牛顿法求解MATLAB算法
matlab实现牛顿迭代法求解非线性方程组
matlab 实现牛顿迭代法求解非线性方程组已知非线性方程组以下3*x1-cos(x2*x3)-1/2=0x1^2-81*(x2+^2+sin(x3)+=0exp(-x1*x2)+20*x3+(10*pi-3)/3=0求解要求精度达到————————————————————————————————第一成立函数fun储藏方程组编程以下将保留到工作路径中:function f=fun(x);%定义非线性方程组以下%变量 x1 x2 x3%函数 f1 f2 f3syms x1 x2 x3f1=3*x1-cos(x2*x3)-1/2;f2=x1^2-81*(x2+^2+sin(x3)+;f3=exp(-x1*x2)+20*x3+(10*pi-3)/3;f=[f1f2 f3]; ————————————————————————————————成立函数dfun用来求方程组的雅克比矩阵将保留到工作路径中:function df=dfun(x);%用来求解方程组的雅克比矩阵储藏在dfun 中f=fun(x);df=[diff(f,'x1');diff(f,'x2');diff(f,'x3')];df=conj(df'); ————————————————————————————————编程牛顿法求解非线性方程组将保留到工作路径中:function x=newton(x0,eps,N);con=0;%此中 x0 为迭代初值 eps 为精度要求 N 为最大迭代步数con 用来记录结果能否收敛for i=1:N;f=subs(fun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)});df=subs(dfun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)});x=x0-f/df;for j=1: length(x0);il(i,j)=x(j);endif norm(x-x0)<epscon=1;break;endx0=x;end%以下是将迭代过程写入txt 文档文件名为fid=fopen('','w');fprintf(fid,'iteration');for j=1:length(x0)fprintf(fid,'x%d',j);endfor j=1:ifprintf(fid,'\n%6d',j);for k=1:length(x0)fprintf(fid,'%',il(j,k));endendif con==1fprintf(fid,'\n计算结果收敛!');endif con==0fprintf(fid,'\n迭代步数过多可能不收敛!');endfclose(fid);————————————————————————————————运转程序在matlab 中输入以下内容newton([],,20) ————————————————————————————————输出结果——————————————————————————————————————————在 iteration 中查察迭代过程iteration x1 x2 x3.mulStablePoint 用不动点迭代法求非线性方程组的一个根function[r,n]=mulStablePoint(F,x0,eps)%非线性方程组: f%初始解: a%解的精度: eps%求得的一组解:r%迭代步数: nif nargin==2eps=;endx0 = transpose(x0);n=1;tol=1;while tol>epsr= subs(F,findsym(F),x0);%迭代公式tol=norm(r-x0);%注意矩阵的偏差求法,norm 为矩阵的欧几里德范数n=n+1;x0=r;if(n>100000)%迭代步数控制disp('迭代步数太多,可能不收敛!');return;endendx0=[0 0 0];[r,n,data]=budong(x0);disp(' 不动点计算结果为')x1=[1 1 1];x2=[2 2 2];[x,n,data]=new_ton(x0);disp( ’初始值为0,牛顿法计算结果为:’)[x,n,data]=new_ton(x1);disp(' 初始值为1,牛顿法计算结果为:')[x,n,data]=new_ton(x2);disp ('初始值为2,牛顿法计算结果为:')function[r,n,data]=budong(x0, tol)if nargin=-1tol=1e-3:endx1=budong fun(x0);n=1;while(norm(x1-x0))tol)&(n500)x0=x1;x1=budong_fun(x0);n=n+1:data(:,n)=x1;endr=x1 :function [x,n,data]=new_ton(x0, tol)if nargin=-1tol=1e-8;endx1=x0-budong_fun(x0)/df1(x0);n=1;while (norm(x1-x0))tol)x0=x1;x1=x0-budong_fun(x0)/df1(x0);n=n+1;data(:,n)=x1;endx=x1;function f=budong_fun(x)f(1)=3* x(1)-cos(x(2)*x(3))-1/2;f(2)=x(1)^2-81*(x(2)+^2+sin(x(3))+;f(3)=exp(-x(1)*x(2))+20* x(3)+10* pi/3-1; f=[f(1)*f(2)*f(3)];function f=df1(x)f=[3sin(x(2)*x(3))*x(3) sin(x(2)*x(3))*x(2)2* x(1)-162*(x(2)+cos(x(3))exp(-x(1)*x(2))*(-x(2))exp(-x(1)*x(2))*(-x(1))20]; 结果:不动点计算结果为r=+012*NaN-Inf初始值为0,牛顿法计算结果为:x=初始值为1,牛顿法计算结果为:x=初始值为2,牛顿法计算结果为:x=。
matlab牛顿迭代法求方程
一、引言在数值计算中,求解非线性方程是一项常见的任务。
牛顿迭代法是一种常用且有效的方法,它通过不断逼近函数的零点来求解方程。
而在MATLAB中,我们可以利用其强大的数值计算功能来实现牛顿迭代法,快速求解各种非线性方程。
二、牛顿迭代法原理与公式推导1. 牛顿迭代法原理牛顿迭代法是一种利用函数的导数信息不断逼近零点的方法。
其核心思想是利用当前点的切线与x轴的交点来更新下一次迭代的值,直至逼近方程的根。
2. 公式推导与迭代过程假设要求解方程f(x)=0,在初始值x0附近进行迭代。
根据泰勒展开,对f(x)进行一阶泰勒展开可得:f(x) ≈ f(x0) + f'(x0)(x - x0)令f(x)≈0,则有:x = x0 - f(x0)/f'(x0)将x带入f(x)的表达式中,即得到下一次迭代的值x1:x1 = x0 - f(x0)/f'(x0)重复以上过程,直至达到精度要求或者迭代次数上限。
三、MATLAB中的牛顿迭代法实现1. 编写函数在MATLAB中,我们可以编写一个函数来实现牛顿迭代法。
需要定义原方程f(x)的表达式,然后计算其一阶导数f'(x)的表达式。
按照上述推导的迭代公式,编写循环语句进行迭代计算,直至满足精度要求或者达到最大迭代次数。
2. 调用函数求解方程在编写好牛顿迭代法的函数之后,可以通过在MATLAB命令窗口中调用该函数来求解具体的方程。
传入初始值、精度要求和最大迭代次数等参数,即可得到方程的近似根。
四、牛顿迭代法在工程实践中的应用1. 求解非线性方程在工程领域,很多问题都可以转化为非线性方程的求解问题,比如电路分析、控制系统设计等。
利用牛顿迭代法可以高效地求解这些复杂方程,为工程实践提供了重要的数值计算手段。
2. 优化问题的求解除了求解非线性方程外,牛顿迭代法还可以应用于优化问题的求解。
通过求解目标函数的导数等于0的方程,可以找到函数的极值点,从而解决各种优化问题。
非线性方程组求解的牛顿迭代法用MATLAB实现
非线性方程组求解的牛顿迭代法用MATLAB实现首先,我们需要定义非线性方程组。
假设我们要求解方程组:```f1(x1,x2)=0f2(x1,x2)=0```其中,`x1`和`x2`是未知数,`f1`和`f2`是非线性函数。
我们可以将这个方程组表示为向量的形式:```F(x)=[f1(x1,x2);f2(x1,x2)]=[0;0]```其中,`F(x)`是一个列向量。
为了实现牛顿迭代法,我们需要计算方程组的雅可比矩阵。
雅可比矩阵是由方程组的偏导数组成的矩阵。
对于方程组中的每个函数,我们可以计算其对每个变量的偏导数,然后将这些偏导数组成一个矩阵。
在MATLAB中,我们可以使用`jacobi`函数来计算雅可比矩阵。
以下是一个示例函数的定义:```matlabfunction J = jacobi(x)x1=x(1);x2=x(2);J = [df1_dx1, df1_dx2; df2_dx1, df2_dx2];end```其中,`x`是一个包含未知数的向量,`df1_dx1`和`df1_dx2`是`f1`对`x1`和`x2`的偏导数,`df2_dx1`和`df2_dx2`是`f2`对`x1`和`x2`的偏导数。
下一步是实现牛顿迭代法。
牛顿迭代法的迭代公式为:```x(k+1)=x(k)-J(x(k))\F(x(k))```其中,`x(k)`是第`k`次迭代的近似解,`\`表示矩阵的求逆操作。
在MATLAB中,我们可以使用如下代码来实现牛顿迭代法:```matlabfunction x = newton_method(x_initial)max_iter = 100; % 最大迭代次数tol = 1e-6; % 收敛阈值x = x_initial; % 初始解for k = 1:max_iterF=[f1(x(1),x(2));f2(x(1),x(2))];%计算F(x)J = jacobi(x); % 计算雅可比矩阵 J(x)delta_x = J \ -F; % 计算增量 delta_xx = x + delta_x; % 更新 xif norm(delta_x) < tolbreak; % 达到收敛条件,停止迭代endendend```其中,`x_initial`是初始解的向量,`max_iter`是最大迭代次数,`tol`是收敛阈值。
matlab牛顿法代码举例
matlab牛顿法代码举例使用 MATLAB 实现牛顿法的示例代码。
牛顿法(也称为牛顿-拉弗森方法)是一种在实数和复数域上求解方程的数值方法。
该方法使用函数和其导数的值来寻找函数零点的近似值。
function [root, iter] = newtonMethod(func, dfunc, x0, tol, maxIter) "%"newtonMethod 使用牛顿法求解方程"%"输入:"%"func - 目标函数"%"dfunc - 目标函数的导数"%"x0 - 初始猜测值"%"tol - 容差,求解精度"%"maxIter - 最大迭代次数"%"输出:"%"root - 方程的根"%"iter - 迭代次数x = x0;for iter = 1:maxIterfx = func(x);dfx = dfunc(x);if abs(dfx) < epserror('导数太小,无法继续迭代');endxnew = x - fx/dfx;if abs(xnew - x) < tolroot = xnew;return;endx = xnew;enderror('超过最大迭代次数');end"%"示例: 求解 x^3 - x - 2 = 0func = @(x) x^3 - x - 2;dfunc = @(x) 3*x^2 - 1;x0 = 1; "%"初始猜测值tol = 1e-6; "%"容差maxIter = 1000; "%"最大迭代次数[root, iter] = newtonMethod(func, dfunc, x0, tol, maxIter);fprintf('根是: "%"f, 在 "%"d 次迭代后找到\n', root, iter);在这个代码中,newtonMethod 函数接收一个函数 func 及其导数 dfunc,一个初始猜测值,容差和最大迭代次数 maxIter。
matlab实现牛顿迭代法求解非线性方程组
matlab实现牛顿迭代法求解非线性方程组已知非线性方程组如下3*x1-cos(x2*x3)-1/2=0x1^2-81*(x2+^2+sin(x3)+=0exp(-x1*x2)+20*x3+(10*pi-3)/3=0求解要求精度达到————————————————————————————————首先建立函数fun储存方程组编程如下将保存到工作路径中:function f=fun(x);%定义非线性方程组如下%变量x1 x2 x3%函数f1 f2 f3syms x1 x2 x3f1=3*x1-cos(x2*x3)-1/2;f2=x1^2-81*(x2+^2+sin(x3)+;f3=exp(-x1*x2)+20*x3+(10*pi-3)/3;f=[f1 f2 f3]; ————————————————————————————————建立函数dfun用来求方程组的雅克比矩阵将保存到工作路径中:function df=dfun(x);%用来求解方程组的雅克比矩阵储存在dfun中f=fun(x);df=[diff(f,'x1');diff(f,'x2');diff(f,'x3')];df=conj(df');————————————————————————————————编程牛顿法求解非线性方程组将保存到工作路径中:function x=newton(x0,eps,N);con=0;%其中x0为迭代初值eps为精度要求N为最大迭代步数con用来记录结果是否收敛for i=1:N;f=subs(fun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)});df=subs(dfun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)});x=x0-f/df;for j=1: length(x0);il(i,j)=x(j);endif norm(x-x0)<epscon=1;break;endx0=x;end%以下是将迭代过程写入txt文档文件名为fid=fopen('','w');fprintf(fid,'iteration');for j=1:length(x0)fprintf(fid,' x%d',j);endfor j=1:ifprintf(fid,'\n%6d ',j);for k=1:length(x0)fprintf(fid,' %',il(j,k));endendif con==1fprintf(fid,'\n计算结果收敛!');endif con==0fprintf(fid,'\n迭代步数过多可能不收敛!');endfclose(fid);————————————————————————————————运行程序在matlab中输入以下内容newton([ ],,20)————————————————————————————————输出结果——————————————————————————————————————————在iteration中查看迭代过程iteration x1 x2 x3.mulStablePoint用不动点迭代法求非线性方程组的一个根function [r,n]=mulStablePoint(F,x0,eps)%非线性方程组:f%初始解:a%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=;endx0 = transpose(x0);n=1;tol=1;while tol>epsr= subs(F,findsym(F),x0);%迭代公式tol=norm(r-x0); %注意矩阵的误差求法,norm为矩阵的欧几里德范数n=n+1;x0=r;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endendx0=[0 0 0];[r,n,data]=budong(x0);disp('不动点计算结果为')x1=[1 1 1];x2=[2 2 2];[x,n,data]=new_ton(x0);disp(’初始值为0,牛顿法计算结果为:’)[x,n,data]=new_ton(x1);disp('初始值为1,牛顿法计算结果为:')[x,n,data]=new_ton(x2);disp ('初始值为2,牛顿法计算结果为:')function[r,n,data]=budong(x0, tol)if nargin=-1tol=1e-3:endx1=budong fun(x0);n=1;while(norm(x1-x0))tol)&(n500)x0=x1;x1=budong_fun(x0);n=n+1:data(:,n)=x1;endr=x1:function [x,n,data]=new_ton(x0, tol)if nargin=-1tol=1e-8;endx1=x0-budong_fun(x0)/df1(x0);n=1;while (norm(x1-x0))tol)x0=x1;x1=x0-budong_fun(x0)/df1(x0);n=n+1;data(:,n)=x1;endx=x1;function f=budong_fun(x)f(1)=3* x(1)-cos(x(2)*x(3))-1/2;f(2)=x(1)^2-81*(x(2)+^2+sin(x(3))+;f(3)=exp(-x(1)*x(2))+20* x(3)+10* pi/3-1; f=[f(1)*f(2)*f(3)];function f=df1(x)f=[3sin(x(2)*x(3))*x(3) sin(x(2)*x(3))*x(2)2* x(1)-162*(x(2)+cos(x(3))exp(-x(1)*x(2))*(-x(2))exp(-x(1)*x(2))*(-x(1))20]; 结果:不动点计算结果为r=+012*NaN -Inf初始值为0,牛顿法计算结果为:x=初始值为1,牛顿法计算结果为:x=初始值为2,牛顿法计算结果为:x=。
matlab牛顿迭代法算重根
一、简介Matlab是一种十分常用的科学计算软件,其功能强大,可以进行各种数值计算、数据分析和可视化操作。
而牛顿迭代法是一种用于求解方程的数值算法,可以有效地计算出函数的根。
本文将重点介绍如何使用Matlab进行牛顿迭代法来计算重根。
二、牛顿迭代法原理1. 牛顿迭代法是一种迭代逼近的方法,通过不断迭代得到更接近函数零点的近似值。
其公式如下:X_{n+1} = X_n - \frac{f(X_n)}{f'(X_n)}其中,X_{n+1}为下一次迭代的近似值,X_n为当前的近似值,f(X)为函数值,f'(X)为函数的导数值。
2. 牛顿迭代法的优点是收敛速度快,而缺点是对初始值的选择敏感,可能会产生不收敛的情况。
三、在Matlab中使用牛顿迭代法1. 在Matlab中,可以使用内置的函数`fzero`来进行牛顿迭代法的计算。
其语法如下:x = fzero(fun,x0)其中,fun为要求解的函数句柄,x0为起始点的初始值,x为函数的根。
2. 需要注意的是,在使用`fzero`函数时,需要提供函数的句柄,即在Matlab中定义要求解的函数,并使用`(x)`符号来表示函数的自变量。
另外,还需要提供初始值x0,可以根据具体问题来选择较为合适的初始值。
3. 以下是一个简单的使用牛顿迭代法求解函数根的示例代码:```matlabf = (x) x^3 - 2*x - 5;x0 = 2;x = fzero(f, x0);disp(x);```四、示例接下来,我们将通过一个具体的示例来演示如何使用Matlab的牛顿迭代法来计算重根。
1. 问题描述假设有如下方程:f(x) = x^3 - 2x^2 + 3x - 6我们希望使用牛顿迭代法来计算函数f(x)的重根。
2. 解决过程在Matlab中定义函数f(x):```matlabf = (x) x^3 - 2*x^2 + 3*x - 6;```选择初始值x0,并利用`fzero`函数进行牛顿迭代法的计算:```matlabx0 = 2;x = fzero(f, x0);disp(x);```3. 结果分析经过计算,可以得到函数f(x)的一个重根为x=2.这样,我们就成功地使用Matlab的牛顿迭代法来计算重根。
matlab牛顿迭代法求多项式方程的根
matlab牛顿迭代法求多项式方程的根【主题】matlab牛顿迭代法求多项式方程的根1. 引言在数学和工程领域中,求解多项式方程的根是一项常见且重要的任务。
牛顿迭代法是一种有效的数值方法,可以用来逼近多项式方程的根。
本文将详细介绍如何利用matlab实现牛顿迭代法,以及该方法的应用和局限性。
2. 牛顿迭代法简介牛顿迭代法是一种基于导数的数值逼近方法,用于求解方程 f(x)=0 的根。
该方法的基本思想是从一个初始近似值开始,通过逐步改进来逼近方程的根。
牛顿迭代法的迭代公式为:\[x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}\]其中,\(x_n\)是第n次迭代的近似根,f(x)是方程,\(f'(x)\)是f关于x的导数。
3. 在matlab中实现牛顿迭代法在matlab中,我们可以利用函数和循环结构来实现牛顿迭代法。
需要定义方程f(x)以及其导数f'(x)的函数表达式。
选择一个初始值作为近似根,通过迭代公式不断改进,直到满足预设的精度要求。
4. 应用实例我们将以一个具体的多项式方程为例,来演示如何利用matlab的牛顿迭代法来求解其根。
假设我们要求解方程\(x^2-2=0\)的根。
我们可以定义方程及其导数的matlab函数表达式,然后选择一个适当的初始值,进行迭代计算,最终得到方程的根。
5. 算法优化与局限性虽然牛顿迭代法在求解多项式方程的根上表现出色,但也存在一些局限性。
需要提前知道方程的导数表达式;初始值的选取可能影响迭代结果的精度等。
在实际应用中,需要根据具体情况灵活选择迭代算法,甚至进行一些优化来提高求解效率。
6. 结语通过matlab实现牛顿迭代法求解多项式方程的根,不仅可以帮助我们深入理解数值计算方法,也可以应用到实际工程问题中。
对于复杂的多项式方程,利用数值方法求解是一种有效的途径。
当然,在应用过程中需要注意算法的优化和局限性,以确保求解的准确性和稳定性。
matlab牛顿法
matlab牛顿法牛顿法是一种经典的数值计算算法,其目的是在数值计算中寻找函数零点。
这个算法在工程、物理、计算机等各个领域都有广泛的应用。
在matlab中,牛顿法也是常用的算法之一。
1、牛顿法的概念及其原理牛顿法是一种迭代方法,用于解决方程f(x)=0的根。
该算法的基本思想是利用泰勒级数在函数零点处的展开式来逐步逼近函数零点。
具体地,看以下公式:f(x)=f(x0)+f'(x0)(x-x0)+...+f(n)(x0)/n!*(x-x0)^n这个公式表明了在x=x0附近的函数f(x)可以通过f(x0)以及一堆导数来近似表示。
如果我们只保留前两项,则有:0=f(x0)+f'(x0)(x-x0)然后可以解出以下的式子来得到下一个近似解:x1=x0-f(x0)/f'(x0)在牛顿法中只保留一阶泰勒级数,实际上是认为函数在零点附近,近似为线性函数,接下来的迭代是在这个线性函数上迭代得到零点。
2、应用牛顿法解决实际问题在实际问题中,当我们遇到求方程零点的问题时,我们可以使用牛顿法。
例如,我们想要计算sin(x)=1的解的话,可以将函数f(x)=sin(x)-1作为牛顿法的输入函数。
具体来说,可以这样写:% 定义初始值x0 = 1;% 定义牛顿法需要用到的函数f(x)fx = @(x) sin(x) - 1;% 迭代for i = 1:50x1 = x0 - fx(x0) / cos(x0);x0 = x1;enddisp(x1);通过这样的代码实现,我们可以得到方程sin(x)=1的解为1.5708。
事实上,matlab中有一个现成的函数,叫做fzero,可以直接用来求方程的解,这个函数内部实现也是用的牛顿法。
3、牛顿法的优缺点及适用条件牛顿法有其优点和缺点,其优点在于它的收敛速度非常快,因为它利用了导数来对函数刻画,逐步逼近了函数零点。
另外,牛顿法的收敛率是二次的,因此在计算精度方面也有比较大的保证。
(完整word版)牛顿法MATLAB程序
问题一1、问题描述本次作业中使用共轭梯度法求解232122212142min x x x x x x x +-++-,初始点取为T x )2,2,2(0=。
2、求解方法及求解程序(1)共轭梯度法:对于二次函数的无约束最小化问题:x b x Q x x f T T -=21)(,共轭梯度方法: k k k k d x x α+=+1其中步长k α由最小线性化准则确定:)(min )(k k k k k d x f d x ααα+=+。
既将函数)(x f 对α求导等于零,得到的α就是我们当前所求步长。
梯度方向:b Qx x f g k k k -=∇=)(共轭梯度的方向由下式生成:00g d -=1,...,1,1-=+-=-n k d g d k k k k β其中k β由下式给出:1)1(--=k k kk k g g g g T T β该方法在最多n 次迭代后,将终止于某个最优解处。
(2)求解程序frcg.mfunction [x ,val,k ]=frcg(fun,funs,x0)% 功能: 用FR共轭梯度法求解无约束问题: min f(x)%输入: x0是初始点, fun, gfun分别是目标函数和梯度%输出: x, val分别是近似最优点和最优值, k是迭代次数。
maxk=5000; %最大迭代次数rho=0。
6;sigma=0.4;k=0; epsilon=1e—4;n=length(x0);while(k〈maxk)g=feval(funs,x0); %计算梯度itern=k-(n+1)*floor(k/(n+1));itern=itern+1;%计算搜索方向if(itern==1)d=—g;elsebeta=(g’*g)/(g0'*g0);d=—g+beta*d0; gd=g'*d;if(gd>=0.0)d=—g;endendif(norm(g)<epsilon), break; end %检验终止条件m=0; mk=0;while(m<20) %Armijo搜索if(feval(fun,x0+rho^m*d)<feval(fun,x0)+sigma*rho^m*g'*d) mk=m; break;endm=m+1;endx0=x0+rho^mk*d;val=feval(fun,x0);g0=g; d0=d;k=k+1;endx=x0;val=feval(fun,x);fun.mfunction f=fun(x)f=x(1)^2-x(1)*x(2)+x(2)^2+2*x(1)-4*x(2)+x(3)^2; funs.mfunction fs=funs(x)fs=[2*x(1)—x(2)+2,2*x(2)—x(1)-4,2*x(3)]’;命令行输入: x0=[2,2,2]';[x,val,k]=frcg(’fun',’funs',x0)3、求解结果x =0.00002。
matlab牛顿法画出对数几率回归
一、MATLAB中的牛顿法在MATLAB中,使用牛顿法可以高效地求解函数的根,也可以应用于优化算法中。
牛顿法是一种迭代法,通过不断逼近函数的零点或极小值点来实现根或极值的求解。
它的迭代公式为:\(x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}\)其中,\(f(x_n)\)为函数在点\(x_n\)的函数值,\(f'(x_n)\)为函数在点\(x_n\)的导数值。
牛顿法通过不断更新当前点的数值,逐步逼近函数的根或极值点。
在MATLAB中,可以使用牛顿法对函数进行优化求解,得到满足特定条件的数值解。
二、对数几率回归对数几率回归(Logistic Regression)是一种常用的分类算法,在机器学习和统计学领域得到广泛应用。
它主要用于解决二分类问题,通过拟合出一个对数几率函数来对样本进行分类。
对数几率回归通过对样本特征和标签之间的关系进行建模,来预测新样本的分类。
在对数几率回归中,使用的数学模型为:\(h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}\)其中,\(h_{\theta}(x)\)为预测函数,\(\theta\)为模型参数,\(x\)为样本特征。
通过最大化似然函数或最小化损失函数,可以使用牛顿法来求解对数几率回归模型的参数\(\theta\),从而实现对样本的分类。
三、利用MATLAB实现对数几率回归在MATLAB中,可以借助牛顿法来实现对数几率回归模型的求解。
首先需要构建对数几率回归模型的目标函数,然后通过牛顿法进行迭代优化,最终得到模型的参数\(\theta\)。
在MATLAB中,可以使用牛顿法内置的优化函数或自行编写优化算法来实现对数几率回归模型的求解。
四、个人观点和总结对数几率回归是一种简单而有效的分类算法,通过对样本特征和标签之间的关系进行建模,来实现对样本的分类预测。
利用牛顿法求解对数几率回归模型的参数,可以得到较好的分类效果。
牛顿—拉夫逊法潮流计算MATLAB程序
牛顿—拉夫逊法潮流计算程序By Yuluo%牛顿--拉夫逊法进行潮流计算n=input('请输入节点数:n=');n1=input('请输入支路数:n1=');isb=input('请输入平衡母线节点号:isb=');pr=input('请输入误差精度:pr=');B1=input('请输入由支路参数形成的矩阵:B1=');B2=input('请输入各节点参数形成的矩阵:B2=');X=input('请输入由节点参数形成的矩阵:X=');Y=zeros(n);e=zeros(1,n);f=zeros(1,n);V=seros(1,n);O=zeros(1,n);S1=zeros(n1);for i=1:nif X(i,2)~=0;p=X(i,1);Y(p,p)=1./X(i,2);endendfor i=1:n1if B1(i,6)==0p=B1(i,1);q=B1(i,2);else p=B1(i,2);q=B1(i,1);endY(p,q)=Y(p,q)-1./(B1(i,3)*B1(i,5);Y(p,q)=Y(p,q);Y(p,q)=Y(q,q)+1./(B1(i,3)*B1(i,5)^2)+B1(i,4)./2;Y(p,p)=Y(p,p)+1./B1(i,3)+B1(i,4)./2;end %求导纳矩阵G=real(Y);B=imag(Y);for i=1:ne(i)=real(B2(i,3));f(i)=imag(B2(i,3));V(i)=B2(i,4);endfor i=1:nS(i)=B2(i,1)-B2(i,2);B(i,i)=B(i,i)+B2(i,5);endP=rea(S);Q=imag(S);ICT1=0;IT2=1;NO=2*n;N=NO+1;a=0;while IT2~=0IT2=0;a=a+1;for i=1:n;if i~=isbC(i)=0;D(i)=0;for j1=1:nC(i)=C(i)+G(i,j1)*e(j1)-B(i,j1)*f(j1);D(i)=D(i)+G(i,j1)*f(j1)+B(i,j1)*e(j1);endP1=C(i)*e(i)+f(i)*D(i);Q1=f(i)*C(i)-D(i)*e(i); %求'P,Q'V2=e(i)^2+f(i)^2;if B2(i,6)~=3DP=P(i)-P1;DQ=Q(i)-Q1;for j1=1:nif j1~=isb&j1~=iX1=-G(i,j1)*e(i)-B(i,j1)*f(i);X2=B(i,j1)*e(i)-G(i,j1)*f(i);X3=X2;X4=-X1;p=2*i-1;q=2*j1-1;J(p,q)=X3;J(p,N)=DQ;m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X4;J(m,q)=X2; endendelseDP=P(i)-P1;DV=V(i)~2-V2;for j1=1:nif j1~=isb&j1~=iX1=-G(i,j1)*e(i)-B(i,j1)*f(i);X2=B(i,j1)*e(i)-G(i,j1)*f(i);X5=0;X6=0;p=2*i-1;q=2*j1-1;J(p,q)=X5;J(p,N)=DV;m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X6;J(m,q)=X2; elseif j1==i&j1~=isbX1=-C(i)-G(i,i)*e(i)-B(i,i)*f(i);X2=-D(i)+B(i,i)*e(i)-G(i,i)*f(i);X5=-2*e(i);X6=-2*f(i);p=2*i-1;q=2*j1-1;J(p,q)=X5;J(p,N)=DV;m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X6;J(m,q)=X2;endendendendend %求雅可比矩阵for k=3:N0k1=k+1;N1=N;for k2=k1:N1J(k,k2)=J(k,k2)./J(k,k);endJ(k,k)=1;if k~=3k4=k-1;for k3=3:k4for k2=k1:N1J(k3,k2)=J(k3,k2)-J(k3,k)*J(k,k2); endJ(k3,k)=0;endendfor k3=k1:N0for k2=k1:N1J(k3,k2)=J(k3,k2)-J(k3,k)*J(k,k2); endJ(k3,k)=0;endendendfor k=3:2:N0-1L=(k+1)./2;e(L)=e(L)-J(k,N);k1=k+1;f(L)=f(L)-J(k1,N);endfor k=3:N0DET=abs(J(k,N));if DET>=prIT2=IT2+1endendICT2(a)=IT2ICT1=ICT1+1;for k=1:ndy(k)=sqrt(e(k)^2+f(k)^2);endfor i=1:nDy(k)=sqrt(e(k)^2+f(k)^2);endfor i=1:nDy(ICT1,i)=dy(i);endend %用高斯消去法解“w=-J*V”disp('迭代次数');disp(ICT1);disp('没有达到精度要求的个数');disp(ICT2);for k=1:nV(k)=sqrt(e(k)^2+f(k)^2);O(k)=atan(f(k)./e(k))*180./pi;endE=e+f*j;disp('各节点的实际电压标么值E为(节点号从小到大的排列):');disp(E);disp('各节点的电压大小V为(节点号从小到大的排列):');disp(V);disp('各节点的电压相角O为(节点号从小到大的排列):');disp(O);for p=1:nC(p)=0;for q=1:nC(p)=C(p)+conj(Y(p,q))*conj(E(q));endS(p)=E(p)*C(p);enddisp('各节点的功率S为(节点号从小到大排列):‘);disp(S);disp('各条支路的首端功率Si为(顺序同您输入B1时一样):‘);for i=1:n1if B1(i,6)==0p=B1(i,1);q=B1(i,2);else p=B1(i,2);q=B1(i,1);endSi(p,q)=E(p)*(conj(E(p))*conj(B1(i,4)./2)+(conj(E(p)*B1(i,5))-conj(E(q)))*con j(1./(B1(i,3)*B1(i,5))));disp(Si(p.q));enddisp('各条支路的末端功率Sj为(顺序同您的输入B1时一样):‘);for i=1:n1if B1(i,6)==0p=B1(i,1);q=B1(i,2);else p=B1(i,2);q=B1(i,1);endSj(q,p)=E(q)*(conj(E(q))*conj(B1(i,4)./2)+(xonj(E(q)./B1(i,5))-conj(E(p)))*xo nj(1./(B1(i,3)*B1(i,5))));disp(Sj(q,p));enddisp('各条支路的功率损耗DS为(顺序同您输入B1时一样):’);for i=1:n1if B1(i,6)==0p=B1(i,1);q=B1(i,2);else p=B1(i,2);q=B1(i,1);endDS(i)=Si(p,q)+Sj(q,p);disp(DS(i));endfor i=1:ICT1Cs(i)=i;enddisp('以下是每次迭代后各节点的电压值(如图所示)‘);plot(Cs,Dy),xlabel('迭代次数’),ylabel('电压'),title('电压迭代次数曲线');。
matlab牛顿迭代法程序
matlab牛顿迭代法程序
牛顿迭代法是一种迭代式数值解法,它以牛顿(Isaac Newton)发现的公式为基础,可以用来快速求解某种无穷级数的问题。
牛顿迭代法采用一个逼近点来求近似解,它的思想是首先选取一个初始估计(或初始值)来作为搜索的起点,然后利用逆求法求出更加准确的估计值,最后反复迭代,直至计算出精确的解。
牛顿迭代法的具体步骤如下:
(1)给定一个函数f(x)和初始值x0,要求求该函数f(x)的根;
(2)计算函数f(x)和其导数f’(x)在x0处的值;
(3)计算x1:将x0代入x1=x0−f(x0)/f′(x0);
(4)判断x1和x0的大小,如果x1接近于零,则求解完成;否则,用x1代替x0,重复步骤(2)—(4),直至x1接近于零为止。
牛顿迭代法matlab
牛顿迭代法matlab
牛顿迭代法(Newton Iteration)是一种经典的求解方程的数值计算方法。
牛顿迭代的思想是:利用泰勒级数展开,把一个方程表达成无穷多个多项式,假设初始值检验了,利用这无穷多个多项式,求出后面每一步的方程解。
这种方法被称为牛顿迭代,它能够在有限的步骤内求解出一个足够接近的解,比较适合于求解处于非线性的方程组的收敛的情况。
以下给出一个MATLAB程序来描述牛顿迭代的步骤:
其中,X是方程组解的初值,f为等式组右侧函数,J是等式组左侧Jacobian矩阵。
function X = Newton_iter(X,C,F)
% 光滑牛顿迭代
MXtimes=20;
for iter=1:MXtimes
% 计算jacobian矩阵
J=jacobian(C,F,X);
%计算右侧函数
F_val=F(X);
%牛顿迭代公式更新X
X=X-J\F_val;
end
end
其中jacobian函数返回计算出的jacobian矩阵和右侧方程组函数:
上面提到了求Jacobia矩阵时需要用到一个Ua函数,这个函数表达式如下:
function x=Ua(C)
eps=1.0e-6; %步长定义
x=eps*C/norm(C); %求计算步长
end
可以看到,牛顿迭代是利用Taylor展开式来建立接近原始方程解的方程组来解决求解非线性方程组收敛的情况,大致步骤是通过jacobian矩阵求出右侧方程函数值,然后利用函数求得x值,最后逐步收敛至原解。
牛顿法求极值 matlab程序
牛顿法求极值是一种常见的数值优化方法,通过迭代的方式逐步逼近函数的极值点。
在实际应用中,特别是在工程和科学领域,牛顿法求极值的程序实现通常使用MATLAB语言。
在本文中,我将深入探讨牛顿法求极值的原理、MATLAB程序实现和个人观点。
1. 牛顿法求极值的原理牛顿法是一种基于泰勒级数展开的优化方法。
其基本思想是通过对目标函数进行二阶泰勒展开,然后求解极值点的迭代过程。
具体来说,对于目标函数$f(x)$,牛顿法的迭代公式为:$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$$其中,$f'(x)$和$f''(x)$分别代表目标函数$f(x)$的一阶和二阶导数。
通过不断迭代这一公式,可以逐步逼近函数的极值点。
2. MATLAB程序实现在MATLAB中,实现牛顿法求极值的程序通常包括以下几个步骤:(1)定义目标函数$f(x)$及其一阶和二阶导数;(2)选择初始点$x_0$并设置迭代停止条件;(3)利用牛顿法迭代公式进行迭代,直至满足停止条件。
下面是一个简单的MATLAB程序示例,用于求解目标函数$f(x)=x^3-2x+1$的极小值点:```matlab% 定义目标函数及其导数f = @(x) x^3 - 2*x + 1;df = @(x) 3*x^2 - 2;d2f = @(x) 6*x;% 初始点及迭代停止条件x0 = 1;epsilon = 1e-6;max_iter = 100;% 牛顿法迭代iter = 1;while iter < max_iterx1 = x0 - df(x0)/d2f(x0);if abs(x1 - x0) < epsilonbreak;endx0 = x1;iter = iter + 1;enddisp(['The minimum point is: ', num2str(x0)]); ```3. 个人观点和理解牛顿法求极值是一种快速而有效的数值优化方法,尤其适用于目标函数具有光滑的二阶导数的情况。
matlab牛顿迭代法例题
下面是一个使用MATLAB实现牛顿迭代法的简单例子。
这个例子是求解非线性方程 \(f(x) = x^3 - x - 1 = 0\) 的根。
```matlabfunction root = newton_raphson(f, df, x0, tol, max_iter)% f: 函数f(x)% df: 函数f(x)的导数% x0: 初始值% tol: 精度% max_iter: 最大迭代次数x = x0;for i = 1:max_iterfx = f(x);dfx = df(x);if abs(fx) < tolroot = x;return;endx = x - fx/dfx;enderror('达到最大迭代次数,未找到根');end% 定义函数f(x)和它的导数f = @(x) x^3 - x - 1;df = @(x) 3*x^2 - 1;% 设置初始值、精度、最大迭代次数x0 = 1.5;tol = 1e-6;max_iter = 1000;% 使用牛顿迭代法求解方程的根root = newton_raphson(f, df, x0, tol, max_iter);disp(['根为:', num2str(root)]);```这个代码首先定义了函数 `f(x)` 和它的导数 `df(x)`,然后设置了初始值、精度和最大迭代次数。
最后,它调用 `newton_raphson` 函数来求解方程的根。
如果函数在最大迭代次数内找到了根,那么它会返回这个根。
否则,它会显示一个错误消息。