一元一次方程和二元一次方程组的应用(含答案)

合集下载

人教版七年级上册 第3章:一元一次方程的应用-方案选择问题(含答案)

人教版七年级上册 第3章:一元一次方程的应用-方案选择问题(含答案)

人教版七年级上册 一元一次方程的应用-方案选择问题(含答案)一、单选题1.某汽车队运送一批货物,每辆汽车装4 t ,还剩下8 t 未装,每辆汽车装4.5 t 就恰好装完.该车队运送货物的汽车共有多少辆?设该车队运送货物的汽车共有x 辆,可列方程为( ) A .4x +8=4.5x B .4x -8=4.5x C .4x =4.5x +8D .4(x +8)=4.5x2.某服装店出售一种优惠卡,花200元买这种卡后,凭卡可以在这家商店按8折购物,下列情况买购物卡合算的是( ) A .购物高于800元 B .购物低于800元 C .购物高于1 000元 D .购物低于1 000元3.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.若设这个班有x 名学生,则依题意所列方程正确的是( ) A .3x -20=4x -25 B .3x +20=4x +25 C .3x -20=4x +25 D .3x +20=4x -254.41人参加运土劳动,有30根扁担,要安排多少人抬,多少人挑,可以使扁担和人数相配不多不少?若设有x 人挑土,则可列出的方程是( ) A.2(30)41x x --= B.(41)302x x +-= C.41302xx -+= D.3041x x -=-5.小华带x 元去买甜点,若全买红豆汤圆刚好可买30杯,若全买豆花刚好可买40杯.已知豆花每杯比红豆汤圆便宜10元,依题意可列出下列哪一个方程式( )A.103040x x=+ B.104030x x =+ C.104030x x += D.104030x x+= 6.某土建工程共需动用15台挖运机械,每台机械每分钟能挖土3 m 3或者运土2 m 3.为了使挖土和运土工作同时结束,安排了x 台机械运土,这里x 应满足的方程是( )A.2x=3(15-x) B.3x-2x=15C.15-2x=3x D.3x=2(15-x)7.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元) 每次游泳收费(元) A类50 25B类200 20C类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为()A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡二、填空题8.张老师带学生乘车外出郊游,甲车主说:”不论师生,每人8折,"乙车主说:“学生9折,老师免费,“张老师算了一下,不论坐谁的车,费用一样,则张老师带的学生人数是________.9.学校买来大、小椅子共20张,共花去275元.已知大椅子每张15元,小椅子每张10元,问买了大椅子共多少张?若设买了大椅子x张,填写下表:大椅子小椅子张数(张)x钱数(元)小椅子____张,大椅子的钱数为____,小椅子的钱数为________,本题中的等量关系为________________,列出方程为____________,解得x=_______.因此,买了大椅子_________张.10.将一批490吨的货物分给甲、乙两船运输,现甲、乙两船分别运走了其任务的57、37,在已运走的货物中,甲船比乙船多运30吨,则分配给甲、乙两船的任务数分别是_______吨、_______吨.三、解答题11.某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元. (1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)按规定,甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,请你通过计算求出该商场所有的进货方案;(3)在“五一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:打折前一次性购物总金额优惠措施不超过300元不优惠超过300元且不超过400元售价打九折超过400元售价打八折按上述优惠条件,若贝贝第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品各多少件?12.现有若干本书分给班上的同学,若每人分5本,则还缺20本;若每人分4本,则剩余25本.班上共有多少名同学?多少本书?(1)设班上共有x名同学,根据题意列方程;(2)设共有y本书,根据题意列方程;(3)选择上面的一种设未知数的方法,解决问题.13.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的8折优惠;在乙超市购买商品超出200元之后,超出部分按原价的8.5折优惠,设某顾客预计累计购物x元(x>300元).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用;(2)当该顾客累计购物500元时,在哪个超市购物合算.14.小明用的练习本可以到甲、乙两家商店购买,已知两商店的标价都是每本2元,甲商店的优惠条件是购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是,从第一本起按标价的80%出售.(1)设小明要购买x(x>10)本练习本,则当小明到甲商店购买时,须付款元,当到乙商店购买时,须付款元;(2)买多少本练习本时,两家商店付款相同?(3)小明准备买50本练习本,为了节约开支,应怎样选择哪家更划算?15.淘淘到书店帮同学买书,售货员告诉他,如果用20元钱办会员卡,将享受八折优惠,请问在这次买书中,淘淘在什么情况下,办会员卡与不办会员卡费用一样?当淘淘买标价共计200元的书时,怎么做合算?能省多少钱?16.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当分别购买20盒、40盒乒乓球时,去哪家商店购买更合算?(2)当购买乒乓球多少盒时,两种优惠办法付款一样?17.某原料供应商对购买其原料的顾客实行如下优惠办法:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元,全部9折优惠;(3)一次购买的超过3万元,其中3万元9折优惠,超过3万元的部分8折优惠.某人因库容原因,第一次在供应商处购买原料付7800元,第二次购买付款26100元,如果他是一次购买同样数量的原料,则应付款多少元?可少付款多少元?18.某地电话拨号上网有两种收费方式,用户可以任选其一:(A)计时制,0.05元∕分;(B)包月制,50元∕分(限一部个人住宅电话上网);此外,每种上网方式都附加通信费0.02元∕分。

一元一次方程与二元一次方程组

一元一次方程与二元一次方程组

6.(2013 年浙江绍兴)我国古代数学名著《孙子算经》中有 这样一题,今有鸡兔同笼,上有 35 头,下有 94 足,问鸡兔各 几何?此题的答案是:鸡有 23 只,兔有 12 只.现在小敏将此 题改编为:今有鸡兔同笼,上有 33 头,下有 88 足,问鸡兔各 几何?则此时的答案是:鸡有__2_2___只,兔有__1_1___只.
问 A、B 两种树苗每株分别是多少元?
解:设 A 种树苗每株 x 元,B 中树苗每株 y 元,
由题意,得
x-y=2, x+2y=20,
解得
x=8, y=6.
答:A 种树苗每株 8 元,B 种树苗每株 6 元.
4.二元一次方程(组). (1)二元一次方程:含有__两__个__未知数,并且未知数的项的 次数都是___1___的整式方程. (2)二元一次方程组:含有两个未知数的两个_一__次___方程所 组成的一组方程. (3)二元一次方程组的解:二元一次方程组的两个方程的 _公__共__解___.
考点2 解一元一次方程和二元一次方程组 1.解一元一次方程的步骤. (1)_去__分__母___;(2)去括号;(3)___移__项____;(4)_合__并__同__类__项___; (5)未知数的系数化为 1. 2.二元一次方程组的解法. 解二元一次方程组的关键是消元,有 __代__入____ 消元法和 __加__减__消元法两种.
一元一次方程与二元一次方程 组
第1讲 方程与方程组
第 1 课时 一元一次方程与二元一次方程组
1.能够根据具体问题中的数量关系列出方程. 2.会解一元一次方程及简单的二元一次方程组. 3.能根据具体问题的实际意义,检验结果是否合理.
考点1 方程(组)的有关概念 1.等式的基本性质. (1)若a=b,则a±m=b±___m___(m为代数式).(2)m为实数,

初一数学二元一次方程组试题答案及解析

初一数学二元一次方程组试题答案及解析

初一数学二元一次方程组试题答案及解析1.二元一次方程x+y=5有( )个解A.1B.2C.3D.无数【答案】D.【解析】二元一次方程x+y=5的解有无数个.故选D.【考点】解二元一次方程.2.已知关于x,y的方程组,其中-3≤a≤1,给出下列结论:①当a=1时,方程组的解也是方程x+y=4-a的解;②当a=-2时,x、y的值互为相反数;③若x≤1,则1≤y≤4;④是方程组的解,其中正确的是A.①②B.③④C.①②③D.①②③④【答案】C.【解析】解:解方程组,得,∵-3≤a≤1,∴-5≤x≤3,0≤y≤4,①当a=1时,x+y=2+a=3,4-a=3,方程x+y=4-a两边相等,结论正确;②当a=-2时,x=1+2a=-3,y=1-a=3,x,y的值互为相反数,结论正确;③当x≤1时,1+2a≤1,解得a≤0,故当x≤1时,且-3≤a≤1,∴-3≤a≤0∴1≤1-a≤4∴1≤y≤4结论正确,④不符合-5≤x≤3,0≤y≤4,结论错误;【考点】1.二元一次方程组的解;2.解一元一次不等式组.3.若关于x,y的二元一次方程组的解满足x+y <2.(1)求a的取值范围;(2)若a=1,方程组的解是等腰三角形的两条边的长,求此等腰三角形的周长.【答案】(1)a<4;(2)【解析】(1)把a当作常数,把两个方程相加求得x+y的值,代入到x+y <2求得a的取值范围;(2)把a=1代入到方程组中求解x、y的值即可求得周长;试题解析:(1)把方程组①+②得:4(x+y)=4+a,即;又∵x+y <2∴,解得a<4;(2)把a=1代入原方程组得,解得:x=,y=,当x为三角形的腰时,三角形不成立,所以取腰为,则等腰三角形的周长为++=.【考点】1.解二元一次方程组;2.解一元一次不等式;3.三角形的三边关系4.如图,周长为34cm的长方形ABCD被分成7个形状大小完全相同的小长方形,则长方形ABCD的面积为()A.49cm2B.68cm2C.70cm2D.74cm2【答案】C【解析】从图中可找到两个相等关系是“周长为34cm”和“小长方形的5个宽等于2个长”.可以设小长方形的长为ycm,宽为xcm,则有,求得x=2,y=5,即长方形ABCD的面积为7×10=70.【考点】二元一次方程组的应用5.解下列方程组:【答案】【解析】可把第一个方程乘以2,再与第二个方程相加,利用加减消元法消去y,求得,再把x的值代入第一个或第二个方程可求解y=1.试题解析:解:①×2+②得③,把③代入到②中,得y=1,即方程组的解为.【考点】解二元一次方程组6.已知方程组的解是,那么m、n的值为 ( )A.B.C.D.【答案】C【解析】由题意可知把方程组的解代入方程组,解关于m、n的方程组,,解得即为所求.【考点】二元一次方程(组).7.某镇水库的可用水量为12000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能够维持居民15年的用水量.(1)问:年降水量为多少万m3?每人年平均用水量多少m3?(2)政府号召节约用水,希望将水库的使用年限提高到25年.则该镇居民人均每年需节约多少m 3水才能实现目标?【答案】(1) 200万立方米,50立方米; (2) 16立方米.【解析】(1)设年降水量为x 万立方米,每人每年平均用水量为y 立方米,根据储水量+降水量=总用水量建立方程求出其解就可以了;(2)设该城镇居民年平均用水量为z 立方米才能实现目标,同样由储水量+25年降水量=25年20万人的用水量为等量关系建立方程求出其解即可.试题解析:(1)设年降水量为x 万立方米,每人每年平均用水量为y 立方米,由题意,得, 解得:答:年降水量为200万立方米,每人年平均用水量为50立方米.(2)设该城镇居民年平均用水量为z 立方米才能实现目标,由题意,得 12000+25×200=20×25z , 解得:z=34则50-34=16(立方米).答:该城镇居民人均每年需要节约16立方米的水才能实现目标. 【考点】1.二元一次方程组的应用;2.一元一次方程的应用.8. 如下图,在长方形ABCD 中,放入六个形状、大小相同的长方形,所标尺寸如图所示,则图中阴影部分的面积是 .【答案】44cm 2.【解析】设小长方形的长、宽分别为xcm ,ycm , 依题意得,解之得,∴小长方形的长、宽分别为8cm ,2cm ,∴S 阴影部分=S 四边形ABCD ﹣6×S 小长方形=14×10﹣6×2×8=44cm 2. 故答案是44cm 2.【考点】二元一次方程组的应用.9. 解方程组【答案】.【解析】利用加减消元法解题即可. ②×2得:2x+4y=8③, ③-①得:7y=7, ∴y=1,将y=1代入②得:x=2, ∴原方程组的解是:.【考点】解方程组.10. 二元一次方程组的解是 .【答案】.【解析】先用代入法求出x的值,再用代入消元法求出y的值即可:.【考点】解二元一次方程组.11.已知二元一次方程,若用含的代数式表示,则有=__________。

一元一次方程与二元一次方程(组)及其应用考点训练

一元一次方程与二元一次方程(组)及其应用考点训练

一元一次方程与二元一次方程(组)及其应用考点训练【命题点一元一次及其解法的应用】1.(2022•青海)根据等式的性质,下列各式变形正确的是()A.若=,则a=b B.若ac=bc,则a=bC.若a2=b2,则a=b D.若﹣x=6,则x=﹣2 2.(2022•百色)方程3x=2x+7的解是()A.x=4 B.x=﹣4 C.x=7 D.x=﹣7 3.(2022•海南)若代数式x+1的值为6,则x等于()A.5 B.﹣5 C.7 D.﹣7 4.(2022•黔西南州)小明解方程﹣1=的步骤如下:解:方程两边同乘6,得3(x+1)﹣1=2(x﹣2)①去括号,得3x+3﹣1=2x﹣2②移项,得3x﹣2x=﹣2﹣3+1③合并同类项,得x=﹣4④以上解题步骤中,开始出错的一步是()A.①B.②C.③D.④5.(2022•六盘水)我国“DF﹣41型”导弹俗称“东风快递”,速度可达到26马赫(1马赫=340米/秒),则“DF﹣41型”导弹飞行多少分钟能打击到12000公里处的目标?设飞行x分钟能打击到目标,可以得到方程()A.26×340×60x=12000 B.26×340x=12000C.=12000 D.=12000 6.(2022•西宁)在数学活动课上,兴趣小组的同学用一根质地均匀的轻质木杆和若干个钩码做实验.如图所示,在轻质木杆O处用一根细线悬挂,左端A处挂一重物,右端B处挂钩码,每个钩码质量是50g.若OA=20cm,OB=40cm,挂3个钩码可使轻质木杆水平位置平衡.设重物的质量为xg,根据题意列方程得()A.20x=40×50×3 B.40x=20×50×3C.3×20x=40×50 D.3×40x=20×507.(2022•营口)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x天可以追上慢马,则下列方程正确的是()A.240x+150x=150×12 B.240x﹣150x=240×12C.240x+150x=240×12 D.240x﹣150x=150×128.(2022•十堰)我国古代数学名著《张邱建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清、醑酒各几斗?如果设清酒x斗,那么可列方程为()A.10x+3(5﹣x)=30 B.3x+10(5﹣x)=30C.+=5 D.+=59.(2022•苏州)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”设走路快的人要走x步才能追上,根据题意可列出的方程是()A.x=100﹣x B.x=100+xC.x=100+x D.x=100﹣x10.(2022•铜仁市)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为()A.14 B.15 C.16 D.17 11.(2022•岳阳)我国古代数学著作《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?在这个问题中,城中人家的户数为()A.25 B.75 C.81 D.90 12.(2022•牡丹江)某商品的进价为每件10元,若按标价打八折售出后,每件可获利2元,则该商品的标价为每件元.13.(2022•百色)小韦同学周末的红色之旅,坐爸爸的车去百色起义纪念馆,从家里行驶7千米后,进入高速公路,在高速公路上保持匀速行驶,小韦记录高速公路上行驶的时间(t)和路程(s)数据如表,按照这个速度行驶了2小时进入高速路出口匝道,再行驶5千米到达纪念馆,则小韦家到纪念馆的路程是千米.t(小时)0.20.60.8s(千米)206080 14.(2022•乐山)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”.如图所示,“优美矩形”ABCD的周长为26,则正方形d的边长为.15.(2022•威海)按照如图所示的程序计算,若输出y的值是2,则输入x的值是.16.(2022•贵阳)“方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”.如:从左到右列出的算筹数分别表示方程中未知数x,y的系数与相应的常数项,即可表示方程x+4y=23,则表示的方程是.【命题点二二元一次方程组的解法及其解的应用】考向1 二元一次方组的解法17.(2022•株洲)对于二元一次方程组,将①式代入②式,消去y可以得到()A.x+2x﹣1=7 B.x+2x﹣2=7 C.x+x﹣1=7 D.x+2x+2=7 18.(2022•沈阳)二元一次方程组的解是.19.(2022•潍坊)方程组的解为.20.(2022•随州)已知二元一次方程组,则x﹣y的值为.21.(2022•安顺)若a+2b=8,3a+4b=18,则a+b的值为.22.(2022•淄博)解方程组:.23.(2022•呼和浩特)解方程组:.考向2 二元一次方程组解的应用24.(2022•雅安)已知是方程ax+by=3的解,则代数式2a+4b﹣5的值为.25.(2022•荆州)已知方程组的解满足2kx﹣3y<5,求k的取值范围.【命题3 二元一次方程组的实际应用】类型一购买、销售问题26.(2022•大连)2022年北京冬奥会吉祥物冰墩墩和冬残奥会吉祥物雪容融深受大家喜爱.已知购买1个冰墩墩毛绒玩具和2个雪容融毛绒玩具用了400元,购买3个冰墩墩毛绒玩具和4个雪容融毛绒玩具用了1000元.这两种毛绒玩具的单价各是多少元?27.(2022•海南)我省某村委会根据“十四五”规划的要求,打造乡村品牌,推销有机黑胡椒和有机白胡椒.已知每千克有机黑胡椒比每千克有机白胡椒的售价便宜10元,购买2千克有机黑胡椒和3千克有机白胡椒需付280元,求每千克有机黑胡椒和每千克有机白胡椒的售价.类型二分配问题28.(2022•宜昌)五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为()A.30 B.26 C.24 D.22 29.(2022•湖北)有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货吨.30.(2022•广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?31.(2022•连云港)我国古代数学名著《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:今有几个人共同出钱购买一件物品.每人出8钱,剩余3钱;每人出7钱,还缺4钱.问人数、物品价格各是多少?请你求出以上问题中的人数和物品价格.32.(2020•百色)某玩具生产厂家A车间原来有30名工人,B车间原来有20名工人,现将新增25名工人分配到两车间,使A车间工人总数是B车间工人总数的2倍.(1)新分配到A、B车间各是多少人?(2)A车间有生产效率相同的若干条生产线,每条生产线配置5名工人,现要制作一批玩具,若A车间用一条生产线单独完成任务需要30天,问A车间新增工人和生产线后比原来提前几天完成任务?类型三工程问题33.(2021•泰州)甲、乙两工程队共同修建150km的公路,原计划30个月完工.实际施工时,甲队通过技术创新,施工效率提高了50%,乙队施工效率不变,结果提前5个月完工.甲、乙两工程队原计划平均每月分别修建多长?34.(2021•吉林)港珠澳大桥是世界上最长的跨海大桥,它由桥梁和隧道两部分组成,桥梁和隧道全长共55km.其中桥梁长度比隧道长度的9倍少4km.求港珠澳大桥的桥梁长度和隧道长度.类型四行程问题35.(2021春•伊通)小明和小丽两相距8千米,小明骑自行车,小丽步行.两人同时出发相向而行,0.8小时相遇;若两人同时出发同向而行,小明2小时可以追上小丽,求小明、小丽每小时各前行多少千米?36.(2021春•黄埔)小明从甲地步行到乙地要走一段上坡路与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地步行到乙地需54min,从乙地步行到甲地需42min.甲地到乙地全程是多少km?类型五阶梯费用问题37.(2021•贺州)为了提倡节约用水,某市制定了两种收费方式:当每户每月用水量不超过12m3时,按一级单价收费;当每户每月用水量超过12m3时,超过部分按二级单价收费.已知李阿姨家五月份用水量为10m3,缴纳水费32元.七月份因孩子放假在家,用水量为14m3,缴纳水费51.4元.(1)问该市一级水费,二级水费的单价分别是多少?(2)某户某月缴纳水费为64.4元时,用水量为多少?类型六比赛积分问题38.(2021•鄂尔多斯)某足球协会举办了一次足球联赛,其记分规定及奖励方案如下表:胜一场平一场负一场积分310奖金(元/人)13005000当比赛进行到第11轮结束(每队均须比赛11场)时,A队共积17分,每赛一场,每名参赛队员均得出场费300元.设A队其中一名参赛队员所得的奖金与出场费的和为w(元).(1)试说明w是否能等于11400元.(2)通过计算,判断A队胜、平、负各几场,并说明w可能的最大值.。

八年级数学应用题

八年级数学应用题

八年级数学应用题一、一元一次方程应用题。

1. 某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,求购买甲、乙两种票各多少张?解析:设购买甲种票x张,则购买乙种票(40 x)张。

根据总价 = 单价×数量,可列方程10x+8(40 x)=370。

展开方程得10x + 320-8x=370。

移项合并同类项得2x = 370 320,即2x=50,解得x = 25。

那么40 x=40 25 = 15(张)。

答案:购买甲种票25张,购买乙种票15张。

2. 一个工人加工一批零件,限期完成,若他每小时做10个,到期可超额完成3个;若每小时做11个,则可提前1小时完成任务,问他共要加工多少个零件,限期多少小时?解析:设限期x小时。

根据零件总数不变列方程,10x-3 = 11(x 1)。

展开方程得10x-3=11x 11。

移项得11x 10x=11 3,解得x = 8。

零件数为10x-3=10×8 3=77(个)。

答案:共要加工77个零件,限期8小时。

二、二元一次方程组应用题。

3. 有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨。

求3辆大货车与5辆小货车一次可以运货多少吨?解析:设每辆大货车装货x吨,每辆小货车装货y吨。

根据题意得方程组2x + 3y=15.5 5x+6y = 35。

由第一个方程2x+3y = 15.5可得4x + 6y=31。

用5x + 6y=35减去4x + 6y = 31,得x = 4。

把x = 4代入2x+3y = 15.5,得2×4+3y = 15.5,解得y = 2.5。

则3x+5y=3×4 + 5×2.5=12+12.5 = 24.5(吨)。

答案:3辆大货车与5辆小货车一次可以运货24.5吨。

4. 某中学拟组织九年级师生去韶山举行毕业联欢活动。

六年级一元一次方程二元一次方程组的解法及应用

六年级一元一次方程二元一次方程组的解法及应用

学生编号学生姓名授课教师辅导学科六年级数学教材版本上教课题名称一元一次方程、二元一次方程组的应用课时进度总第()课时授课时间5月26日教学目标1.熟练掌握一元一次不等式和一元一次方程的解法和应用;2.会解二元一次方程组;能够熟练的运用二元一次方程组解决实际问题;3.使学生掌握三元一次方程、三元一次方程组和它的解的含义;重点难点1.二元一次方程组和三元一次方程组的解题技巧;2.根据应用题的题意列出二元一次方程组。

同步教学内容及授课步骤一、一知识梳理1.列二元一次方程组解应用题的步骤①弄清题意和题目中的数量关系,用字母(如x、y)表示题目中的两个未知数;②找出能够表示应用题全部含意的两个相等关系;③根据两个相等关系列出代数式,从而列出两个方程并组成方程组;④解这个二元一次方程组,求出未知数的值;⑤检查所得结果的正确性及合理性;⑥写出答案.2.设未知数的几种常见方法(1)设直接未知数:即题目里要求的未知量是什么,就把它设做方程里的未知数,并且求几个设几个.(2)设间接未知数:即设的不是所求量.有些应用题,若设直接未知数,则所列的方程比较复杂;若改设间接未知数,则能列出既简单又易解的方程.(3)少设未知数:有些应用题,要求两个或更多个未知数,但根据各未知数之间的关系,只需设一个或少数几个未知数就可以求解.(4)多设未知数:有些应用题,不仅要设直接未知数,而且要增设辅助未知数,但这些辅助未知数本身并不需要求出,它们的作用只是为了帮助列方程,同时为了求出真正的未知数.3.应用题常见的几种类型:(1)行程问题:①基本量之间的关系:路程=速度×时间②解题时一般应画线段示意图。

(2)工程问题①基本量之间的关系:工作量=工作效率×工作时间甲、乙合做的工作效率=甲的工作效率+乙的工作效率②解题时,若工作总量是抽象的,通常把它设为单位1。

(3)浓度问题①基本量之间的关系:溶液=溶质+溶剂(指体积或质量)溶液的浓度=溶质溶液×100%②解题时应注意配制前后溶液中的不变量和变化量分别是什么?(4)利润问题:①有关量的关系:利润=售价-进价利润率=售价进价进价-×100%利息=本金×利率×期数1. 已知zy x zy x 26=-=+)0(≠xyz ,则z y x ::= ;2. 解方程组:⎩⎨⎧=++=20233:2:1::z y x z y x3. 解方程组: 435:4:3)(:)(:)(-=-+=+++z y x x z z y y x4. ⎪⎩⎪⎨⎧=++==355:4:3:2:z y x z y y x【拓展题】方程组⎩⎨⎧-=--=+322m y x m y x 的解满足32=+y x ,求m 的值.解法指导 把m 看作已知字母.求出的x 与y 的值是含有m 的式子,再把求出的x 与y 的值代入32=+y x ,得到关于m 的一元一次方程,再求出m 的值;也可以把这三个方程组成三元一次方程组,求出m 的值.【典型例题5】六年级(2)班去春游,全班分成若干个小组进行活动,其中女同学分成2组,第一组人数的2倍比第二组人数多4人;如果从第二组调2人到第一组,那么两个小组的人数相等,求女同学的第一组、第二组人数分别是多少人?解法指导 设第一组的人数是x 人,第二组的人数是y 人.根据“第一组人数的2倍比第二组多4人”列出第一个方程,“第二组调2人到第一组,那么两个小组的人数相等”列出第二个方程.【基础习题限时训练】1. 西部山区某县响应国家“退耕还林”号召,将该县一部分耕地改还为林地。

一元一次方程和二元一次方程组的应用题

一元一次方程和二元一次方程组的应用题

一元一次方程应用题
(2009年牡丹江)1.百货大楼推出全场打八折优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价10000元的商品,共节省2800元,则用贵宾卡又享受了多少折的优惠?
(2008年.郴州)2.我国政府从2007年起对职业中专在校学生给予生活补贴。

每生每年补贴1500元。

某市预计2008年职业中专在校生人数是2007年的1.2倍,且要在2007年的基础上增加投入600万元。

2007年人数为1000人。

那2008年职业中专在校生有多少万人?补贴多少万元?
(2009.福州)3.整理一批图书,如果由一个人单独做要花60小时。

现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作。

假设每个人的工作效率相同,那么先安排整理的人员有多少人?
二元一次方程组应用题
1.解答题。

2、运往灾区的两批货物,第一批共480吨,用8节火车车厢和20辆汽车正好装完;第二批共运524吨,用10节火车车厢和6辆汽车正好装完,求每节火车车厢和每辆汽车平均各装多少吨?
3、五.一期间,某商场搞优惠促销,决定由顾客抽奖决定折扣,某顾客购买甲、乙两种商品,分别抽到七折和九折,共付368元,这两面种商品原价之和为500元,问两种商品原价各是多少元?
4、已知关于x 、y 的方程组⎩
⎨⎧==+-k 9y -5x 4k
3y 2x 的解x 、y (1)是矩形的长和宽,且矩形的周长是10,求k 的值.
(2)是的腰和底,且等腰△周长是56,求腰和底。

方程应用(复习讲义)(一元一次方程、二元一次方程、一元一次不等式、分式方程、一元二次方程应用)原卷版

方程应用(复习讲义)(一元一次方程、二元一次方程、一元一次不等式、分式方程、一元二次方程应用)原卷版

题型三--方程应用(复习讲义)【考点总结|典例分析】考点01一次方(组)程应用1.列方程(组)解应用题的一般步骤(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称).2.一次方程(组)常见的应用题型×100%;售价=标价×折扣;销售(1)销售打折问题:利润 售价-成本价;利润率=利润成本额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间.(4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题(同时不同地出发):前者走的路程+两地间距离=追者走的路程.(8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度.1.(2022·山东泰安)泰安某茶叶店经销泰山女儿茶,第一次购进了A种茶30盒,B种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B种茶15盒,共花费5100元.求第一次购进的A、B两种茶每盒的价格.2.(2022·湖南常德)小强的爸爸平常开车从家中到小强奶奶家,匀速行驶需要4小时,某天,他们以平常的速度行驶了12的路程时遇到了暴雨,立即将车速减少了20千米/小时,到达奶奶家时共用了5小时,问小强家到他奶奶家的距离是多少千米?3.(2021·重庆中考真题)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份,为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低3a% 4.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加5%2a,这两种小面的总销售额在4月的基础上增加5%11a.求a的值.4.(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x 1.04(a﹣x)(2)求2020年4月份线上销售额与当月销售总额的比值.5.(2020•江西)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.6.(2020•重庆)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A,B两个小麦品种进行种植对比实验研究.去年A,B两个品种各种植了10亩.收获后A,B两个品种的售价均为2.4元/kg,且B的平均亩产量比A的平均亩产量高100kg,A,B两个品种全部售出后总收入为21600元.(1)请求出A,B两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A,B种植亩数不变的情况下,预计A,B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a%,而A品种的售价不变.A,B两个品种全部售出后总收入将在去年的基础上增加209a%.求a的值.考点02不等式的应用3、列不等式(组)解决实际问题列不等式(组)解应用题的基本步骤如下:①审题;②设未知数;③列不等式(组);④解不等式(组);⑤检验并写出答案.考情总结:列不等式(组)解决实际问题常与一元一次方程、一次函数等综合考查,涉及的题型常与方案设计型问题相联系,如最大利润、最优方案等.列不等式时,要抓住关键词,如不大于、不超过、至多用“≤”连接,不少于、不低于、至少用“≥”连接.1.(2022·四川泸州)某经销商计划购进A,B两种农产品.已知购进A种农产品2件,B 种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元.(1)A,B两种农产品每件的价格分别是多少元?(2)该经销商计划用不超过5400元购进A,B两种农产品共40件,且A种农产品的件数不超过B种农产品件数的3倍.如果该经销商将购进的农产品按照A种每件160元,B种每件200元的价格全部售出,那么购进A,B两种农产品各多少件时获利最多?2.(2021·四川成都市·中考真题)为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》)于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个A型和10个B型预处置点位进行初筛、压缩等处理.已知一个A型点位比一个B型点位每天多处理7吨生活垃圾.(1)求每个B型点位每天处理生活垃圾的吨数;(2)由于《条例》的施行,垃圾分类要求提高,现在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A型、B型点位共5个,试问至少需要增设几个A型点位才能当日处理完所有生活垃圾?3.(2021·四川眉山市·中考真题)为进一步落实“德、智、体、美、劳”五育并举工作,某中学以体育为突破口,准备从体育用品商场一次性购买若千个足球和篮球,用于学校球类比赛活动.每个足球的价格都相同,每个篮球的价格也相同.已知篮球的单价比足球单价的2倍少30元,用1200元购买足球的数量是用900元购买篮球数量的2倍.(1)足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共200个,但要求足球和篮球的总费用不超过15500元,学校最多可以购买多少个篮球?4.(2021·浙江温州市·中考真题)某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A的数量不低于B的数量,则A为多少包时,每日所获总利润最大?最大总利润为多少元?5.(2021·四川资阳市·中考真题)我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.(1)求甲、乙两种奖品的单价;(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品的数量不少于乙种奖品数量的12,应如何购买才能使总费用最少?并求出最少费用.6.(2021·江苏连云港市·中考真题)为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的1 3,请设计出最省钱的购买方案,并求出最少费用.考点03分式方程的应用4.分式方程的应用(1)分式方程的应用主要涉及工程问题,有工作量问题、行程问题等.每个问题中涉及到三个量的关系,如:工作时间=工作量工作效率,时间=路程速度等.(2)列分式方程解应用题的一般步骤:①设未知数;②找等量关系;③列分式方程;④解分式方程;⑤检验(一验分式方程,二验实际问题);⑥答.1.(2022·重庆)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.2.(2020•泰州)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A为全程25km的普通道路,路线B包含快速通道,全程30km,走路线B比走路线A平均速度提高50%,时间节省6min,求走路线B的平均速度.3.(2020•常德)第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?4.(2020•广东)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.5.(2021·山东聊城市·中考真题)为迎接建党一百周年,我市计划用两种花卉对某广场进行美化.已知用600元购买A种花卉与用900元购买B种花卉的数量相等,且B种花卉每盆比A种花卉多0.5元.(1)A,B两种花卉每盆各多少元?(2)计划购买A,B两种花卉共6000盆,其中A种花卉的数量不超过B种花卉数量的1 3,求购买A种花卉多少盆时,购买这批花卉总费用最低,最低费用是多少元?6.(2021·湖南中考真题)“七一”建党节前夕,某校决定购买A,B两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A奖品比B奖品每件多25元预算资金为1700元,其中800元购买A奖品,其余资金购买B奖品,且购买B奖品的数量是A奖品的3倍.(1)求A,B奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折..销售,学校调整了购买方案:不超过...720元,A,B两种奖品共100件.求购买A,...预算资金且购买A奖品的资金不少于B两种奖品的数量,有哪几种方案?7.(2020•牡丹江)某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,B种书包各有几个?8.(2020•黔西南州)随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A 型车数量的两倍.已知A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?考点04二次方程的应用5、利用一元二次方程解决实际问题列一元二次方程解应用题步骤和列一元一次方程(组)解应用题步骤一样,即审、设、列、解、验、答六步.列一元二次方程解应用题,经济类和面积类问题是常考内容.6.增长率等量关系(1)增长率=增长量÷基础量.(2)设a 为原来量,m 为平均增长率,n 为增长次数,b 为增长后的量,则()1n a m b +=;当m 为平均下降率时,则有()1n a m b -=.7.利润等量关系(1)利润=售价-成本.(2)利润率=利润成本×100%.8.面积问题(1)类型1:如图1所示的矩形ABCD 长为a ,宽为b ,空白“回形”道路的宽为x ,则阴影部分的面积为()(22)a x b x --.(2)类型2:如图2所示的矩形ABCD 长为a ,宽为b ,阴影道路的宽为x ,则空白部分的面积为()()a x b x --.(3)类型3:如图3所示的矩形ABCD 长为a ,宽为b ,阴影道路的宽为x ,则4块空白部分的面积之和可转化为()()a x b x --.1.(2022·四川眉山)建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?2.(2022·湖北宜昌)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加%m .5月份每吨再生纸的利润比上月增加%2m ,则5月份再生纸项目月利润达到66万元.求m 的值;(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?3.(2021·四川遂宁市·中考真题)某服装店以每件30元的价格购进一批T 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T 恤的销售单价提高x 元.(1)服装店希望一个月内销售该种T 恤能获得利润3360元,并且尽可能减少库存,问T 恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T 恤获得的利润最大?最大利润是多少元?4.(2021·重庆中考真题)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份,为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低3a% 4.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加5%2a,这两种小面的总销售额在4月的基础上增加5%11a.求a的值.5.(2021·重庆中考真题)某工厂有甲、乙两个车间,甲车间生产A产品,乙车间生产B 产品,去年两个车间生产产品的数量相同且全部售出.已知A产品的销售单价比B产品的销售单价高100元,1件A产品与1件B产品售价和为500元.(1)A、B两种产品的销售单价分别是多少元?(2)随着5G时代的到来,工业互联网进入了快速发展时期.今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制B产品的生产车间.预计A产品在售价不变的情况下产量将在去年的基础上增加a%;B产品产量将在去年的基础上减少a%,但B产品的销售单价将提高3a%.则今年A、B两种产品全部售出后总销售额将在去年的基础上增加2925 a%.求a的值.。

§2.1 一元一次方程、二元一次方程(组)(试题部分).pptx

§2.1 一元一次方程、二元一次方程(组)(试题部分).pptx
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。

3.(2014苏州,16,3分)某地准备对一段长120 m的河道进行清淤疏通.若甲工程队先用4天单独完
成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单
2x 3 y,① 3x 2y 2.②
解析 由①得y=3-2x,③ 把③代入②得3x+2(3-2x)=2,解得x=4. 把x=4代入③得y=-5,
所以原方程组的解是
x y
4, 5
.
5.(2017镇江,19(1),5分)解方程组
x 2
x
y
y
4
, 5
.
解析

解法一:
x 2
y 4, ① x y 5, ②
解析 设中型汽车有x辆,小型汽车有y辆.
根据题意,得 1x2解xy得8y50, 480.
x 20,
y
3
0
.
答:中型汽车有20辆,小型汽车有30辆.
6.(2017徐州,24,8分)4月9日上午8时,2017徐州国际马拉松赛鸣枪开跑,一名34岁的男子带着他 的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:
中考数学 (江苏专用)
第二章 方程(组)与不等式(组)
§2.1 一元一次方程、二元一次方程(组)
五年中考
A组 2014-2018年江苏中考题组
考点1 解一元一次方程、二元一次方程(组)
1.(2018淮安,12,3分)若关于x、y的二元一次方程3x-ay=1有一个解是
x 则 a3 ,=

一元一次方程、二元一次方程(组)及应用

一元一次方程、二元一次方程(组)及应用

一元一次方程、二元一次方程(组)及应用知识点1:一元一次方程及应用1,系数不等于0的整式方程,叫做一元一次方程.一元一次方程的标准式是:ax +b=0(其中x 是未知数,a 、b 是已知数,并且a≠0). 一元一次方程的最简式是:ax=b(a≠0).【例1】下列方程是一元一次方程的是( )A.x2+1=5 B. 3(m -1)-1=2 ; C. x-y=6 D.都不是 【例2】选项中是方程的是( ) B. a-1>2 C. a 2+b 2-5 D. a 2+2a-3=5;解一元一次方程的一般步骤:1.去分母:在方程两边都乘以各分母的最小公倍数;2.去括号:先去小括号,再去中括号,最后去大括号;3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;4.合并同类项:把方程化成ax=b(a ≠0)的形式;5.系数化成1:在方程两边都除以未知数的系数a ,得到方程的解。

【例3】解方程:(1)47815=-x ; (2) 21216231--=+--x x x ;解方程的问题。

【例4】甲、乙两个水池共蓄水50t,甲池用去5t ,乙池又注入8t 后,甲池的水比乙池的水少3t ,问原来甲、乙两个水池各有多少吨水?【例5】一份试卷共25道题,每道题都给出四个答案,其中只有一个是正确的,要求学生把正确答案选出来,每题选对得4分,不选或选错扣1分,如果一个学生得90分,那么他选对几题?现有500名学生参加考试,有得83分的同学吗?为什么?知识点2:二元一次方程(组)及应用1,这样的方程,叫做二元一次方程.二元一次方程组:含有相同的两个未知数的两个一次方程所组成的方程组,叫做二元一次方程组.解:使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方1、 代入消元法解二元一次方程组基本思路:未知数由多变少。

消元法的基本方法:将二元一次方程组转化为一元一次方程。

2、 加减消元法解二元一次方程组两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。

一元一次方程和二元一次方程组试题及参考答案

一元一次方程和二元一次方程组试题及参考答案

、选择 C . 52009年齐齐哈尔市) 人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有(A . 4种B . 3种C . 2种D . 1种6(2009年吉林省)A 种饮料B 种饮料单价少1元,小峰买了 2瓶A 种饮料和3瓶B 种饮料, 共花了 13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( ) 次方程和次方程组专题训练1、 (2009年福州)二元一次方程组x y x y o 的解是 2、 (2009青海) 3、 A x0,已知代数式 2, 0. 心3与2x C .(2009年四川省内江市)若关于x , y 的方程组x 1, y 1. 是同类项,那么 D . m 、2x yx my m 的解是 x 1, y 1. n 的值分别是( ,则m n 为( )4、 (2009年桂林市、百色市)已知2 是二元一次方程组 1ax ax by by 7的解,贝U a b 的值为 1 (A . 5). 1B . — 1C .(2009年淄博市)家电下乡是我国应对当前国际金融危机,惠农强带动工业生产,促进消 费, 拉动内需的一项重要举措•国家规定,农民购买家电下乡产品将得到销售价格 13%的补贴资 金.今年5月 1 日,甲商场向农民销售某种家电下乡手机 20部.已知从甲商场售出的这20部手机 国家共发放了 2340元的补贴,若设该手机的销售价格为 x 元,以下方程正确的是20x 13% 2340B . 20x 2340 13%C . 20x(1 13%) 2340D . 13% x 2340 一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20 )2(x 1) 3x 13B . 2(x 1) 3x 13 2x 3(x 1) 13 D . 2x 3(x 1)13 2009年深圳市)班长去文具店买毕业留言卡 折优惠,则班长应付 A . 45 元 B . 90 元7、 50张, C . 10 元 每张标价2元,店老板说可以按标价九 ()D . 100 元 6、() D.- 3 3cm 和8cm 则此三角形的第三边的长可能是D. 13cm(A ) 0 (B ) 3 (C ) 7 (D ) 1011、( 2009年台湾)如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为 80 cm 2、100 cm 2,且甲容器装满水,乙容器是空的。

【北师大版】2021年中考数学模拟专题《 一元一次方程、二元一次方程(组)及应用》(含解析)

【北师大版】2021年中考数学模拟专题《 一元一次方程、二元一次方程(组)及应用》(含解析)

专题01一元一次方程、二元一次方程(组)及应用学校:___________姓名:___________班级:___________一、选择题:(共4个小题)1.【成都四月模拟】某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为()A.1.2×0.8x+2×0.9(60+x)=87 B.1.2×0.8x+2×0.9(60-x)=87 C.2×0.9x+1.2×0.8(60+x)=87 D.2×0.9x+1.2×0.8(60-x)=87 【答案】B.【解析】【考点定位】一元一次方程的应用.2.【巴中】若单项式22a bx y+与413a bx y--是同类项,则a,b的值分别为()A.a=3,b=1 B.a=﹣3,b=1 C.a=3,b=﹣1 D.a=﹣3,b=﹣1 【答案】A.【解析】试题分析:∵单项式22a bx y+与413a bx y--是同类项,∴24a ba b-=⎧⎨+=⎩,解得:a=3,b=1,故选A.【考点定位】1.解二元一次方程组;2.同类项.3.【绵阳】若5210a b a b+++-+=,则()2015b a-=()A.﹣1 B.1 C.20155 D.20155-【答案】A.【解析】试题分析:∵5210a b a b+++-+=,∴⎩⎨⎧=+-=++125baba,解得:⎩⎨⎧-=-=32ba,则()20152015321b a-=-+=-().故选A.【考点定位】1.解二元一次方程组;2.非负数的性质.4.【乐山】电影《刘三姐》中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱到:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?”刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.”若用数学方法解决罗秀才提出的问题,设“一少”的狗有x条,“三多”的狗有y 条,则解此问题所列关系式正确的是()A.33000300x yx y+=⎧⎨<<<⎩B.33000300x yx yx y+=⎧⎪<<<⎨⎪⎩、为奇数C.330003300x yx yx y+=⎧⎪<=<⎨⎪⎩、为奇数D.3300 0300 0300 x yxyx y+=⎧⎪<<⎪⎨<<⎪⎪⎩、为奇数【答案】B.【解析】试题分析:设“一少”的狗有x条,“三多”的狗有y条,可得:33000300x yx yx y+=⎧⎪<<<⎨⎪⎩、为奇数,故选B.【考点定位】由实际问题抽象出二元一次方程.二、填空题:(共4个小题)5.【甘孜州】已知关于x的方程332xa x-=+的解为2,则代数式221a a-+的值是.【答案】1.【解析】【考点定位】一元一次方程的解.6.【南充】已知关于x ,y 的二元一次方程组⎩⎨⎧-=+=+12,32y x k y x 的解互为相反数,则k 的值是 . 【答案】﹣1. 【解析】试题分析:解方程组⎩⎨⎧-=+=+12,32y x k y x 得:232x k y k =+⎧⎨=--⎩,因为关于x ,y 的二元一次方程组2321x y k x y +=⎧⎨+=-⎩的解互为相反数,可得:2330k k +--=,解得:1k =-.故答案为:﹣1.【考点定位】二元一次方程组的解.7.【崇左】4个数a 、b 、c 、d 排列成a bc d ,我们称之为二阶行列式,规定它的运算法则为:a b ad bcc d=-.若3 3123 3x x x x +-=-+,则x=____.【答案】1. 【解析】试题分析:根据规定可得:223 3(3)(3)12123 3x x x x x x x +-=+--==-+,整理得:1x =,故答案为:1.【考点定位】1.解一元一次方程;2.新定义.8.【龙东】某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省 元. 【答案】18或46.8. 【解析】【考点定位】1.一元一次方程的应用;2.分类讨论;3.综合题.三、解答题:(共2个小题)9.【珠海】阅读材料:善于思考的小军在解方程组2534115x yx y+=⎧⎨+=⎩①②时,采用了一种“整体代换”的解法:将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为41 xy=⎧⎨=-⎩.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组325 9419x yx y-=⎧⎨-=⎩①②;(2)已知x,y满足方程组2222321247 2836x xy yx xy y⎧-+=⎪⎨++=⎪⎩①②.(i)求224x y+的值;(ii)求112x y+的值.【答案】(1)32xy=⎧⎨=⎩;(2)(i)17;(ii)54±.【解析】【考点定位】1.解二元一次方程组;2.阅读型;3.整体思想;4.综合题.10.【百色】某次知识竞赛有20道必答题,每一题答对得10分,答错或不答都扣5分,3道抢答题,每一题抢答对得10分,抢答错扣20分,抢答不到不得分也不扣分.甲乙两队决赛,甲队必答题得了170分,乙队必答题只答错了1题.(1)甲队必答题答对答错各多少题?(2)抢答赛中,乙队抢答对了第1题,又抢到了第2题,但还没作答时,甲队拉拉队队员小黄说:“我们甲队输了!”,小汪说:“小黄的话不一定对!”,请你举一例说明“小黄的话”有何不对.【答案】(1)甲队答对18道题,则甲队答错或不答的有2道题;(2)举例见试题解析.【解析】③若第2题甲队抢答错误:则甲得分:190-20=170分,第3题乙队抢答错误,则甲队最后得分:170分,乙队得分:185-20=165分,甲队获胜.试题解析:(1)设甲队答对x道题,则甲队答错或不答的有(20﹣x)道题,由题意,得:10x﹣5(20﹣x)=170,解得:x=18.∴甲队答错或不答的有2道题.答:甲队答对18道题,则甲队答错或不答的有2道题;(2)甲队现在得分:170+20=190分,乙队得分:19×10-5=185分,有以下三种情况,甲队可获胜:①若第2题甲队抢答正确:则甲得分:190+20=210分,第3题甲队不抢答,不管乙队抢答是否正确,则乙队最多得分:185+20=205分,甲队获胜;②若第2题甲队抢答错误:则甲得分:190-20=170分,第3题甲队抢答正确,则甲队最后得分:170+20=190分,乙队得分185,甲队获胜;③若第2题甲队抢答错误:则甲得分:190-20=170分,第3题乙队抢答错误,则甲队最后得分:170分,乙队得分:185-20=165分,甲队获胜.【考点定位】1.一元一次方程的应用;2.分类讨论;3.综合题.专题02一元二次方程及应用学校:___________姓名:___________班级:___________ 一、选择题:(共4个小题)1.【达州】方程21(2)304m x mx---+=有两个实数根,则m的取值范围()A.52m>B.52m≤且2m≠C.3m≥D.3m≤且2m≠【答案】B.【解析】试题分析:根据题意得:220301(3)4(2)04mmm m⎧⎪-≠⎪-≥⎨⎪⎪∆=----⨯≥⎩,解得52m≤且2m≠.故选B.【考点定位】1.根的判别式;2.一元二次方程的定义.2.【攀枝花】关于x的一元二次方程2(2)(21)20m x m x m-+++-=有两个不相等的正实数根,则m的取值范围是()A.34m>B.34m>且2m≠C.122m-<<D.324m<<【答案】D.【解析】【考点定位】1.根的判别式;2.一元二次方程的定义.3.【广安】一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( )A.12 B.9 C.13 D.12或9 【答案】A. 【解析】【考点定位】1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.4.【雅安中学中考模拟】关于x的方程2()0m x h k ++=(m,h,k均为常数,m≠0)的解是13x =-,22x =,则方程2(3)0m x h k +-+=,的解是 ( ) A . 16x =-,21x =- B.10x =,25x = C .13x =-,25x = D.16x =-,22x =【答案】B. 【解析】试题分析:解方程2()0m x h k ++=(m,h,k均为常数,m≠0)得kx h m =-±-,而关于x的方程2()0m x h k ++=(m,h,k均为常数,m≠0)的解是13x =-,22x =,所以3k h m ---=-,2k h m -+-=,方程2(3)0m x h k +-+=的解为3k x h m =-±-,所以1330x =-=,2325x =+=.故选B.【考点定位】1.解一元二次方程-直接开平方法;2.综合题. 二、填空题:(共4个小题)5.【泸州】设1x 、2x 是一元二次方程2510x x --=的两实数根,则2212x x +的值为. 【答案】27. 【解析】 试题分析:∵1x 、2x 是一元二次方程2510x x --=的两实数根,∴125x x +=,121x x =-,∴2212x x +=21212()2x x x x +-=25+2=27,故答案为:27.【考点定位】根与系数的关系.6.【达州】新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童裝应降价x 元,可列方程为 . 【答案】(40﹣x)(20+2x)=1200. 【解析】【考点定位】1.由实际问题抽象出一元二次方程;2.销售问题.7.【广元】从3,0,-1,-2,-3这五个数中抽取一个敖,作为函数2(5)y m x =-和关于x的一元二次方程2(1)10m x mx +++=中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是________. 【答案】2-. 【解析】试题分析:∵所得函数的图象经过第一、三象限,∴250m ->,∴25m <,∴3,0,﹣1,﹣2,﹣3中,3和﹣3均不符合题意,将m=0代入2(1)10m x mx +++=中得,210x +=,△=﹣4<0,无实数根;将1m =-代入2(1)10m x mx +++=中得,10x -+=,1x =,有实数根,但不是一元二次方程;将2m =-代入2(1)10m x mx +++=中得,2210x x +-=,△=4+4=8>0,有实数根. 故m=2-.故答案为:2-.【考点定位】1.根的判别式;2.一次函数图象与系数的关系;3.综合题.8.【凉山州】已知实数m,n满足23650m m +-=,23650n n +-=,且m n ≠,则n mm n += .【答案】225-.【解析】试题分析:∵m n ≠时,则m,n是方程23650x x --=的两个不相等的根,∴2m n +=,53mn =-.∴原式=22m n mn +=2()2m n mn mn +-=2522()223553-⨯-=--,故答案为:225-.【考点定位】1.根与系数的关系;2.条件求值;3.压轴题. 三、解答题:(共2个小题)9.【崇左】为落实国务院房地产调控政策,使“居者有其屋”.某市加快了廉租房的建设力度,2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同. (1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房? 【答案】(1)50%;(2)18. 【解析】【考点定位】1.一元二次方程的应用;2.增长率问题.10.【广元】李明准备进行如下操作实验:把一根长40cm的铗丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于582cm,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于482cm.你认为他的说法正确吗?请说明理由.【答案】(1)12cm和28cm;(2)正确.【解析】(2)两正方形面积之和为48时,10058482+-=xx,0416402=+-x x ,∵06441614)40(2<-=⨯⨯--, ∴该方程无实数解,也就是不可能使得两正方形面积之和为48cm2,李明的说法正确.【考点定位】1.一元二次方程的应用;2.几何图形问题.。

一元一次方程二元一次方程组

一元一次方程二元一次方程组

一元一次方程二元一次方程组一、一元一次方程例如:求解方程3x+5=0。

解题步骤:1.移项得到3x=-5;2.除以系数3得到x=-5/3;3.解出x=-5/3,即方程3x+5=0的解为x=-5/3二、一元一次方程组一元一次方程组是指由若干个一元一次方程组成的方程组,其一般形式为⎧⎧⎧⎧⎧a1x+b1y+c1=0a2x+b2y+c2=0...anx+bny+cn=0,其中ai,bi和ci为已知数,且ai≠0,bi≠0(i=1,2,...n)。

解一元一次方程组的基本步骤是通过消元法或代入法将方程组化简为只含有一个未知数的方程,然后求出未知数的值,最后代入原方程求出其他未知数的值。

例如:求解方程组⎧⎧⎧⎧⎧2x+y=-33x-4y=6解题步骤:1.通过消元法,将第二个方程的系数乘以2,得到⎧⎧⎧⎧⎧2x+y=-33x-4y=62.消去y的系数,得到⎧⎧⎧⎧⎧2x+y=-33x-4y=63.将得到的方程组化简,得到⎧⎧56x=-12;y=15解得x=-12/56,y=15即方程组⎧⎧⎧⎧⎧2x+y=-33x-4y=6的解为x=-12/56,y=15三、二元一次方程组二元一次方程组是指含有两个未知数的一次方程组,其一般形式为⎧⎧⎧⎧⎧a1x+b1y=c1a2x+b2y=c2...anx+bny=cn,其中ai,bi和ci为已知数,且ai≠0,bi≠0(i=1,2,...n)。

解二元一次方程组的基本步骤是通过消元法或代入法将方程组化简为只含有一个未知数的方程,然后求出未知数的值,最后代入原方程求出其他未知数的值。

例如:求解方程组⎧⎧⎧⎧⎧2x+3y=53x-4y=14解题步骤:1.通过消元法,将第二个方程的系数乘以2,得到⎧⎧⎧⎧⎧2x+3y=56x-8y=282.消去x的系数,得到⎧⎧⎧⎧⎧2x+3y=56x-8y=283.将得到的方程组化简,得到⎧⎧11y=25;x=14/8解得y=25/11,x=14/8即方程组⎧⎧⎧⎧⎧2x+3y=53x-4y=14的解为y=25/11,x=14/8四、一元一次方程(组)的应用1.速度问题汽车以恒定速度行驶,已知汽车每小时行驶60千米,问行驶t小时后,汽车行驶的千米数?解:设行驶的千米数为x,则根据速度=距离/时间的公式可得x=60t。

二元一次方程组的应用习题(带答案)

二元一次方程组的应用习题(带答案)

1.令狐采学【题文】班主任王老师为奖励表现出色的同学,用20元钱买来铅笔与中性笔共30•支作为奖品.已知铅笔的单价为0.50元,中性笔的单价为1元,问铅笔与中性笔各买了几支?设铅笔买了x支,中性笔买了y支,则可得方程组为_________.【答案】【解析】试题分析:根据等量关系:总价为20元,总数量为共30•支,即可列出方程组。

根据等量关系:总价为20元,可得方程,根据等量关系:总数量为共30•支,可得方程,则可得方程组为.考点:本题考查的是根据实际问题列二元一次方程组点评:解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组.2.【题文】两袋水果共6千克,一袋苹果的价格是每千克4元,•一袋芒果的价格是每千克12元,共花费40元,则一袋苹果的质量为_______千克,一袋芒果的质量为_____千克.【答案】4,2【解析】试题分析:设一袋苹果的质量为x千克,一袋芒果的质量为y 千克,根据等量关系:总质量为6千克,总价为40元,即可列出方程组,解出即可。

设苹果每千克x元,芒果每千克y元,由题意得,解得,答:一袋苹果的质量为4千克,一袋芒果的质量为2千克.考点:本题考查了二元一次方程组的应用点评:解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.3.【题文】现有56枚1角和5角的硬币,共有14•元,•问1•角、•5•角的硬币分别是______,_____枚.【答案】35,21【解析】试题分析:设1•角的硬币是x枚,5•角的硬币是y枚,根据等量关系:总数量为56枚,总价为14•元,即可列出方程组,解出即可.设1•角的硬币是x枚,5•角的硬币是y枚,由题意得,解得,答:1•角的硬币是35枚,5•角的硬币是21枚.考点:本题考查了二元一次方程组的应用点评:解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.同时要注意统一单位。

列一元一次方程或二元一次方程组解应用题

列一元一次方程或二元一次方程组解应用题

实用标准文案文档列一元一次方程或二元一次方程组解应用题:(二)班级 姓名 座号1、 白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?3、某年级学生外出参观,如果每辆汽车坐45人,那么有15个学生没有坐位;如果每辆汽车坐60人,那么空出一辆汽车,问有几辆汽车?有多少个学生?4、某班学生参加运土劳动,一部分同学抬土,另一部分同学挑土,已知全班共用土筐59个,扁担36根,求抬土与挑土的各有多少人?2、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车情况如下表:第一次第二次甲种货车辆数(单位:辆) 2 5乙种货车辆数(单位:辆) 3 6累计运货吨数(单位:吨) 15.5 35现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货物,如果按每吨付运费30元计算,问:货主应付运费多少元?5、李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税后可得利息43.92元,已知这两种储蓄的年利率的和为3.24%,问这两种储蓄的年利率各是几分之几?(注:公民应交利息所得税=利息金额×20%)6、保护环境,某校环保小组成员小明收集废电池,第一天收集1号电池4节,5号电池5节,总重量为460g;第二天收集1号电池2节,5号电池3节,总重量为240g。

求1号和5号电池每节分别重多少克?7、一只船的载重量为380t,容积为2000m3,有甲、乙两种货物,甲货物4m3/t,乙货物6m3/t,现要最大限度地利用船的载重量和容积,问两种货物各应装多少吨?8、某市按以下规定收取每月水费;若每月每户用水不超过20立方米,则每立方米水价按1.2元收费;若超过20立方米,则超过部分每立方米按2元收费,如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么这个月他共用了多少立方米水。

2022年全国数学中考真题(江苏广东四川湖南等)汇编专题05 一元一次方程与二元一次方程组(解析版)

2022年全国数学中考真题(江苏广东四川湖南等)汇编专题05 一元一次方程与二元一次方程组(解析版)

专题05 一元一次方程与二元一次方程组一.选择题1.(2022·甘肃武威)《九章算术》是中国古代的一部数学专著,其中记载了一道有趣的题:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”大意是:今有野鸭从南海起飞,7天到北海;大雁从北海起飞,9天到南海.现野鸭从南海、大雁从北海同时起飞,问经过多少天相遇?设经过x 天相遇,根据题意可列方程为( ) A .11179x ⎛⎫+= ⎪⎝⎭B .11179x ⎛⎫-= ⎪⎝⎭C .()971x -=D .()971x +=【答案】A【分析】设总路程为1,野鸭每天飞17,大雁每天飞19,当相遇的时候,根据野鸭的路程+大雁的路程=总路程即可得出答案.【详解】解:设经过x 天相遇,根据题意得:17x +19x =1,∴(17+19)x =1,故选:A .【点睛】本题考查了由实际问题抽象出一元一次方程,本题的本质是相遇问题,根据等量关系:野鸭的路程+大雁的路程=总路程列出方程是解题的关键.2.(2022·山东滨州)在物理学中,导体中的电流Ⅰ跟导体两端的电压U ,导体的电阻R 之间有以下关系:UI R=去分母得IR U =,那么其变形的依据是( ) A .等式的性质1 B .等式的性质2 C .分式的基本性质 D .不等式的性质2【答案】B【分析】根据等式的性质2可得答案. 【详解】解:UI R=去分母得IR U =,其变形的依据是等式的性质2,故选:B . 【点睛】本题考查了等式的性质2:等式的两边同时乘以或除以同一个不为零的数,等式仍然成立. 3.(2022·四川南充)《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡有x 只,可列方程为( ) A .42(94)35x x +-= B .42(35)94x x +-= C .24(94)35x x +-= D .24(35)94x x +-=【答案】D【分析】设鸡有x 只,则兔子有(35-x )只,根据足共有94列出方程即可.【详解】解:设鸡有x 只,则兔子有(35-x )只,根据题意可得:2x +4(35-x )=94,故选:D .【点睛】题目主要考查一元一次方程的应用,理解题意列出方程是解题关键.4.(2022·四川自贡)等腰三角形顶角度数比一个底角度数的2倍多20°,则这个底角的度数为( ) A .30° B .40° C .50° D .60°【答案】B【分析】这个底角的度数为x ,则顶角的度数为(2x +20°),根据三角形的内角和等于180°,即可求解. 【详解】解:设这个底角的度数为x ,则顶角的度数为(2x +20°),根据题意得: 2220180x x ++︒=︒,解得:40x =︒,即这个底角的度数为40°.故选:B【点睛】本题主要考查了等腰三角形的性质,三角形的内角和定理,熟练掌握等腰三角形的性质,三角形的内角和定理是解题的关键.5.(2022·江苏宿迁)我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x 间,房客y 人,则列出关于x 、y 的二元一次方程组正确的是( )A .()7791x y x y -=⎧⎨-=⎩B .()7791x yx y +=⎧⎨-=⎩C .7791x yx y +=⎧⎨-=⎩D .7791x yx y -=⎧⎨-=⎩【答案】B【分析】设该店有客房x 间,房客y 人;根据题意一房七客多七客,一房九客一房空得出方程组即可.【详解】解:设该店有客房x 间,房客y 人;根据题意得:()7791x yx y +=⎧⎨-=⎩,故选:B .【点睛】本题考查了二元一次方程组的应用;根据题意得出方程组是解决问题的关键.6.(2022·浙江杭州)某体育比赛的门票分A 票和B 票两种,A 票每张x 元,B 票每张y 元.已知10张A 票的总价与19张B 票的总价相差320元,则( ) A .1032019xy= B .1032019y x = C .1019320x y -= D .1910320x y -= 【答案】C【分析】根据题中数量关系列出方程即可解题;【详解】解:由10张A 票的总价与19张B 票的总价相差320元可知,1019320x y -=或1910320y x -=,∴1019320x y -=,故选:C .【点睛】本题主要考查二元一次方程的应用,解题的关键在于能根据实际情况对题目全面分析. 7.(2022·浙江嘉兴)“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x 场,平了y 场,根据题意可列方程组为( )A .7317x y x y +=⎧⎨+=⎩B .9317x y x y +=⎧⎨+=⎩C .7317x y x y +=⎧⎨+=⎩D .9317x y x y +=⎧⎨+=⎩【答案】A【分析】由题意知:胜一场得3分,平一场得1分,负一场得0分,某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分等量关系:胜场+平场+负场9=,得分总和为17. 【详解】解:设该队胜了x 场,平了y 场, 根据题意,可列方程组为:29317x y x y ++=⎧⎨+=⎩,7317x y x y +=⎧∴⎨+=⎩故选:A .【点睛】根据实际问题中的条件列方程组时,解题的关键是要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.8.(2022·四川眉山)我国古代数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊三,直金十二两.问牛、羊各直金几何?”题目大意是:5头牛、2只羊共19两银子;2头牛、3只羊共12两银子,每头牛、每只羊各多少两银子?设1头牛x 两银子,1只羊y 两银子,则可列方程组为( )A .52192312x y x y +=⎧⎨+=⎩B .52122319x y x y +=⎧⎨+=⎩C .25193212x y x y +=⎧⎨+=⎩D .25123219x y x y +=⎧⎨+=⎩【答案】A【分析】根据“5头牛、2只羊共19两银子;2头牛、3只羊共12两银子”,得到两个等量关系,即可列出方程组.【详解】解:设1头牛x 两银子,1只羊y 两银子,由题意可得:52192312x y x y +=⎧⎨+=⎩,故选:A .【点睛】本题考查由实际问题抽象初二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.9.(2022·湖南株洲)对于二元一次方程组127y x x y =-⎧⎨+=⎩①②,将①式代入②式,消去y 可以得到( )A .217x x +-=B .227x x +-=C .17x x +-=D .227x x ++= 【答案】B 【分析】将①式代入②式消去去括号即可求得结果. 【详解】解:将①式代入②式得,2(1)227x x x x +-=+-=,故选B .【点睛】本题考查了代入消元法求解二元一次方程组,熟练掌握代入消元法是解题的关键.10.(2022·浙江宁波)我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而春之,得米七斗.问故米几何?”意思为:50斗谷子能出30斗米,即出米率为35.今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再春成米,共得米7斗.问原来有米多少斗?如果设原来有米x 斗,向桶中加谷子y 斗,那么可列方程组为( )A .10375x y x y +=⎧⎪⎨+=⎪⎩ B .10375x y x y +=⎧⎪⎨+=⎪⎩C .75103x y x y +=⎧⎪⎨+=⎪⎩D .75103x y x y +=⎧⎪⎨+=⎪⎩【答案】A【分析】根据题意列出方程组即可;【详解】原来有米x 斗,向桶中加谷子y 斗,容量为10斗,则10x y +=;已知谷子出米率为35,则来年共得米375x y +=;则可列方程组为10375x y x y +=⎧⎪⎨+=⎪⎩,故选A . 【点睛】本题考查了根据实际问题列出二元一次方程组,题目较简单,根据题意正确列出方程即可. 11.(2022·江苏扬州)《孙子算经》是我国古代经典数学名著,其中有一道“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?”学了方程(组)后,我们可以非常顺捷地解决这个问题,如果设鸡有x 只,兔有y 只,那么可列方程组为( )A .354494x y x y +=⎧⎨+=⎩B .354294x y x y +=⎧⎨+=⎩C .944435x y x y +=⎧⎨+=⎩D .352494x y x y +=⎧⎨+=⎩【答案】D【分析】一只鸡1个头2个足,一只兔1个头4个足,利用共35头,94足,列方程组即可 【详解】一只鸡1个头2个足,一只兔1个头4个足设鸡有x 只,兔有y 只 由35头,94足,得:352494x y x y +=⎧⎨+=⎩故选:D【点睛】本题考查方程组的实际应用,注意结合实际情况,即一只鸡1个头2个足,一只兔1个头4个足,去列方程12.(2022·浙江舟山)上学期某班的学生都是双人同桌,其中14男生与女生同桌,这些女生占全班女生的15,本学期该班新转入4个男生后,男女生刚好一样多,设上学期该班有男生x 人,女生y 人,根据题意可得方程组为( )A .445x y x y +=⎧⎪⎨=⎪⎩B .454x yx y +=⎧⎪⎨=⎪⎩C .445x yx y -=⎧⎪⎨=⎪⎩D .454x yx y -=⎧⎪⎨=⎪⎩【答案】A【分析】设上学期该班有男生x 人,女生y 人,则本学期男生有(x +4)人,根据题意,列出方程组,即可求解.【详解】解:设上学期该班有男生x 人,女生y 人,则本学期男生有(x +4)人,根据题意得:445x yx y +=⎧⎪⎨=⎪⎩.故选:A 【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.13.(2022·四川达州)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(‘两’为我国古代货币单位);马二匹、牛五头,共价三十八两,阀马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( )A .46382548x y x y +=⎧⎨+=⎩B .46482538x y x y +=⎧⎨+=⎩C .46485238x y x y +=⎧⎨+=⎩D .46482538y x y x +=⎧⎨+=⎩【答案】B【分析】设马每匹x 两,牛每头y 两,由“马四匹、牛六头,共价四十八两”可得4648x y +=,根据“马二匹、牛五头,共价三十八两,”可得2538x y +=,即可求解.【详解】解:设马每匹x 两,牛每头y 两,根据题意可得46482538x y x y +=⎧⎨+=⎩故选B【点睛】本题考查了列二元一次方程组,理解题意列出方程组是解题的关键.14.(2022·四川成都)中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x 个,甜果有y 个,则可列方程组为( )A .100041199979x y x y +=⎧⎪⎨+=⎪⎩B .100079909411x y x y +=⎧⎪⎨+=⎪⎩ C .100079999x y x y +=⎧⎨+=⎩ D .1000411999x y x y +=⎧⎨+=⎩ 【答案】A 【分析】根据题意可以列出相应的方程组,从而可以解答本题. 【详解】解:设苦果有x 个,甜果有y 个,由题意可得,100041199979x y x y +=⎧⎪⎨+=⎪⎩故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组的有关知识,正确找到相等关系是解决本题的关键. 15.(2022·江苏苏州)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”设走路快的人要走x 步才能追上,根据题意可列出的方程是( ) A .60100100x x =- B .60100100x x =+C .10010060x x =+ D .10010060x x =- 【答案】B【分析】根据题意,先令在相同时间t 内走路快的人走100步,走路慢的人只走60步,从而得到走路快的人的速度100t ,走路慢的人的速度60t,再根据题意设未知数,列方程即可 【详解】解:令在相同时间t 内走路快的人走100步,走路慢的人只走60步,从而得到走路快的人的速度100t,走路慢的人的速度60t, 设走路快的人要走x 步才能追上,根据题意可得60100100x x t t=+⨯,∴根据题意可列出的方程是60100100x x =+,故选:B . 【点睛】本题考查应用一元一次方程解决数学史问题,读懂题意,找准等量关系列方程是解决问题的关键. 16.(2022·湖南湘潭)为培养青少年的创新意识、动手实践能力、现场应变能力和团队精神,湘潭市举办了第10届青少年机器人竞赛.组委会为每个比赛场地准备了四条腿的桌子和三条腿的凳子共12个,若桌子腿数与凳子腿数的和为40条,则每个比赛场地有几张桌子和几条凳子?设有x 张桌子,有y 条凳子,根据题意所列方程组正确的是( )A .404312x y x y +=⎧⎨+=⎩ B .124340x y x y +=⎧⎨+=⎩ C .403412x y x y +=⎧⎨+=⎩ D .123440x y x y +=⎧⎨+=⎩【答案】B【分析】根据四条腿的桌子和三条腿的凳子共12个可列方程x +y =12,根据桌子腿数与凳子腿数的和为40条可列方程4x+3y=40,组成方程组即可.【详解】解:根据题意可列方程组,124340x yx y+=⎧⎨+=⎩故选:B.【点睛】本题考查实际问题抽出二元一次方程组,解题的关键是要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.17.(2022·湖北宜昌)五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为()A.30B.26C.24D.22【答案】B【分析】设1艘大船与1艘小船分别可载x人,y人,根据“1艘大船与2艘小船一次共可以满载游客32人”和“2艘大船与1艘小船一次共可以满载游客46人”这两个等量关系列方程组,解出(x+y)即可.【详解】设1艘大船与1艘小船分别可载x人,y人,依题意:232246x yx y+=⎧⎨+=⎩①②(①+②)÷3得:26x y+=故选:B.【点睛】本题考查二元一次方程组的实际应用;注意本题解出(x+y)的结果即可.18.(2022·湖北武汉)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x与y的和是()A.9B.10C.11D.12【答案】D【解析】【分析】根据题意设出相应未知数,然后列出等式化简求值即可.【详解】解:设如图表所示:根据题意可得:x +6+20=22+z +y , 整理得:x -y =-4+z ,x +22+n =20+z +n ,20+y +m =x +z +m ,整理得:x =-2+z ,y =2z -22,∴x -y =-2+z -(2z -22)=-4+z ,解得:z =12, ∴x +y =3z -24=12 故选:D .【点睛】题目主要考查方程的应用及有理数加法的应用,理解题意,列出相应方程等式然后化简求值是解题关键. 二.填空题19.(2022·四川眉山)一个多边形外角和是内角和的29,则这个多边形的边数为________. 【答案】11【分析】多边形的内角和定理为2180()n -⨯︒,多边形的外角和为360°,据题意列出方程求出n 的值. 【详解】解:根据题意可得:2(2)1803609n ⨯-⨯︒=︒,解得:11n = ,故答案为:11.【点睛】本题主要考查的是多边形的内角和公式以及外角和定理,属于基础题型.记忆理解并应用这两个公式是解题的关键.20.(2022·浙江绍兴)元朝朱世杰的《算学启蒙》一书记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.” 其题意为:“良马每天行240里,劣马每天行150里,劣马先行12天,良马要几天追上劣马?”答:良马追上劣马需要的天数是______.【答案】20【分析】设良马x 天追上劣马,根据良马追上劣马所走路程相同可得:240x =150(x +12),即可解得良马20天追上劣马.【详解】解:设良马x 天追上劣马,根据题意得:240x =150(x +12),解得x =20, 答:良马20天追上劣马;故答案为:20.【点睛】本题考查一元一次方程的应用,解题的关键是读懂题意,找到等量关系列出方程.21.(2022·浙江嘉兴)某动物园利用杠杆原理称象:如图,在点P 处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A ,B 处,当钢梁保持水平时,弹簧秤读数为k (N ).若铁笼固定不动,移动弹簧秤使BP 扩大到原来的n (1n >)倍,且钢梁保持水平,则弹簧秤读数为_______(N )(用含n ,k 的代数式表示).【答案】kn【分析】根据杠杆的平衡条件是:动力×动力臂=阻力×阻力臂,计算即可. 【详解】设弹簧秤新读数为x根据杠杆的平衡条件可得:k PB x nPB ⋅=⋅ 解得k x n =故答案为:k n. 【点睛】本题是一个跨学科的题目,熟记物理公式动力×动力臂=阻力×阻力臂是解题的关键.22.(2022·重庆)特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1∶3∶2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为_________. 【答案】4:3【分析】设每包麻花的成本为x 元,每包米花糖的成本为y 元,桃片的销售量为m 包,则每包桃片的成本为2x 元,米花糖的销售量为3m 包,麻花的销售量为2m 包,根据三种特产的总利润是总成本的25%列得220%30%320%225%232x m y m x mmx my mx⋅⋅+⋅+⋅=++,计算可得.【详解】解:设每包麻花的成本为x 元,每包米花糖的成本为y 元,桃片的销售量为m 包,则每包桃片的成本为2x 元,米花糖的销售量为3m 包,麻花的销售量为2m 包,由题意得220%30%320%225%232x m y m x mmx my mx ⋅⋅+⋅+⋅=++,解得3y =4x ,∴y :x =4:3,故答案为:4:3.【点睛】此题考查了三元一次方程的实际应用,正确理解题意确定等量关系是解题的关键.23.(2022·湖北随州)已知二元一次方程组2425x y x y +=⎧⎨+=⎩,则x y -的值为______.【答案】1【分析】直接由②-①即可得出答案.【详解】原方程组为2425x y x y +=⎧⎨+=⎩①②,由②-①得1x y -=.故答案为:1.【点睛】本题考查二元一次方程组的特殊解法,解题的关键是学会观察,并用整体法求解. 三.解答题24.(2022·山东泰安)泰安某茶叶店经销泰山女儿茶,第一次购进了A 种茶30盒,B 种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B 种茶15盒,共花费5100元.求第一次购进的A 、B 两种茶每盒的价格. 【答案】A 种茶每盒100元,B 种茶每盒150元【分析】设第一次购进A 种茶每盒x 元,B 种茶每盒y 元,根据第一次购进了A 种茶30盒,B 种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B 种茶15盒,共花费5100元列出方程组求解即可.【详解】解:设第一次购进A 种茶每盒x 元,B 种茶每盒y 元,根据题意,得30206000,1.220 1.2155100.x y x y +=⎧⎨⨯+⨯=⎩解,得100,150.x y =⎧⎨=⎩ ∴A 种茶每盒100元,B 种茶每盒150元.【点睛】本题主要考查了二元一次方程组的实际应用,正确设出未知数列出方程组求解是解题的关键.25.(2022·浙江台州)解方程组:2435x y x y +=⎧⎨+=⎩.【答案】21x y =⎧⎨=⎩ 【分析】用加减消元法解二元一次方程组即可;【详解】2435x y x y +=⎧⎨+=⎩①②.解:-②①,得1y =. 把1y =代入①,得2x =.∴原方程组的解为21x y =⎧⎨=⎩.【点睛】本题考查了二元一次方程组的解法,本题使用加减消元法比较简单,当然使用代入消元求解二元一次方程组亦可.26.(2022·江苏连云港)我国古代数学名著《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:今有几个人共同出钱购买一件物品.每人出8钱,剩余3钱;每人出7钱,还缺4钱.问人数、物品价格各是多少?请你求出以上问题中的人数和物品价格.【答案】有7人,物品价格是53钱【分析】设人数为x 人,根据“物品价格=8×人数-多余钱数=7×人数+缺少的钱数”可得方程,求解方程即可.【详解】解:设人数为x 人,由题意得8374x x -=+,解得7x =.所以物品价格是87353⨯-=.答:有7人,物品价格是53钱.【点睛】本题主要考查由实际问题抽象出一元一次方程,由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.27.(2022·湖南常德)小强的爸爸平常开车从家中到小强奶奶家,匀速行驶需要4小时,某天,他们以平常的速度行驶了12的路程时遇到了暴雨,立即将车速减少了20千米/小时,到达奶奶家时共用了5小时,问小强家到他奶奶家的距离是多少千米?【答案】240千米 【分析】平常速度行驶了12的路程用时为2小时,后续减速后用了3小时,用遇到暴雨前行驶路程加上遇到暴雨后行驶路程等于总路程这个等量关系列出方程求解即可.【详解】解:设小强家到他奶奶家的距离是x 千米,则平时每小时行驶4x 千米,减速后每小时行驶204x ⎛⎫- ⎪⎝⎭千米,由题可知:遇到暴雨前用时2小时,遇到暴雨后用时5-2=3小时, 则可得:232044x x x ⎛⎫⨯+-= ⎪⎝⎭,解得:240x =, 答:小强家到他奶奶家的距离是240千米.【点睛】本题考查了一元一次方程应用中的行程问题,直接设未知数法,找到准确的等量关系,列出方程正确求解是解题的关键.28.(2022·湖南衡阳)冰墩墩(Bing Dwen Dwen )、雪容融(Shuey Rhon Rhon )分别是2022年北京冬奥会、冬残奥会的吉样物.冬奥会来临之际,冰墩墩、雪容融玩偶畅销全国.小雅在某网店选中两种玩偶,决定从该网店进货并销售,第一次小雅用1400元购进了冰墩墩玩偶15个和雪容融玩偶5个,已知购进1个冰墩墩玩偶和1个雪容融玩偶共需136元,销售时每个冰墩墩玩偶可获利28元,每个雪容融玩偶可获利20元.(1)求两种玩偶的进货价分别是多少?(2)第二次小雅进货时,网店规定冰墩墩玩偶进货数量不得超过雪容融玩偶进货数量的1.5倍.小雅计划购进两种玩偶共40个,应如何设计进货方案才能获得最大利润,最大利润是多少元?【答案】(1)冰墩墩进价为72元/个,雪容融进价为64元/个(2)冰墩墩进货24个,雪容融进货16个时,利润取得最大值为992元【分析】(1)设冰墩墩进价为x 元,雪容融进价为y 元,列二元一次方程组求解;(2)设冰墩墩进货a 个,雪容融进货()40a -个,利润为w 元,列出w 与a 的函数关系式,并分析a 的取值范围,从而求出w 的最大值.【解析】 (1)解:设冰墩墩进价为x 元/个,雪容融进价为y 元/个.得1361551400x y x y +=⎧⎨+=⎩,解得7264x y =⎧⎨=⎩. ∴冰墩墩进价为72元/个,雪容融进价为64元/个.(2)设冰墩墩进货a 个,雪容融进货()40a -个,利润为w 元,则()2820408800w a a a =+-=+,∵0a >,所以w 随a 增大而增大,又因为冰墩墩进货量不能超过雪容融进货量的1.5倍,得()1.540a a ≤-,解得24a ≤.∴当24a =时,w 最大,此时4016a -=,824800992w =⨯+=.答:冰墩墩进货24个,雪容融进货16个时,获得最大利润,最大利润为992元.【点睛】本题考查二元一次方程组的应用,一次函数的应用,一元一次不等式的应用,熟练掌握相关知识是解题的关键.29.(2022·浙江绍兴)计算(1)计算:6tan30°+(π+1)0. (2)解方程组242.x y x y -=⎧⎨+=⎩, 【答案】(1)1 (2)20x y =⎧⎨=⎩【分析】(1)根据特殊角的三角函数值,零指数幂,二次根式的性质化简,然后进行计算即可; (2)利用加减消元法解二元一次方程组即可.【解析】 (1)解:原式611=-=-1; (2)242x y x y -=⎧⎨+=⎩①②,①+②得3x =6,∴x =2, 把x =2代入②,得y =0,∴原方程组的解是20x y =⎧⎨=⎩. 【点睛】本题考查了特殊角的三角函数值,零指数幂,二次根式的性质,解二元一次方程组,解决本题的关键是掌握以上知识熟练运算.30.(2022·湖南娄底)“绿水青山就是金山银山”.科学研究表明:树叶在光合作用后产生的分泌物能够吸附空气中的悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4 mg ,若一片国槐树叶与一片银杏树叶一年的平均滞尘总量为62 mg .(1)请分别求出一片国槐树叶和一片银杏树叶一年的平均滞尘量;(2)娄底市双峰县九峰山森林公园某处有始于唐代的三棵银杏树,据估计三棵银杏树共有约50000片树叶.问这三棵银杏树一年的平均滞尘总量约多少千克?【答案】(1)一片国槐树叶和一片银杏树叶一年的平均滞尘量分别为22mg ,40mg .(2)这三棵银杏树一年的平均滞尘总量约2千克.【分析】(1)设一片国槐树叶一年的平均滞尘量为x mg ,则一片银杏树叶一年的平均滞尘量为24x mg ,由一片国槐树叶与一片银杏树叶一年的平均滞尘总量为62mg 列方程,再解方程即可;(2)列式500040进行计算,再把单位化为kg 即可.【解析】 (1)解:设一片国槐树叶一年的平均滞尘量为x mg ,则一片银杏树叶一年的平均滞尘量为24x mg ,则2462,x x 解得:22,x 2440,x答:一片国槐树叶和一片银杏树叶一年的平均滞尘量分别为22mg ,40mg .(2)5000040=2000000(mg ),而2000000mg=2000g=2kg ,答:这三棵银杏树一年的平均滞尘总量约2千克.【点睛】本题考查的是一元一次方程的应用,有理数的乘法运算,设出合适的未知数,确定相等关系是解本题的关键.31.(2022·山西)(1)计算:()()2133522--⨯+-++-;(2)解方程组:236x y x y -=⎧⎨+=⎩①②. 【答案】(1)2 ;(2)33x y =⎧⎨=⎩.【分析】(1)先根据乘方的意义、负整数指数幂、绝对值运算,然后合并即可;(2)利用加减消元法解方程组.【详解】(1)解:()()2133522--⨯+-++-()19323=⨯+-+()332=+-+2=; (2)解:236x y x y -=⎧⎨+=⎩①②. ①+②,得39x =,∴3x =.将3x =代入②,得36y +=,∴3y =.所以原方程组的解为33x y =⎧⎨=⎩, 【点睛】本题考查了解二元一次方程组,以及乘方、负整数指数幂、绝对值运算.熟练掌握运算法则是解本题的关键.32.(2022·湖北荆州)已知方程组32x y x y +=⎧⎨-=⎩①②的解满足235kx y -<,求k 的取值范围. 【答案】1310k = 【分析】先求出二元一次方程组的解,代入235kx y -<中即可求k ;【详解】解:令①+②得,25x =, 解得:52x =, 将52x =代入①中得,532y +=, 解得:12y =, 将52x =,12y =代入235kx y -<得,5123522k ⨯-⨯<, 解得:1310k =. 【点睛】本题主要考查解二元一次方程组、解一元一次不等式,掌握相关运算法则和方法是解本题的关键.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程和二元一次方程组的应用
试卷简介:一元一次方程应用题,二元一次方程应用题
一、单选题(共8道,每道8分)
1.节日期间,某电器按成本价提高35%后标价,为了促销,决定打九折销售,为了吸引更多顾客又降价130元,此时仍可获利15%.请问该电器的成本价是多少元?设该电器的成本价为x元,根据题意可列方程为( )
A. B.
C. D.
答案:D
解题思路:由题知电器的售价是,利润是15%x,根据售价-成本=利润,
可列方程为,故选D
试题难度:三颗星知识点:一元一次方程的应用——打折销售
2.目前,“低碳”已成为保护地球环境的热门话题,某高科技发展公司成功研制出一种市场需求量较大的低碳高科技产品.已知生产每件产品的成本是40元,在销售过程中发现,当销售单价定为100元时,年销售量为x万件(x>2);销售单价每增加10元,年销售量将减少1万件,则当x 取何值时,才能使销售单价为100元与销售单价为120元时的销售利润相等.依题意可列方程为( )
A.(100-40)x=(120-40)(x-2)
B.(100-40)x=(120-40)(x+2)
C.100x=120(x-2)
D.(100-40)x=(120-40)(x-1)
答案:A
解题思路:总利润=单件利润×销售量,因此单价为100元时,总利润为(100-40)x,由题知单价为120元时总利润为(120-40)(x-2),当利润相等时可列方程为(100-40)x=(120-40)(x-2),故选A
试题难度:三颗星知识点:一元一次方程的应用——打折销售
3.某商场购进某种商品的进价是每件8元,销售价是每件10元.现为了扩大销售量,把每件的销售价降低x%出售,但要求卖出一件商品所获得的利润是降价前所获得的利润的90%.根据题意,下面所列方程正确的是( )
A.10(1-x%)-8=(1+90%)×(10-8)
B.10(1-x%)-8=90%×(10-8)
C.10·x%-8=90%×(10-8)
D.10(1-x%)-8=(10-8)÷90%
答案:B
解题思路:由利润=售价-成本,可知降价前的利润是(10-8)元,降价后的利润是10(1-x%)-8,根据题中“降价后的利润是降价前所获得的利润的90%”,可列方程为10(1-x%)-8=90%×(10-8),故选B
试题难度:三颗星知识点:一元一次方程的应用——打折销售
4.一列火车通过450米长的山洞用了23秒,经过一位站在铁路边的工人用了8秒,求这列火车的长度.若设这列火车的长度为x米,根据题意可列方程为( )
A. B.
C. D.
答案:C
解题思路:行程问题的核心是:路程=速度×时间。

火车通过山洞所行的路程是450+x,时间是23秒,可得火车的速度为,经过工人所行的路程是x,时间是8秒,可得火车的
速度是.由于火车的速度不变,可得,故选C
试题难度:三颗星知识点:一元一次方程应用——行程问题
5.小明骑自行车从A地到B地,小周骑自行车从B地到A地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距35km,到中午12时,两人又相距70km.则A、B两地间的距离为( )
A.35km
B.70km
C.105km
D.140km
答案:D
解题思路:设两地之间的距离是x千米,则由题意可知上午10时,两人所走的路程和是(x-35)千米,中午12时,两人是相遇后又相距70千米,所以两人的路程和是(x+70)千米,由速度
和=路程和÷时间,可列方程为,解得x=140,故选D
试题难度:三颗星知识点:一元一次方程应用——行程问题
6.一个三位数的各位数字之和等于12,它的个位数字比十位数字小2,若将它的百位数字与个位数字互换,所得的数比原来的数小99.求原来的三位数是多少.设原来的三位数的百位数字为x,十位数字为y,根据题意可列方程为( )
A.
B.
C.
D.
答案:C
解题思路:由题可知个位数字是(y-2),因此x+y+(y-2)=12,原三位数是,互换之后的三位数是,由题意可列方程组为
,故选C
试题难度:三颗星知识点:二元一次方程组的应用——数位问题
7.夏季来临,天气逐渐炎热起来,某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元.求这两种饮料在调价前每瓶各多少元.设原来碳酸饮料每瓶x元,果汁饮料每瓶y元,根据题意可列方程为( )
A. B.
C. D.
答案:B
解题思路:调价之后每瓶碳酸饮料价格为(1+10%)x,每瓶果汁饮料价格为(1-5%)y,根据题意
可列方程组为,故选B
试题难度:三颗星知识点:二元一次方程组的应用——经济问题
8.甲地到乙地全程是3.3千米,一段上坡、一段平路、一段下坡.如果保持上坡每小时走3千米,平路每小时走4千米,下坡每小时走5千米,那么从甲地到乙地需要51分钟,从乙地到甲地需要53.4分钟.求从甲地到乙地时,上坡、平路、下坡的路程各是多少千米.若设从甲地到乙地时,上坡的路程为x千米,平路的路程为y千米,则下坡的路程为(3.3-x-y)千米,依题意可列方程为( )
A. B.
C. D.
答案:D
解题思路:从甲地到乙地,上坡、平路、下坡所用时间分别是,,,从乙地到甲地,上坡、平路、下坡所用时间分别是,,,所用的时间都是以小
时为单位,根据题意可列方程组为,故选D
试题难度:三颗星知识点:二元一次方程组的应用——行程问题
二、填空题(共4道,每道9分)
9.已知今年母女二人年龄之和是53,如果10年前母亲的年龄是女儿年龄的10倍,则今年母亲的年龄为____岁.
答案:40
解题思路:设母亲今年的年龄是x岁,则十年前母亲的年龄是(x-10)岁,则十年前女儿的年龄是()岁,今年女儿的年龄为(+10)岁,根据题意可列方程为,解得x=40,因此母亲今年的年龄是40岁
试题难度:知识点:一元一次方程应用——数字规律问题
10.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来驮货物____袋.
答案:5
解题思路:设驴子原来驮货物x袋,骡子原来驮货物y袋,根据题意可列方程组为
,解得,因此驴子原来驮货物5袋.
试题难度:知识点:二元一次方程组应用题
11.某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了50间大寝室和55间小寝室,也正好住满.则该校的1间大寝室和2间小寝室一共可住____人.
答案:20
解题思路:设每间大寝室可住x人,每间小寝室可住y人,根据题意可列方程组为
,解得,因此
试题难度:知识点:二元一次方程组应用题
12.在“十一”黄金周期间,某超市推出如下表所示的优惠方案:
小丽在该超市两次购物分别付款80元、216元.如果小丽改成在该超市一次性购买与上次完全相同的商品,则应付款____元.
答案:256
解题思路:当一次性购物金额不少于100且不足300元时,打折之后的价钱不少于90元且不足270元,因此可知小丽两次所购物品的打折情况分别是不打折和打九折,设付款216元的物品原价是x元,因此0.9x=216,解得x=240,可知小丽改成一次性购买与上次完全相
同的物品时,原价是320元,大于300元,打八折,因此应付款元
试题难度:知识点:一元一次方程的应用——打折销售。

相关文档
最新文档