中,∠C =90°,∠A =30°,在直线BC 上取一点P ,使得△PAB 是等腰三角形,则符合条件的点P 有( )A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在△AAA 中,90BAC ∠=︒,30C ∠=︒.用无刻度的直尺和圆规在BC 边上找一点D ,使ACD △为等腰三角形.下列作法正确的有________个.2、如图,在△AAA 中,AD 是BAC ∠的平分线,10cm AB =,8cm AC ,则:ABD ACD S S =△△____________.3、如图,△ABC 中,AB 平分∠DAC ,AB ⊥BC ,垂足为B ,若∠ADC 与∠ACB 互补,BC =5,则CD 的长为_________.4、如图,在△ABC 中,AB =AC .在AB 、AC 上分别截取AP ,AQ ,使AP =AQ .再分别以点P ,Q 为圆心,以大于12PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为______________.5、如图,AB=BE,∠DBC=12∠ABE,BD⊥AC,则下列结论正确的是:_____.(填序号)①BC平分∠DCE;②∠ABE+∠ECD=180°;③AC=2BE+CE;④AC=2CD﹣CE.三、解答题(5小题,每小题10分,共计50分)1、如图,△ABC中,∠ABC=45°,F是高AD和高BE的交点,AC BD=2.求线段DF的长度.2、如图,在△AAA中,按以下步骤作图:①分别以点A和A为圆心,以大于12AA的长为半径作弧,两弧相交于点A和A;②作直线AA交AA于点A,连接AA.若AA=6,AA=4,求△AAA的周长.3、ABC 中,CD 平分ACB ∠,点E 是BC 上一动点,连接AE 交CD 于点D .(1)如图1,若110ADC ∠=︒,AE 平分BAC ∠,则B 的度数为______;(2)如图2,若100ADC ∠=︒,53DCE ∠=︒,27B BAE ∠-∠=︒,则BAE ∠的度数为______;(3)如图3,在BC 的右侧过点C 作CF CD ⊥,交AE 延长线于点F ,且AC CF =,2B F ∠=∠.试判断AB 与CF 的位置关系,并证明你的结论.4、数学课上,王老师布置如下任务:如图,已知∠MAN <45°,点B 是射线AM 上的一个定点,在射线AN 上求作点C ,使∠ACB =2∠A . 下面是小路设计的尺规作图过程.作法:①作线段AB 的垂直平分线l ,直线l 交射线AN 于点D ;②以点B 为圆心,BD 长为半径作弧,交射线AN 于另一点C ,则点C 即为所求.根据小路设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:连接BD ,BC ,∵直线l 为线段AB 的垂直平分线,∴DA = ,( )(填推理的依据)∴∠A =∠ABD ,∴∠BDC =∠A +∠ABD =2∠A .∵BC =BD ,∴∠ACB =∠ ,( )(填推理的依据)∴∠ACB =2∠A .5、如图,△AAA 是等边三角形,D 点是BC 上一点,2BD CD ,AA ⊥AA 于点E ,CE 交AD 于点P .求∠AAA 的度数.-参考答案-一、单选题1、D【分析】先写出每个选项中的逆命题,然后判断真假即可.【详解】解:A、同旁内角互补,两直线平行的逆命题为:两直线平行,同旁内角互补,是真命题,不符合题意;B、对于有理数a,如果3a>0,那么a>0的逆命题为:对于有理数a,如果a>0,则3a>0,是真命题,不符合题意;C、有两个内角互余的三角形是直角三角形的逆命题为:直角三角形有两个内角互余的,是真命题,不符合题意;D、在任何一个直角三角形中,都没有钝角的逆命题为:没有钝角的三角形是直角三角形,是假命题,符合题意;故选D.【点睛】本题主要考查了逆命题,判定命题真假,解题的关键在于能够熟知相关知识进行求解.2、A【分析】先求出∠EFD=60°,∠ABC=45°,由BC∥AD,得到∠EFD=∠FBC=60°,则∠ABF=∠FBC-∠ABC=15°.【详解】解:∵∠D=∠BAC=90°,∠E=30°,∠C=45°,∴∠EFD=60°,∠ABC=45°,∵BC∥AD,∴∠EFD=∠FBC=60°,∴∠ABF=∠FBC-∠ABC=15°,故选A.【点睛】本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键.3、C【分析】由AC CE ⊥与20A ∠=︒,即可求得ABC ∠的度数,又由AB DF ∥,根据两直线平行,同位角相等,即可求得CED ∠的度数.【详解】解:∵AC CE ⊥,∴90C ∠=︒,∵20A ∠=︒,∴70ABC ∠=︒,∵AB DF ∥,∴70CED ABC ∠=∠=︒.故选:C .【点睛】题目主要考查了平行线的性质与垂直的性质、三角形内角和定理,熟练掌握平行线的性质是解题关键.4、C【分析】作点Q 关于BD 的对称点Q ',连接PQ '交BD 于E ,连接QE ,此时PE EQ +的值最小,最小值PE PQ PE EQ PQ +=+'=',据此求解即可.【详解】解:如图,ABC ∆是等边三角形,BA BC ∴=,∵D 为AC 中点,∴BD AC ⊥,4AQ =,3QD =, 7AD DC AQ QD ∴==+=, 作点Q 关于BD 的对称点Q ',连接PQ '交BD 于E ,连接QE ,此时PE EQ +的值最小.最小值PE QE PE EQ PQ +=+'=', 4AQ =,7AD DC ==,3QD DQ ∴='=,4CQ BP ∴'==,10AP AQ ∴='=,60A ∠=︒,APQ ∴∆'是等边三角形,10PQ PA ∴'==,PE QE∴+的最小值为10.故选:C.【点睛】本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.5、A【分析】①利用等边对等角得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断;③证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;④证明△OPA≌△CPE,则AO=CE,得AC=AE+CE=AO+AP.【详解】解:①如图1,连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=12∠BAC=12×120°=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;②由①知:∠APO=∠ABO,∠DCO=∠DBO,∵点O是线段AD上一点,∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,故②不正确;③∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°﹣(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形,故③正确;④如图2,在AC上截取AE=PA,∵∠PAE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=PA,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO =∠CPE ,∵OP =CP ,在△OPA 和△CPE 中,PA PE APO CPE OP CP =⎧⎪∠=∠⎨⎪=⎩, ∴△OPA ≌△CPE (SAS ),∴AO =CE ,∴AC =AE +CE =AO +AP ,∴AB =AO +AP ,故④正确;正确的结论有:①③④,故选:A .【点睛】本题主要考查了全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质等知识,正确作出辅助线是解决问题的关键.6、C【分析】利用等腰三角形的性质、全等三角形的判定、折叠的性质及角平分线的性质分别判断后即可确定正确的选项.【详解】解:①等腰三角形两腰上的中线相等,故原命题正确;②有两边及其中一边上的高线分别相等的两个三角形不一定全等,故原命题错误;③三角形纸片中,AB =8cm ,BC =6cm ,AC =5cm .沿过点B 的直线折叠这个三角形使点C 落在AB 边上的点E 处,折痕为BD .如图:由折叠知:BC=BE=6,CD=DE,则△AED的周长为AD+DE+AE=AD+CD+AB-BE= AC+AB-BC=7cm,故原命题正确;④AD是△ABC的角平分线,则S△ABD:S△ACD=AB:AC,故原命题正确,成立的有3个,故选:C.【点睛】要题考查了命题与定理的知识,解题的关键是了解等腰三角形的性质、全等三角形的判定、折叠的性质及角平分线的性质,难度不大.7、B【分析】根据直角三角形的性质,全等三角形的判定方法,平行线的性质,角平分线的性质逐项分析.【详解】A.直角三角形两锐角互余,正确,是真命题;B.有三组对应角相等的两个三角形,因为它们的边不一定相等,所以不一定全等,故错误,是假命题;C.两直线平行,同位角相等,正确,是真命题;D.角平分线上的点到角两边的距离相等,正确,是真命题;故选B.【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义、性质定理及判定定理.8、D【分析】由题意知,DE是线段AC的垂直平分线,据此得AD=CD,AE=EC,再由AB+BD+AD=15知AB+BD+CD=15,即AB+BC=15,结合AE=4可得答案.【详解】解:由题意知,DE是线段AC的垂直平分线,∴AD=CD,AE=EC,∵AB+BD+AD=15,∴AB+BD+CD=15,即AB+BC=15,∵AE=4,即AC=2AE=8,∴△ABC的周长为AB+BC+AC=15+8=23,故选:D.【点睛】本题主要考查作图—基本作图,线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9、C【分析】根据全等三角形的性质可证得BC=CE,∠ACB=∠DCE即∠ACD=∠BCE,根据等腰三角形的性质和三角形的内角和定理求解∠B=∠BEC和∠BCE即可.【详解】解:∵ABC DEC≌△△,∴BC=CE,∠ACB=∠DCE,∴∠B =∠BEC ,∠ACD =∠BCE ,∵75B ∠=︒,∴∠ACD =∠BCE=180°-2×75°=30°,故选:C .【点睛】本题考查全等三角形的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质和等腰三角形的性质是解答的关键.10、B【分析】根据等腰三角形的判定定理,结合图形即可得到结论.【详解】解:以点A 、B 为圆心,AB 长为半径画弧,交直线BC 于两个点12,P P ,然后作AB 的垂直平分线交直线BC 于点3P ,如图所示:∵∠C =90°,∠A =30°,∴60ABC ∠=︒,∵33AP BP =,∴3△ABP 是等边三角形,∴点32,P P 重合,∴符合条件的点P 有2个;故选B .【点睛】本题主要考查等腰三角形的性质及等边三角形的性质与判定,熟练掌握等腰三角形的性质是解题的关键.二、填空题1、3【分析】根据图中的圆心、半径已经角平分线、垂直平分线的作法,依次判断即可得.【详解】解:第一个图以C 为圆心,AC 长为半径,∴ACD △为等腰三角形,符合题意;第二个图为作BAC ∠的角平分线,无法得到ACD △为等腰三角形,不符合题意;第三个图以B 为圆心,AB 长为半径,∴ABD △为等腰三角形,∵30C ∠=︒,∴60B ∠=︒,∴ABD △为等边三角形,∴60BAD ∠=︒,∴906030DAC ∠=︒-︒=︒,∴C DAC ∠=∠,∴CD DA =,∴ACD △为等腰三角形,符合题意;第四个图为作线段AC 的垂直平分线,可得DA DC =,∴ACD △为等腰三角形,符合题意;综上可得:有三个图使得ACD △为等腰三角形,故答案为:3.【点睛】题目主要考查等腰三角形的性质及角平分线、垂直平分线的作法,熟练掌握各个图形的作法是解题关键.2、5:4【分析】过点D 作DE ⊥AB 于点E ,DF ⊥AC 于点F ,根据角平分线的性质得到DE =DF ,再由三角形面积公式可求得结论.【详解】解:过点D 作DE ⊥AB 于点E ,DF ⊥AC 于点F ,如图,∵AD 是BAC ∠的平分线,∴DE =DF∵10cm AB =,8cm AC , ∴110521842ABD ACDAB DE S AB S AC AC DF ∆∆====故答案为:5:4【点睛】本题考查了角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键. 3、10【分析】构造ABE △,再证得ABE ABC ≌,求得EB =BC ,再通过等量代换、等角的补角相等求得∠E =∠CDE ,则CE =2BC =10.【详解】解:延长AD .和CB 交于点E .∵AB 平分∠DAC∴∠EAB =∠CAB又∵AB BC ⊥∴∠ABE =∠ABC又∵AB =AB∴ABE ABC ≌∴BC =EB =5,∠E =∠ACB ,180ADC CDE ∠+∠=︒又∵180ADC ACB ∠+∠=︒∴∠ACB =∠CDE∴∠E=∠CDE∴.CD=CE又∵CE=2BC=10∴CD=10故答案为:10.【点睛】本题考查了全等三角形的性质和判定,等角的补角相等,能根据全等三角形的性质找到角与角之间的关系是解答此题的关键.4、3【分析】根据题意依据等腰三角形的性质,即可得到BD=12BC,进而分析计算即可得出结论.【详解】解:由题可得,AR平分∠BAC,又∵AB=AC,∴AD是三角形ABC的中线,∴BD=12BC=12×6=3.故答案为:3.【点睛】本题主要考查基本作图以及等腰三角形的性质,注意掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.5、①②④【分析】根据已知∠DBC=12∠ABE,BD⊥AC,想到构造一个等腰三角形,所以延长CD,以B为圆心,BC长为半径画弧,交CD的延长线于点F,则BF=BC,就得到∠FBC=2∠DBC,然后再证明△FAB≌△CBE,就可以判断出BC平分∠DCE,再由角平分线的性质想到过点B作BG⊥CE,交CE的延长线于点G,从而证明△ABD≌△EBG,即可判断.【详解】解:延长CD,以B为圆心,BC长为半径画弧,交CD的延长线于点F,则BF=BC,过点B作BG⊥CE,交CE的延长线于点G,∵FB=BC,BD⊥AC,∴DF=DC,∠DBC=∠DBF=1∠FBC,2∠ABE,∵∠DBC=12∴∠FBC=∠ABE,∴∠FBA=∠CBE,∵AB=AE,∴△FAB≌△CBE(SAS),∴∠F=∠BCE,∵BF=BC,∴∠F=∠BCD,∴∠BCD=∠BCE,∴BC平分∠DCE,故①正确;∵∠FBC+∠F+∠BCD=180°,∴∠ABE+∠BCE+∠BCD=180°,∴∠ABE+∠DCE=180°,故②正确;∵∠BDC=∠BGC=90°,BC=BC,∴△BDC≌△BGC(AAS),∴AD=GE,CD=CG,∵AC=AD+DC,∴AC=AD+CG=AD+GE+CE=2GE+CE,∵GE≠BE,∴AC≠2BE+CE,故③错误;∵AC=CF﹣AF,∴AC=2CD﹣CE,故④正确;故答案为:①②④.【点睛】本题主要是考查了全等三角形的判定和性质、角平分线的性质,综合运用全等三角形的判定和性质以及角平分线的性质,是求解该类问题的关键.三、解答题1、1【分析】由勾股定理可求CD =1,由“AAS ”可证△BFD ≌△ACD ,可得CD =DF =1.【详解】解:∵AD 和BE 是△ABC 的高,∴∠ADB =∠ADC =∠BEC =90°.∴∠C +∠DAC =90°;∠C +∠DBF =90°.∴∠DAC =∠DBF .∵∠ABC =45°,∴∠DAB =45°.∴∠ABC =∠DAB .∴DA =DB .在△ADC 与△BDF 中,ADC BDF DA DBDAC DBF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADC ≌△BDF (ASA ).∴AC =BF在Rt △BDF 中,∠BDF =90°,∴BD 2+DF 2=BF 2.∵BD =2,BF∴DF =1【点睛】本题考查了全等三角形的判定和性质,勾股定理,等腰直角三角形的性质,掌握全等三角形的判定定理是本题的关键.2、10【分析】依据垂直平分线的性质得DB DC =.ABD ∆周长转化为+AB AC 即可求解.【详解】解:由已知作图方法可得,DN 是线段BC 的垂直平分线,所以,BD CD =,因为,6AC =,4AB =,所以,4610AB BD AD AB CD AD AB AC ++=++=+=+=,因此,ABD △的周长是10.【点睛】本题主要考查中垂线性质,解题的关键是掌握中垂线上一点到线段两端点距离相等,将所求周长转化为+AB AC 的和即可.3、则该直线的解析式为:y =x +令x =0,则y =5,即B (0,5);(2)由(1)知,C (-3,2).如图1,设Q(a,-23 a).∵S△QAC=2S△AOC,∴S△QAO=3S△AOC,或S△Q′AO=S△AOC,①当Q在第二象限即S△QAO=3S△AOC时,1 2OA•y Q=3×12OA•y C,∴y Q=3y C,即-23a=3×2=6,解得a=-9,∴Q(-9,6);②当Q在第四象限S△Q′AO=S△AOC时,1 2OA•y Q=12OA•y C,∴y Q=2y C,即23a=2,解得a=3(舍去负值),综上,点Q的坐标为(-9,6)或(3,-2);(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC于G.∵C(-3,2),A(-5,0),∴AC∵P2H=P2G,P2H⊥CD,P2G⊥OC,∴CP2是∠OCD的平分线,∴∠OCP2=∠DCP2,∴∠AP2C=∠AOC+∠OCP2,∵∠ACP2=∠ACD+∠DCP2,∴∠ACP2=∠AP2C,∴AP2=AC,∴P2(0).同理:P1(,0).综上,点P的坐标为(0)或(0).【点睛】本题考查了一次函数综合题,涉及坐标与图象的关系、待定系数法求函数解析式、角平分线的性质、点到直线的距离、三角形的面积公式等知识,综合性较强.5.(1)40°;(2)10°;(3)AB∥CF,理由见解析【分析】(1)根据三角形的角和定理和角平分线的定义可求得∠BAC+∠ACB=140°即可求解;(2)根据三角形的外角性质求得∠B+∠BAE=47°即可求解;(3)延长AC到G,根据等腰三角形的性质和三角形的外角性质得到∠FCG=2∠F,再根据角平分线的定义和等角的余角相等得到∠BCF=2∠F,则有∠B=∠BCF,根据平行线在判定即可得出结论.【详解】解:(1)∵∠ADC=110°,∴∠DAC+∠DCA=180°-110°=70°,∵AE平分∠BAC,CD平分∠ACB,∴∠BAC=2∠DAC,∠ACB=2∠DCA,∴∠BAC+∠ACB=2(∠DAC+∠DCA)=140°,∴∠B=180°-(∠BAC+∠ACB)=180°-140°=40°,故答案为:40°;(2)∵∠ADC=∠DCE+∠DEC=100°,∠DCE=53°,∴∠DEC=100°-53°=47°,∴∠B+∠BAE=∠DEC=47°,∵∠B-∠BAE=27°,∴∠BAE=10°,故答案为:10°;(3)AB∥CF,理由为:如图,延长AC到G,∵AC=CF,∴∠F=∠FAC,∴∠FCG=∠F+∠FAC=2∠F,∵CF⊥CD,∴∠BCF+∠BCD=90°,∠FCG+∠ACD=90°,∵CD平分∠ACB,∴∠BCD=∠ACD,∴∠BCF=∠FCG=2∠F,∵∠B=2∠F,∴∠B=∠BCF,∴AB∥CF.【点睛】本题考查角平分线的定义、三角形的内角和定理、三角形的外角性质、等腰三角形的性质、等角的余角相等、平行线的判定,熟练掌握相关知识的联系与运用是解答的关键.4、(1)见解析;(2)DB;线段垂直平分线上的点到线段两端的距离相等;BDC;等边对等角.【分析】(1)根据题目中的小路的尺规作图过程,直接作图即可.(2)根据垂直平分线的性质以及等边对等角进行解答即可.【详解】解:(1) 根据题目中的小路的设计步骤,补全的图形如图所示;(2)解:证明:连接BD,BC,∵直线l为线段AB的垂直平分线,∴DA=DB,(线段垂直平分线上的点到线段两端的距离相等)(填推理的依据)∴∠A=∠ABD,∴∠BDC=∠A+∠ABD=2∠A.∵BC=BD,∴∠ACB=∠BDC ,(等边对等角)(填推理的依据)∴∠ACB=2∠A.【点睛】本题主要是考查了尺规作图能力以及垂直平分线和等边对等角的性质,熟练掌握垂直平分线和等边对等角的性质,是解决该题的关键.5、60APE ∠=︒【分析】由题意易得60ABC ACB ∠=∠=︒,AB AC BC ==,则有30BDE ∠=︒,然后可得BE CD =,进而可证BEC CDA ≌,则有BCE =∠∠CAD ,最后问题可求解.【详解】解:∵ABC 是等边三角形,∴60ABC ACB ∠=∠=︒,AB AC BC ==,∵DE AB ⊥,∴90DEB ∠=︒,∴30BDE ∠=︒,∴2BD BE =,∵2BD CD =,∴BE CD =,∴BEC CDA ≌(SAS ),∴BCE =∠∠CAD ,∵,60APE PAC ACP ACB DAC ACP ∠=∠+∠∠=∠+∠=︒,∴60APE ACB ∠=∠=︒.【点睛】本题主要考查等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定,熟练掌握等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定是解题的关键.。
八年级数学下册第一章单元测试卷-浙教版(含答案)
八年级数学下册第一章单元测试卷-浙教版(含答案)时间:100分钟满分:120分班级:________姓名:________一、选择题(每小题3分,共30分)1.下列各式一定是二次根式的是()A.-7B.32m C.a2+b2D.ab2.下列二次根式中,最简二次根式是( )A.15B.0.5 C. 5 D.503.若式子m+2(m-1)2有意义,则实数m的取值范围是( )A.m>-2 B.m>-2且m≠1 C.m≥-2 D.m≥-2且m≠1 4.下面计算正确的是( )A.3+3=3 3 B.27÷3=3 C.2·3= 5 D.(-2)2=-2 5.若a<1,化简(a-1)2-1=( )A.a-2 B.2-a C.a D.-a6.方程|4x-8|+x-y-m=0,当y=1时,m的值是( )A.-2 B.-1 C.1 D.27.如图,一个小球由地面沿着坡比为1∶2的坡面向上前进了10 m,此时小球距离地面的高度为( )A.5 m B.103m C.4 5 m D.2 5 m8.如果x+y=2xy,那么yx的值为( )A.-1 B.1 C.2 D.以上答案都不对9.下列选项错误的是( )A.3-2的倒数是3+ 2B.x2-x一定是非负数C.若x<2,则(x-1)2=1-x;D.当x<0时,-2x在实数范围内有意义10.如图,数轴上A,B两点对应的实数分别是1和3,若A点关于B点的对称点为点C,则点C所对应的实数为( )A.23-1 B.1+ 3 C.2+ 3 D.23+1【解析】设点C所对应的实数是x.则有x-3=3-1,x=23-1.二、填空题(每小题4分,共24分)11.18-8=___.12.已知矩形的长为2 5 cm,宽为10 cm,则面积为____ cm2.13.对于任意不相等的两个数a,b,定义一种运算※如下:a※b=a+ba-b,如3※2=3+23-2=5,那么12※4=____.14.已知a,b为等腰三角形的两条边长,且a,b满足b=3-a+2a-6+4,则此三角形的周长为____.15.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=14[a2b2-(a2+b2-c22)2].现已知△ABC的三边长分别为1,2,5,则△ABC的面积为_____.16.若|2 021-a|+a-2 022=a,则a-2 0212=___.三、解答题(共66分)17.(12分)计算:(1)(-144)×(-169);(2)-1 3225;(3)-12 1 024×5;(4)18m2n.18.(8分)(1)解方程:(3+1)(3-1)x=72-18.(2)先化简,再求值:(1x+1-1)÷x2-xx+1,其中x=2+1.19.(8分)作图题:如图,是一个边长为1的正方形网格,请在网格中画出一个边长为22,5和3的三角形.(要求三角形的顶点在小格的顶点处).20.(8分)如图,港口A在观测站O的正东方向,OA=4 km.某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向.求该船航行的距离AB的长(结果保留根号).21.(10分)细心观察图形,认真分析各式,然后解答问题.如图,OA22=(1)2+1=2,S1=12;OA23=12+(2)2=3,S2=22;OA24=12+(3)2=4,S3=3 2;…(1)请用含有n(n为正整数)的等式表示上述变化规律:OA2n=________;S n=________;(2)若一个三角形的面积是22,计算说明它是第几个三角形?(3)求出S21+S22+S23+…+S29的值.22.(10分)某太阳能热水器的横截面示意图如图所示,已知真空热水管AB与支架CD所在的直线相交于点O,且OB=OD,支架CD与水平线AE垂直,∠BAC =∠CDE=30°,DE=80 cm,AC=165 cm.求:(1)支架CD的长;(2)真空热水管AB的长(结果保留根号).23.(10分)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2.善于思考的小明进行了以下探索:设a+b2=(m+n2)2(其中a,b,m,n均为整数),则有a+b2=m2+2n2+22mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a,b,m,n均为正整数时,若a+b3=(m+n3)2,用含m,n的式子分别表示a,b,得:a=________,b=________;(2)若a+63=(m+n3)2,且a,m,n均为正整数,求a的值.参考答案一、选择题(每小题3分,共30分)1.C2.C3.D4.B5.D6.C7.D8.B9.C10.A二、填空题(每小题4分,共24分)11.212.10213.214.10或1115.116.2 022【解析】由题意可得a-2 022≥0,解得a≥2 022,∴2 021-a<0,∴a-2 021+a-2 022=a,∴原式=2 022.三、解答题(共66分)17.解:原式=144×169=144×169=12×13=156;(2)-13225;解:原式=-13×15=-5;(3)-12 1 024×5; 解:原式=-12322×5=-12×325=-165; =3|m |2n=±3m 2n .(4)18m 2n .解:原式=32×m 2×2n18.(8分)(1)解方程:(3+1)(3-1)x =72-18.解:2x =62-32x =322.(2)先化简,再求值:(1x +1-1)÷x 2-x x +1,其中x =2+1. 解:原式=1-(x +1)x +1·x +1x (x -1)=1-x -1x (x -1)=-x x (x -1) =11-x . 当x =2+1时,原式=11-2-1=-22. 19.(8分)作图题:【解析】22看作是2,2为直角边的直角三角形的斜边.5可看作是以2和1为直角边的直角三角形的斜边,从而可画出三角形.AB=22,AC=5,BC=3.△ABC符合要求.20.解:如图,过点A作AD⊥OB于点D.∵∠ADO=90°,∠AOD=30°,OA=4 km,∴AD=12OA=2(km).∵∠ADB=90°,∠B=∠CAB-∠AOB=45°,∴BD=AD=2(km).∴AB=22+22=22(km).∴该船航行的距离(即AB的长)为2 2 km. 21.解:(1)∵每一个三角形都是直角三角形,由勾股定理,得OA1=1,OA2=2,OA3=3,OA n=n,∴OA2n=n,S n=12·1·n=n2;(2)当S n=22时,有22=n2,解得n=32,即说明它是第32个三角形;(3)原式=14+24+…+94=454.即S21+S22+S23+…+S29的值为454.22.解:(1)在Rt△CDE中,∵∠CDE=30°,DE=80 cm,∴CE=12DE=40 cm,∴CD=802-402=403(cm).(2)在Rt△OAC中,∵∠BAC=30°,∴OA=2OC.设OC=x(cm),则OA=2x(cm).由勾股定理,得OC2+AC2=OA2,即x2+1652=(2x)2,解得x=553,∴OC=55 3 cm,∴OD=OC-CD=553-403=153(cm),∴AB=AO-OB=2OC -OD=2×553-153=953(cm).23.解:(1)(m+n3)2=m2+3n2+23mn,∴a=m2+3n2,b=2mn;(2)a=m2+3n2,2mn=6,∵a,m,n均为正整数,∴m=3,n=1或m=1,n=3,当m=3,n=1时,a=9+3=12,当m=1,n=3时,a=1+3×9=28,∴a的值为12或28.。
北师大版八年级数学下册《第1章 三角形的证明》单元综合训练(附答案)
北师大版八年级数学下册《第1章三角形的证明》单元综合训练(附答案)1.已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为()A.1B.2C.5D.无法确定2.如图,已知∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于点C,EG⊥OA于点G,若EC =3,则OF长度是()A.3B.4C.5D.63.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC 的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm4.如图,在△ABC中,AC=BC,点D在AC边上,点E在CB的延长线上,DE与AB相交于点F,若∠C=50°,∠E=25°,则∠BFD的度数为()A.100°B.120°C.140°D.150°5.已知在平面直角坐标系xOy中,O(0,0),A(4,3)点B在x轴或y轴上移动,若O、A、B三点可构成等腰三角形,则符合条件的B点有()A.9个B.8个C.7个D.6个6.如图,△ABC中,AD⊥BC交BC于D,AE平分∠BAC交BC于E,F为BC的延长线上一点,FG⊥AE交AD的延长线于G,AC的延长线交FG于H,连接BG,下列结论:①∠DAE=∠F;②∠DAE=(∠ABD﹣∠ACE);③S△AEB:S△AEC=AB:AC;④∠AGH=∠BAE+∠ACB,其中正确的结论有()个.A.1B.2C.3D.47.如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=6,D是线段AB上一个动点,以BD为边在△ABC外作等边△BDE.若F是DE的中点,则CF的最小值为()A.6B.8C.9D.108.如图,给定由10个点(任意相邻两点距离为1)组成的正三角形点阵,在其中任意取三个点,以这三个点为顶点构成的正三角形的个数是()A.12B.13C.15D.179.如图,△ABC是等边三角形,P是三角形内任意一点,D、E、F分别是AC、AB、BC边上的三点,且PF∥AB,PD∥BC,PE∥AC.若PF+PD+PE=a,则△ABC的边长为()A.a B.a C.a D.a10.一副三角板如图摆放,点F是45°角三角板ABC的斜边的中点,AC=4.当30°角三角板DEF的直角顶点绕着点F旋转时,直角边DF,EF分别与AC,BC相交于点M,N.在旋转过程中有以下结论:①MF=NF:②四边形CMFN有可能为正方形;③MN长度的最小值为2;④四边形CMFN的面积保持不变;⑤△CMN面积的最大值为2.其中正确的个数是()A.2B.3C.4D.511.如图,在△ABC中,∠B=30°,∠C=45°,AE⊥BC于点E,AB的垂直平分线交BC 于点D,交AB于点F,若BD=6,则CE的长为()A.2B.2C.3D.312.如图,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q从A点出发,分别在线段AC和射线AX上运动,且AB=PQ,当点P运动到AP=,△ABC与△APQ全等.13.如图,BE和CE分别为△ABC的内角∠ABC和外角∠ACD的平分线,BE⊥AC于点H,CF平分∠ACB交BE于点F,连接AE,则下列结论:①∠ECF=90°;②AE=CE;③∠BFC=90°+∠BAC;④∠BAC=2∠BEC;⑤∠AEH=∠BCF,正确的为.14.如图,在△ABC中,AB=AC,∠A=50°,AB的垂直平分线分别交AC和AB于点D 和E,那么∠DBC=度.15.已知等腰三角形的两边长分别为x和y,且x和y满足|x﹣3|+(y﹣1)2=0,则这个等腰三角形的周长为.16.在△ABC中,∠B=50°,当∠A为时,△ABC是等腰三角形.17.如图,已知P、Q是△ABC的边BC上的两点,且BP=QC=PQ=AP=AQ,则∠BAC =.18.如图,直线l∥m,等边△ABC的顶点B在直线m上,边BC与直线m所夹锐角为20°,则∠1的度数为.19.已知a、b、c是△ABC的三边的长,且满足a2+2b2+c2﹣2b(a+c)=0,则此三角形的形状为.20.如图,六边形ABCDEF的六个内角都等于120°,若AB=BC=CD=3cm,DE=2cm,则这个六边形的周长等于cm.21.∠α=24°24'=°,若∠α是一个直角三角形的其中一个锐角,则另一个锐角是°.22.如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O.(1)求证:△ABC≌△DCB;(2)△OBC是何种三角形?证明你的结论.23.如图,BD、CD分别平分∠ABC、∠ACB,过点D作直线分别交AB、AC于点E、F,若AE=AF,BE=4,CF=2,回答下列问题:(1)证明:ED=FD;(2)试找出∠BDC与∠A的数量关系,并说明理由;(3)求EF的长.24.如图△ABC中,AB,AC的垂直平分线分别交BC于D,E,垂足分别是M,N.(1)若BC=10,求△ADE的周长.(2)若∠BAC=100°,求∠DAE的度数.25.如图,△ABC中,AB=AC,DE垂直平分AC,若∠A=30°,求∠BCD的度数.26.如图,已知在△ABC中,AC=BC=AD,∠CDE=∠B,求证:△CDE是等腰三角形.27.如图,在△ABC中,AB=AC,∠BAC=36°,BD是∠ABC的平分线,交AC于点D,E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF,求证:(1)EF⊥AB;(2)△ACF为等腰三角形.28.如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60°.29.如图,已知∠AOB=60°,点P在边OA上,点M、N在边OB上.(1)若∠PNO=60°,证明△PON是等边三角形;(2)若PM=PN,OP=12,MN=2,求OM的长度.30.如图,等边△ABC中,点D在延长线上,CE平分∠ACD,且CE=BD.说明:△ADE是等边三角形.31.如图1,直线PQ⊥直线MN,垂足为O,△AOB是直角三角形,∠AOB=90°,斜边AB与直线PQ交于点C.(1)若∠A=∠AOC=30°,则BC BO(填“>”“=”“<”);(2)如图2,延长AB交直线MN于点E,过O作OD⊥AB,若∠DOB=∠EOB,∠AEO =α,求∠AOE的度数(用含α的代数式表示);(3)如图3,OF平分∠AOM,∠BCO的平分线交FO的延长线于点R,∠A=36°,当△AOB绕O点旋转时(斜边AB与直线PQ始终相交于点C),问∠R的度数是否发生改变?若不变,求其度数;若改变,请说明理由.参考答案1.解:过D作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,∵∠EDF+∠FDC=90°,∠GDC+∠FDC=90°,∴∠EDF=∠GDC,于是在Rt△EDF和Rt△CDG中,,∴△DEF≌△DCG,∴EF=CG=BC﹣BG=BC﹣AD=3﹣2=1,所以,S△ADE=(AD×EF)÷2=(2×1)÷2=1.故选:A.2.解:∵∠AOE=∠BOE=15°,EC⊥OB于点C,EG⊥OA于点G,∴CE=EG=3,∵EF∥OB,∴∠COE=∠OEF=15°∴∠EFG=15°+15°=30°,∠EOF=∠OEF,∴OF=EF=2EG=2×3=6.故选:D.3.解:∵DG是AB的垂直平分线,∴GA=GB,∵△AGC的周长为31cm,∴AG+GC+AC=BC+AC=31cm,又AB=20cm,∴△ABC的周长=AB+AC+BC=51cm,故选:C.4.解:∵△ABC中,AC=BC,∠C=50°,∴∠ABC=(180°﹣50°)=65°,∵∠ABC是△BEF的外角,∴∠BFE=∠ABC﹣∠E=65°﹣25°=40°,∴∠BFD=180°﹣40°=140°,故选:C.5.解:分三种情况说明:①以点O为圆心,OA长为半径画圆,与x轴、y轴有4个交点,这4个交点分别与点O、A构成4个等腰三角形;②以点A为圆心,OA长为半径交x轴和y轴的正半轴有2个点,这2个交点分别与点O、A构成2个等腰三角形;③作OA的垂直平分线交x轴和y轴的正半轴有2个点,这2个交点分别与点O、A构成2个等腰三角形;综上所述:符合条件的B点有:4+2+2=8(个).故选:B.6.解:如图,AE交GF于M,①∵AD⊥BC,FG⊥AE,∴∠ADE=∠AMF=90°,∵∠AED=∠MEF,∴∠DAE=∠F;故①正确;②∵AE平分∠BAC交BC于E,∴∠EAC=,∠DAE=90°﹣∠AED,=90°﹣(∠ACE+∠EAC),=90°﹣(∠ACE+),=(180°﹣2∠ACE﹣∠BAC),=(∠ABD﹣∠ACE),故②正确;③∵AE平分∠BAC交BC于E,∴点E到AB和AC的距离相等,∴S△AEB:S△AEC=AB:CA;故③正确,④∵∠DAE=∠F,∠FDG=∠FME=90°,∴∠AGH=∠MEF,∵∠MEF=∠CAE+∠ACB,∴∠AGH=∠CAE+∠ACB,∴∠AGH=∠BAE+∠ACB;故④正确;故选:D.7.解:如图所示,连接BF,∵等边△BDE中,F是DE的中点,∴BF⊥DE,BF平分∠DBE,∴∠DBF=30°,即点F在∠DBE的角平分线上运动,∴当点D在CF上时,∠CFB=90°,根据垂线段最短可知,此时CF最短,又∵∠ABC=30°,∴∠CBF=60°,∵Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=6,∴BC=AC=6,∴Rt△BCF中,CF=BC×sin∠CBF=×=9,故选:C.8.解:如图所示,边长为1的正三角形共有1+3+5=9个,边长为2的正三角形共有3个,边长为3的正三角形共有1个,边长为的正三角形有2个,红颜色和蓝颜色的两个三角形,综上可知:共有9+3+1+2=15个,故选:C.9.解:延长EP交BC于点G,延长FP交AC于点H,如图所示:∵PF∥AB,PD∥BC,PE∥AC,∴四边形AEPH、四边形PDCG均为平行四边形,∴PE=AH,PG=CD.又∵△ABC为等边三角形,∴△FGP和△HPD也是等边三角形,∴PF=PG=CD,PD=DH,∴PE+PD+PF=AH+DH+CD=AC,∴AC=a;故选:D.10.解:①连接CF,∵F为AB中点,AC=BC,∠ACB=90°,∴AF=BF=CF,CF⊥AB,∴∠AFM+∠CFM=90°.∵∠DFE=90°,∠CFM+∠CFN=90°,∴∠AFM=∠CFN.同理,∵∠A+∠MCF=90°,∠MCF+∠FCN=90°,∴∠A=∠FCN,在△AMF与△CNF中,∵,∴△AMF≌△CNF(ASA),∴MF=NF.故①正确;②当MF⊥AC时,四边形MFNC是矩形,此时MA=MF=MC,根据邻边相等的矩形是正方形可知②正确;③连接MN,当M为AC的中点时,CM=CN,根据边长为4知CM=CN=2,此时MN最小,最小值为2,故③错误;④当M、N分别为AC、BC中点时,四边形CDFE是正方形.∵△ADF≌△CEF,∴S△CEF=S△AMF∴S四边形CDFE=S△AFC.故④正确;⑤由于△MNF是等腰直角三角形,因此当DM最小时,DN也最小;即当DF⊥AC时,DM最小,此时DN=BC=2.∴DN=DN=2 ;当△CEF面积最大时,此时△DEF的面积最小.此时S△CMN=S四边形CFMN﹣S△FMN=S△AFC﹣S△DEF=4﹣2=2,故⑤正确.故选:C.11.解:连接AD,如图:∵AB的垂直平分线交BC于点D,∴AD=BD=6,∵在△ABC中,∠B=30°,∴∠BAD=∠B=30°,∴∠ADE=∠B+∠BAD=60°.∵AE⊥BC于点E,∴∠AED=90°,∴∠DAE=30°,∴DE=AD=3,∴AE==3,∵∠C=45°,∴△AEC为等腰直角三角形,∴EC=AE=3,故选:D.12.解:∵AX⊥AC,∴∠P AQ=90°,∴∠C=∠P AQ=90°,分两种情况:①当AP=BC=5时,在Rt△ABC和Rt△QP A中,,∴Rt△ABC≌Rt△QP A(HL);②当AP=CA=10时,在△ABC和△PQA中,,∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=5或10时,△ABC与△APQ全等;故答案为:5或10.13.解:∵CF平分∠ACB,CE平分∠ACD,∴∠ACF=∠ACB,∠ACE=∠ACD,∴∠ECF=∠ACF+∠ACE=(∠ACB+∠ACD)=90°,故①正确;∵BE平分∠ABC,BE⊥AC,∴∠ABE=∠CBE,∠BHA=∠BHC=90°,∴∠BAH+∠ABE=90°,∠ACB+∠EBC=90°,∴∠BAC=∠BCA,∴AB=BC,∵BE⊥AC,∴AH=CH,∴EA=EC,故②正确;∵∠BFC=180°﹣(∠FBC+∠FCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠BAC)=90°+∠BAC,故③正确;设∠ACE=∠ECD=x,∠ABE=∠EBC=y,则有,可得∠BAC=2∠BEC,故④正确,∵EA=EC,BE⊥AC,∴∠AEB=∠BEC,∵∠FCH+∠ACE=90°,∠ACE+∠BEC=90°,∴∠FCH=∠BEC=∠AEB,∵∠ACF=∠BCF,∴∠AEH=∠BCF,故⑤正确.故答案为:①②③④⑤.14.解:∵AB=AC,∠A=50°,∴∠ABC=∠C=65°,∵DE是AB的垂直平分线,∴DA=DB,∴∠ABD=∠A=50°,∴∠DBC=∠ABC﹣∠ABD=15°.故答案为:15.15.解:∵|x﹣3|+(y﹣1)2=0,∴x=3,y=1.当腰长为3时,三边长为3、3、1,周长=3+3+1=7;当腰长为1时,三边长为3、1、1,1+1<3,不能组成三角形.故答案为:7.16.解:①∠B是顶角,∠A=(180°﹣∠B)÷2=65°;②∠B是底角,∠B=∠A=50°.③∠A是顶角,∠B=∠C=50°,则∠A=180°﹣50°×2=80°,∴当∠A的度数为50°或65°或80°时,△ABC是等腰三角形.故答案为:50°或65°或80°.17.解:∵BP=QC=PQ=AP=AQ,∴△APQ为等边三角形,△ABP为等腰三角形,△AQC为等腰三角形,∴∠P AQ=∠APQ=∠AQP=60°,在△ABP和△CAQ中,∴△ABP≌△ACQ,∴∠QAC=∠B=∠APQ=30°,同理:∠BAP=30°,∠BAC=∠BAP+∠P AQ+∠QAC=30°+60°+30°=120°.故答案为:120°18.解:如图所示,过点C作直线n∥m,在直线m上取一点D,∵直线l∥m,∴l∥m∥n,∴∠1=∠2,∠3=∠CBD=20°,∵△ABC为等边三角形,∴∠ACB=60°,∴∠2+∠3=60°,∴∠2=60°﹣∠3=60°﹣20°=40°,∴∠1=40°.故答案为:40°.19.解:由已知条件a2+2b2+c2﹣2b(a+c)=0化简得,(a﹣b)2+(b﹣c)2=0∴a﹣b=0,b﹣c=0即a=b,b=c∴a=b=c故答案为等边三角形.20.解:分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P,如图所示:∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°,∴△APF、△BGC、△DHE、△GHP都是等边三角形,∴GC=BC=3cm,DH=DE=EH=2cm,∴GH=3+3+2=8(cm),F A=P A=PG﹣AB﹣BG=8﹣3﹣3=2(cm),EF=PH﹣PF﹣EH=8﹣2﹣2=4(cm).∴六边形的周长为2+3+3+3+2+4=17(cm);故答案为:17.21.解:∠α=24°24'=24.4°,90°﹣24.4°=65.6°,故答案为24.4°,65.6°.22.证明:(1)在△ABC和△DCB中,∠A=∠D=90°AC=BD,BC为公共边,∴Rt△ABC≌Rt△DCB(HL);(2)△OBC是等腰三角形∵Rt△ABC≌Rt△DCB∴∠ACB=∠DCB∴OB=OC∴△OBC是等腰三角形23.(1)证明:过D点分别作DG⊥BC,DK⊥AB,DH⊥AC,垂足分别为G,K,H,如图,∴∠EKD=∠FHD=90°,∵BD平分∠ABC,CD平分∠ACB,∴DK=DG=DH,在△EKD和△FHD中,,∵AE=AF∴∠AEF=∠AFE,∴△EKD≌△FHD(AAS),∴ED=FD;(2)解:∠BDC=90°+∠A.理由如下:∵BD平分∠ABC,CD平分∠ACB,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB),∵∠BDC+∠DBC+∠DCB=180°,∴∠BDC+(∠ABC+∠ACB)=180°,∵∠A+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=180°﹣∠A,∴∠BDC+(180°﹣∠A)=180°,∴∠BDC=90°+∠A;(3)解:如图,∵BD,CD分别平分∠ABC,∠ACB,∴∠1=∠2,∠3=∠4,∵∠2+∠7+∠4=180°,∠5+∠6+∠7=180°,∴∠2+∠4=∠5+∠6,即∠1+∠3=∠5+∠6,∵∠AEF=∠AFE,∴∠1+∠5=∠3+∠6,∴∠5=∠3,∠1=∠6,∴△BED∽△CED,∴ED:CF=BE:DF,∵DE=DF,则ED2=CF⋅BE=2×4=8,则ED=,∴EF=2ED=.24.解:(1)∵AB、AC的垂直平分线分别交BC于D、E,垂足分别是M、N,∴AD=BD,AE=CE,∴△ADE的周长=AD+DE+AE=BD+DE+CE=BC=10.(2)∵∠BAC=100°,∴∠B+∠C=180°﹣∠BAC=80°,∵AD=BD,AE=CE,∴∠BAD=∠B,∠CAE=∠C,∴∠BAD+∠CAE=80°,∴∠DAE=∠BAC﹣(∠BAD+∠CAE)=100°﹣80°=20°.25.解:∵DE垂直平分AC,∴DA=DC,∴∠DCA=∠A=30°,∵AB=AC,∴∠B=∠ACB,∵∠A+∠B+∠ACB=180°,∴∠ACB=(180°﹣30°)÷2=150°÷2=75°,∴∠BCD=∠ACB﹣∠DCA=75°﹣30°=45°.∴∠BCD的度数为45°.26.证明:∵∠ADE+∠CDE+∠BDC=180°,∠BCD+∠B+∠BDC=180°,∠CDE=∠B,∴∠ADE=∠BCD,∵AC=BC,∴∠A=∠B,在△ADE和△BCD中,,∴△ADE≌△BCD(ASA),∴DE=CD,∴△CDE是等腰三角形.27.证明:(1)∵AB=AC,∠BAC=36°,∴∠ABC=72°,又∵BD是∠ABC的平分线,∴∠ABD=36°,∴∠BAD=∠ABD,∴AD=BD,又∵E是AB的中点,∴DE⊥AB,即FE⊥AB;(2)∵FE⊥AB,AE=BE,∴FE垂直平分AB,∴AF=BF,∴∠BAF=∠ABF,又∵∠ABD=∠BAD,∴∠F AD=∠FBD=36°,又∵∠ACB=72°,∴∠AFC=∠ACB﹣∠CAF=36°,∴∠CAF=∠AFC=36°,∴AC=CF,即△ACF为等腰三角形.28.证明:∵BM=CN,BC=AC,∴CM=AN,又∵AB=AC,∠BAN=∠ACM,∴△AMC≌△BNA,则∠BNA=∠AMC,∵∠MAN+∠ANB+∠AQN=180°∠MAN+∠AMC+∠ACB=180°,∴∠AQN=∠ACB,∵∠BQM=∠AQN,∴∠BQM=∠AQN=∠ACB=60°.29.解:(1)∵∠AOB=60°,∠PNO=60°,∴∠OPN=60°,∴∠PON=∠PNO=∠OPN,∴△PON是等边三角形;(2)作PH⊥MN于H,如图,∵PM=PN,∴MH=NH=MN=1,在Rt△POH中,∵∠POH=60°,∴∠OPH=30°,∴OH=OP=×12=6,∴OM=OH﹣MH=6﹣1=5.30.证明:∵△ABC为等边三角形,∴∠B=∠ACB=60°,AB=AC,即∠ACD=120°,∵CE平分∠ACD,∴∠ACE=∠DCE=60°,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,又∵∠BAC=60°,∴∠DAE=60°,∴△ADE为等边三角形.31.解:(1)∵△AOB是直角三角形,∴∠A+∠B=90°,∠AOC+∠BOC=90°,∵∠A=∠AOC=30°,∴∠B=∠BOC=60°∴△BOC是等边三角形,∴BC=BO故答案为:=;(2)∵OD⊥AB,∠AEO=α,∴∠DOE=90°﹣α,∵∠DOB=∠BOE,∴∠BOE==(90°﹣α)=45°﹣α,∴∠AOE=∠AOB+∠BOE=90°+45°﹣=135°﹣;(3)∠R的度数不变,∠R=27°.理由如下:设∠AOM=β,则∠AOC=90°﹣β,∵OF平分∠AOM,∴∠FOM=∠RON=,∴∠COR=∠CON+∠RON=90°+,∵∠OCB=∠A+∠AOC=36°+90°﹣β=126°﹣β,∵CR平分∠BCO,∴∠OCR==63°﹣,∴∠R=180°﹣(∠OCR+∠COR)=180°﹣63°+﹣90°﹣=27°,∴∠R的度数不变,∠R=27°。
北师大版八年级数学下册第一章《三角形的证明》单元过关测试卷(含答案)
北师大版八年级数学下册第一章《三角形的证明》单元过关测试卷一.选择题(共8小题,满分24分)1.如图,△ABC是等边三角形,DE∥BC,若AB=10,BD=6,则△ADE的周长为()A.4B.30C.18D.122.已知实数a,b满足|a﹣2|+(b﹣4)2=0,则以a,b的值为两边的等腰三角形的周长是()A.10B.8或10C.8D.以上都不对3.如图,在△ABC中,∠ACB=90°,∠A=30°,CE=2,边AB的垂直平分线交AB于点D,交AC于点E,那么AE的为()A.6B.4C.3D.24.如图,OP平分∠MON,P A⊥ON,PB⊥OM,垂足分别为A、B,若P A=3,则PB=()A.2B.3C.1.5D.2.55.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的中垂线,E、N在BC上,则∠EAN=()A.58°B.32°C.36°D.34°6.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题为真命题的()A.如果∠A=2∠B=3∠C,则△ABC是直角三角形B.如果∠A:∠B:∠C=3:4:5,则△ABC是直角三角形C.如果a:b:c=1:2:2,则△ABC是直角三角形D.如果a:b;c=3:4:,则△ABC是直角三角形7.如图,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC,当用反证法证明时,第一步应假设()A.AB≠AC B.PB=PC C.∠APB=∠APC D.∠B≠∠C8.如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根B.8根C.9根D.10根二.填空题(共8小题,满分24分)9.在Rt△ABC中,∠B=90°,∠A=30°,AB=3,则AC=.10.如图,已知△ABC中,BC=4,AB的垂直平分线交AC于点D,若AC=6,则△BCD 的周长=.11.如图,小艾同学坐在秋千上,秋千旋转了80°,小艾同学的位置也从A点运动到了A'点,则∠OAA'的度数为.12.如图,Rt△ABC中,∠C=90°,AB=10,AD平分∠BAC,交BC于点D,CD=4,则S△ABD=.13.如图,在△ABC中,OB、OC分别是∠ABC和∠ACB的平分线,过点O作EF∥BC,分别与边AB、AC相交于点E、F,AB=8,AC=7,那么△AEF的周长等于.14.如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE ⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.15.如图,△ABC是等边三角形,过它的三个顶点分别作对边的平行线,则图中共有个等边三角形.16.如图,△ABC是边长为8的等边三角形,D为AC的中点,延长BC到E,使CE=CD,DF⊥BC于点F,求线段BF的长,BF=.三.解答题(共7小题,满分52分)17.用反证法证明等腰三角形的底角必为锐角.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.19.如图:△ABC中,∠ACB=90°,点D在AB上,CE是斜边AB上的高,且AC=AD.(1)若∠DCE=15°,求∠B的度数;(2)若∠B﹣∠A=20°,求∠DCB的度数.20.如图,在△ABC中,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于点E.(1)若∠ABE=50°,求∠EBC的度数;(2)若△ABC的周长为43cm,BC的长为11cm,求△BCE的周长21.如图,在等边三角形ABC中,D是AB上的一点,E是CB延长线上一点,连结CD,DE,已知∠EDB=∠ACD.(1)求证:△DEC是等腰三角形.(2)当∠BDC=5∠EDB,BD=2时,求EB的长.22.如图,在△ABC中,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)若∠BAC=90°(图1),求∠DAE的度数;(2)若∠BAC=120°(图2),求∠DAE的度数;(3)当∠BAC>90°时,探求∠DAE与∠BAC之间的数量关系,直接写出结果.23.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒时,M、N两点重合?(2)点M、N运动几秒时,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.参考答案一.选择题(共8小题)1.【解答】解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠AED=∠B=∠C=60°,∴△ADE为等边三角形,∵AB=10,BD=6,∴AD=AB﹣BD=10﹣6=4,∴△ADE的周长为12.故选:D.2.【解答】解:根据题意得a﹣2=0,b﹣4=0,解得a=2,b=4,①a=2是底长时,三角形的三边分别为4、4、2,∵4、4、2能组成三角形,∴三角形的周长为10,②a=2是腰边时,三角形的三边分别为4、2、2,2+2=4,不能组成三角形.综上所述,三角形的周长是10.故选:A.3.【解答】解:连接BE,∵DE是边AB的垂直平分线,∴BE=AE,∴∠EBA=∠A=30°,∴∠CBE=180°﹣90°﹣30°﹣30°=30°,∴BE=2CE=4,∴AE=BE=4,故选:B.4.【解答】解:∵OP平分∠MON,P A⊥ON,PB⊥OM,∴PB=P A=3,故选:B.5.【解答】解:∵△ABC中,∠BAC=106°,∴∠B+∠C=180°﹣∠BAC=180°﹣106°=74°,∵EF、MN分别是AB、AC的中垂线,∴∠B=∠BAE,∠C=∠CAN,即∠B+∠C=∠BAE+∠CAN=74°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=106°﹣74°=32°.故选:B.6.【解答】解:A、∵∠A=2∠B=3∠C,∠A+∠B+∠C=180°,∴∠A≈98°,错误不符合题意;B、如果∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=75°,错误不符合题意;C、如果a:b:c=1:2:2,12+22≠22,不是直角三角形,错误不符合题意;D、如果a:b;c=3:4:,,则△ABC是直角三角形,正确;故选:D.7.【解答】解:假设结论PB≠PC不成立,即:PB=PC成立.故选:B.8.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠EDF=∠EFD=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个,∴添加这样的钢管的根数最多是8根.故选:B.二.填空题(共8小题)9.【解答】解:如图,∵∠B=90°,∠A=30°,∴设BC=x,则AC=2BC=2x,∵AB=3,∴x2+32=(2x)2解得:x=或﹣(舍去),∴AC=2x=2,故答案为:2.10.【解答】解:∵DE是线段AB的垂直平分线,∴DA=DB,∴△BCD的周长=BC+CD+DB=BC+CD+DA=BC+AC=10,故答案为:10.11.【解答】解:∵秋千旋转了80°,小林的位置也从A点运动到了A'点,∴AOA′=80°,OA=OA′,∴∠OAA'=(180°﹣80°)=50°.故答案为50°.12.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=4,∴S△ABD=AB•DE=×10×4=20,故答案为20.13.【解答】解:∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EOB=∠EBO,∠FOC=∠FCO,∴EO=EB,FO=FC,∵AB=8cm,AC=7cm,∴△AEF的周长为:AE+EF+AF=AE+EO+FO+AF=AE+EB+FC+AF=AB+AC=8+7=15(cm).故△AEF的周长为15,故答案为:15.14.【解答】解:∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°﹣40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣50°=40°,故答案为:40°.15.【解答】解:∵△ABC是等边三角形,∴∠ABC=∠BCA=∠CAB=60°,∵DF∥BC,∴∠F AC=∠ACB=60°,∠DAB=∠ABC=60°,同理:∠ACF=∠BAC=60°在△AFC中,∠F AC=∠ACF=60°∴△AFC是等边三角形,同理可证:△ABD△BCE都是等边三角形,因此∠E=∠F=∠D=60°,△DEF是等边三角形,故有5个等边三角形,故答案为:5.16.【解答】解:连接BD,∵△ABC是边长为8的等边三角形,D为AC的中点,∴AC=BC=8,AD=DC=4,∠DBF=ABC==30°,由勾股定理得:BD==4,∵DF⊥BC,∴∠DFB=90°,∴DF=BD==2,在Rt△DFB中,由勾股定理得:BF===6,故答案为:6.三.解答题(共7小题)17.【解答】证明:①设等腰三角形底角∠B,∠C都是直角,则∠B+∠C=180°,而∠A+∠B+∠C=180°+∠A>180°,这与三角形内角和等于180°矛盾.②设等腰三角形的底角∠B,∠C都是钝角,则∠B+∠C>180°,而∠A+∠B+∠C>180°,这与三角形内角和等于180°矛盾.综上所述,假设①,②错误,所以∠B,∠C只能为锐角.故等腰三角形两底角必为锐角18.【解答】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.19.【解答】解:(1)∵CE⊥AB,∴∠CED=90°,∵∠ECD=15°,∴∠ADC=75°,∵AC=AD,∴∠ACD=∠ADC=75°,∵∠ACD=90°,∴∠DCB=15°,∵∠ADC=∠B+∠DCB,∴∠B=75°﹣15°=60°.(2)设∠DCB=x,则∠ADC=∠ACD=∠B+x=90°﹣x,∴2x=90°﹣∠B,∵∠A+∠B=90°,∠B﹣∠A=20°,∴∠B=55°,∴2x=35°,∴x=17.5°,∴∠DCB=17.5°20.【解答】解:(1)∵DE垂直平分AB∴∠A=∠ABE=50°,又∵AB=AC,∴∠ABC=∠ACB,而∠A+∠ABC+∠ACB=180°,∴∠ABC=×(180°﹣50°)=65°,∴∠EBC=∠ABC﹣∠ABE=65°﹣50°=15°;(2)∵△ABC的周长为43cm,BC=11cm∴AB=AC=16cm,又∵DE垂直平分AB∴EA=EB,∴△BCE的周长为:BC+BE+CE=BC+AE+CE=BC+AC=16+11=27cm.21.【解答】(1)证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵∠E+∠EDB=∠ABC=60°,∠ACD+∠DCB=60°,∠EDB=∠ACD,∴∠E=∠DCE,∴△DEC是等腰三角形;(2)解:设∠EDB=α,则∠BDC=5α,∴∠E=∠DCE=60°﹣α,∴6α+60°﹣α+60°﹣α=180°,∴α=15°,∴∠E=∠DCE=45°,∴∠EDC=90°,过D作DH⊥CE于H,∵BD=2,∠DBH=60°,∴BH=BD=1,DH==,DH=EH=,∴BE=EH﹣BH=﹣1.22.【解答】解:(1)如图1,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=(180°﹣∠B)=67.5°,∵CE=CA,∴∠CAE=∠E=∠ACB=22.5°,∴∠BAE=180°﹣∠B﹣∠E=112.5°,∴∠DAE=∠BAE﹣∠BAD=45°,(2)如图2,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=30°,∵BA=BD,∴∠BAD=∠BDA=75°,∴∠DAC=45°,∵CA=CE,∴∠E=∠CAE=15°,∴∠DAE=∠DAC+∠CAE=60°;(3)∠DAE=∠BAC,理由:设∠CAE=x,∠BAD=y,则∠B=180°﹣2y,∠E=∠CAE=x,∴∠BAE=180°﹣∠B﹣∠E=2y﹣x,∴∠DAE=∠BAE﹣∠BAD=2y﹣x﹣y=y﹣x,∠BAC=∠BAE﹣∠CAE=2y﹣x﹣x=2y﹣2x∴∠DAE=∠BAC.23.【解答】解:(1)设点M、N运动x秒时,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒时,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=12﹣2t,∵三角形△AMN是等边三角形,∴t=12﹣2t,解得t=4,∴点M、N运动4秒时,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,CM=NB,y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N 运动的时间为16秒.。
2020-2021学年 北师大版八年级数学下册 第一章 三角形的证明 之直角三角形综合练(一)
北师大版下册第一章《三角形的证明》之直角三角形综合练(一)1.如图1,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC.(1)求证:∠ACE=∠ABC;(2)求证:∠ECD+∠EBC=∠BEC;(3)求证:∠CEF=∠CFE.2.如图,在Rt△ABC中,∠ACB=90°,∠A=36°,△ABC的外角∠CBD的平分线BE交AC 的延长线于点E.(1)求∠CBE的度数;(2)点F是AE延长线上一点,过点F作∠AFD=27°,交AB的延长线于点D.求证:BE ∥DF.3.如图,在△ABC中,∠ACB=90°,CE是△ABC的角平分线,CD⊥AB,垂足D,延长CE 与外角∠ABG的平分线交于点F.(1)若∠A=60°,求∠DCE和∠F的度数;(2)若∠A=n°(0<n<90)直接写出用含n的代数式表示∠DCE和∠F.(3)在图中画△FCB高FH和∠DCB的角平分线交于点Q,在(2)的条件下求∠CQH的度数,请直接写出∠CQH的度数.4.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠DEC=25°,求∠B的度数;(2)求证:直线AD是线段CE的垂直平分线.5.我们知道定理“直角三角形斜边上的中线等于斜边的一半”,这个定理的逆命题也是真命题.(1)请你写出这个定理的逆命题是;(2)下面我们来证明这个逆命题:已知:如图,CD是△ABC的中线,CD=AB.求证:△ABC为直角三角形.请你写出证明过程:6.如图在正方形ABCD中,E,F,G,H分别是AD,BC,AB,CD上的点,连接EF,GH.①若EF⊥GH,则必有EF=GH.②若EF=GH,则必有EF⊥GH.判断上述两个命题是否成立,若成立,请说明理由;若不成立,请举出反例.7.在△AOB中,∠AOB=90°,点C为直线AO上的一个动点(与点O,A不重合),分别作∠OBC和∠ACB的角平分线,两角平分线所在直线交于点E.(1)若点C在线段AO上,如图1.①依题意补全图1;②求∠BEC的度数;(2)当点C在直线AO上运动时,∠BEC的度数是否变化?若不变,请说明理由;若变化,画出相应的图形,并直接写出∠BEC的度数.8.已知△ABC中,点D是AC延长线上的一点,过点D作DE∥BC,DG平分∠ADE,BG平分∠ABC,DG与BG交于点G.(1)如图1,若∠ACB=90°,∠A=50°,直接求出∠G的度数;(2)如图2,若∠ACB≠90°,试判断∠G与∠A的数量关系,并证明你的结论;(3)如图3,若FE∥AD,求证:∠DFE=∠ABC+∠G.9.如图1,直线PQ⊥直线MN,垂足为O,△AOB是直角三角形,∠AOB=90°,斜边AB与直线PQ交于点C.(1)若∠A=∠AOC=30°,则BC BO(填“>”“=”“<”);(2)如图2,延长AB交直线MN于点E,过O作OD⊥AB,若∠DOB=∠EOB,∠AEO=α,求∠AOE的度数(用含α的代数式表示);(3)如图3,OF平分∠AOM,∠BCO的平分线交FO的延长线于点R,∠A=36°,当△AOB绕O点旋转时(斜边AB与直线PQ始终相交于点C),问∠R的度数是否发生改变?若不变,求其度数;若改变,请说明理由.10.锐角三角形ABC中,AC>BC,点D是边AC的中点,点E在边AB上.①如果DE∥BC,那么DE=BC②如果DE=BC,那么DE∥BC.判断上述两个命题是否成立,若成立,请说明理由;若不成立,请举出反例.11.如图,在△ABC中,AC=CB,∠ACB=90°,在AB上取点F,过A作AB的垂线,使得AD=BF,连接BD,CD、CF,CE是∠ACB的角平分线,交BD于点M,交AB于点E.(1)若AC=6,AF=4.求BD的长:(2)求证:2CM=AF12.如图,在△ABC中,BD是∠ABC的平分线,过点C作CE⊥BD,交BD的延长线于点E,∠ABC=60°,∠ECD=15°.(1)直接写出∠ADB的度数是;(2)求证:BD=AB;(3)若AB=2,求BC的长.13.如图,在直角三角形ABC中,∠C=90°,AC=20,BC=10,PQ=AB,P,Q两点分别在线段AC和过点A且垂直于AC的射线AM上运动,且点P不与点A,C重合,那么当点P 运动到什么位置时,才能使△ABC与△APQ全等?参考答案1.证明:(1)∵CE⊥AD,∠ACD=90°,∵∠ACE+∠ECD=∠D+∠ECD=90°,∴∠ACE=∠D.∵∠D=∠ABC,∴∠ACE=∠ABC;(2)∵∠BAC=∠ACD=90°,∠ABC=∠ADC,∴∠ACB=∠DAC,∴AD∥BC,∵CE⊥AD,∴CE⊥BC,∴∠BEC+∠EBC=90°,∵∠D+∠ECD=90°,∠D=∠ABC,∴∠ABC+∠ECD=90°,∵BE平分∠ABC,∴∠ABC=2∠EBC∴2∠EBC+∠ECD=90°,∴2∠EBC+∠ECD=∠BEC+∠EBC,即∠EBC+∠ECD=∠BEC;(3)∵∠ABF+∠AFB=90°,∠AFB=∠CFE,∴∠ABF+∠CFE=90°,∵∠CBE+∠CEF=90°,∠ABF=∠CAE,∴∠CEF=CFE.2.解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=36°,∴∠ABC=90°﹣∠A=54°,∴∠CBD=126°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=63°;(2)∵∠ACB=90°,∠CBE=63°,∴∠CEB=90°﹣63°=27°.又∵∠F=27°,∴∠F=∠CEB=27°,∴DF∥BE3.解:(1)∵CD⊥AB,∠A=60°,∴∠ADC=90°,∠ACD=30°,∵CF平分∠ACB,∠ACB=90°,∴∠ACE=∠FCB=∠ACB=45°,∴∠DCE=∠ACE﹣∠ACD=45°﹣30°=15°,∵∠ABG=∠A+∠ACB=150°,∵BF平分∠ABG,∴∠FBG=∠ABG=75°,∵∠FBG=∠F+∠FCB,∴∠F=75°﹣45°=30°.(2)∵CD⊥AB,∠A=n°,∴∠ADC=90°,∠ACD=90°﹣n°,∵CF平分∠ACB,∠ACB=90°,∴∠ACE=∠FCB=∠ACB=45°,∴∠DCE=∠ACE﹣∠ACD=45°﹣90°+n°=n°﹣45°,∵∠ABG=∠A+∠ACB=90°+n°,∵BF平分∠ABG,∴∠FBG=∠ABG=45°+n°∵∠FBG=∠F+∠FCB,∴∠F=n°.(3)如图,∵FH⊥CG,∴∠FHC=90°,∵∠A+∠ACD=90°,∠ACD+∠DCB=90°∴∠A=∠DCB=n°,∵CQ平分∠DCB,∴∠QCH=n°,∴∠CQH=90°﹣n°.4.解:(1)∵∠ACB=90°,AD平分∠BAC,DE⊥AB,∴DE=DC,∴∠DEC=∠DCE=25°,∴∠BDE=50°,又∵DE⊥AB,∴Rt△BDE中,∠B=90°﹣∠BDE=90°﹣50°=40°;(2)∵DE⊥AB,∴∠AED=90°=∠ACB,又∵DE=DC,AD=AD,∴△AED≌△ACD(HL),∴AE=AC,∴点D在CE的垂直平分线上,点A在CE的垂直平分线上,∴直线AD是线段CE的垂直平分线.5.解:(1)∵“直角三角形斜边上的中线等于斜边的一半”,∴它逆命题是:如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形,故答案为:如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形;(2)∵CD是△ABC的中线∴AD=BD=AB,∵CD=AB,∴AD=CD=BD,∴∠A=∠ACD,∠B=∠DCB,在△ABC中,∠A+∠B+∠ACD+∠DCB=180°∴∠A+∠B+∠A+∠B=180°,∴∠A+∠B=90°,∴∠ACB=∠ACD+∠DCB=90°,∴△ABC为直角三角形.6.解:①成立,②不成立;理由如下:①作GM⊥CD于M,FN⊥AD于N,如图1所示:则∠GMH=∠FNE=90°,GM⊥FN,GM=AD,FN=AB,∴∠OGQ+∠OQG=90°,∵EF⊥GH,∴∠PFQ+∠PQF=90°,∵∠OQG=∠PQF,∴∠OGQ=∠PFQ,∵四边形ABCD是正方形,∴AD=AB,∴FN=GM,在△EFN和△HGM中,,∴△EFN≌△HGM(ASA),∴EF=GH;②作GM⊥CD于M,FN⊥AD于N,如图2所示:则∠GMH=∠FNE=90°,GM⊥FN,GM=AD,FN=AB,∵四边形ABCD是正方形,∴AD=AB,∴FN=GM,在Rt△EFN和Rt△HGM中,,∴Rt△EFN≌Rt△HGM(HL),∴∠OGQ=∠PFQ,∵∠OGQ+∠OQG=90°,∠OQG=∠PQF,∴∠PQF+∠PFQ=90°,∴∠FPQ=90°,∴EF⊥GH;作GH关于GM的对称线段GH',则GH'=GH=EF,显然EF与GH'不垂直;综上所述,若EF=GH,则必有EF⊥GH.不成立.7.解:(1)①图形如图所示.②设∠EBO=∠EBC=x,∠OCE=∠ECK=y.则有:,可得∠E=×90°=45°.(2)如图,当点C在OA的延长线上时,结论∠BEC=135°.理由:∵∠AOB=90°,∴∠OBC+∠OCB=90°,∵∠EBC=∠OBC,∠ECB=∠OCB,∴∠EBC+∠ECB=×90°=45°,∴∠BEC=180°﹣45°=135°.如图当点C在AO的延长线上时,同法可证:∠BEC=135°.8.解:(1)如图1,∵∠ACB=90°,∠A=50°,∴∠ABC=40°,∵BG平分∠ABC,∴∠CBG=20°,∵DE∥BC,∴∠CDE=∠BCD=90°,∵DG平分∠ADE,∴∠CDF=45°,∴∠CFD=45°,∴∠BFD=180°﹣45°=135°,∴∠G=180°﹣20°﹣135°=25°;(2)如图2,∠A=2∠G,理由是:由(1)知:∠ABC=2∠FBG,∠CDF=∠CFD,设∠ABG=x,∠CDF=y,∵∠ACB=∠DCF,∴∠A+∠ABC=∠CDF+∠CFD,即∠A+2x=2y,∴y=,同理得∠A+∠ABG=∠G+∠CDF,∴∠A+x=∠G+y,即∠A+x=∠G++x,∴∠A=2∠G;(3)如图3,∵EF∥AD,∴∠DFE=∠CDF,由(2)得:∠CFD=∠CDF,△FBG中,∠G+∠FBG+∠BFG=180°,∠BFG+∠DFC=180°,∴∠DFC=∠G+∠FBG,∴∠DFE=∠CFD=∠FBG+∠G=+∠G.9.解:(1)∵△AOB是直角三角形,∴∠A+∠B=90°,∠AOC+∠BOC=90°,∵∠A=∠AOC=30°,∴∠B=∠BOC=60°∴△BOC是等边三角形,∴BC=BO故答案为:=;(2)∵OD⊥AB,∠AEO=α,∴∠DOE=90°﹣α,∵∠DOB=∠BOE,∴∠BOE==(90°﹣α)=45°﹣α,∴∠AOE=∠AOB+∠BOE=90°+45°﹣=135°﹣;(3)∠R的度数不变,∠R=27°.理由如下:设∠AOM=β,则∠AOC=90°﹣β,∵OF平分∠AOM,∴∠FOM=∠RON=,∴∠COR=∠CON+∠RON=90°+,∵∠OCB=∠A+∠AOC=36°+90°﹣β=126°﹣β,∵CR平分∠BCO,∴∠OCR==63°﹣,∴∠R=180°﹣(∠OCR+∠COR)=180°﹣63°+﹣90°﹣=27°,∴∠R的度数不变,∠R=27°.10.解:①∵锐角三角形ABC中,AC>BC,点D是边AC的中点,DE∥BC,∴AE=EB,即DE是△ABC的中位线,∴DE=BC故①正确;②令E为AB中点,可以在AB上取到一点F,使DF=DE,但DF与BC不平行.故②错误.11.解:(1)∵AC=CB=6,∠ACB=90°,∴AB=12∵AF=4,∴BF=AB﹣AF=12﹣4=8,∴AD=BF=8,在Rt△ADB中,BD==4;(2)∵AC=CB,∠ACB=90°,CE平分∠ACB,∴AE=BE=CE=AB,CE⊥AB,∵∠DAB=∠MEB=90°,∠DBA=∠MBE,∴△MBE∽△DBA,∴==,∴ME=AD,∴ME=BF,∵CE=AB,∴CM+ME=(BF+AF),∴CM+BF=BF+AF,∴CM=AF,即AF=2CM.12.解:(1)∵CE⊥BE,∴∠E=90°,∵∠ECD=15°,∴∠ADB=∠CDE=90°﹣15°=75°故答案为75°.(2)证明:∵BD平分∠ABC,∠ABC=60°,∴∠ABD=∠DBC=30°,∵∠ADB=75°,∴∠A=75°,∴∠A=∠ADB,∴AB=DB.(3)过点D作DF⊥BC,交BC于F点.∵DF⊥BC,∴∠DFB=∠DFC=90°,∵∠DBF=30°,∴DF=BD,∵BD=AB=2,∴DF=1,∴FB=,∵CE⊥BE,∴∠E=90°,∵∠DBC=30°,∴∠ECB=60°,∵∠ECD=15°,∴∠DCB=45°,∴∠DCF=∠FDC=45°,∴FD=FC=1,∴BC=.13.解:根据三角形全等的判定方法HL可知:①当P运动到AP=BC时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=10;②当P运动到与C点重合时,AP=AC,不合题意.综上所述,当点P运动到距离点A为10时,△ABC与△APQ全等.。
八年级下册湘教版数学第一章-直角三角形测试题
八年级下册湘教版数学第一章直角三角形测试题考试时间:120分钟满分:120分第Ⅰ卷客观题阅卷人一、单选题(共10题;共30分)得分1.Rt△ABC中,∠C=90o ,∠A为30o,CB长为5cm,则斜边上的中线长是()A. 15cmB. 10cmC. 5cmD. 2.5cm2.在△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于点D,若AC=6,则BD=()A. 6B. 3C. 9D. 123.在△ABC内取一点P使得点P到△ABC的三边距离相等,则点P应是△ABC的哪三条线交点()A. 高B. 角平分线C. 中线D. 垂直平分线4.如图,Rt△ABC中,∠B=90°,∠ACB=60°,延长BC到D,使CD=AC。
则AC:BD=()A. 1:1B. 3:1C. 4:1D. 2:35.下面关于两个直角三角形全等的判定,不正确的是()A. 斜边和一锐角对应相等的两个直角三角形全等B. 两条直角边对应相等的两个直角三角形全等C. 斜边和一条直角边对应相等的两个直角三角形全等D. 两个面积相等的直角三角形全等6.下列可使两个直角三角形全等的条件是()A. 一条边对应相等B. 斜边和一直角边对应相等C. 一个锐角对应相等D. 两个锐角对应相等7.如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交AB于E,交BC于F,若S四边形面积=9,则AB的长为()A. 3B. 6C. 9D. 188.下列四个条件,能够证明两个直角三角形全等的是()A. 两条边分别对应相等B. 一条边、一个锐角分别对应相等C. 两个锐角分别对应相等D. 两条直角边分别对应相等9.如图,在△ABC中,∠A=60°,BE⊥AC,垂足为E,CF⊥AB,垂足为F,点D是BC的中点,BE,CF交于点M,如果CM=4,FM=5,则BE等于( )A. 14B. 13C. 12D. 1110.如图,已知∠AOB是直角,∠AOC是锐角,ON平分∠AOC,OM平分∠BOC,则∠MON是()A. 45ºB. 45º+∠AOCC. 60°-∠AOCD. 不能计算第Ⅱ卷主观题阅卷人二、填空题(共10题;共30分)得分11.如图所示,点D在AC上,∠BAD=∠DBC,△BDC的内部到∠BAD两边距离相等的点有________个,△BDC内部到∠BAD的两边、∠DBC两边等距离的点有________个.12.在直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为________.13.叙述点在角平分线上的判定是________.14.如图,Rt△ABC中,∠ABC=90°,D为AC的中点,AC=10,则BD=________。
新北师大版八年级数学下册各章测试题附答案(全册)
第一章《三角形的证明》水平测试一、精心选一选,慧眼识金(每小题2分,共20分)1.如图1,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()去配. A. ① B. ②C.③D. ①和②2.下列说法中,正确的是().A .两腰对应相等的两个等腰三角形全等B .两角及其夹边对应相等的两个三角形全等C .两锐角对应相等的两个直角三角形全等D .面积相等的两个三角形全等3.如图2,AB ⊥CD ,△ABD 、△BCE 都是等腰三角形,如果CD =8cm ,BE=3cm ,那么AC长为().A .4cmB .5cmC .8cmD .34cm4.如图3,在等边ABC 中,,D E 分别是,BC AC 上的点,且BD CE ,AD 与BE 相交于点P ,则12的度数是(). A .045B .055C .060D .0755.如图4,在ABC 中,AB=AC ,36A ,BD 和CE 分别是ABC 和ACB 的平分线,且相交于点P. 在图4中,等腰三角形(不再添加线段和字母)的个数为().A .9个B .8个C .7个D .6个6.如图5,123,,l l l 表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有().A .1处B .2处C .3处D .4处7.如图6,A 、C 、E 三点在同一条直线上,△DAC 和△EBC 都是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:①△ACE ≌△DCB ;②CM =CN ;③AC =DN. 其中,正确结论的个数是().A .3个B .2个C .1个D .0个8.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C ,D ,使CD=BC ,再作出BF 的垂线DE ,使A ,C ,E 在同一条直线上(如图7),可以证明ABC ≌EDC ,得ED=AB. 因此,测得DE 的长就是AB 的长,在这里判定ABC ≌EDC 的条件是().A .ASAB .SASC .SSSD .HL9.如图8,将长方形ABCD 沿对角线BD 翻折,点C 落在点E 的位置,BE 交AD 于点F. 求证:重叠部分(即BDF )是等腰三角形.证明:∵四边形ABCD 是长方形,∴AD ∥BC又∵BDE 与BDC 关于BD 对称,∴23. ∴BDF 是等腰三角形.请思考:以上证明过程中,涂黑部分正确的应该依次是以下四项中的哪两项?().①12;②13;③34;④BDC BDEA .①③B .②③C .②①D .③④10.如图9,已知线段a ,h 作等腰△ABC ,使AB =AC ,且BC =a ,BC 边上的高AD =h. 张红的作法是:(1)作线段BC =a ;(2)作线段BC 的垂直平分线MN ,MN 与BC 相交于点D ;(3)在直线MN 上截取线段h ;(4)连结AB ,AC ,则△ABC 为所求的等腰三角形.上述作法的四个步骤中,有错误的一步你认为是().A. (1)B. (2)C. (3)D. (4)二、细心填一填,一锤定音(每小题2分,共20分)1.如图10,已知,在△ABC 和△DCB 中,AC=DB ,若不增加任何字母与辅助线,要使△ABC ≌△DCB ,则还需增加一个条件是____________.2.如图11,在Rt ABC 中,090,BAC ABAC ,分别过点,B C 作经过点A 的直线的垂线段BD ,CE ,若BD=3厘米,CE=4厘米,则DE 的长为_______.3.如图12,P ,Q 是△ABC 的边BC 上的两点,且BP =PQ =QC =AP =AQ ,则∠ABC 等于_________度.4.如图13,在等腰ABC 中,AB=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若BCE 的周长为50,则底边BC 的长为_________. 5.在ABC 中,AB=AC ,AB 的垂直平分线与AC 所在的直线相交所得的锐角为50,则图8底角B 的大小为________.6.在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等.在上述定理中,存在逆定理的是________.(填序号)7.如图14,有一张直角三角形纸片,两直角边AC=5cm ,BC=10cm ,将△ABC 折叠,点 B与点A 重合,折痕为DE ,则CD 的长为________.8.如图15,在ABC 中,AB=AC ,120A ,D 是BC 上任意一点,分别做DE ⊥AB于E ,DF ⊥AC 于F ,如果BC=20cm ,那么DE+DF= _______cm.9.如图16,在Rt △ABC 中,∠C=90°,∠B=15°,DE 是AB 的中垂线,垂足为D ,交BC于点E ,若4BE,则AC_______ .10.如图17,有一块边长为24m 的长方形绿地,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小颖想在A 处立一个标牌“少走_____步,踏之何忍?”但小颖不知在“_____”处应填什么数字,请你帮助她填上好吗?(假设两步为1米)?三、耐心做一做,马到成功(本大题共48分)1.(7分)如图18,在ABC 中,090ACB,CD 是AB 边上的高,30A . 求证:AB= 4BD.2.(7分)如图19,在ABC 中,090C ,AC=BC ,AD 平分CAB 交BC 于点D ,DE ⊥AB 于点E ,若AB=6cm. 你能否求出BDE 的周长?若能,请求出;若不能,请说明理由.3.(10分)如图20,D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于O 点. 现有四个条件:①AB =AC ;②OB =OC ;③∠ABE =∠ACD ;④BE =CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正.确.的命题:命题的条件是和,命题的结论是和(均填序号).(2)证明你写出的命题.已知:求证:证明:4.(8分)如图21,在ABC 中,90A ,AB=AC ,ABC 的平分线BD 交AC 于D ,CE ⊥BD 的延长线于点 E.求证:12CEBD .5.(8分)如图22,在ABC 中,90C .(1)用圆规和直尺在AC 上作点P ,使点P 到A 、B 的距离相等.(保留作图痕迹,不写作法和证明);(2)当满足(1)的点P 到AB 、BC 的距离相等时,求∠A 的度数.6.(8分)如图23,90AOB ,OM 平分AOB ,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA 、OB 相交于点C 、D ,问PC 与PD 相等吗?试说明理由.四、拓广探索(本大题12分)如图24,在ABC 中,AB=AC ,AB 的垂直平分线交AB 于点N ,交BC 的延长线于点M ,若40A .(1)求NMB 的度数;(2)如果将(1)中A 的度数改为070,其余条件不变,再求NMB 的度数;(3)你发现有什么样的规律性,试证明之;(4)若将(1)中的A 改为钝角,你对这个规律性的认识是否需要加以修改?图21图24图23答案:一、精心选一选,慧眼识金1.C ;2.B ;3.D .点拨:BC=BE=3cm ,AB=BD=5cm ;4.C .点拨:利用ABD ≌BCE ;5.B ;6.D .点拨:三角形的内角平分线或外角平分线的交点处均满足条件;7.B .点拨:①②正确;8.A ;9.C ;10.C .点拨:在直线MN 上截取线段h ,带有随意性,与作图语言的准确性不相符.二、细心填一填,一锤定音1.答案不惟一.如ACBDBC ;2.7厘米. 点拨:利用ABD ≌CAE ;3.030;4.23.点拨:由27BE CE ACAB,可得502723BC;5.070或020.点拨;当ABC 为锐角三角形时,70B;当ABC 为钝角三角形时,20B ;6.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;7.154cm . 点拨:设CDx ,则易证得10BDAD x .在Rt ACD 中,222(10)5x x ,解得154x.8.10.点拨:利用含030角的直角三角形的性质得,1122DE DFBD CDBC .9.2. 点拨:在Rt AEC 中,030AEC,由AE=BE= 4,则得AC=2;10.16.点拨:AB=26米,AC+BC=34米,故少走8米,即16步. 三、耐心做一做,马到成功1.∵90ACB ,30A ,∴AB=2BC ,60B .又∵CD ⊥AB ,∴030DCB ,∴BC=2BD.∴AB= 2BC= 4BD.2.根据题意能求出BDE 的周长. ∵090C ,90DEA,又∵AD 平分CAB ,∴DE=DC.在Rt ADC 和Rt ADE 中,DE=DC ,AD=AD ,∴Rt ADC ≌Rt ADE (HL ).∴AC=AE ,又∵AC=BC ,∴AE=BC.∴BDE 的周长DE DB EB BC EB AE EB AB .∵AB=6cm ,∴BDE 的周长=6cm.3.(1)①,③;②,④.(2)已知:D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于O 点,且AB =AC ,∠ABE =∠ACD. 求证:OB =OC ,BE =CD.证明:∵AB=AC ,∠ABE =∠ACD ,∠A =∠A ,∴△ABE ≌△ACD (ASA ).∴BE=CD.又∵ABC ACB ,∴BCD ACB ACD ABC ABE CBE∴BOC 是等腰三角形,∴OB =OC.4.延长CE 、BA 相交于点 F.∵090,90EBF F ACF F ,∴EBF ACF .在Rt ABD 和Rt ACF 中,∵DBA ACF ,AB=AC ,∴Rt ABD ≌Rt ACF (ASA ). ∴BD CF .在Rt BCE 和Rt BFE 中,∵BE=BE ,EBC EBF ,∴RtBCE ≌Rt BFE (ASA ).∴CEEF. ∴1122CECFBD .5.(1)图略. 点拨:作线段AB 的垂直平分线.(2)连结BP.∵点P 到AB 、BC 的距离相等,∴BP 是ABC 的平分线,∴ABPPBC .又∵点P 在线段AB 的垂直平分线上,∴PA=PB ,∴A ABP .∴190303AABPPBC.6.过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点 F.∵OM 平分AOB ,点P 在OM 上,∴PE=PF.又∵090AOB ,∴90EPF .∴EPF CPD ,∴E P CF P D.∴Rt PCE ≌Rt PDF (ASA ),∴PC=PD. 四、拓广探索(1)∵AB=AC ,∴BACB .∴11180180407022BA.∴90907020NMB B. (2)解法同(1).同理可得,035NMB.(3)规律:NMB 的度数等于顶角A 度数的一半.证明:设A.∵AB=AC ,∴BC ,∴11802B .∵090BNM ,∴11909018022NMB B.即NMB 的度数等于顶角A 度数的一半. (4)将(1)中的A 改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.全品中考网全品第二章一元一次不等式(组)检测试题一、选择题(每小题3分,共36分)1.x 与y 的差的5倍与2的和是一个非负数,可表示为()(A )025y x (B )025y x(C )025y x (D )0225y x 2.下列说法中正确的是()(A )3x 是32x 的一个解. (B )3x 是32x 的解集. (C )3x是32x 的唯一解. (D )3x不是32x 的解.3. 不等式222xx 的非负整数解的个数是()(A )1 (B )2(C )3(D )44.已知正比例函数x m y 12的图象上两点2221,,,y x B x x A ,当21x x 时,有21y y ,那么m 的取值范围是()(A )21m(B )21m(C )2m (D )m 5.不等式组2.351,062xx的解集是()(A )32x (B )38x (C )38x (D )8x或3x 6.若,0ba 且0b,则b a b a ,,,的大小关系是()(A )b a b a (B )ba ab (C )baba(D )a b ba7.已知关于x 的一次函数72m mx y在51x上的函数值总是正的,则m 的取值范围是()(A )7m (B )1m (C )71m (D )以上答案都不对8.如果方程组.33,13yxk y x 的解为x 、y ,且42k,则y x的取值范围是()(A )10yx (B )210yx (C )11yx(D )13yx9.若方程x xm x m 53113的解是负数,则的取值范围是()(A )45m(B )45m(C )45m(D )45m10.两个代数式1x 与3x的值的符号相同,则x 的取值范围是()(A )3x (B )1x (C )21x (D )1x 或3x 11.若不等式33a xa 的解集是1x ,则a 的取值范围是()(A )3a (B )3a(C )3a(D )3a 12.若4224m m ,那么m 的取值范围是()(A )不小于 2 (B )不大于 2 (C )大于 2 (D )等于 2 二、填空题(每题3分,共24分)13. 当x _____时,代数式43x 的值是非正数. 14. 若不等式.32,12bxa x 的解集为11x ,那么ab 的值等于_____. 15.若x 同时满足不等式032x 与02x,则x 的取值范围是_____.m16.已知x 关于的不等式组.0,125ax x 无解,则a 的取值范围是_____.17. 如果关于x 的不等式51a x a 和42x 的解集相同,则a 的值为_____.18. 小马用100元钱去购买笔记本和笔共30件,已知每本笔记本2元,每枝钢笔5元,那么小马最多能买_____枝钢笔.19.一个两位数,十位上的数字比个位数上的数字小2,若这个两位数处在40至60之间,那么这个两位数是_____.20. 已知四个连续自然数的和不大于34,这样的自然数组有_____组.三、解答题(每题8分,共40分)21.解不等式3225332xxx x ,并把它的解集在数轴上表示出来.22.求不等式组)2(.3212)1(,133211x xx x 的偶数解.23.已知关于y x,的方程组)2(.2)1(,32m yxm y x 的解y x,均为负数,求m 的取值范围.24. 关于y 的不等式组253,7.236y yt y t y 的整数解是3,2,1,0,1,求参数t 的取值范围.25. 甲乙两人先后去同一家商场买了一种每块0.50元的小手帕.商场规定凡购买不少于10块小手帕可优惠20%,结果甲比乙多花了4元钱,又知甲所花的钱不超过8元,在充分享受优惠的条件下,甲乙两人各买了多少块小手帕?参考答案一、选择题(每小题3分,共36分)1.解:x 与y 的差的5倍是y x 5,再与2的和是25y x ,是一个非负数为:025y x .故选(B )2.解:32x ,根据不等式基本性质2,两边都除以2,得23x.由此,可知3x 只是32x 的一个解.故选(A )3. 解:去括号,得.242x x 解得.2x 所以原不等式的非负数整数解为,2,1,0x共3个.故选(C )4.解:因为点2221,,,y x B x x A 在函数x m y 12的图象上,所以1112x m y ,2212x m y . 所以212112x x m y y . 因为当21x x 时,有21y y ,即当21x x ,021y y ,所以.012m 所以.21m故选(A )5.解: 由(1)得3x . 由(2)得8x.所以不等式组的解集是38x 故选(C )6.解:由,0b a且0b,得0a且b a.又根据不等式的性质2,得0,0ba.b ab a,.所以a b b a 故选(D )7.解:根据题意,令1x,则07my,得7m;令5x ,则077m y ,得1m .综上,得7m.故选(A )8.解:两个不等式相减后整理,得221kyx .由42k,得220k .所以10yx故选(A )9.解:方程x x m x m 53113的解为541mx,要使解为负数,必须054m ,即45m.故选(A )10.解: 因为代数式1x 与3x 的值的符号相同,可得.03,01xx 或.03,01xx 由第一个不等式组得,3x;由第二个不等式组得, 1x .故选(D )11.解:因为不等式33a x a 的解集是1x,所以03a .所以3a.故选(C )12.解:由4224m m ,得042m ,所以2m .故选(A )二、填空题(每题3分,共24分)13.解:根据题意,得043x .解得.34x14.解:由.32,12bxa x 得.23,21b xa x 所以.2123axb 又因为11x ,所以.123,121ba解得.2,1ba 所以.221ab 15.解:由032x ,得23x,由02x ,得2x .所以223x.16.解:原不等式组可化为.,3a x x 若不等式组有解,则3xa.3a.故当3a时, 不等式组无解. 所以a 的取值范围是3a . 17.解:由42x 得2x .因为不等式51a x a 和42x 的解集相同,所以不等式51a xa 的解集为.15a ax 215a a .解得7a.18.解:设小马最多能买x 枝钢笔.根据题意,得1003025x x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
命题点1:三角形相关性质的综合运用◆类型一命题正误的判断1.(·贵阳模拟)下列说法:①有一个角为60°的等腰三角形是等边三角形;②三边长分别是1,10,3的三角形是直角三角形;③三个角之比为3∶4∶5的三角形是直角三角形.其中正确的有( )A.0个 B.1个 C.2个 D.3个2.下列命题:①两直角边对应相等的两个直角三角形全等;②等腰三角形顶角的平分线把它分成两个全等的三角形;③三角形的外角大于三角形的任何一个内角;④若等腰三角形的两边长为2和5,则它的周长为9或12.其中假命题有( ) A.1个 B.2个 C.3个 D.4个◆类型二新定义与阅读理解型问题3.定义:“到三角形的两个顶点距离相等的点,叫作此三角形的准外心”.如图①,若PC=PB,则称点P为△ABC的准外心.(1)观察并思考,△ABC的准外心有________个;(2)如图②,△ABC是等边三角形,CD⊥AB,准外心点P在高CD上,且PD=12AB,在图中找出点P,并求出∠APB的度数;(3)已知△ABC为直角三角形,∠A=90°,斜边BC=5,AB=3,准外心点P在AC边上,在图中找出P点,并求出PA的长.4.若经过三角形某一顶点的直线可把它分成两个小等腰三角形,那么我们称该三角形为等腰三角形过该顶点的生成三角形.(1)如图,在△ABC中,AB=AC,∠A=90°,问△ABC是否是生成三角形?请说明理由;(2)如果等腰△DEF有一个内角为36°,那么请你画出简图说明△DEF是生成三角形(要求画出直线,标注出图中等腰三角形的顶角与底角的度数).◆类型三三角形相关性质与其他性质的综合5.将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至△A′OB′的位置.若点B的横坐标为2,则点A′的坐标为( )A.(1,1) B.(2,2)C.(-1,1) D.(-2,2)第5题图第6题图6.★(·贵阳模拟)如图,在△ABC中,∠ACB=90°,∠B=30°,BC=6,CD为AB 边上的高,点P为射线CD上一动点,当点P运动到使△ABP为等腰三角形时,BP的长为____________.命题点2:等腰三角形中易漏解或多解的问题◆类型四求长度时忽略三边关系【易错1】7.一个等腰三角形的两边长分别是4,8,则它的周长为( )A.12 B.16 C.20 D.16或208.学习了三角形的有关内容后,张老师请同学们讨论这样一个问题:“已知一个等腰三角形的周长是12,其中一条边长为3,求另两条边的长”.同学们经过片刻思考和讨论后,小明同学举手说:“另两条边长为3,6或4.5,4.5.”你认为小明回答是否正确:________,理由是________________________.9.若等腰三角形的三边长分别为x+1,2x+3,9,则x=________.◆类型五当腰或底不明求角度时没有分类讨论10.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为( )A.100° B.40°C.40°或100° D.60°11.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为________.12.我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”.如果等腰三角形的“内角正度值”为45°,那么该等腰三角形的顶角度数为________.13.已知三角形纸片ABC中,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两纸片均为等腰三角形,求∠C的度数.◆类型六三角形的形状不明与高结合时没有分类讨论14.(·绥化中考)在等腰△ABC中,AD⊥BC交BC于点D.若AD=12BC,则△ABC的顶角度数为____________.15.已知等腰三角形一腰上的高与另一腰的夹角的度数为20°,求顶角的度数.【易错3】◆类型七一边确定,另两边不定,确定三角形的个数时漏解【易错4】16.如图,点A的坐标为(2,2),若点P在坐标轴上,且△APO为等腰三角形,则满足条件的点P有( )A.4个 B.6个 C.7个 D.8个第16题图第17题图17.如图,在4×5的点阵图中,每两个横向和纵向相邻阵点的距离均为1,该点阵图中已有两个阵点分别标为A,B,请在此点阵图中找一个阵点C,使得以点A,B,C为顶点的三角形是等腰三角形,则符合条件的C点有________个.18.如图,在6×6的正方形网格中,点A,B均在正方形格点上,在网格中的格点上找一点C,使△ABC为等腰三角形,则符合条件的C点有________个.参考答案与解析1.C 2.B3.解:(1)无数解析:∵到三角形的两个顶点距离相等的点,叫作此三角形的准外心,∴△ABC的准外心是AB,BC,AC的垂直平分线上的点,∴△ABC的准外心有无数个.(2)此题分三种情况:①若PB=PC,连接PB,则∠PCB=∠PBC.∵CD为等边三角形的高,∴AD=BD,∠PCB=30°,∴∠PBD=∠PBC=30°,∴PB=2PD.在Rt△PDB中,由勾股定理得PD2+DB2=PB2=(2PD)2,∴PD=33DB=36AB,与已知PD=12AB矛盾,∴PB≠PC;②若PA=PC,连接PA,同理可得PA≠PC;③若PA=PB,由PD=12AB,得PD=BD=AD,∴∠APD=∠BPD=45°,∴∠APB=90°.点P如图①所示.(3)∵BC=5,AB=3,∴AC=BC2-AB2=4.分三种情况讨论:①若P1B=P1C,设P1A=x,则P1B=P1C=AC-AP1=4-x,由勾股定理得x2+32=(4-x)2,∴x=78,即P1A=78;②若P2A=P2C,则P2A=2;③若P3A=P3B,由图可知此点不可能存在.综上所述,PA=2或78.点P如图②所示.4.解:(1)△ABC是生成三角形.理由如下:过点A作AD⊥BC于点D.∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,∠BAD=∠CAD=12∠BAC=45°,∴∠B=∠BAD,∠C=∠CAD.∴△ABD和△ACD是等腰三角形,∴△ABC是生成三角形.(2)如图①,△DEG与△EFG都是等腰三角形.如图②,△DEG与△DFG都是等腰三角形,∴△DEF是生成三角形.5.C6.43或6 2 解析:∵∠ACB=90°,CD⊥AB,∴∠A+∠B=90°,∠A+∠ACD=90°,∴∠ACD=∠B=30°,∴AC=12AB,AD=12AC.由勾股定理得AC2+BC2=AB2,∴AC=33BC=23,∴AD=3,AB=43,∴DB=AB-AD=3 3.若△ABP为等腰三角形,需分三种情况:①当AP=AB=43时,∴PD=AP2-AD2=35,∴PB=PD2+BD2=62;②当PB=AB=43时,△ABP为等腰三角形.③当AP=BP时,∵PD⊥AB,∴AD=BD.这与已求出的AD=3,BD=33不符,∴此种情况不存在.综上所述,PB=43或6 2.7.C 8.不正确没考虑三角形的三边关系9.310.C 11.120°或20°12.30°或90°解析:设最小角的度数为x,则最大角的度数为x+45°.当最小角是顶角时,x+x+45°+x+45°=180°,解得x=30°,此时三角形顶角的度数为30°;当最大角为顶角时,x+x+45°+x=180°,解得x=45°,此时三角形顶角的度数为90°.综上所述,该等腰三角形的顶角为30°或90°.13.解:由题意知△ABD与△DBC均为等腰三角形,对于△ABD有三种情况:①若AB=BD,则∠ADB=∠A=80°,∴∠BDC=180°-∠ADB=100°,∠C=(180°-∠BDC)÷2=40°;②若AB=AD,则∠ADB=(180°-∠A)÷2=50°,∴∠BDC=180°-∠ADB=130°,∠C=(180°-∠BDC)÷2=25°;③若AD=BD,则∠ABD=∠A=80°,∴∠BDC =∠ABD+∠A=160°,∴∠C=(180°-∠BDC)÷2=10°.综上所述,∠C的度数为40°或25°或10°.14.30°或150°或90°解析:(1)当BC为腰时,∵AD⊥BC,AD=12BC=12AC,∴∠ACD=30°.如图①,当AD在△ABC内部时,顶角∠C=30°.如图②,当AD在△ABC外部时,顶角∠ACB=180°-30°=150°.(2)当BC为底时,如图③,∵AD⊥BC,AD=12BC,∴AD=BD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=12×180°=90°,∴顶角∠BAC=90°.综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.15.解:此题要分情况讨论:当等腰三角形的顶角是钝角时,如图①,腰上的高在三角形外部.由题意得顶角∠ACB=∠D+∠DAC=90°+20°=110°;当等腰三角形的顶角是锐角时,如图②,腰上的高在其内部,故顶角∠A=90°-∠ABD=90°-20°=70°.综上所述,顶角的度数为110°或70°.16.D 解析:∵点A的坐标为(2,2),∴△OAP的边OA=22,这条边可能是底边也可能是腰.①当OA是底边时,点P是OA的垂直平分线与坐标轴的交点,交点的坐标是(2,0)和(0,2);②当OA是腰且O是顶角顶点时,以O为圆心,以OA为半径作圆,与坐标轴的交点坐标是(22,0),(-22,0),(0,22),(0,-22);③当OA是腰且A是顶角顶点时,以A为圆心,以AO为半径作圆,与坐标轴的交点坐标是(4,0),(0,4).故满足条件的点P共有8个.故选D.17.5 解析:如图,分别以AB为腰、底找等腰三角形,故符合条件的C点有5个.18.10 解析:如图,(1)当BA=BC时,符合条件的有C1,C2;(2)当AB=AC时,符合条件的有C3,C4;(3)当CA=CB时,符合条件的有C5,C6,C7,C8,C9,C10.故符合条件的C点有10个.。