金属丝杨氏弹性模量的测量
金属丝杨氏模量的测定
金属丝杨氏模量的测定实验目的1. 学会用拉伸法测量金属丝的杨氏模量。
2. 掌握用光杠杆测量微小伸长量的原理和方法。
3. 学会用逐差法处理数据。
实验原理实验表明,在弹性范围内,对于长度为L ,截面积为S 的金属丝,如果沿长度方向施外力F 使金属丝伸长(或缩短)L ∆,则有LL YS F ∆= (1)Y 为比例系数,对一定的材料是一个常数,称为该材料的杨氏弹性模量。
设金属丝直径为d ,则其截面积241d S π=,代入(1)得Ld FLY ∆=24π (2)(2)式中L d F 、、可用常用的方法和仪器测得,而L ∆很小,这里用光杠杆测量。
光杠杆包含T 形架和镜面。
T 形架由3个尖足a 、b 和c 支撑,形成一个等腰三角形,a 足到b 、c 两足连线的垂直距离b 称为光杠杆长度,它是可以调节的。
金属丝上端由A 点固定,下端由一圆柱体螺旋夹夹于B 点。
光杠杆a 足尖置于圆柱体上。
如图望远镜叉丝对准标尺的初始值为0x ,加砝码后,足尖将随圆柱体的升降而升降。
平面镜绕轴旋转一个小角度θ,标尺读数变为i x ,由图可知,b L <<∆,θ很小,则有bL ∆=≈θθtan Dl Dx x i =-=≈02tan 2θθ 由上两式得l Db L 2=∆(3)因为b D >>,由(3)知L l ∆>>,我们利用光杠杆把微小长度变化L ∆转化为数值有较大变化的标尺读数l ,这也就是光杠杆系统的放大原理。
bD 2称为放大倍数。
将(3)代入(2)得杨氏模量为bld FLDY 28π=(4)实验仪器杨氏模量仪、望远镜标尺系统、光杠杆、水准仪、螺旋测微器、游标卡尺、钢卷尺、砝码光杠杆光杠杆测量原理操作要点1. 利用水准仪调节杨氏模量仪的底脚螺钉使支架保持铅直。
2. 调节望远镜标尺装置,使望远镜和光杠杆等高,且使望远镜镜身和标尺在平面镜中的像在一条直线上。
3. 调节望远镜目镜使十字叉丝清晰,调节物镜,并适当移动标尺系统,使标尺像清晰。
金属丝杨氏弹性模量的测定及其实验数据
金属丝杨氏弹性模量的测定及其实验数据【实验目的】1.学习静态拉伸法测金属丝的杨氏模量。
2.掌握用光杠杆法测量微小长度变化的原理和方法。
3.利用有效的多次测量,及相应处理方法来减小误差。
【实验仪器】杨氏模量测量仪,光杠杆,望远镜尺组,米尺,游标卡尺【实验原理】根据胡克定律,金属丝的杨氏弹性模量, L是一个微小长度变化量,当金属丝直径为0.5毫米时, L约为10-5米。
实验中采用光杠杆镜尺法测量。
利用光杠杆镜尺法由几何原理可得,光杠杆的放大倍数为β=2D/b,一般D=1.5—2.0米,b=7.0厘米,所以放大倍数约为40倍。
通过在增加(减)砝码的同时测出标尺读数Xi和其他的长度量L、D、d、b,就能求得金属丝的杨氏弹性模量Y. 【实验内容】1.调整支架,使金属丝处于铅直位置2.调光杠杆和望远镜,使能在望远镜中看清标尺像,并无视差。
3.通过增减砝码,测出相应的标尺读数Xi′和Xi″(共加五个砝码),由Xi= Xi′/ Xi″,用逐差法求出?Xi。
重复一次。
4.测出L、D、d、b,重复六次,求出杨氏模量,【注意事项】1.仪器一经调好,测量开始,切勿碰撞移动仪器,否则要重新调节,老师检查数据前也不要破坏调节好的状态,否则一旦有错误,将难以查找原因或补作数据。
2.望远镜、光杠杆属精密器具,应细心使用操作。
避免打碎镜片,勿用手或他物触碰镜片。
3.调节旋钮前应先了解其用途,并预见到可能产生的后果或危险,不要盲目乱调,以免损坏仪器,调节旋钮时也不要过分用力,防止滑丝。
4.用螺旋测微计测量钢丝直径时,要端平测微计,避免钢丝弯曲,【数据处理】1.增减重量时钢丝伸缩量的记录数【思考题】1.在本实验中,为什么可以用不同精确度的量具测量多种长度量?为什么有些需要多次测量,有些单次测量就可以?2. 如何用十几个砝码即快又精确地测量出金属丝的平均伸长量,应该用什么方法来计算?3.光杠杆法可测微小长度变化,其主要是采用了光放大原理,放大率为β=2D/b 。
金属杨氏弹性模量的测定
金属杨氏弹性模量的测定【实验目的】1. 用拉伸法测量金属丝的杨氏弹性模量。
2. 掌握用光杠杆测量微小长度的原理及方法。
【实验仪器】杨氏模量仪、望远镜尺组、光杠杆、螺旋测微计、卷尺、钢直尺、砝码。
【注意事项】1.光杠杆易碎,小心勿摔。
2.望远镜调节要细心,调焦旋钮旋到头后,切勿过量旋转以免损坏。
【实验内容及实验步骤】1.杨氏模量仪的铅直和夹子的自由滑动已基本调好,可不再调。
2.光杠杆及望远镜尺组的调节(操作难点)①位置调节:调节望远镜光轴水平且与光杠杆镜面中心基本等高;调节望远镜光轴与光杠杆镜面垂直。
②找标尺像:眼睛沿望远镜筒上方缺口准星方向向平面镜看去,找镜中标尺的像,可左右移动望远镜位置,直到找到像为止。
③望远镜调节:调望远镜目镜,使观察到的十字叉丝线清晰;调望远镜调焦旋钮,使看到的标尺像清晰。
继续微调望远镜调焦旋钮到消除视差。
④微调平面镜镜面俯仰角度,直到标尺像的零刻线和十字叉丝线相差小于1cm;细调望远镜俯仰调节螺丝,使二者相差小于1mm。
光杠杆和望远镜系统调好的标志:视场中标尺的像清晰,零刻线和十字准线水平线重合或相差小于1mm。
调节仪器完毕后,需经教师检查作为给出操作分的依据。
3.测量:根据新版教材P209—P210的数据表格,完成数据测量。
4.实验报告要求:计算杨氏模量最佳估值和不确定度,给出测量结果表达式。
【实验指导】1.用“外视法”观察寻找标尺像。
这是本实验仪器调节的关键。
因为望远镜本身的视场很小,一开始就从望远镜中观察,很可能看不到平面镜反射回来的标尺像,而从望远镜上方对着平面镜看去,视场较大,比较容易观察到标尺像。
(如果从望远镜外面看不到标尺像,则从望远镜里面不可能找到标尺像。
)因此,一般要先用“外视法”调节。
如果从望远镜上方看不到标尺像,可在望远镜的左右两边寻找。
例如:在望远镜的左边能看到标尺像,这时可将望远镜的支架向左移动到眼睛能看到标尺像的位置。
反之,支架向右移动。
望远镜经过这样左右移动调节以后,若还看不到标尺像,可能是竖直方向上的问题,这时可轻轻转动一下平面镜即可。
金属杨氏弹性模量的测量实验报告
一、实验目的1. 掌握光杠杆法测量微小长度变化的原理和方法。
2. 学习并运用拉伸法测定金属丝的杨氏弹性模量。
3. 通过实验,加深对弹性模量概念的理解,提高实验操作技能。
4. 学会处理实验数据,运用逐差法计算结果,并对误差进行分析。
二、实验原理杨氏弹性模量(E)是描述材料在受到拉伸或压缩时抵抗形变的能力的物理量。
根据胡克定律,在弹性限度内,材料的应变(ε)与应力(σ)成正比,即σ = Eε。
其中,σ = F/A,ε = ΔL/L,F为作用力,A为截面积,ΔL为长度变化,L为原长。
本实验采用拉伸法测定金属丝的杨氏弹性模量。
实验原理如下:1. 将金属丝一端固定,另一端悬挂砝码,使金属丝受到拉伸力F。
2. 利用光杠杆法测量金属丝的微小长度变化ΔL。
3. 根据胡克定律,计算出金属丝的杨氏弹性模量E。
三、实验仪器1. 金属丝(钢丝)2. 光杠杆装置(包括光杠杆、望远镜、标尺)3. 砝码4. 螺旋测微器5. 游标卡尺6. 卷尺7. 计算器四、实验步骤1. 将金属丝一端固定在支架上,另一端悬挂砝码。
2. 将光杠杆装置放置在金属丝下方,调整望远镜与标尺,使光杠杆平面镜与标尺平行。
3. 调整望远镜与平面镜的高度,使望远镜对准平面镜。
4. 读取标尺上金属丝原长L0。
5. 挂上砝码,使金属丝受到拉伸力F。
6. 观察望远镜中的像,记录金属丝的长度变化ΔL。
7. 重复步骤5和6,进行多次测量。
8. 计算金属丝的平均长度变化ΔL平均。
五、数据处理1. 根据公式E = FΔL/AΔL,计算金属丝的杨氏弹性模量E。
2. 对实验数据进行逐差法处理,消除偶然误差。
3. 计算实验结果的平均值和标准差。
4. 分析实验误差,包括系统误差和偶然误差。
六、实验结果与分析(此处根据实际实验数据填写)七、实验总结1. 本实验成功测定了金属丝的杨氏弹性模量,掌握了光杠杆法测量微小长度变化的原理和方法。
2. 通过实验,加深了对弹性模量概念的理解,提高了实验操作技能。
金属丝杨氏弹性模量的测定
实验八 金属丝杨氏弹性模量的测定杨氏模量是表征固体的力学性质的重要物理量,它是工程技术中机械构件选材时的重要参数。
本实验不仅介绍了如何测定此参数,更重要的是通过实验可以领会仪器的配置原则,了解为什么对不同的长度测量应选用不同的测量仪器,以及在测量中由于测量对象及方法的改变如何估算其系统误差。
在实验方法上,通过本实验可以看到,以对称测量法消除系统误差的思路在其它类似的测量中极具普遍意义。
在实验装置上的光杠杆镜放大法,由于它的性能稳定、精度高,而且是线性放大,所以在设计各类测试仪器中得到广泛的应用。
一 实 验 目 的(1)掌握“光杠杆镜”测量微小长度变化的原理,图2。
(2)学会用“对称测量”消除系统误差。
(3)学习如何依实际情况对各个测量值进行误差估算。
(4)练习用逐差法、作图法处理数据。
三 实 验 原 理物体在外力作用下或多或少都要发生形变,当形变不超过某一限度时,撤走外力之后形变能随之消失,这种形变叫弹性形变,发生弹性形变时物体内部将产生恢复原状的内应力。
设有一截面为S ,长度为L 0的均匀棒状(或线状)材料,受拉力F 拉伸时,伸长了L Δ,其单位面积截面所受到的拉力SF称为胁强,而单位长度的伸长量LLΔ称为胁变。
根据胡克定律,在弹性形变范围内,棒状(或线状)固体胁变与它所受的胁强成正比:0ΔL LY S F =其比例系数Y 取决于固体材料的性质,反应了材料形变和内应力之间的关系,称为杨氏弹性模量。
LS FL Y Δ0= (1) 本实验是测定某一种型号钢丝的杨氏弹性模量,其中F 可以由所挂的砝码的重量求出,截面积S 可以通过螺旋测微计测量金属丝的直径计算得出,0L 可用米尺等常规的测量器具测量,但L Δ由于其值非常微小,用常规的测量方法很难精确测量。
本实验将用放大法——“光杠杆镜”来测定这一微小的长度改变量L Δ,图1是光杠杆镜的实物示意图。
图2是光杠杆镜测微小长度变化量的原理图。
左侧曲尺状物为光杠杆镜,M 是反射镜,b 即所谓光杠杆镜短臂的杆长,O 端为b 边的固定端,b 边的另一端则随被测钢丝的伸长、缩短而下降、上升,从而改变了M 镜法线的方向,使得钢丝原长为L 0时,从一个调节好的位于图右侧的望远镜看M 镜中标尺像的读数为1n ;而钢丝受力伸长后,光杠杆镜的位置变为虚线所示,此时从望远镜上看到的标尺像的读数变为2n 。
杨氏弹性模量的测定
实验名称:杨氏弹性模量的测定【实验目的】1、掌握伸长法测量金属丝杨氏模量的原理和方法;2、掌握用光杠杆测量长度微小变化量的原理和方法;3、学习光杠杆和尺度望远镜的调节与使用;4、学习处理数据的方法。
【实验仪器】杨氏模量测定仪 光杠杆 尺度显微镜 钢卷尺 游标卡尺 螺旋测微计 砝码 金属丝【实验原理】1、杨氏模量设一粗细均匀的金属丝长为l ,截面积为S ,上端固定,下端悬挂砝码,金属丝在外力F 的作用下发生形变,伸长l δ。
根据胡克定律,在弹性限度内,金属丝的胁强F S和产生的胁变lLδ成正比。
即F lE S l δ= (9-1) 或 FlES lδ=(9-2) 式中比例系数E 称为杨氏弹性模量。
在国际单位制中,杨氏弹性模量的单位为牛每平方米,记为2-⋅m N 。
在实验中测量钢丝的杨氏模量,其截面为圆形,其直径为d 时,相应的截面积4/2d S π=,l δ是较大长度的微小伸长量,无法用一般的长度测量仪器测量,因此实验中用光杠杆法进行测量,测量公式 0122m A A d l d δ-=于是可得实验中的杨氏模量测量公式: 22018m mgld E d A A d π=-令0m A A K m-=,K 为砝码质量改变一个单位时,望远镜中所见尺的读数的变化量,则2218gld E d Kd π=2、光杠杆实验中l δ是一微小变化量,变化在mm 210-数量级。
因此实验设计的关键是寻找测量微小变化量的方法和装置,这里我们采用了光路放大方法——光杠杆来实现。
设未加砝码时,从望远镜中读得标尺读数记为0A ,当增加砝码时, 钢丝伸长量为l δ,光杠杆一端随圆柱体夹头一起下降,光杠杆的转角θ,于是光杠杆镜面法线轴转动θ角。
根据反射定律,平面镜法线转动θ角,反射线将转过θ2,此时从望远镜中读得的标尺读数为m A 。
因为l δ为一微小量,所以θ也很小,近似有θθtg ≈和θθ22tg ≈。
于是由三角函数关系可得:122m A A ld d δ-=由于2d 远大于1d ,则0m A A -必然远大于l δ。
实验五金属杨氏弹性模量的测量
实验五 金属杨氏弹性模量的测量一、实验目的1.测定金属丝的杨氏模量并理解测量原理。
2.掌握测量长度微小变化的光杠杆法。
3.学习用逐差法和作图法处理数据。
二、实验仪器伸长法杨氏模量测定仪一套(包括支架,反光镜,尺读望远镜,砝码),测微螺旋计等。
三、实验原理有一均匀的金属丝(或棒),长为L ,横截面积为S ,丝之一端固定,另一端施以拉力P ,结果伸长了∆L 。
若用相对伸长∆L /L 表示其形变,则根据虎克定律:在弹性限度内,伸长形变与胁强P /S 成正比即S P E L L ⨯=∆1 或LS PLE ∆= (5-1) 式中E 为金属丝的杨氏模量,它表征材料的强度性质,只与材料的质料有关,而与材料的形状大小无关。
并且在数值上,E 等于相对伸长为1时的胁强,所以它的单位与胁强的单位相同。
光杠杆由平面反射镜、前足、后足组成,如图5-1所示。
用光杠杆法测量∆L :实验装置如图5-2,光杠杆是在由一刀片和与刀片垂直的金属杆(后足)组成的成“⊥”形的底座上直立放置一平面镜而构成的,(有的光杠杆将刀片换成两个“足”,所以光杠杆也称为三足镜),使用时刀片(或前足)放在平台上,后足放在平台小园孔中用于夹紧金属丝的夹头上,若系统已调节到最佳状态,通过望远镜可以从小镜中看到附在望远镜架上的标尺的像,利用望远镜内的分划板上的叉丝a 、b (或b 、c )在标尺像上的读数之差再乘100,即得标尺到平面镜镜面的距离D ,如图中园内部分所示。
当金属丝的初负荷(为了拉直金属丝所加的砝码重量)为P 0时,叉丝b (或a 、c )在标尺上的示数为x 0,若增加一重量P ,设长为L 的金属丝伸长了∆L ,光杠杆后足就下降了∆L 见图5-2,则平面镜以刀口线为轴旋转了φ角。
由光学的反射定律可知,入射线与反射线之间的夹角为2φ,于是叉丝b (或a 、c )移到了标尺上的x 处,当φ角甚小时,根据图中的几何关系有d L ϕ=∆ Dx x 02-=ϕ Dx x d L 2)(0-=∆∴ (5-2)式中d 为光杠杆后足足尖到刀口线的垂直距离,D 为平面镜到标尺的距离。
杨氏弹性模量的测定
拉伸长法测定金属丝的杨氏弹性模量[实验目的]1、弹性限度内,验证虎克定律,学习用静态拉伸法测定金属丝的杨氏弹性模量。
2、掌握光杠杆法测定长度微小变化的原理,并掌握其使用,学会望远镜尺组的使用。
3、学会用逐差法处理数据。
[实验仪器与器材]1、弹性模量测定仪(包括主体支架、光杠杆、望远镜尺组)2、待测金属丝3、螺旋测微器、钢卷尺、直尺4、砝码组5、水准仪 [实验原理]测定某金属的杨氏弹性模量,一般采用弹性限度内的拉伸试验。
取一粗细均匀的金属丝,长为L ,截面积为42d S π=,d 为截面直径,将其上端固定,下端悬挂质量为m 的砝码,测金属丝内产生单位面积的强力,即应力S F =δ,单位长度的伸长应变LL∆=ε,虎克定理指出,在弹性限度内,应力与应变成正比,即LLy S F ∆= (5-1-1) y 称为金属材料杨氏弹性模量,它完全由材料的性质所决定。
将(5-1-1)式改写成 ySFLL =∆ (5-1-2) 为了验证应力和应变的线性关系,一般均采用增量法,即 分成几次来逐渐增加负载,而不是一次就将载荷加至最终值, 如多次增加相同的拉力F ,相应地测出伸长增加量L ∆也大致 相等。
这样就验证了虎克 定律的正确性。
将(5-1-1)式改写成为 Ld FLL S FL y ∆=∆=24π (5-1-3) 根据(5-1-3)式测出等式右边各量,杨氏弹性模量便可求得。
F (砝码重量)、金属丝原长L 和截面积为S 都可用一般方法测 定。
唯有伸长量L ∆,由于甚微,为了测量准确起见,需用特别的方法测定它,本实验采用光杠杆法测定之。
1、 杨氏模量仪如图5-1所示,三角底座上装有两根立柱和调整螺丝。
欲使立柱铅直,可调节调整螺丝,并由立柱下端的水平仪来判断。
待测金属丝的上端紧固于主体支架的上夹具A 上,其下端穿过中部平台C 中的下夹具B ,施紧下夹具,金属丝即被夹住。
下夹具下悬挂砝码,当金属丝伸长或缩短时,下夹具也随之上下移动。
金属丝杨氏模量的测定
金属丝杨氏模量的测定金属丝杨氏模量的测定是一个重要的物理实验,它用来测量金属材料的弹性性质。
杨氏模量是一个表征材料刚度的物理量,它反映了材料在弹性范围内变形时的抵抗力。
杨氏模量的测定对于金属丝的性能评估以及材料科学的深入研究都具有重要意义。
一、实验原理杨氏模量是指在线性弹性范围内,垂直于材料轴向的单位面积上所承受的拉伸力与材料伸长量之比。
数学表达式为:E = σ / ε其中,E为杨氏模量,σ为应力(单位面积上所承受的拉伸力),ε为应变(材料的伸长量)。
二、实验步骤1.样品准备:选取一段金属丝,长度约数十厘米,直径约数毫米。
用细线将金属丝悬挂起来,让其自然下垂。
2.测量初始长度:使用测量显微镜或读数显微镜,测量金属丝的自然下垂长度(原始长度)。
3.加荷:通过砝码或压力器将一定的重力施加于金属丝的下端,使其产生拉伸形变。
根据所施加的重力,可以计算出应力和应变的关系。
4.测量形变:使用测量显微镜或读数显微镜,测量金属丝在重力作用下的伸长量。
5.数据记录:将不同重力的拉伸形变数据记录在表格中,用于后续的数据分析和处理。
6.数据分析:利用实验数据计算金属丝的杨氏模量。
三、数据处理根据实验数据,利用线性拟合的方法,将应力和应变的关系绘制在直角坐标系中,得到一条直线。
该直线的斜率即为金属丝的杨氏模量。
四、误差分析在实验过程中,可能存在以下误差来源:1.测量误差:由于测量显微镜或读数显微镜的精度限制,可能导致对金属丝长度和伸长量的测量存在误差。
可以通过使用更高精度的测量设备来减小这种误差。
2.加荷误差:由于砝码或压力器的重力不准确,可能导致对金属丝应力的测量存在误差。
可以通过使用更高精度的加荷设备来减小这种误差。
3.环境误差:环境温度和湿度的变化可能影响金属丝的力学性能,从而产生误差。
为了减小这种误差,实验过程中应保持稳定的实验环境。
4.操作误差:由于实验操作不当(如金属丝放置不直、受力不均匀等),可能导致实验结果存在误差。
金属丝杨氏模量的测定
物理实验报告【实验名称】杨氏模量的测定【实验目的】1. 掌握用光杠杆测量微小长度变化的原理和方法,了解其应用。
2. 掌握各种长度测量工具的选择和使用。
3. 学习用逐差法和作图法处理实验数据。
【实验仪器】MYC-1型金属丝杨氏模量测定仪(一套)、钢卷尺、米尺、螺旋测微计、重垂、砝码等。
【实验原理】 一、杨氏弹性模量设金属丝的原长L ,横截面积为S ,沿长度方向施力F 后,其长度改变ΔL ,则金属丝单位面积上受到的垂直作用力F/S 称为正应力,金属丝的相对伸长量ΔL/L 称为线应变。
实验结果指出,在弹性范围内,由胡克定律可知物体的正应力与线应变成正比,即LL Y S F ∆= (1)则ELL SF Y ∆= (2) 比例系数E 即为杨氏弹性模量。
在它表征材料本身的性质,Y 越大的材料,要使它发生一定的相对形变所需要的单位横截面积上的作用力也越大。
Y 的国际单位制单位为帕斯卡,记为Pa (1Pa =12m N ;1GPa =910Pa )。
本实验测量的是钢丝的杨氏弹性模量,如果钢丝直径为d ,则可得钢丝横截面积S 则(2)式可变为EL d FLY ∆=24π (3)可见,只要测出式(3)中右边各量,就可计算出杨氏弹性模量。
式中L (金属丝原长)可由米尺测量,d (钢丝直径),可用螺旋测微仪测量,F (外力)可由实验中钢丝下面悬挂的砝码的重力F=mg 求出,而ΔL 是一个微小长度变化(在此实验中 ,当L ≈1m时,F 每变化1kg 相应的ΔL 约为0.3mm)。
因此,本实验利用光杠杆的光学放大作用实现对钢丝微小伸长量ΔL 的间接测量。
? 二、光杠杆测微小长度变化尺读望远镜和光杠杆组成如图2所示的测量系统。
光杠杆系统是由光杠杆镜架与尺读望远镜组成的。
光杠杆结构见图2(b )所示,它实际上是附有三个尖足的平面镜。
三个尖足的边线为一等腰三角形。
前两足刀口与平面镜在同一平面内(平面镜俯仰方位可调),后足在前两足刀口的中垂线上。
实验七 金属杨氏弹性模量的测量
实验七 金属杨氏弹性模量的测量
【实验装置】
19.08.2021
2
实验七 金属杨氏弹性模量的测量
【实验原理】
一、杨氏弹性模量
选用一粗细均匀的金属丝,长度为 L ,截面积为 S ,
将其上端紧固,下悬质量为 m 的砝码。当金属丝受外力
F=mg 作用而发生形变 ΔL 时,金属受外力作用发生形变
7
实验七 金属杨氏弹性模量的测量
【预习思考题】
1.根据光的反射定律,证明反射光线的方向不变时,平面镜转动 角,则入射光线转过角。
2.根据光杠杆原理说明怎样提高光杠杆测量微小长度变化的灵敏 度,这种提高有没有限度?
3.本实验中,哪个量的测量不确定度及哪个实验条件对结果的 影响最大?根据自己的测量讨论如何改进。
而产生的内应力 F/S ,其应变为ΔL/L ,根据虎克定律有,
在弹性限度内,物体的应力 F/S 与产生的应变成正比,即
式中
E
F 为比例恒量。将上式改写为 S
E
L L
E L F
S L
19.08.2021
3
实验七 金属杨氏弹性模量的测量
【实验原理】
二、光杠杆和镜尺系统是测量微小长度变化的装置
光杠杆结构如图所示,它实际上是附有三个尖足的平
4.在代入公式时,若采用时,那么 F 用多少代入
E2SLbDCi F82FbdLCD i
19.08.2021
8
汇报结束
谢谢大家! 请各位批评指正
4.在钩码上逐次加槽码 1.0 千克,每次待稳定后记下望远镜中相
应的读数 ni . 槽码加到 9 千克。
19.08.2021
6
实验七 金属杨氏弹性模量的测量
金属杨氏弹性模量的测量
金属杨氏弹性模量的测量一、实验目的1. 学会用CCD 杨氏模量测量仪测量长度的微小变化量。
2. 学会测定金属丝杨氏弹性模量的一种方法。
3. 学习用逐差法处理数据。
二、实验仪器LB-YM-1型CCD 杨氏弹性模量测量仪外形如下图所示。
三、实验原理任何物体在外力作用下都会发生形变,当形变不超过某一限度时,撤走外力之后,形变能随之消失,这种形变称为弹性形变。
如果外力较大,当它的作用停止时,所引起的形变并不完全消失,而有剩余形变,称为塑性形变。
发生弹性形变时,物体内部产生恢复原状的内应力。
弹性模量是反映材料形变与内应力关系的物理量,是工程技术中常用的参数之一。
1.杨氏模量 在形变中,最简单的形变是柱状物体受外力作用时的伸长或缩短形变。
设柱状物体的长度为L ,截面积为S ,沿长度方向受外力F 作用后伸长(或缩短)量为L ∆,单位横截面积上垂直作用力S F 称为正应力,物体的相对伸长L L ∆称为线应变。
实验结果证明,在弹性范围内,正应力与线应变成正比,即LLYS F ∆= (1-1) 这个规律称为虎克定律。
式中比例系数Y 称为杨氏弹性模量。
在国际单位制中,它的单位为2m N,在厘米克秒制中为达因/厘米2。
它是表征材料抗应变能力的一个固定参量,完全由材料的性质决定,与材料的几何形状无关。
本实验是测量钼丝的杨氏弹性模量,实验方法是将钼丝悬挂于支架上,上端固定,下端加砝码对钼丝施加力F ,测出钼丝相应的伸长量L ∆,即可求出Y 。
钼丝长度L 用钢卷尺测量,钼丝的横截面积42d S π=,直径d 用千分尺测出,力F 由砝码的质量求出。
由式(1-1)可得Ld FLY ∆=24π(1-2)2.测量原理在实际测量中,由于钼丝伸长量L ∆的值很小,约mm 110-数量级。
因此这里L ∆的测量采用显微镜和CCD 成像系统进行测量。
如图1所示,在悬垂的金属丝下端连着十字叉丝板和砝码盘,当盘中加上质量为M 的砝码时,金属丝受力增加了Mg F = (1-3) 十字叉丝随着金属丝的伸长同样下降了L ∆,而叉丝板通过显微镜的物镜成像在最小分度为0.05mm 的分划板上,再被目镜放大,所以能够用眼睛通过显微镜对L ∆做直接测量。
金属杨氏弹性模量的测量实验报告
竭诚为您提供优质文档/双击可除金属杨氏弹性模量的测量实验报告篇一:金属材料杨氏模量的测定实验报告浙江中医药大学学生物理实验报告实验名称金属材料杨氏模量的测定学院信息技术学院专业医学信息工程班级一班报告人学号同组人学号同组人学号同组人学号理论课任课教师实验课指导教师实验日期20XX年3月2日报告日期20XX年3月3日实验成绩批改日期浙江中医药大学信息技术学院物理教研室篇二:用拉伸法测金属丝的杨氏弹性模量实验报告示范实验名称:用拉伸法测金属丝的杨氏弹性模量一.实验目的学习用拉伸法测定钢丝的杨氏(:金属杨氏弹性模量的测量实验报告)模量;掌握光杠杆法测量微小变化量的原理;学习用逐差法处理数据。
二.实验原理长为l,截面积为s的金属丝,在外力F的作用下伸长了?l,称Y?丝直径为d,即截面积s??d2/4,则Y?F/s为杨氏模量(如图1)。
设钢?l/l4lF。
??ld2伸长量?l比较小不易测准,因此,利用光杠杆放大原理,设计装置去测伸长量?l(如图2)。
由几何光学的原理可知,?l?8FlLbb。
(n?n0)n,?Y?22L2L?db?n图1图2三.主要仪器设备杨氏模量测定仪;光杠杆;望远镜及直尺;千分卡;游标卡尺;米尺;待测钢丝;砝码;水准器等。
四.实验步骤1.调整杨氏模量测定仪2.测量钢丝直径3.调整光杠杆光学系统4.测量钢丝负荷后的伸长量(1)砝码盘上预加2个砝码。
记录此时望远镜十字叉丝水平线对准标尺的刻度值n0。
(2)依次增加1个砝码,记录相应的望远镜读数n1。
,n2,?,n7(3)再加1个砝码,但不必读数,待稳定后,逐个取下砝码,记录相应的望远镜读数n7。
,n6,?,n1,n0(4)计算同一负荷下两次标尺读数(ni和ni)的平均值ni?(ni?ni)/2。
(5)用隔项逐差法计算?n。
5.用钢卷尺单次测量标尺到平面镜距离L和钢丝长度;用压脚印法单次测量光杠杆后足到两前足尖连线的垂直距离b。
6.进行数据分析和不确定度评定,报道杨氏模量值。
金属丝杨氏弹性模量的测定
金属丝杨氏弹性模量的测定本实验是根据胡克定律测定固体材料的一个力学常量——杨氏弹性模量。
实验中采用光杠杆放大原理测量金属丝的微小伸长量,并用不同准确度的测长仪器测量不同的长度量;在数据处理中运用了两种基本而常用的方法——逐差法和作图法。
[一]. 实验目的1.掌握不同长度测量器具的选择和使用,掌握光杠杆测微原理和调节。
2.学习误差分析和误差均分原理思想。
3.学习使用逐差法处理数据及最终测量结果的表达。
4.测定钢丝的杨氏弹性模量E 值。
[二]. 实验原理固体材料在外力作用下产生各部分间相对位置的变化,称之为形变。
如果外力较小时,一旦外力停止作用,形变将随之消失,这种形变称为弹性形变;如果外力足够大,当停止作用时,形变却不能完全消失,这叫剩余形变。
当剩余形变开始出现时,就表明材料达到了弹性限度。
在许多种不同的形变中,伸长(或缩短)形变是最简单、最普遍的形变之一。
本实验是针对连续、均匀、各向同性的材料做成的丝,进行拉伸试验。
设细丝的原长为l ,横截面积为A ,在外加力P 的作用下,伸长了l ∆的长度,单位长度的伸长量l l /∆称为应变,单位横截面所受的力则称为应力。
根据虎克定律,在弹性限度内,应变与应力成正比关系,即llE A P ∆= (1) 式中比例常数E 称为杨氏弹性模量,它仅与材料性质有关。
若实验测出在外加力P 作用下细丝的伸长量l ∆,则就能算出钢丝的杨氏弹性模量E :lA l P E ⋅∆⋅=工程中E 的常用单位为(N/m 2)或(Pa)。
几种常用材料的杨氏模量E 值见下表:应当指出,(1)式只适合于材料弹性形变的情况。
如果超出弹性限度,应变与应力的关系将是非线性的。
右图表示合金钢和硬铝等材料的应力-应变曲线。
为了测定杨氏弹性模量值,在(2)式中的P 、l 和A 都比较容易测定,而长度微小变化量l 则很难用通常测长仪器准确地度量。
本实验将采用光杠杆放大法 进行精确测量。
[三]. 实验装置实验装置原理如右图所示。
大学物理实验-金属丝的杨氏弹性模量的测量
大学物理实验-金属丝的杨氏弹性模量的测量实验目的:1. 掌握金属丝杨氏弹性模量的测量方法。
2. 加深对杨氏弹性模量的了解。
实验原理:杨氏弹性模量是描述固体材料在轴向拉伸时所表现出来的弹性和形变特性的物理量。
弹性模量表示单位面积上在轴向拉伸应力与相应的应变之间的比值。
在弹性极限以内,应力和应变成正比关系,弹性模量即为斜率。
实验步骤:1. 实验仪器:万能试验机、金属丝、游标卡尺、千分尺、比重大约为水的液体、密度计、小刻度尺。
2. 将金属丝卷绕在试验机的夹具上,并调整夹具间距使其长度充分展开。
3. 利用游标卡尺测量金属丝的直径,取3个位置进行测量,取平均值做准确度提高。
4. 将金属丝悬挂在试验机上,处于自重状态。
5. 连接数字万用表,用微调盒调整滑动器位置。
6. 微调座向上调节送电触点,金属丝受拉后试验机起始点的值就被纪录下来了。
7. 通过调节位移控制器上的微调座,使其向下缓慢移动,以强制拉伸金属丝,使其长度发生变化。
8. 根据数字万用表读数,可以计算出不同负载下金属丝伸长量的数据。
9. 根据相关公式,计算出金属丝的杨氏弹性模量值。
1. 利用游标卡尺测量金属丝直径,取平均值为$D_{av}$。
2. 量测每个加权的载荷方法下的金属丝的伸长量,分别纪录数据。
3. 计算出每个载荷下的金属丝的应力和应变。
4. 作出载荷和伸长量的关系曲线并求出其斜率$S$。
5. 利用公式$S = \dfrac {4FL}{\pi D^2 d}$求出弹性模量$E$。
6. 汇总数据并作出数据汇总表。
实验数据:金属丝数量:1根金属丝直径:$D_{av}=0.0985cm$金属丝的长度 $L=60.00cm$金属丝的密度:$\rho=8.96g/cm^3$负载(N)伸长量(mm)应力(Pa)应变($10^{-3}$)0 0 0 0100 0.17 13196440 6200 0.34 26392879 12300 0.57 39589319 18400 0.79 52785758 23500 1.02 65982197 29600 1.24 79178637 35实验结果:通过数据处理可以得到如下结果:弹性模量 $E = 1.12 \cdot 10^{11} N/m^2$讨论和结论:在本实验中,我们学习了如何测量金属丝的杨氏弹性模量。
实验5金属丝杨氏弹性模量的测量
实验5 金属丝杨氏弹性模量的测量杨氏弹性模量是固体材料性质的一个主要特征量。
本实验通过对杨氏弹性模量的测量,学习一种测量长度微小变化的方法——光杠杆镜尺法。
光杠杆镜尺法不仅可以测量长度的微小变化,也可以测量角度的微小变化。
所以,在光点式检流计以及冲击电流计等的读数装置中都有它的应用。
【目的要求】1.用伸长法测量钢丝的杨氏模量。
2.掌握光杠杆测微小伸长的原理和方法。
3.学习用逐差法处理数据。
【预习检测题】1. 杨氏弹性模量公式中各个量各用什么量具去测量?其误差怎么计算?2. 本实验采取什么测量方法?光杠杆的放大倍数是多少?3. 画出望远镜的结构图和放大图,说明调节望远镜的两个主要步骤和作用。
【实验原理】1.伸长法测杨氏模量任何固体在外力作用下都会发生形变,若外力作用停止,则形变随之消失,这种形变叫弹性形变。
在弹性限度范围内,物体的形变遵从胡克定律,即物体的应力和应变成正比。
若钢丝原长为L ,截面积为A ,沿长度方向的受力为F ,受力后伸长量为,ΔL ,则其应力为F /A ,应变为ΔL /L 。
胡克定律表明钢丝的应力与应变的比值是一个常数Y 。
Y=L A FLLL A F∆=∆ (4.4。
1) 式中:Y 为钢丝的杨氏模量。
实验表明,杨氏模量与外力F 、物体的长度L 及截面积A 的大小无关,仅由固体材料的性质决定。
设钢丝的直径为d ,则钢丝杨氏模量的计算公式为Y=Ld FL∆24π (4.4.2)由上式可见,只要测得钢丝原长L 、直径d 、外力F 和伸长量△L ,则可求得杨氏模量Y 。
2.光杠杆测微原理带有平面反射镜M 的光杠杆、固定平台B 、望远镜R 和标尺S 组成光杠杆测微系统。
光杠杆的结构如图3.1-1所示,光杠杆的三个脚尖1、2、3构成等腰三角形,从后脚尖1到两前脚尖2、3连线的距离为b 。
实验时将两前脚尖2、3置于固定平台B 的沟槽内,后足1置于圆柱体C 上。
当钢丝在砝码的重力作用下被拉伸发生形变时,光杠杆的后足1将随着圆柱体C 上下移动,于是平面反射镜的仰角随之改变。
测金属丝的杨氏模量
测金属丝的杨氏模量对固体来说,弹性形变可分为四种:①伸长或压缩的形变(应变);②切向形变(切变);③扭转形变(扭变);④弯曲形变。
杨氏弹性模量是描述固体材料抵抗形变的能力的物理量,它与固体材料的几何尺寸无关,与外力大小无关,只决定于金属材料的性质,它的国际单位为:牛/米^2(N/m^2),它是表征固体材料性质的重要物理量,是选择固体材料的依据之一,是工程技术中常用的参数。
杨氏模量的测量方法很多,现总结出以下几种常用方法:1、万能试验机法:在万能试验机上做拉伸或压缩试验,自动记录应力和应变的关系图线,从而计算出杨氏弹性模量。
2、静态拉伸法:它适用于有较大形变的固体和常温下的测量。
缺点是:①因为载荷大,加载速度慢,含有驰豫过程。
所以它不能很真实地反映出材料内部结构的变化。
②对脆性材料不能用拉伸法测量;③不能测量材料在不同温度下的杨氏弹性模量。
3、动态悬挂法:将试样(圆棒或矩形棒)用两根线悬挂起来并激发它作横向振动。
在一定条件下,试样振动的固有频率取决于它的几何形状、尺寸、质量以及它的杨氏弹性模量,如果我们在实验中测出了试样在不同温度下的固有频率,就可以算出试样在不同温度下的杨氏弹性模量。
此法克服了静态拉伸法的缺点,具有实用价值,是国家标准规定的一种测量方法。
在本实验中,采用静态拉伸法。
基本原理如下:一根粗细均匀的金属丝,长度为L,截面积为S。
将其上端固定,下端悬挂砝码。
于是,金属丝受外力F作用而发生形变,伸长了ΔL,比值F/S是金属丝单位面积上的作用力,称为胁强(正应力);比值ΔL/L是金属丝的相对伸长,称为胁变(线应变)。
根据虎克定律,金属丝在弹性限度内,它的胁强与胁变成正比,即F/s=EΔL/L式中比例系数Y就是杨氏弹性模量。
由于伸长量ΔL的值很小,用一般量具不易测准。
本实验采用光杠杆望远镜尺组进行放大测量(简称光杠杆放大法)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3) 将所加的5个砝码轻轻地依次取下,并记录每 取下1Kg 砝码时,从望远镜中读到的标尺读数: (4) 用米尺测量光杠杆镜面至标尺的距离D和上下 夹子之间金属丝的长度L,各一次。
(5) 将光杠杆放在纸上压出三个尖角的痕迹,用 游标卡尺量出光杠杆的臂长b ,共三次。 (6) 用螺旋测微器测出金属丝上、中、下三处的 直径d 。 (7) 将所测数据记入表中。
3.怎样调节望远镜叉丝和标尺像清晰?
4.为什么用逐差法处理数据?
5.请构思用光杠杆测量固体线膨胀系数的装置。
3、实验数据记录参考表格
光杠杆臂长、金属丝直径测量数据表 钢丝长度L=
测量值 光杠杆 臂长b 直径d 1 2
mm
3
标尺到镜面距离D=
平均值
mm
=
测钢丝伸缩量数据表
次数 0 1 2 3 4 5 砝码质量 / Kg 增 重 时 的 读 减 重 时 的 读 两 次 读 数 的 每加3Kg 砝码时的 数 数 平均值 读数差
注意事项
1.光杠杆系统调好后,不可再动;光杠杆镜面转动
螺丝不能太松,否则镜面转动影响测量。
2.避免光杠杆掉落。
3.增减载荷过程中,载荷相同时,读数基本相同,
否则要寻找原因重做。
4.增减载荷不能立即读数,稳定后记录标尺读数。
思考题
1.该实验设计思想如何?光杠杆是如何实现微 小 长度变化的测量的?
2.测量中有那些系统误差,如何消减?
金属丝杨氏弹性模量的测量
一、实验目的 1、掌握用光杠杆法测量微小长度变化的原理和方法。
2、学习用拉伸法测量钢丝的杨氏模量。
3、学会用“对称测量”消除系统误差的方法。
4、学会用逐差法处理数据。
二、实验仪器介绍
三、实验原理 物体在外力作用下都会发生形变,对于有 拉伸、压缩形变的弹性体,其内部应力与应 变的比值称之为杨氏弹性模量。杨氏弹性模 量是反映物体在外力作用下发生形变难易程 度的重要物理量,是工程技术中常用的一个 参数。杨氏弹性模量的测量方法很多,本实 验采用拉伸法测定金属丝的杨氏弹性模量。 其中金属丝的微小伸长用光杠杆测定。
1、杨式模量: 假设一根横截面积为S,长为L的材料,在大小为F 的
力的拉压下,伸缩短了△L则:
L F :应变 :应力(单位截 L S 面上内力 ) 设金属丝的直径为d ,则横截面积
其杨式模量为:
L
F
2、光杠杆法测量原理
光杠杆常数 b
光杠杆的光学放大原理
L L 0 2 5 tan lb b b L = 2D l l 2 tan 2 D D l 2D 叫光杠杆放大 L b θ 率 θ θ △L b D
l
将微小的伸长量△L 放大为竖尺上的位移l
四、实验节。 2、测量
(1) 用2Kg 砝码挂在钢丝下端将钢丝拉直,以此为 起始读数;记下望远镜中与十字叉丝重合的标尺 读数
(2) 逐个将1Kg的砝码加到砝码托上,共5次;记 录每次从望远镜中读到的标尺读数: