集合与函数概念教案

合集下载

集合与函数的概念教案

集合与函数的概念教案

集合与函数的概念教案一、教学目标1. 了解集合的概念,能够正确表示集合,并掌握集合的基本运算。

2. 理解函数的定义,掌握函数的表示方法,能够判断两个函数是否相等。

3. 掌握函数的性质,能够运用函数的概念解决实际问题。

二、教学内容1. 集合的概念与表示方法1.1 集合的定义1.2 集合的表示方法1.3 集合的基本运算2. 函数的定义与表示方法2.1 函数的定义2.2 函数的表示方法2.3 函数相等的判断3. 函数的性质3.1 函数的单调性3.2 函数的奇偶性3.3 函数的周期性三、教学方法1. 采用讲授法,讲解集合与函数的概念、表示方法及性质。

2. 利用实例分析,让学生理解集合与函数的实际意义。

3. 引导学生进行小组讨论,探讨函数的性质,提高学生的合作能力。

4. 利用多媒体课件,直观展示函数的图像,帮助学生更好地理解函数概念。

四、教学步骤1. 导入新课,复习集合的概念与表示方法,引导学生进入学习状态。

2. 讲解函数的定义与表示方法,让学生理解函数的基本概念。

3. 通过实例分析,让学生掌握函数的表示方法,并能判断两个函数是否相等。

4. 讲解函数的性质,引导学生探讨函数的单调性、奇偶性和周期性。

5. 利用多媒体课件,展示函数的图像,加深学生对函数概念的理解。

五、课后作业1. 复习集合与函数的概念、表示方法及性质。

2. 完成课后习题,巩固所学知识。

3. 结合生活实际,举例说明集合与函数的应用。

六、教学评估1. 通过课堂提问,检查学生对集合与函数概念的理解程度。

2. 通过课后习题的完成情况,评估学生对函数表示方法及性质的掌握情况。

3. 结合学生的小组讨论,评估学生的合作能力和问题解决能力。

七、教学拓展1. 介绍数学中的其他抽象结构,如群、环、域等。

2. 引入计算机科学中的数据结构,如栈、队列、列表等,与集合概念进行对比。

八、教学反思1. 反思教学过程中的有效性和学生的参与度,考虑如何改进教学方法以提高学生的学习兴趣。

2024年高一数学教案高一数学教案必修一

2024年高一数学教案高一数学教案必修一

2024年高一数学教案必修一第一章集合与函数概念第一课时集合的含义与表示方法一、教学目标1.理解集合的含义,掌握集合的表示方法。

2.能够运用集合的语言描述生活中的现象。

3.培养学生的抽象思维能力和语言表达能力。

二、教学重难点1.重点:集合的含义与表示方法。

2.难点:集合语言的应用。

三、教学过程(一)导入新课同学们,你们听说过集合吗?其实,在我们的生活中,集合无处不在。

今天我们就来学习一下集合的含义与表示方法。

(二)新课讲解1.集合的含义(1)集合的定义:集合是一些明确且不同的对象的全体。

(2)集合的元素:构成集合的对象叫做集合的元素。

(3)集合的性质:确定性、互异性、无序性。

2.集合的表示方法(1)列举法:将集合中的元素一一列举出来,用大括号表示。

(2)描述法:用文字或符号描述集合中元素的特征。

(3)图示法:用Venn图或树状图表示集合。

(三)案例分析1.例题1:下列各式中,哪些是集合?A.{1,2,3,4,5}B.{x|x是小于10的正整数}C.{a,b,c,a}D.{x|x是方程x²3x+2=0的解}解析:A、B是集合,C不是集合(元素不互异),D不是集合(方程解不明确)。

2.例题2:用列举法表示下列集合。

A.所有小于5的正整数B.所有大于0且小于10的偶数解析:A.{1,2,3,4}B.{2,4,6,8}(四)课堂练习1.判断下列各式是否为集合,并说明理由。

A.{1,2,3,4,5}B.{x|x是大于5的正整数}C.{a,b,c,a}D.{x|x是方程x²4x+3=0的解}2.用列举法表示下列集合。

A.所有大于3且小于10的奇数B.所有小于0的整数1.本节课我们学习了集合的含义与表示方法,掌握了集合的性质。

2.能够运用集合语言描述生活中的现象,提高抽象思维能力和语言表达能力。

四、作业布置1.抄写并背诵集合的定义、性质及表示方法。

2.完成课后练习题。

第二章函数及其性质第一课时函数的概念一、教学目标1.理解函数的概念,掌握函数的表示方法。

高中数学《集合和函数概念》教学设计新人教版必修1(五篇模版)

高中数学《集合和函数概念》教学设计新人教版必修1(五篇模版)

高中数学《集合和函数概念》教学设计新人教版必修1(五篇模版)第一篇:高中数学《集合和函数概念》教学设计新人教版必修1 集合与函数概念一、教材分析集合语言是现代数学的基本语言,使用集合语言,可以简洁、准确地表达数学的一些内容.本章中只将集合作为一种语言来学习,学生将学会使用最基本的集合语言去表示有关的数学对象,发展运用数学语言进行交流的能力.函数的学习促使学生的数学思维方式发生了重大的转变:思维从静止走向了运动、从运算转向了关系.函数是高中数学的核心内容,是高中数学课程的一个基本主线,有了这条主线就可以把数学知识编织在一起,这样可以使我们对知识的掌握更牢固一些.函数与不等式、数列、导数、立体、解析、算法、概率、选修中的很多专题内容有着密切的联系.用函数的思想去理解这些内容,是非常重要的出发点.反过来,通过这些内容的学习,加深了对函数思想的认识.函数的思想方法贯穿于高中数学课程的始终.高中数学课程中,函数有许多下位知识,如必修1第二章的幂、指、对函数数,在必修四将学习三角函数.函数是描述客观世界变化规律的重要数学模型.二、学情分析1.学生的作业与试卷部分缺失,导致易错问题分析不全面.通过布置易错点分析的任务,让学生意识到保留资料的重要性.2.学生学基本功较扎实,学习态度较端正,有一定的自主学习能力.但是没有养成及时复习的习惯,有些内容已经淡忘.通过自主梳理知识,让学生感受复习的必要性,培养学生良好的复习习惯.3.在研究例4时,对分类的情况研究的不全面.为了突破这个难点,应用几何画板制作了课件,给学生形象、直观的感知,体会二次函数对称轴与所给的区间的位置关系是解决这类问题的关键.用心爱心专心三、设计思路本节课新课中渗透的理念是:“强调过程教学,启发思维,调动学生学习数学的积极性”.在本节课的学习过程中,教师没有把梳理好的知识展示给学生,而是让学生自己进行知识的梳理.一方让学生体会到知识网络化的必要性,另一方面希望学生养成知识梳理的习惯.在本节课中不断提出问题,采取问题驱动,引导学生积极思考,让学生全面参与,整个教学过程尊重学生的思维方式,引导学生在“最近发展区”发现问题、解决问题.通过自主分析、交流合作,从而进行有机建构,解决问题,改变学生模仿式的学习方式.在教学过程中,渗透了特殊到一般的思想、数形结合思想、函数与方程思想.在教学过程中通过恰当的应用信息技术,从而突破难点.四、教学目标分析(一)知识与技能1.了解集合的含义与表示,理解集合间的基本关系,集合的基本运算.A:能从集合间的运算分析出集合的基本关系.B:对于分类讨论问题,能区分取交还是取并.2.理解函数的定义,掌握函数的基本性质,会运用函数的图象理解和研究函数的性质.A:会用定义证明函数的单调性、奇偶性.B:会分析函数的单调性、奇偶性、对称性的关系.(二)过程与方法1.通过学生自主知识梳理,了解自己学习的不足,明确知识的来龙去脉,把学习的内容网络化、系统化.用心爱心专心2.在解决问题的过程中,学生通过自主探究、合作交流,领悟知识的横、纵向联系,体会集合与函数的本质.(三)情感态度与价值观在学生自主整理知识结构的过程中,认识到材料整理的必要性,从而形成及时反思的学习习惯,独立获取数学知识的能力.在解决问题的过程中,学生感受到成功的喜悦,树立学好数学的信心.在例4的解答过程中,渗透动静结合的思想,让学生养成理性思维的品质.五、重难点分析重点:掌握知识之间的联系,洞悉问题的考察点,能选择合适的知识与方法解决问题.难点:含参问题的讨论,函数性质之间的关系.六.知识梳理(约10分钟)提出问题问题1:把本章的知识结构用框图形式表示出来.问题2:一个集合中的元素应当是确定的、互异的、无序的,你能结合具体实例说明集合的这些基本要求吗?问题3:类比两个数的关系,思考两个集合之间的基本关系.类比两个数的运算,思考两个集合之间的基本运算,交、并、补.问题4:通过本章学习,你对函数概念有什么新的认识和体会吗?请结合具体实例分析,表示函数的三种方法,每一种方法的特点.用心爱心专心问题5:分析研究函数的方向,它们之间的联系.在前一次晚自习上,学生相互展示自己的结果,通过相互讨论,每组提供最佳的方案.在自己的原有方案的基础上进行补充与完善.学生回答问题要点预设如下:1.集合语言可以简洁准确表达数学内容.2.运用集合与对应进一步描述了函数的概念,与初中的函数的定义比较,突出了函数的本质函数是描述变量之间依赖关系的重要数学模型.3.函数的表示方法主要有三种,这三种表示方法有各自的适用范围,要根据具体情况选用.4.研究函数的性质时,一般先从几何直观观察图象入手,然后运用自然语言描述函数的图象特征,最后抽象到用数学符号刻画相应的数量特征,也是数学学习和研究中经常使用的方法.设计意图:通过布置任务,让学生充分的认识自己在学习的过程中,哪些知识学习的不透彻.让学生更有针对的进行复习,让复习进行的更有效.让学生体会到知识的横向联系与纵向联系.通过类比初中与高中两种函数的定义,让学生体会到两种函数的定义本质是一样的.七、易错点分析(约3分钟)问题6:集合中的易错问题,函数中的易错问题?主要是作业、训练、考试中出现的问题?用心爱心专心(任务提前布置,由课代表汇总,并且在教学课件中体现.教师不进行修改,呈现的是原始的)教师展示学和成果并进行点评.对于问题6主要由学生讨论分析,并回答,其他学生补充.这个过程尽量由学生来完成,教师可以适应的引导与点评.设计意图:让学生学会避开命题者制造的陷阱,通过不断的分析,让学生了解问题出现的根源,充分暴露自己的思维,在交流与合作的过程中,改进自己的不足,加深对错误的认识.通过交流了解别人的错误,自己避免出现类似的错误.八、考察点分析(约5分钟)问题7:分析集合中的考察点,函数中的考察点.问题8:知识的横纵联系.用心爱心专心学生回答问题要点预设如下:1.集合中元素的互异性.2.,则集合A可以是空集.3.交集与并集的区分,即何时取交,何时取并,特别是含参的分类讨论问题.4.函数的单调性与奇偶性的证明.5.作业与试卷中出现的问题.6.学生分析本章的考察点,主要分析考察的知识点、思想方法等方面.设计意图:让学生了解考察点,才能知道命题者的考察意图,才能选择合适的知识与思想方法来解答.例如如果试题中出现集合,无论试题以什么形式出现,考察点基本是集合间的基本关系、集合的运算.九、典型问题分析用心爱心专心例1:设集合(1)若(2)若(3)若(1)答案:(2)答案:(3)答案:.或;或;,求的值;,求实数的值;,求的值.教师点评,同时板书.由学生分析问题的考察点,包括知识与数学思想.(预设有以下几个方面)从知识点来分析,这是集合问题.考察点主要为集合的表示方法、集合中元素的特性、集合间的基本关系、集合的运算等.学生在解第1个问时,可能漏掉特殊情况.第2、3问可能会遇到一定的障碍,可以给学生时间进行充分的思考.设计意图:让学生体会到分析考察点的好处,养成解题之前分析考察点的习惯.能顺利的找到问题的突破口,为后续的解答扫清障碍.通过一题多问、一题多解、多题归一,让学生主动的形成发散思维,主动应用转化与化归的思想.例2:已知函数,求函数的解析式.用心爱心专心是定义在R上的奇函数,当时,变式:函数是偶函数教师对生回答进行点评.并板书.学生分析考察点、解题思路,如果不完善,其他学生补充.学生回答问题要点预设如下:1.考察点为函数的奇偶性与函数图象的关系.2.函数的奇偶性的定义.3.转化与化归的思想.法一:本题即求,函数的解析式,可先利用函数的奇偶性绘制函数的图象,把本题转化为二次函数的图象与解析式的问题.法二:本法更具有一般性,已知时,函数的解析式,要分析时的函数对应关系,即当一个数小于零时,函数值应当怎样计算.由于函数具有奇偶性,即一个数与它的相反数的函数值之间有关系,所以可以研究设计意图:学生在思考的过程中,体会数形结合思想.函数的奇偶性与函数的图象的关系,可以根据奇偶性绘制函数图象,也可以通过函数的图象分析函数的奇偶性,两者是相辅相承的.体会转化与化归的思想,把要研究的转化为已知的.考察函数的单调性的证明,函用心爱心专心的函数值.数的奇偶性与单调性之间的关系,体会知识的纵向联系.体会转化与化归的思想、特殊与一般的数学思想,让学生体会到问题后面隐含的本质.例3:已知是偶函数,而且在上是减函数,判断在上是增函数还是减函数,并证明你的判断.变式1:函数为奇函数变式2:你能分析奇函数(偶函数)在对称区间上的单调性的关系吗?试从数形两个方面来分析.学生分析考察点、解题思路,如果不完善,其他学生补充.学生回答问题要点预设如下:1.考察点为函数的奇偶性与单调性的关系.2.函数的单调性的定义.3.数形结合、转化与化归的思想.法一:通过函数的图象分析.法二:把要研究的范围转化为已知的范围.设计意图:明确函数的性质是一个有机的整体,不是一个个知识点的简单罗列.同时体会知识的纵向联系与横向联系,在第二个方法中进一步感受转化与的思想.通过两个变式的研究过程,学生体会研究探索性问题的一般思路,即通过特殊情况分析结果,再对结果的正确性进行证明.用心爱心专心例4:求在区间上的最大值和最小值.变式:在区间上的最大值是1,求的值.教师用几何画板演示,二次函数对称轴的变化对函数的最值的影响.答案:是.;时,最大值是时,最大值是,最小值是,最小值是;;时,最大值是时,最大值是,最小值,最小值是变式答案:或.学生通过直观的演示,思考问题的考察点与解答策略.学生回答考察点分析(预设):1.二次函数的图象与性质.2.分类与整合.3.逆向思维.学生回答解题思路分析(预设):研究二次函数的对称轴方程与所给的区间的关系.用心爱心专心设计意图:通过几何画板的动态性,给学生直观的感知,从而建立最近发展区,进而突破难点.通过对二次函数的研究,学生巩固了上位知识函数的图象与性质,充分体会数形结合的优势.学生在解答变式的过程中,体会逆向思维与正向思维的关系,体会函数与方程思想,感受到动静结合.十、课后小结1.知识网络2.知识的来龙去脉3.问题中体现的数学思想4.分析问题的基本思路学生总结,教师板书.设计意图:让学生把知识窜串,形成网络,能迅速而准确的选用知识来解答问题.十一、课后总结巩固所学,补充课上的不足.主要是本节课中没有涉及的问题,本节课中理解有困难的问题.1.已知是定义在R上的函数,设,.用心爱心专心(1)试判断的奇偶性;(2)试判断的关系;(3)由此你猜想得出什么样的结论,并说明理由?2.设函数(1)讨论3.已知集合,是否存在实数4.将长度为20 cm的铁丝分成两段,分别围成一个正方形和一个圆,要使正方形与圆的面积之和最小,正方形的周长应为多少?十二、教学反思在复习课中,教师要充分调动学生学习的自主性,让学生独立制定出适合自己的知识结构、整理出自己在本章学习中出现的问题.在课堂上,学生通过交流与合作,体会解决问题成功的喜悦.从而养成良好的学习习惯、树立信心.感受知识的横向联系与纵向联系,洞悉知识的本质、问题的根源,从而形成深刻的印象,少出现或避免出现类似的问题.通过分析知识的来龙去脉,明确知识的用途.通过典型题分析,回顾主干知识,重要的数学思想,感受知识与数学思想的有机融合.,同时满足.,的奇偶性;(2)求的最小值.,用心爱心专心第二篇:高中数学《集合和函数概念》教学设计新人教版必修1 集合与函数概念一、教材分析集合语言是现代数学的基本语言,使用集合语言,可以简洁、准确地表达数学的一些内容.本章中只将集合作为一种语言来学习,学生将学会使用最基本的集合语言去表示有关的数学对象,发展运用数学语言进行交流的能力。

集合与函数概念数学教案及反思

集合与函数概念数学教案及反思

集合与函数概念数学教案及反思集合与函数概念数学教案及反思怎么做好数学教案是很多高中数学老师都关心的问题,下面我为大家带来,供大家参考!集合与函数概念数学教案一、教学内容分析《普通高中课程标准实验教科书数学(1)》《实习作业》。

本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。

学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。

二、学生学习情况分析该内容在《普通高中课程标准实验教科书数学(1)》。

学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的"导演"角色。

特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。

三、设计思想《标准》强调数学文化的重要作用,体现数学的文化的价值。

数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。

让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。

四、教学目标1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。

五、教学重点和难点重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;难点:培养学生合作交流的能力以及收集和处理信息的能力。

六、教学过程设计【课堂准备】1.分组:4~6人为一个实习小组,确定一人为组长。

教师需要做好协调工作,确保每位学生都参加。

2.选题:根据个人兴趣初步确定实习作业的题目。

教师应该到各组中去了解选题情况,尽量多地选择不同的题目。

集合与函数的概念教案

集合与函数的概念教案

集合与函数的概念教案教学目标:1. 理解集合的基本概念和运算。

2. 理解函数的定义和性质。

3. 能够运用集合和函数的概念解决实际问题。

教学内容:第一章:集合的基本概念和运算1.1 集合的定义和表示方法1.2 集合的运算(并集、交集、补集)1.3 集合的性质(交换律、结合律、吸收律)第二章:函数的定义和性质2.1 函数的定义和表示方法2.2 函数的域和像2.3 函数的性质(单调性、连续性、奇偶性)第三章:函数的图像3.1 函数图像的基本特征3.2 常见函数图像的绘制和识别3.3 函数图像的应用第四章:函数的计算4.1 函数的求值和解析式4.2 函数的复合和反函数4.3 函数的极限和连续性第五章:集合的应用5.1 集合在数学分析中的应用5.2 集合在概率论中的应用5.3 集合在其他学科中的应用教学方法:1. 采用讲授法,讲解集合和函数的基本概念和性质。

2. 利用图形和实例,直观地展示函数的图像和应用。

3. 引导学生通过思考和练习,深入理解集合和函数的概念。

教学评估:1. 课堂练习:布置相关的练习题,检查学生对集合和函数概念的理解。

2. 课后作业:布置相关的作业题,巩固学生对集合和函数概念的掌握。

3. 期中和期末考试:设置有关集合和函数的问题,评估学生的综合运用能力。

教学资源:1. 教学PPT:制作精美的PPT,展示集合和函数的概念和图像。

2. 教学案例:提供相关的实际案例,帮助学生理解集合和函数的应用。

3. 练习题库:准备丰富的练习题,供学生进行自主学习和练习。

教学建议:1. 在讲解集合的基本概念和运算时,注重与学生的生活实际相结合,让学生体会集合的意义和应用。

2. 在讲解函数的定义和性质时,注重引导学生理解函数的核心概念,如域、像和单调性等。

3. 在讲解函数的图像时,注重引导学生观察和分析函数图像的特征,提高学生对函数图像的理解和识别能力。

4. 在讲解函数的计算时,注重引导学生掌握函数的基本计算方法,如求值、复合和反函数等。

集合与函数的概念复习教案

集合与函数的概念复习教案

集合与函数的概念复习教案教案章节:第一章至第五章第一章:集合的概念与运算1.1 集合的概念介绍集合的定义与性质举例说明集合的表示方法:列举法、描述法、图示法等讲解集合的运算:并集、交集、补集等1.2 集合的性质与运算规律介绍集合的性质:互异性、确定性、无序性讲解集合运算的规律:分配律、结合律、德摩根律等第二章:函数的基本概念2.1 函数的定义与表示方法介绍函数的定义:函数是一种关系,将一个集合的元素对应到另一个集合的元素讲解函数的表示方法:解析法、表格法、图象法等2.2 函数的性质与分类介绍函数的性质:单调性、奇偶性、周期性等讲解函数的分类:线性函数、二次函数、指数函数、对数函数等第三章:函数的图像与性质3.1 函数图像的基本特征讲解函数图像的斜率、截距、开口方向等基本特征分析函数图像的单调区间、极值点等关键信息3.2 函数性质的综合应用讲解函数性质的综合应用:单调性、奇偶性、周期性等的判断与证明分析函数性质在实际问题中的应用:最值问题、不等式问题等第四章:反函数与复合函数4.1 反函数的概念与性质介绍反函数的定义:若函数f将x映射到y,则其反函数将y映射到x讲解反函数的性质:单调性、奇偶性等4.2 复合函数的概念与性质介绍复合函数的定义:由两个或多个函数组合而成的函数讲解复合函数的性质:单调性、奇偶性等第五章:函数的极限与连续性5.1 函数极限的概念与性质介绍函数极限的定义:当自变量趋近于某一值时,函数值趋近于某一值讲解函数极限的性质:保号性、有界性、夹逼性等5.2 函数的连续性与间断点介绍函数连续性的定义:若函数在某一点的左右极限相等,则函数在该点连续讲解函数的间断点:跳跃间断、无穷间断、振荡间断等第六章:导数与微分6.1 导数的定义与计算介绍导数的定义:函数在某一点的切线斜率讲解导数的计算:基本导数公式、导数的四则运算法则6.2 微分的概念与计算介绍微分的定义:函数在某一点的切线与坐标轴之间的距离讲解微分的计算:微分的四则运算法则、微分在近似计算中的应用第七章:导数的应用7.1 单调性与凹凸性讲解导数与函数单调性的关系:导数大于0表示函数单调递增,导数小于0表示函数单调递减介绍凹凸性的概念:一阶导数的符号变化判断凹凸性7.2 极值与最值讲解极值的概念:函数在某一点的局部最值介绍最值的存在性定理:函数在闭区间上的连续函数必定有最大值和最小值第八章:积分与累积量8.1 定积分的定义与计算介绍定积分的定义:函数在区间上的累积量讲解定积分的计算:基本积分公式、定积分的换元法与分部积分法8.2 积分的应用讲解积分的应用:面积计算、体积计算、质心计算等第九章:多元函数与向量微积分9.1 多元函数的概念与计算介绍多元函数的定义:含有多个自变量的函数讲解多元函数的计算:偏导数、全导数等9.2 向量微积分的基本概念介绍向量微积分的基本概念:向量场、散度、旋度等第十章:数值计算与函数逼近10.1 数值计算的基本方法介绍数值计算的基本方法:插值法、数值积分法、数值微分法等10.2 函数逼近的方法讲解函数逼近的方法:泰勒展开、插值法、最小二乘法等重点和难点解析1. 集合的表示方法和运算:集合的表示方法有列举法、描述法、图示法等,需要重点关注各种表示方法的转换和应用。

集合与函数的概念教案

集合与函数的概念教案

集合与函数的概念教案章节一:集合的概念教学目标:1. 理解集合的定义和表示方法。

2. 掌握集合的基本运算,包括并集、交集、补集等。

教学内容:1. 集合的定义:集合是由确定的、互异的元素组成的整体。

2. 集合的表示方法:列举法、描述法。

3. 集合的基本运算:并集、交集、补集。

教学步骤:1. 引入集合的概念,通过实例讲解集合的定义和表示方法。

2. 引导学生通过列举法、描述法表示集合。

3. 讲解集合的基本运算,并通过图示或实例演示运算过程。

4. 布置练习题,让学生巩固集合的概念和基本运算。

章节二:函数的概念教学目标:1. 理解函数的定义和表示方法。

2. 掌握函数的性质,包括单调性、奇偶性、周期性等。

教学内容:1. 函数的定义:函数是两个非空数集之间的一种特殊对应关系。

2. 函数的表示方法:列表法、解析法、图象法。

3. 函数的性质:单调性、奇偶性、周期性。

教学步骤:1. 引入函数的概念,通过实例讲解函数的定义和表示方法。

2. 引导学生通过列表法、解析法、图象法表示函数。

3. 讲解函数的性质,并通过实例演示性质的应用。

4. 布置练习题,让学生巩固函数的概念和性质。

章节三:集合的基本运算(续)教学目标:1. 掌握集合的混合运算,包括并集、交集、补集的组合。

2. 理解集合运算的优先级规则。

教学内容:1. 集合的混合运算:并集、交集、补集的组合。

2. 集合运算的优先级规则:先算括号内的运算,再算交集、并集、补集。

教学步骤:1. 复习集合的基本运算:并集、交集、补集。

2. 引入集合的混合运算,通过实例讲解运算过程和结果。

3. 讲解集合运算的优先级规则,并通过实例演示运算顺序。

4. 布置练习题,让学生巩固集合的混合运算和优先级规则。

章节四:函数的性质(续)教学目标:1. 掌握函数的单调性、奇偶性、周期性的判断方法。

2. 学会应用函数的性质解决问题。

教学内容:1. 函数的单调性:函数值随着自变量的增大而增大或减小。

2. 函数的奇偶性:函数关于原点对称。

高中数学 第一章 集合与函数概念(函数的概念)教案 新人教版必修1-新人教版高一必修1数学教案

高中数学 第一章 集合与函数概念(函数的概念)教案 新人教版必修1-新人教版高一必修1数学教案

§1.2.1函数的概念一、教学目标1、知识与技能:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.2、过程与方法:(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;3、情态与价值,使学生感受到学习函数的必要性的重要性,激发学习的积极性。

二、教学重点与难点:重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;三、学法与教学用具1、学法:学生通过自学、思考、交流、讨论和概括,从而更好地完成本节课的教学目标 .2、教学用具:投影仪 .四、教学思路(一)创设情景,揭示课题1、复习初中所学函数的概念,强调函数的模型化思想;2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题3、分析、归纳以上三个实例,它们有什么共同点。

4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.(二)研探新知1、函数的有关概念(1)函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数(function).记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y 值叫做函数值,函数值的集合{f (x )| x ∈A }叫做函数的值域(range ).注意:① “y =f (x )”是函数符号,可以用任意的字母表示,如“y =g (x )”;②函数符号“y =f (x )”中的f (x )表示与x 对应的函数值,一个数,而不是f 乘x . (2)构成函数的三要素是什么?定义域、对应关系和值域 (3)区间的概念 ①区间的分类:开区间、闭区间、半开半闭区间; ②无穷区间;③区间的数轴表示.(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?通过三个已知的函数:y =ax +b (a ≠0) y =ax 2+b x +c (a ≠0) y =xk(k ≠0) 比较描述性定义和集合,与对应语言刻画的定义,谈谈体会。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教A版高中数学必修一教案第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识.1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。

3. 教材在例题、习题教学中注重运用集合的观点研究、处理数学问题,这一观点,一直贯穿到以后的数学学习中.4. 在例题和习题的编排中,渗透了集合中的分类思想,让学生体会到分类思想在生活中和数学中的广泛运用,这是学生在初中阶段所缺少的. 在教学中,一定要循序渐进,从繁到难,逐步渗透这方面的训练.5. 教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,教师要准确把握这方面的要求,防止拨高教学.6. 函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.7. 教材将映射作为函数的一种推广,进行了逻辑顺序上的调整,体现了特殊到一般的思维规律,有利于学生对函数概念学习的连续性.8. 教材加强了函数与信息技术整合的要求,通过电脑绘制简单函数动态图象,使学生初步感受到信息技术在函数学习中的重要作用.9. 为了体现教材的选择性,在练习题安排上加大了弹性,教师应根据学生实际,合理地取舍.三. 教学内容及课时安排建议本章教学时间约13课时。

1.1 集合4课时1.2 函数及其表示4课时1.3 函数的性质3课时实习作业1课时复习1课时§1.1.1集合的含义与表示一. 教学目标:l.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力.2. 过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学知识.3. 情感.态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.二. 教学重点.难点重点:集合的含义与表示方法.难点:表示法的恰当选择.三. 学法与教学用具1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2. 教学用具:投影仪.四. 教学思路(一)创设情景,揭示课题1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价.2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.(二)研探新知1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)海南省在20XX 年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点;(7)方程2560x x -+=的所有实数根;(8)不等式30x ->的所有解;(9)国兴中学20XX 年9月入学的高一学生的全体.2.教师组织学生分组讨论:这9个实例的共同特征是什么?3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.4.教师指出:集合常用大写字母A ,B ,C ,D ,…表示,元素常用小写字母,,,a b c d …表示.(三)质疑答辩,排难解惑,发展思维1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.教师组织引导学生思考以下问题:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.4.教师提出问题,让学生思考(1)如果用A 表示高—(3)班全体学生组成的集合,用a 表示高一(3)班的一位同学,b 是高一(4)班的一位同学,那么,a b 与集合A 分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.如果a 是集合A 的元素,就说a 属于集合A ,记作a A ∈.如果a 不是集合A 的元素,就说a 不属于集合A ,记作a A ∉.(2)如果用A 表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A 的关系分别是什么?请用数学符号分别表示.(3)让学生完成教材第6页练习第1题.5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A 组第1题.6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:(1)要表示一个集合共有几种方式?(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?(3)如何根据问题选择适当的集合表示法?使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

(四)巩固深化,反馈矫正教师投影学习:(1)用自然语言描述集合{1,3,5,7,9};(2)用例举法表示集合{|18}A x N x =∈≤<(3)试选择适当的方法表示下列集合:教材第6页练习第2题.(五)归纳整理,整体认识在师生互动中,让学生了解或体会下例问题:1.本节课我们学习过哪些知识内容?2.你认为学习集合有什么意义?3.选择集合的表示法时应注意些什么?(六)承上启下,留下悬念1.课后书面作业:第13页习题1.1A 组第4题.2. 元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习教材.§1.1.2集合间的基本关系一. 教学目标:1.知识与技能(1)了解集合之间包含与相等的含义,能识别给定集合的子集。

(2)理解子集.真子集的概念。

(3)能使用venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用.2. 过程与方法让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义.3.情感.态度与价值观(1)树立数形结合的思想 .(2)体会类比对发现新结论的作用.二.教学重点.难点重点:集合间的包含与相等关系,子集与其子集的概念.难点:难点是属于关系与包含关系的区别.三.学法与教学用具1.学法:让学生通过观察.类比.思考.交流.讨论,发现集合间的基本关系.2.学用具:投影仪.四.教学思路(—)创设情景,揭示课题问题l :实数有相等.大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?让学生自由发言,教师不要急于做出判断。

而是继续引导学生;欲知谁正确,让我们一起来观察.研探.(二)研探新知投影问题2:观察下面几个例子,你能发现两个集合间有什么关系了吗?(1){1,2,3},{1,2,3,4,5}A B ==;(2)设A 为国兴中学高一(3)班男生的全体组成的集合,B 为这个班学生的全体组成的集合;(3)设{|},{|};C x x D x x ==是两条边相等的三角形是等腰三角形(4){2,4,6},{6,4,2}E F ==.组织学生充分讨论.交流,使学生发现两个集合所含元素范围存在各种关系,从而类比得出两个集合之间的关系:①一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A B B A ⊆⊇或读作:A 含于B(或B 包含A).②如果两个集合所含的元素完全相同,那么我们称这两个集合相等.教师引导学生类比表示集合间关系的符号与表示两个实数大小关系的等号之间有什么类似之处,强化学生对符号所表示意义的理解。

相关文档
最新文档