工程热力学第11讲-第6章热力循环
工程热力学第六章 热力学微分关系式及实际气体性质
第一节 主要数学关系式
简单可压缩系统,所有状态是二个独立参数 的函数。状态参数都是点函数,微分是全微 分,设;z=f(x,y),则:
dz
z x
y
dx
z y
x
dy
dz
Mdx
Ndy; M
z x
y
,N
z y
x
M
y
x
y2zx;N xy
x2zyM y x
M y x
完成一个循环则: dzxzy
V
G p
T
三、麦克斯韦关系式
T V
s
p S
v
T
p
s
V S
p
S V
T
p T
v
S p
T
V T
p
四、热系数
系统的三个基本状态参数p、v、T之间应用
函数关系式:
v p
T
p T
v
T v
p
1
v p
或
v
dv
p 常 数 时 q p cpdTp
c pdT p
cvdT p
T
p T
v
d
v
p
得
:
cp
cv
T
p T
v v T
p
理想气体:
cp
cv
T
R v
R=R p
第五节 克拉贝龙方程
纯物质在定压相变过程中温度保持不变,说 明相变时压力和温度存在函数关系:
简化:
dp dT
h(β) h(α) T(v(β) v(α)
的比值,即z=v/vid=pv/RT或pv=zRT
对理想气体z=1,对实际气体z是状态函数, 可能大于1或小于1。z的大小表示实际气体性 质对理想气体的偏离程度
工程热力学课件11 制冷循环
理想气体
p 2‘
T
2‘
绝热膨胀,温度降低
1 6 1 2 4 3 v 2 s
5
T
转回温度曲线
实际气体
TH
冷效应区
N
热效应区
TL p pN
p
经济性指标最高的逆向循环是同温限 间的逆向卡诺循环。通常制冷循环以环境 为高温热源(T1=T0),因此在以T0为高 温热源、Tc为低温热源间的逆向卡诺循环 的制冷系数:
膨 胀 阀
压缩机
w
4
q2
1
蒸发器
1-2: 2-3: 3-4: 4-1:
制冷剂在压缩机中的绝热压缩过程 制冷剂在冷凝器中的定压放热过程 制冷剂在膨胀阀中的绝热节流过程 制冷剂在蒸发器中的定压定温气化过程
4 1 3 2
q2 wnet
单位质量制冷剂在冷凝器中放热量:
T
2
q1= h2-h3
单位质量制冷剂在蒸发器中吸热量:
1 h
过冷度愈大,制冷系数增加愈多。制冷剂液体离开冷凝 器的温度取决于冷却介质的温度,过冷度一般很小。多数制冷
装置专设一回热器,使从冷凝器出来的制冷剂液体通过回热器 进一步冷却,增大过冷度。回热器的冷却介质通常为离开蒸发 器的低温低压蒸气。
3 4 1
2
热泵供热原理
在所有制冷装置的工作过程中,热从冷藏室取 出并传给较高温度的环境。因此,实现制冷循环的 结果不仅使放出热量的物体被冷却,而且使吸收热 量的物体被加热。根据这个原理,可利用逆循环实 现将热从低温冷源向高源热源的输送。这种目的在 于输送热量给被加热对象(如室内供暖)的装置称为 热泵。向高温热源输送的热量qH,等于取自低温冷 源(如大气环境)的热量qL与实现逆循环从外界输入 功量wnet 之和,即qH=qL+wnet 。热泵就其实质来看, 和制冷装置完全一样,只是两者工作的温度范围不 同。制冷装置工作的上限温度为大气环境温度,其 目的系从冷藏室吸热,以保持冷藏室低温(下限温度) 恒冷;热泵工作的下限温度为大气环境温度,其目 的是向暖室放热,以保持暖室温度(上限温度)恒暖。
工程热力学热力循环的热力学模型与计算方法
工程热力学热力循环的热力学模型与计算方法工程热力学是研究能量转换和能量传递的学科,而热力循环是工程热力学中常见的能量转换方式。
在热力循环系统中,我们希望能够准确地评估其热力学性能,以便进行优化设计和性能分析。
本文将讨论热力循环的热力学模型和计算方法。
一、热力循环的基本原理与模型工程热力循环包括蒸汽动力循环、冷空气循环、制冷循环等多种形式,其中以蒸汽动力循环最为常见。
蒸汽动力循环是利用水蒸汽作为工质,在蒸汽锅炉中通过燃烧燃料产生高温高压蒸汽,然后通过涡轮机等能量转换装置将蒸汽的热能转化为机械能。
热力循环的基本原理是根据能量守恒和热力学第一定律建立的,可以通过一系列的热力学模型来描述。
在蒸汽动力循环中,主要涉及的热力学模型有蒸发模型、膨胀模型、压缩模型和冷凝模型。
蒸发模型用于描述蒸汽锅炉中的燃烧过程,通过燃料的燃烧产生热能,将水加热为高温高压蒸汽。
膨胀模型用于描述蒸汽在涡轮机中的膨胀过程,将热能转化为机械能。
压缩模型用于描述冷却水泵等装置对蒸汽进行压缩的过程,使其能够回到蒸汽锅炉中重新加热。
冷凝模型用于描述冷凝器中蒸汽的冷凝过程,将蒸汽的热能释放到冷却水中。
二、热力循环的计算方法热力循环的计算方法主要包括热量平衡计算和功率计算。
热量平衡计算是热力循环分析的基础,用于计算系统中传递的热量。
在热力循环系统中,热量的传递主要包括燃烧热的传递、换热器的传热和冷凝器的传热。
通过计算各个部件的热量平衡,可以得到系统中的热量转移情况。
功率计算是热力循环分析的重要部分,用于评估系统的能量转换效率。
功率计算主要涉及涡轮机的热力学性能和效率计算。
在蒸汽动力循环中,可以通过燃烧热的释放和蒸汽涡轮的工作来计算系统的净功率输出。
同时,还可以根据涡轮机的输入功率和输出功率计算涡轮机的效率。
在热力循环的计算过程中,还需要考虑一些影响系统性能的因素,如压力损失、能量损失和效率损失等。
这些因素将直接影响系统的总体性能和能量利用率。
三、热力循环的优化设计热力循环的优化设计是提高系统性能和能量转换效率的关键。
工程热力学与传热学11)蒸汽压缩制冷循环
(11-13)
qv
h1' h5 v1'
qv
?
(3)理论比功
w0 h2' h1' (4)单位冷凝热 qk qk h2' h4
(5)制冷系数
1'
w0
增加
(11-14)
增加
(h2' h2 ) (h2 h4 )
(11-14)
h h h h
(7)压缩机
在理论循环中,假设压缩过程为等熵过程。 而实际上,整个过程是一个压缩指数 在不断 变化的多方过程。另外,由于压缩机气缸中有 余隙容积的存在,气体经过吸、排气阀及通道 出有热量交换及流动阻力,这些因素都会使压 缩机的输气量减少,制冷量下降,消耗的功率 增大。
p
4
pk
3 0
2 2 s
5
p0
(11-11)
在蒸发温度和冷凝温度相同的条 件下:
制冷系数愈大 (6)压缩终温 经济性愈好
t2
影响到制冷剂的分解和润滑油结炭。
(7)热力完善度
单级压缩蒸气制冷机理论循环的热 力完善度按定义可表示为
0 h1 h4 1 h1 h4 Tk T0 c h2 h1 Tk 1 h2 h1 T0
q0
单位制冷量可按式(11-5)计算。单位制 冷量也可以表示成汽化潜热r0和节流后的干度 x5的关系:
q0 r0 (1 x5 )
(11-6)
由式(11-6)可知,制冷剂的汽化潜热越 大,或节流所形成的蒸气越少(x5越小)则单 位制冷量就越大。
(2)单位容积制冷量
qv
(11-7)
q0 h1 h4 qv v1 v1
(NEW)毕明树《工程热力学》(第2版)笔记和课后习题详解
热力学摄氏温标,以符号t表示,单位为摄氏度,符号为℃。热力
学摄氏温度定义为
,即规定热力学温度的273.15K为摄氏温度
的零点。这两种温标的温度间隔完全相同(
)。这样,冰的三相
点为0.01℃,标准大气压下水的冰点也非常接近0℃,沸点也非常接近
100℃。
c.华氏温标
在国外,常用华氏温标(符号也为t,单位为华氏度,代号为℉)
量,压力计的指示值为工质绝对压力与压力计所处环境绝对压力之差。 一般情况下,压力计处于大气环境中,受到大气压力pb的作用,此时压 力计的示值即为工质绝对压力与大气压力之差。当工质绝对压力大于大 气压力时,压力计的示值称为表压力,以符号pg表示,可见
p=pg+pb (1-1-1) 当工质绝对压力小于大气压力时,压力计的示值称为真空度,以pv 表示。可见
(2)几种基本状态参数如下: ① 压力
压力是指沿垂直方向上作用在单位面积上的力。对于容器内的气态 工质来说,压力是大量气体分子作不规则运动时对器壁单位面积撞击作 用力的宏观统计结果。压力的方向总是垂直于容器内壁的。压力的单位 称为帕斯卡,符号是帕(Pa)。
作为描述工质所处状态的状态参数,压力是指工质的真实压力,称 为绝对压力,以符号p表示。压力通常由压力计(压力表或压差计)测
热力学的宏观研究方法,由于不涉及物质的微观结构和微粒的运动 规律,所以建立起来的热力学理论不能解释现象的本质及其发生的内部 原因。另外,宏观热力学给出的结果都是必要条件,而非充分条件。
(2)热力学的微观研究方法,认为大量粒子群的运动服从统计法则 和或然率法则。这种方法的热力学称为统计热力学或分子热力学。它从 物质的微观结构出发,从根本上观察和分析问题,预测和解释热现象的 本质及其内在原因。
《工程热力学》(第四版)习题提示及答案06章习题提示与答案
习题提示与答案第六章 热能的可用性及火用分析6-1 汽车用蓄电池中储存的电能为1 440W ·h 。
现采用压缩空气来代替它。
设空气压力为6.5 MPa 、温度为25 ℃,而环境的压力为0.1MPa ,温度为25 ℃,试求当压缩空气通过容积变化而作出有用功时,为输出1 440 W ·h 的最大有用功所需压缩空气的体积。
提示:蓄电池存储的电能均为可转换有用功的火用 ,用压缩空气可逆定温膨胀到与环境平衡时所作出的有用功替代蓄电池存储的电能,其有用功完全来源于压缩空气的火用 ,即W u =me x ,U 1。
单位质量压缩空气火用 值()()()010010011,x s s T v v p u u e U ---+-=,空气作为理想气体处理。
答案:V =0.25 m 3。
6-2 有一个刚性容器,其中压缩空气的压力为3.0 MPa ,温度和环境温度相同为25 ℃,环境压力为0.1 MPa 。
打开放气阀放出一部分空气使容器内压力降低到1.0 MPa 。
假设容器内剩余气体在放气时按可逆绝热过程变化,试求:(1) 放气前、后容器内空气比火用U e x,的值;(2) 空气由环境吸热而恢复到25 ℃时空气的比火用U e x,的值。
提示:放气过程中刚性容器中剩余气体经历了一个等熵过程,吸热过程为定容过程;空气可以作为理想气体处理;各状态下容器中空气的比 火用()()()00000x s s T v v p u u e U ,---+-=。
答案:e x ,U 1=208.3 kJ/kg ,e x ,U 2=154.14 kJ/kg ,e x ,U 3=144.56kJ/kg 。
6-3 有0.1 kg 温度为17 ℃、压力为0.1 MPa 的空气进入压气机中,经绝热压缩后其温度为207 ℃、压力为0.4 MPa 。
若室温为17 ℃,大气压力为0.1 MPa ,试求该压气机的轴功,进、出口处空气的比 火用 H e x,。
《工程热力学》第十一章制冷循环
粘度
粘度小的制冷剂流动性好,有 利于传热。
密度
密度决定了制冷剂在相同体积 下的质量,密度越大,质量越
大,制冷效果越好。
制冷剂的热力学特性
压缩系数
压缩系数决定了制冷剂在压缩过 程中的体积变化,压缩系数越小,
体积变化越小,有利于提高制冷 效率。
热导率
热导率决定了制冷剂的传热效率, 热导率越大,传热效率越高。
制冷剂在蒸发器中蒸发成气体后被压缩机吸入,再次压缩,完成一个循环。
压缩式制冷循环的主要设备
压缩机
用于压缩制冷剂,提高 其压力和温度。
冷凝器
用于将高温高压的制冷 剂冷却成液体,释放出
潜热。
膨胀阀
用于将高压的液态制冷 剂减压至适合蒸发吸热
的低压状态。
蒸发器
用于使液态制冷化
未来的制冷系统将更加注重多功能化,除了温度调节外, 还将具备湿度控制、空气净化等功能,提高室内环境的舒 适度和健康性。
高效化
随着能源价格的上涨和节能减排的需求,制冷循环将更加 注重能效提升,采用先进的节能技术和优化算法,降低运 行成本和提高能源利用效率。
THANKS
感谢观看
吸收式制冷循环利用制冷剂在溶液中的溶解特性,通过制冷剂在溶液中 的蒸发和冷凝,实现制冷效果。
吸收式制冷循环中,常用的制冷剂有氨和水、溴化锂和水的混合溶液等, 这些制冷剂在吸收剂的作用下被吸收,再通过加热解吸,释放出冷量。
吸收式制冷循环的工作原理基于热力学第二定律,通过消耗热能实现制 冷效果,相比压缩式制冷循环,具有更高的能效比。
强化换热器设计
优化换热器的结构和设计,提高换热 效率。
引入智能控制技术
利用先进的控制算法和传感器技术, 实现制冷系统的智能控制,提高运行 效率。
工程热力学热力循环与热力机械
工程热力学热力循环与热力机械工程热力学是研究热与能的转化以及与热平衡有关的一门学科。
而热力循环与热力机械是工程热力学中的两个重要内容,它们在能源转换、动力工程等领域具有广泛的应用。
一、热力循环热力循环是指在一定条件下,热能转化为机械能的过程。
常见的热力循环有卡诺循环、斯特林循环和朗肯循环等。
下面以卡诺循环为例进行介绍。
卡诺循环是一种完全可逆循环,假设工质为理想气体,由两个等温过程和两个绝热过程组成。
以p-V图表示,卡诺循环是一个矩形闭合曲线,其中等温过程在高温热源和低温热源之间进行。
卡诺循环具有效率最高的特点,其热效率由下式给出:η_c = 1 - T_c / T_h其中,η_c为卡诺循环的热效率,T_c和T_h分别为低温热源温度和高温热源温度。
卡诺循环的热效率是所有循环中最高的,它给出了理论上能够达到的最大效率。
二、热力机械热力机械是利用热能转化为机械能的设备或装置,主要包括蒸汽轮机、汽车发动机、燃气轮机等。
下面以蒸汽轮机为例进行介绍。
蒸汽轮机是一种利用高温高压蒸汽推动叶片转动,从而产生机械功的装置。
它由汽缸、活塞、曲轴等部分组成。
蒸汽从高温高压区流入汽缸,推动活塞运动,活塞的运动通过连杆和曲轴转化为机械功。
蒸汽轮机的工作过程可以简化为以下几个步骤:蒸汽吸热、膨胀、冷却和排出蒸汽。
在蒸汽轮机中,为了提高效率,需要使用过热蒸汽和再热蒸汽来增加蒸汽的膨胀比。
此外,还可以采用多级膨胀和减温回热等技术来进一步提高热力机械的效率。
三、工程实践热力循环与热力机械在工程实践中具有重要的应用价值。
它们广泛应用于发电厂、工业生产、交通运输等领域。
以电力发电为例,发电厂通常采用蒸汽轮机作为主力设备。
在蒸汽轮机中,燃烧燃料产生高温高压蒸汽,蒸汽驱动叶片转动,从而带动发电机转动产生电能。
通过热力循环和热力机械的共同作用,将燃烧产生的热能转化为电能,实现能源的高效利用。
此外,热力循环与热力机械还广泛应用于工业生产中的各种设备和装置,如化工厂中的蒸馏塔、石油炼化厂中的裂化装置等。
工程热力学思考题答案,第十一章
第十一章制冷循环1.家用冰箱的使用说明书上指出,冰箱应放置在通风处,并距墙壁适当距离,以及不要把冰箱温度设置过低,为什么答:为了维持冰箱的低温,需要将热量不断地传输到高温热源环境大气,如果冰箱传输到环境大气中的热量不能及时散去,会使高温热源温度升高,从而使制冷系数降低,所以为了维持较低的稳定的高温热源温度,应将冰箱放置在通风处,并距墙壁适当距离.在一定环境温度下,冷库温度愈低,制冷系数愈小,因此为取得良好的经济效益,没有必要把冷库的温度定的超乎需要的低.2.为什么压缩空气制冷循环不采用逆向卡诺循环答:由于空气定温加热和定温放热不易实现,故不能按逆向卡诺循环运行.在压缩空气制冷循环中,用两个定压过程来代替逆向卡诺循环的两个定温过程.3.压缩蒸气制冷循环采用节流阀来代替膨胀机,压缩空气制冷循环是否也可以采用这种方法为什么答:压缩空气制冷循环不能采用节流阀来代替膨胀机.工质在节流阀中的过程是不可逆绝热过程,不可逆绝热节流熵增大,所以不但减少了制冷量也损失了可逆绝热膨胀可以带来的功量.而压缩蒸气制冷循环在膨胀过程中,因为工质的干度很小,所以能得到的膨胀功也极小.而增加一台膨胀机,既增加了系统的投资,又降低了系统工作的可靠性.因此,为了装置的简化及运行的可靠性等实际原因采用节流阀作绝热节流.4.压缩空气制冷循环的制冷系数、循环压缩比、循环制冷量三者之间的关系如何 答:压缩空气制冷循环的制冷系数为:()()142314-----o o net k o q q h h w q q h h h h ε=== 空气视为理想气体,且比热容为定值,则:()()142314T T T T T T ε-=---循环压缩比为:21p p π=过程1-2和3-4都是定熵过程,因而有:1322114k kT T P T P T -⎛⎫==⎪⎝⎭ 代入制冷系数表达式可得:111k kεπ-=-由此式可知,制冷系数与增压比有关.循环压缩比愈小,制冷系数愈大,但是循环压缩比减小会导致膨胀温差变小从而使循环制冷量减小,如图b 中循环1-7-8-9-1的循环压缩比较循环1-2-3-4-1的小,其制冷量面积199′1′1小于循环1-2-3-4-1的制冷量面积144′1′1.T sO 4′ 9′1′Ov ab压缩空气制冷循环状态参数5.压缩空气制冷循环采用回热措施后是否提高其理论制冷系数能否提高其实际制冷系数为什么答:采用回热后没有提高其理论制冷系数但能够提高其实际制冷系数.因为采用回热后工质的压缩比减小,使压缩过程和膨胀过程的不可逆损失的影响减小,因此提高实际制冷系数.6.按热力学第二定律,不可逆节流必然带来做功能力损失,为什么几乎所有的压缩蒸气制冷装置都采用节流阀答:压缩蒸气制冷循环中,湿饱和蒸气在绝热膨胀过程中,因工质中液体的含量很大,故膨胀机的工作条件很差.为了简化设备,提高装置运行的可靠性,所以采用节流阀.7.参看图 5,若压缩蒸汽制冷循环按1-2-3-4-8-1 运行,循环耗功量没有变化,仍为h2-h1,而制冷量却从h1-h5.增大到h1-h8,显见是“有利”的.这种考虑可行么为什么答:过程4-8熵减小,必须放热才能实现.而4 点工质温度为环境温度T,要想放热达到温度Tc 8点,必须有温度低于Tc的冷源,这是不存在的.如果有,就不必压缩制冷了.8.作制冷剂的物质应具备哪些性质你如何理解限产直至禁用氟利昂类工质,如R11、R12答:制冷剂应具备的性质:对应于装置的工作温度,要有适中的压力;在工作温度下气化潜热要大;临界温度应高于环境温度;制冷剂在T-s 图上的上下界限线要陡峭;工质的三相点温度要低于制冷循环的下限温度;比体积要小;传热特性要好;溶油性好;无毒等.限产直至禁用R11 和R12 时十分必要的,因为这类物质进入大气后在紫外线作用下破坏臭氧层使得紫外线直接照射到地面,破坏原有的生态平衡.9.本章提到的各种制冷循环有否共同点若有是什么答:各种制冷循环都有共同点.从热力学第二定律的角度来看,无论是消耗机械能还是热能都是使熵增大,以弥补热量从低温物体传到高温物体造成的熵的减小,从而使孤立系统保持熵增大.10.为什么同一装置即可作制冷剂又可作热泵答:因为热泵循环与制冷循环的本质都是消耗高质能以实现热量从低温热源向高温热元的传输.热泵循环和制冷循环的热力学原理相同.。
华北电力大学课件,工程热力学 第11章、蒸汽动力装置循环_1515
理 想 情 况 下 汽 轮 机 功 : w T h 1 h 2 3 4 3 2 . 1 1 9 9 0 . 3 1 4 4 1 . 8 k J / k g
w p h 3 h 2 v 2 p 1 p 2
v2 0.0010m3 0/k5g2
w p1.0 4k7/Jkg
p114 16 0Pa p250P 00 a
2019/5/3
理 想 情 况 下 水 泵 功 : w p h 3 h 2 v 2 p 1 p 2 1 4 . 0 7 k J / k g
2019/5/3
2
§11-1 简单蒸汽动力装置循环 —朗肯循环(Rankine cycle)
一.简介
32019/5/3
朗肯 W.J.M. Rankine,1820~1872年, 英国科学家。
1820年6月5日出生于苏格兰的爱丁 堡。1855年被委任为格拉斯哥大学机 械工程教授。 1858年出版《应用力学 手册》一书,是工程师和建筑师必备的 指南。1859年出版《蒸汽机和其它动 力机手册》,是第一本系统阐述蒸汽机 理论的经典著作。朗肯计算出一个热力 学循环(后称为朗肯循环)的热效率,被 作为是蒸汽动力发电厂性能的对比标准。 1872年12月24日于格拉斯哥逝世。
2019/5/3
(1) 循环效率
汽轮机的相对内效率: ri实 理际 论功 功 hh11hh22a
水泵的效率:
p实 理际 论 泵 泵 hh33a 功 功 hh2 2
实际效率:
i h1h1h2h2rih3ah3h2ph2
工程热力学第11讲-第6章热力循环
新型热力循环可以更高效地利用能源,减少对环境的污染,并且可以提 供更稳定的能源输出。
03
新型热力循环的挑战
新型热力循环的研究面临着许多挑战,如技术难度大、成本高、安全性
等问题。
高效热力循环的探索
高效热力循环
为了提高能源利用效率,人们正在探索各种高效热力循环。例如, 有研究正在探索利用高温高压的热力循环,以提高能源的转换效率。
热力循环的组成
一个完整的热力循环通常包括四个主要过程,即吸 热过程、膨胀过程、放热过程和压缩过程。
热力循环的特性
热力循环具有可逆性和效率。在理想情况下,可逆 热力循环是效率最高的循环。
热力循环的分类
80%
根据工作物质分类
根据所使用的工作物质,热力循 环可以分为气体循环、液体循环 和固体循环。
100%
低温热源温度的降低可以减少循环总热量,从而 提高效率。
提高高温热源温度
高温热源温度的提高可以增加循环净功,从而提 高效率。
采用高效工质
选择具有高热容和低流动阻力的工质可以提高循 环效率。
05
热力循环的未来发展
新型热力循环的研究
01 02
新型热力循环
随着科技的不断进步,新型热力循环的研究也在不断深入。例如,有研 究正在探索利用核能、太阳能、地热能等新能源的热力循环,以替代传 统的化石燃料热力循环。
应用
燃气轮机循环广泛应用于 航空、船舶和工业领域。
制冷循环
定义
制冷循环是一种利用制冷剂的相 变过程实现热量转移的循环过程。
工作原理
制冷剂在蒸发器中吸收热量蒸发, 然后在冷凝器中放出热量冷凝,通 过压缩机的压缩和膨胀机的膨胀实 现循环。
应用
工程热力学-第六章 实际气体方程的性质及热力学一般关系式
定温过程:g vdp 1
可逆定温过程中自由焓的减少量是过程的技术功。
三、麦克斯韦关系
du=Tds-pdv dh=Tds+vdp df = -sdT – pdv dg=-sdT+vdp
T
p
(
v
)s
( s
)v
T v
( p
)s
( s ) p
( p T
)v
(
s v
)T
( v T
)p
(
s p
)T
四、热系数
(Vm
+
b)
6-3 对应态原理与通用压缩因子图
一、对应态原理 1、提出的缘由
(
p
+
a Vm2
)(Vm
-
b) =
RT
实际气体状态方程包含有与物质固有性质相 关的常数a、b,这些常数需要实验数据进行拟 合才能得到。
在临界点附近,所有流体显示出相似性质 2、对比参数:
pr
p pcr
,Tr
T Tcr
, vr
其在高压低温下偏差更大。
Z = pv = pVm RgT RT
Z
=
pv RgT
=
pVm RT
或pVm
=
ZRT
压缩因子Z偏离1的大小反映了实际气体对理想
气体偏离的程度
Z的大小与气体种类有关,随压力以及温度变化
临界点的压缩因子称为临界压缩因子:
Z cr
=
pcrv cr RgTcr
压缩因子Z的物理意义:
Vm
b
RT
p
27 64
R
T2 2 cr
pcr
1 Vm2
工程热力学主要循环图示
通过循环图示分析热泵的工作原理,实现低品位热能的回收利用。
热管技术
利用循环图示研究热管技术,实现高效传热和节能。
环保技术
废热处理
利用循环图示分析废热处理过程中的能量转换和利用,降低环境污 染。
温室气体减排
通过循环图示研究温室气体减排技术,减少温室气体排放。
工业废水处理
利用循环图示分析工业废水处理过程中的能量转换和利用,实现废水 零排放。
影响因素
热效率受到工质的选择、循环过程的设计、实际运行条件等因素 的影响。
机械效率
01
机械效率
表示循环过程中机械能转换为输 出功的效率,是评价机械发动机 性能的重要指标。
计算公式
02
03
影响因素
$eta_{mech} = frac{W_{net}}{W_{net} + Q_{in}}$。
机械效率受到工质的选择、循环 过程的设计、实际运行条件等因 素的影响。
THANKS
感谢观看
循环效率受到多种因素的 影响,如循环过程的设计、 工质的选择、实际运行条 件等。
热效率
热效率
表示循环过程中热能转换为机械能的效率,是评价热力发动机性 能的重要指标。
计算公式
$eta_{th} = frac{W_{net}}{Q_{in} - Q_{out}}$,其中 $Q_{out}$为循环中输出热量。
对于封闭系统,热量自发地从低温流向高温,而不是相反方向。
03
循环图示的解析
循环效率
循环效率
表示循环过程能量转换的 完善程度,是评价循环过 程性能的重要参数。
计算公式
$eta
=
frac{W_{net}}{Q_{in}}$,
工程热力学热力循环中流体流动与传热基本规律
工程热力学热力循环中流体流动与传热基本规律工程热力学研究了能量转换和传递的规律,其中热力循环是研究的重要方面。
在热力循环中,流体的流动和传热是相互关联的过程。
本文将探讨在工程热力学热力循环中流体流动和传热的基本规律。
一、热力循环简介热力循环是指一种能量转换过程,其中工作物质在经过一系列变化后,完成对外界做功的循环过程。
常见的热力循环包括蒸汽动力循环和气体动力循环等。
在热力循环过程中,流体通过流动和传热实现能量的转移和转换。
二、流体流动基本规律在工程热力学热力循环中,流体的流动是基本的能量传递方式。
流体流动的基本规律可以通过连续性方程和动量方程等来描述。
1. 连续性方程连续性方程是描述流体流动的基本方程之一,它表示了流体质量守恒的原理。
连续性方程可以用数学表达式表示为:$\frac{{\partial \rho }}{{\partial t}} + \nabla \cdot \left( {\rho\mathbf{v}} \right) = 0$其中,$\rho$表示流体的密度,$\mathbf{v}$表示流体的速度矢量。
该方程表明,单位体积内的流体质量随时间的变化率与流体速度的散度成反比。
2. 动量方程动量方程描述了流体流动过程中动量守恒的原理。
动量方程可以用数学表达式表示为:$\rho \frac{{\partial \mathbf{v}}}{{\partial t}} + \rho \mathbf{v} \cdot \nabla \mathbf{v} = - \nabla P + \mu \nabla^2 \mathbf{v} + \mathbf{F}$其中,$P$表示流体的压力,$\mu$表示流体的动力粘度,$\mathbf{F}$表示外力矢量。
该方程表明,流体的动量随时间的变化率与压力梯度、速度梯度、动力粘度和外力之间存在一定的关系。
3. 流体流动的稳定性流体流动的稳定性是流动状态是否随时间变化的性质。
工程热力学主要循环图示
理想混合加热循环(萨巴德循环)
12 等熵压缩;23 等容吸热; 34 定压吸热;45 等熵膨胀; 51 定容放热
特性参数: 压缩比(compression ratio)
定容增压比(pressure ratio)
v1
v2 p3
p2
定压预胀比 (cutoff ratio)
v4
v3
定压加热循环(狄塞尔Diesel循环)
定容加热循环(奥托OTTO循环)
柴油机与汽油机动力循环图示
柴油机,压燃式
汽油机,点燃式
定压加热理想循环-布雷顿循环
克劳修斯不等式的推导
1、正循环(卡诺循环)
Q Q1 Q2 0 T T1 T2
热力系统分类
以系统与外界之间能量和物质交换情况划分:
有
无
是否传质
开口系 闭口系
是否传热
非绝热系 绝热系
是否传功
非绝功系 绝功系
是否传热、功、质 非孤立系 孤立系
强度参数与广延参数
强度参数:与物质的量无关的参数
如压力p、温度T
广延参数:与物质的量有关的参数⎯可加性
如质量m、容积V、内能U、焓H、熵S
比参数:
vV uU h H
m
m
m
s S m
比容 比内能 比焓
比熵
具有强度参数的性质,不可加性
5–2 卡诺循环和卡诺定理
一、卡诺循环及其热效率
1. 卡诺循环
1 绝热压缩 2 2 等温吸热3 3 绝热膨胀 4 4 等温放热1
是两个热源的可逆循环
工程热力学与传热学_活塞式内燃机循环
热效率计算及分析
q51 q2 t 1 1 q1 q2 3 q3 4 Cv (T5 T1 ) 1 Cv (T3 T2 ) C P (T4 T3 ) T5 T1 1(T3 T2 ) k (T4 T3 )
混合加热循环参数计算及参数关系
压缩比compressionratio定容增压比pressureratio定压预胀比cutoffratio1压力升高比预账比不变压缩比升高t升高三定容加热理想循环ottocycle循环热效率压缩比升高升高四定压加热理想循环dieselcycle热效率计算及分析循环热效率活塞式内燃机各种理想循环的热力学比较一压缩比相同吸热量相同时的比较二循环pmaxmax相同时的比较
循环热效率
t 1
1
1
k 1
1 ( 1) k ( 1)
k
1
k 1
(预账比ρ =1)
压缩比ε 升高,η t升高
四、定压加热理想循环(Diesel cycle)
v1 v2 v3 v2
热效率计算及分析
循环热效率
t 1
1
1
T2 v1 k 1 v1 k 1 ( ) T2 T1 ( ) T1 k 1 T1 v2 v2 P3 T3 T2 T2 T1 k 1 P2 v4 T4 T3 T3 T1 k 1 v3
压缩比ε =v1/v2 压力升高比λ =P3/P2体积大,重量重,热效率低; • 内燃机结构紧凑、用水量少、操作方便、启动迅 速、热效率高,体积小,重量轻,便于移动;
1860’s,活塞式内燃机问世, 后广泛应用于 全 世界各种类型的汽车、拖拉机、农业机械、工程机 械、小型移动电站和战车等;海上商船、内河船舶 和常规舰艇,某些小型飞机也都由内燃机来推进。 世界上内燃机的保有量在动力机械中居首位。
工程热力学WORD版第11篇蒸汽动力循环
第11章蒸汽动力循环一、教案设计教学目标: 使学生熟练掌握水蒸气朗肯循环、回热循环、再热循环和热电循环的组成、热效率计算及提高热效率的方式和途径。
知识点:朗肯循环、回热循环、再热循环和热电循环的组成、热效率计算及提高热效率的方式和途径重点:分析朗肯循环的分析方式,提高循环循环效率的方式和途径。
难点:回热循环、再热循环和热电循环;提装置循环效率的方式和途径。
教学方式:教学+多媒体演示+课堂讨论师生互动设计:提问+启发+讨论☺问:自己观察过身旁的热力系统的状态转变吗?☺问:你以前明白热力系统的状态转变往往伴随着系统与外界间能量的互换吗?☺问:你明白温度计什么原理吗?温度计测温的理论依据你试探过吗?☺问:用过压力计吗?氧气瓶上压力表读数是瓶中的真实压力吗?☺问:能举出几个具体的强气宇、广延量?热力进程、热力循环?☺问:爆炸进程能以为是准静态进程吗?☺问:你能说出进程量与状态量的区别吗?请具体举例。
☺问:你碰到的哪些现象属于不可逆现象?学时分派:4学时+2讨论二、大体知识热机:将热能转换为机械能的设备叫做热力原动机。
热机的工作循环称为动力循环。
动力循环:可分蒸汽动力循环和气动力循环两大类。
第一节 蒸汽动力大体循环一朗肯循环朗肯循环是最简单的蒸汽动力理想循环,热力发电厂的各类较复杂的蒸汽动力循环都是在朗肯循环的基础上予以改良而取得的。
一、装置与流程蒸汽动力装置:锅炉、汽轮机、凝汽器和给水泵等四部份主要设备。
工作原理:p-v 、T-s 和h-s 。
朗肯循环可理想化为:两个定压进程和两个定熵进程。
3’-4-5-1水在蒸汽锅炉中定压加热变成过热水蒸气, 1-2过热水蒸气在汽轮机内定煽膨胀,2-3湿蒸气在凝汽器内定压(也定温)冷却凝结放热, 3-3’凝结水在水泵中的定情紧缩。
二、朗肯循环的能量分析及热效率 取汽轮机为控制体,成立能量方程:3121h h h h --=η三、提高朗肯循环热效率的大体途径 依据:卡诺循环热效率 1.提高平均吸热温度直接方式式提高蒸汽压力和温度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2'
s
乏汽压力对朗肯循环热效率的影响
t1 , p1不变,p2 ↓
T
1
优点: •T2 ↓ ηt ↑ 4
5
6
缺点: 3 •p2↓ 受环境限制 •现在大型机组p2为3.5~5kPa, 相应的饱和 温度约为27~ 33℃ ,已接近可能达到的最低 限度。 •冬天热效率高
4'
2
3'
2'
s
提高循环热效率的途径
' 2
' h2 h2
t,RG t
物理意义: kg工质100%利用,1- kg工质效率未变。
蒸汽抽汽回热循环的特点
优点: 提高热效率 减小汽轮机低压缸尺寸,末级叶片变短 减小凝汽器尺寸,减小锅炉受热面 可兼作除氧器 缺点: 循环比功减小,汽耗率增加 增加设备复杂性 回热器投资 小型火力发电厂回热级数一般为1~3级,中大型火力发电厂 一般为 4~8级。
蒸汽回热循环热效率计算
T 吸热量: 1
1kg
6 kg a
q1,RG h1 h5 h1 ha'
放热量:
4
3
5
(1- )kg 2
q2,RG 1 h2 h2'
净功: s
wRG h1 ha 1 ha h2
热效率:
整体煤气化联合循环发电(IGCC)
IGCC技术把高效的燃气-蒸汽联合循环发电系统与洁净的煤 气化技术结合起来,既有高发电效率,又有极好环保性能, 是一种有发展前景的洁净煤发电技术。
整体煤气化联合循环发电(IGCC)
整体煤气化联合循环发电(IGCC)
优点:
效率高:在目前技术水平下,IGCC发电的净效率可达43%~45%,今 后可望达到更高。 污染低:污染物排放量仅为常规燃煤电站的1/10,二氧化硫排放在 25mg/Nm3左右(目前国家二氧化硫为1200mg/Nm3),脱硫效率可 达99%。氮氧化物排放只有常规电站的15%--20%,耗水只有常规电站 的1/2-1/3,利于环境保护。
过程装备与控制工程专业
工程热力学
第十讲
山东大学机械工程学院 过程装备与控制工程研究所
本讲内容
6 热力循环
1 动力循环 2 制冷循环 3 热泵供热循环 4 气体液化循环
学习要求
1 2 3 4 5 6 7 8 9 熟练掌握朗肯循环、回热循环、再热循环以及热电循环 的组成。 会利用蒸汽图表对循环进行热力分析和计算。 掌握提高蒸汽动力循环热效率的方法和途径。 熟悉热电联供循环。 掌握空气和蒸汽压缩制冷循环的组成。 掌握制冷系数的计算及提高制冷系数的方法和途径。 了解制冷剂的热力学要求和环保要求。 了解吸收制冷、蒸汽喷射制冷、热泵、空调原理。 掌握气体液化循环的原理和特点。
提高初温度 改变循环参数
提高初压力
降低乏汽压力
再热循环
改变循环形式 回热循环 热电联产 改变循环形式 燃气-蒸汽联合循环 新型动力循环 IGCC
PFBC-CC
…...
朗肯循环的改进
朗肯循环热效率有限: 1. 乏汽的压力和温度受限于环境,降低的可能很小。 2. 提高初始压力虽然可以提高朗肯循环的效率,但是由于乏 汽干度下降,对汽轮机的运行会产生不利后果。 3. 提高蒸汽进入汽轮机的初温又会对锅炉、管道、阀门的材 质、强度提出更高的要求。 4. 存在两个温差吸热造成朗肯循环效率变低。 朗肯循环的改进:回热循环、再热循环等。
T
4'
9 5 10 6
1
q1卡诺> q1朗肯 卡诺> 朗肯; 等温吸热4’1难实现 对比5678 卡诺> 朗肯; wnet卡诺< wnet 朗肯 对比9-10-11-12 11点x太小,不利于汽机强度;
4 3 8 12 11 7 2
12-9两相区难压缩; wnet卡诺小
2
s
蒸汽再热循环的实践
再热压力 pb=pa(0.2~0.3)p1 p1<10MPa,一般不采用再热。 常见10、12.5、20、30万机组,p1>13.5MPa,一次再热。
超临界机组, t1>600℃,p1>25MPa, 二次再热。
蒸汽再热循环的定量计算
T 6 5 4 3 1
吸热量:
热电联产(供)循环
用发电厂汽轮机后的乏汽的余热来满足低热用户的 需要。 原因:
1. 乏汽的能量数量多,但由于压力和温度低,可用能很少, 无法得到充分的利用。 2. 生活和生产中需要耗费大量燃料以产生大量温度不太高 的热能。 3. 热电联供将二者结合起来,一方面产生动力,另一方面 提供低品位的热能。由此节约的能量比因动力循环效率 下降而损失的能量多,综合节能效果非常显著。
过热器 汽轮机
发电机
锅炉
调节阀 冷却水 冷凝器
水泵 2 加热器 水泵 1
热电联产(供)循环
wnet t q1
热电联产(供)循环的经济性评价只采用热效率
能量利用系数
显然不够全面
q供热+wnet 已被利用的能量 K 工质从热源得到的能量 q1
但未考虑热和电的品位不同 应采用 Ex经济学评价 热电联产、集中供热是发展方向,经济环保
s
朗肯循环T-s和h-s图
T 1
h 1
4 3 2 s
4 3
2
s
朗肯循环功和热的计算
汽轮机作功
ws ,1 2 h1 h2
凝汽器中的定压放热
h 1
q2 h2 h3
水泵绝热压缩耗功
ws ,3 4 h4 h3
锅炉中的定压吸热
4 3
2
q1 h1 h4
s
朗肯循环热效率的计算
s
(1- )kg 4
蒸汽回热循环抽汽量计算
T 1 以混合式回热器为例 热一律
1kg
6 kg a
ha 1 h4 1 h5
h5 h4 ha h4
忽略泵功 s
4
3
5
(1- )kg 2
a
kg (1- )kg
1kg
5
4
' ha' h2 ' ha h2
蒸汽回热循环
1 1kg
去凝汽器
抽汽 冷凝水
a α kg 6 5
抽汽式回热
2 3 (1-α )kg
给水
表面式回热器 抽汽 冷凝水
4
混合式回热器
蒸汽回热循环热力过程
T 1
1 1kg
1kg
6 kg a
4
3
5
(1- )kg 2
a α kg 6 5
a 1kg 5
2 3 (1-α )kg
4
kg
由于 T-s 图上各点质量不同,面积 不再直接代表热和功
a
q1 h1 h4 ha hb
放热量:
b
q2 h2 h3
净功(忽略泵功):
2
s
热效率:
wnet h1 hb ha h2
t,RH
wnet (h1 hb ) (ha h2 ) q1 (h1 h4 ) (ha hb )
§6-1 动力循环
动力循环
动力循环:工质连续不断地将从高温热源取得的热量的一 部分转换成对外的净功。 研究目的:合理安排循环,提高热效率。 动力循环的分类:
气体动力循环:内燃机 空气为主的燃气 按工质 按理想气体处理 蒸汽动力循环:外燃机 水蒸气等 实际气体
正向卡诺循环— 理想可逆热机循环 循 环 示 意 图
蒸汽动力循环
1. 2. 3. 蒸汽动力循环:以蒸汽为工质,在湿蒸汽区,可以克服 气体卡诺循环的两个缺点。 实际生产中不采用蒸汽卡诺循环。 原因: 湿蒸汽的绝热压缩难以实现,缺少压缩汽水混合物的合 适设备; 定熵膨胀的末期,蒸汽湿度较大,对汽轮机工作不利; 蒸汽比容比水大上千倍,压缩时设备庞大,耗功也大;
1-2定温吸热过程, q1 = T1(s2-s1) 2-3绝热膨胀过程,对外作功 3-4定温放热过程, q2 = T2(s2-s1) 4-1绝热压缩过程,对内作功
气体卡诺循环
工质:气体 效率:最高效率 缺点:
1. 定温吸热和定温放热两个过程在实际上难以实现; 2. 在p-v图上,气体定温线与绝热线的斜率相差不大,所以 每次完成的功较小。
h1'' h3 B qf
整个电厂热效率
热效率
wnet = t B oi tu qf
机械
wM wnet
机械效率
电机效率 整个电厂热效率
电机
wg wM
电厂
wg 电机 wM 机械 wnet 收益 电功 电机 = = qf qf 代价 燃料热量 qf
蒸汽再热循环
1 再 热 b a 4 3 2
T
1
a
6
5 4 3
b
2
s
蒸汽再热循环实体照片
蒸汽再热循环的效率
再热循环本身不一定提高 循环热效率,热效率与再 热压力有关。 x2降低,给提高初压创造 了条件,可选取合适的再 热压力。
T
1
a
6
5 4 3
b
采用一次再热可使热效率 提高2%~5%。
汽机不可逆( 1 2 ’) 给水泵不可逆( 3 4 ’) s
实际蒸汽动力循环分析方法
热一律:热效率分析法 热二律: 1 熵分析法 2 Ex分析法
√
√
实际蒸汽动力循环热效率法
1’’
T 忽略泵功, 可逆循环效率
1’ 1
h1 h2 t h1 h3