第五章 时间序列的模型识别

合集下载

5时间序列模型

5时间序列模型

方差函数: 自协方差函数:
? ? 2 t
?
D(Y) t
?
?
[ yE?
??
(Y) td]2 FYt ( y)
?? Cov(Yt ,Ys ) ??E ???Yt EYt ??Ys ??EYs ??? t,s ? (t, s)
自相关函数(ACF):
? ?ts, ? ?? ts, ?
?(ts,) ??tt, ????s,
模型
? 完善阶段 :
? 异方差场合
? Robert F.Engle,1982年,ARCH模型 ? Bollerslov,1986年GARCH模型
? 多变量场合
? C.A.Sims等,1980年,向量自回归模型 ? C.Granger ,1987年,提出了协整(co-integration)理论
模拟时间序列数据:
8
? 随机过程与时间序列的关系如下所示:
随机过程: {y1, y2, …, yT-1, yT,} 第1次观测:{y11, y21, …, yT-11, yT1} 第2次观测:{y12, y22, …, yT-12, yT2}
???? ? 第n次观测:{y1n, y2n, …, yT-1n, yTn}
一般的,对于任意 m ? N,,t,1 t2 L , tm ? T,Yt1 ,L ,Ytm 的联合分布函数为:
FYt1 ,Yt2 ,L ,Ytm ( y1 ,,y,)2 L ymP ?? (Yt1 y1Y,,L tm ? ym )
均值方程:
? ?t ? E(Yt ) ?
?
?? ydFYt ( y)
9
2、随机过程的分布及其数字特征
设{Yt}为一个随机过程,对任意一个 t ? T ,Yt的分布函数为:

《时间序列模型识别》课件

《时间序列模型识别》课件
常用的时间序列模型同样包括ARIMA 、SARIMA、VAR、VARMA等,这些 模型能够考虑利率的季节性、周期性 等特点,提高利率预测的准确度。
外汇汇率预测
外汇汇率预测是时间序列模型的又一重要应用。通过分析历史外汇汇率数据,时 间序列模型可以预测未来的汇率走势,帮助投资者制定外汇交易策略。
常用的时间序列模型同样适用于外汇汇率预测,如ARIMA、SARIMA、VAR、 VARMA等。这些模型能够捕捉外汇汇率的动态变化规律,为投资者提供有价值 的参考信息。
总结词
气候变化趋势分析是全球气候治理的重要基 础,利用时间序列模型可以对气候变化趋势 进行定量评估,为政策制定提供科学依据。
详细述
通过长时间尺度的历史气候数据,建立时间 序列模型,并利用该模型分析气候变化的趋 势。分析结果可以为应对气候变化、制定减 排政策等提供决策支持。
06
时间序列模型在生产领域 的应用
解释性
选择易于解释的模型,有助于 理解时间序列数据的内在规律 。
计算效率
考虑模型的计算效率和可扩展 性,以便在实际应用中快速处
理大量数据。
03
时间序列模型性能评估
预测精度评估
01
均方误差(MSE)
衡量预测值与实际值之间的平均 差异,值越小表示预测精度越高 。
02
平均绝对误差( MAE)
计算预测值与实际值之间的绝对 差值的平均值,值越小表示预测 精度越高。
03
均方根误差( RMSE)
将预测误差的平方和开方,反映 预测值的离散程度,值越小表示 预测精度越高。
模型稳定性评估
模型参数稳定性
评估模型参数在多次运行或不同数据集上的稳定性, 以确保模型的可靠性。
模型结构稳定性

Lecture05多元时间序列分析方法

Lecture05多元时间序列分析方法
第五章 多元时间序列分析方法
第一节 协整检验 第二节 误差修正模型 第三节 向量自回归模型(VAR) 第四节 格兰杰因果检验
协整检验
第一节 协整检验
一、协整概念与定义
在经济运行中,虽然一组时间序列变量都是随机游走,但它们的某个 线性组合却可能是平稳的,在这种情况下,我们称这两个变量是平稳 的,既存在协整关系。
其基本思想是,如果两个(或两个以上)的时间序列变量是非平稳的, 但它们的某种线性组合却表现出乎稳性,则这些变量之间存在长期稳 定关系,即协整关系。根据以上叙述,我们将给出协整这一重要概念。 一般而言,协整是指两个或两个以上同阶单整的非平稳时间序列的组 合是平稳时间序列,则这些变量之间的关系的就是协整的。
向量自回归模型(VAR)
三、向量自回归模型(VAR)的估计
应用Eviews软件,创建VAR对应选择 Quick/Estimate VAR,或选择Objects/new object/VAR,也可以在命令窗口直接键入VAR。
向量自回归模型(VAR)
四、脉冲响应函数与预测方差分解
从结构性上看,VAR模型的F检验不能揭示某个给定变 量的变化对系统内其它变量产生的影响是正向还是负 向的,以及这个变量的变化在系统内会产生多长时间 的影响。然而,这些信息可以通过考察VAR模型中的 脉冲响应(Impulse Response )和方差分解(Variance Decompositions)得到。
协整检验
(一)E-G两步法
E-G两步法,具体分为以下两个步骤:
第一步是应用OLS估计下列方程
yt a xt ut
这一模型称为协整回归,称为协整参数,并得到相应的残差序列:
第二步检验 序uˆt列 的yt 平(a稳ˆ 性ˆx。t )

时间序列模型的分析

时间序列模型的分析

时间序列模型的分析时间序列模型是一种用于分析时间序列数据的统计模型,在许多领域都有广泛的应用,如经济学、金融学、自然科学等。

时间序列模型通过建立数学模型,来描述随时间变化而产生的观测数据的模式和规律,从而可以预测未来的变化趋势。

时间序列模型的分析过程一般包括数据收集、数据预处理、模型选择和评估以及预测。

首先,收集数据是分析时间序列的第一步,可以通过各种途径获得观测数据。

然后,对数据进行预处理,包括去除趋势、季节性和异常值等,以保证模型分析的准确性。

接下来,选择适当的时间序列模型是至关重要的,常见的时间序列模型包括自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)、季节性自回归积分移动平均模型(SARIMA)等。

根据观测数据的特点和分析目的,选择合适的模型对数据进行拟合和预测。

最后,通过对模型进行评估,可以判断模型的拟合效果和预测准确性,如果模型不理想,需要对模型进行优化或者选择其他模型。

时间序列模型的选择和评估涉及到许多统计方法和技术。

首先,可以通过观察自相关图(ACF)和偏自相关图(PACF)来初步判断时间序列是否存在自相关性和季节性。

自相关图展示了观测值与某个滞后阶数的观测值之间的相关性,而偏自相关图则展示了在排除其他相关性的情况下,某个滞后阶数的观测值与当前观测值之间的相关性。

接着,可以使用信息准则(如赤池信息准则、贝叶斯信息准则)和残差分析等方法来选择合适的模型。

信息准则是一种模型选择标准,通过最小化信息准则的值来选择最优模型。

残差分析则用于检验模型的拟合效果,通常要求残差序列是白噪声序列,即残差之间不存在相关性。

在时间序列模型的预测过程中,常用的预测方法包括移动平均法、指数平滑法、ARMA模型预测法等。

其中,移动平均法用于捕捉序列的平稳性和周期性,指数平滑法适用于序列有趋势性和趋势变化的场景,而ARMA模型则可应对序列存在自相关性的情况。

根据实际情况,可以选择不同的方法进行预测。

【2019年整理】时间序列分析--第五章非平稳序列的随机分析

【2019年整理】时间序列分析--第五章非平稳序列的随机分析

尝试提取1950年——1999年北京市民用 车辆拥有量序列的确定性信息
4/8/2019
时间序列分析
差分后序列时序图

一阶差分

二阶差分
4/8/2019
时间序列分析
例5.3

差分运算提取1962年1月——1975年12月平均 每头奶牛的月产奶量序列中的确定性信息
4/8/2019
时间序列分析
差分后序列时序图
4/8/2019
时间序列分析
差分方式的选择



序列蕴含着显著的线性趋势,一阶差分 就可以实现趋势平稳 序列蕴含着曲线趋势,通常低阶(二阶 或三阶)差分就可以提取出曲线趋势的 影响 对于蕴含着固定周期的序列进行步长为 周期长度的差分运算,通常可以较好地 提取周期信息
时间序列分析
4/8/2019
例5.1
时间序列分析
ARIMA模型建模步骤
获 得 观 察 值 序 列 平稳性 检验 N 差分 运算 Y 白噪声 检验 N 拟合 ARMA 模型
时间序列分析
Y
分 析 结 束
4/8/2019
例5.6

对1952年——1988年中国农业实际国民 收入指数序列建模
4/8/2019
时间序列分析
一阶差分序列时序图
第五章
非平稳序列的随机分析
4/8/2019
时间序列分析
本章结构


差分运算 ARIMA模型 Auto-Regressive模型 异方差的性质 方差齐性变化 条件异方差模型
4/8/2019
时间序列分析
5.1 差分运算

差分运算的实质 差分方式的选择 过差分

统计学原理第5章:时间序列分析

统计学原理第5章:时间序列分析

a a

n 118729 129034 132616 132410 124000 5
127357.8
②时点序列
若是连续时点序列: 计算方法与时期序列一样; 若是间断时点序列: 则必须先假设两个条件,分别是 假设上期期末水平等于本期期初水平; 假设现象在间隔期内数量变化是均匀的。 间隔期相等的时点序列 采用一般首尾折半法计算。 例如:数列 a i , i 0,1,2, n 有 n 1 个数据,计算 期内的平均水平 a n a n 1 a 0 a1 a1 a 2
(3)联系
环比发展速度的乘积等于相应的定基发展速度,
n n i 0 i 1 i 1
相邻两期的定基发展速度之商等于后期的环比发展速度
i i 1 i 0 0 i 1
(二)增减速度
1、定义:增长量与基期水平之比 2、反映内容:现象的增长程度 3、公式:增长速度
0.55
二、时间序列的速度分析指标
(一)发展速度 (二)增长速度 (三)平均发展水平
(四)平均增长速度
(一)发展速度
1、定义:现象两个不同发展水平的比值 2、反映内容:反映社会经济现象发展变化快慢相对程度 3、公式:v 报告期水平 100%
基期水平
(1)定基发展速度
是时间数列中报告期期发展水平与固定基期发展水平对比所 得到的相对数,说明某种社会经济现象在较长时期内总的发 展方向和速度,故亦称为总速度。 (2)环比发展速度 是时间数列中报告期发展水平与前期发展水平之比,说明某 种社会经济现象的逐期发展方向和速度。
c

a
b
均为时期或时点数列,一个时期数列一个时点数列,注意平均的时间长度 ,比如计算季度的月平均数,时点数据需要四个月的数据,而时期数据则 只需要三个月的数据。

《时间序列模型》课件

《时间序列模型》课件
对于非线性时间序列,可能需要使用 其他复杂的模型,如神经网络、支持 向量机或深度学习模型。
对异常值的敏感性
时间序列模型往往对异常值非常敏感,一个或几个异常值可能会对整个模型的预测结果产生重大影响 。
在处理异常值时,需要谨慎处理,有时可能需要剔除异常值或使用稳健的统计方法来减小它们对模型 的影响。
PART 06
指数平滑模型
总结词
利用指数函数对时间序列数据进行平滑处理,以消除随机波动。
详细描述
指数平滑模型是一种非参数的时间序列模型,它利用指数函数对时间序列数据进行平滑处理,以消除 随机波动的影响。该模型通常用于预测时间序列数据的未来值,特别是对于具有季节性和趋势性的数 据。
GARCH模型
要点一
总结词
用于描述和预测时间序列数据的波动性,特别适用于金融 市场数据的分析。
时间序列的构成要素
时间序列由时间点和对应的观测值组成,包括时间点和观测值两 个要素。
时间序列的表示方法
时间序列可以用表格、图形、函数等形式表示,其中函数表示法 最为常见。
时间序列的特点
动态性
时间序列数据随时间变化而变化,具有动态 性。
趋势性
时间序列数据往往呈现出一定的趋势,如递 增、递减或周期性变化等。
随机性
时间序列数据受到多种因素的影响,具有一 定的随机性。
周期性
一些时间序列数据呈现出明显的周期性特征 ,如季节性变化等。
时间序列的分类
根据数据性质分类
时间序列可分为定量数据和定性数据两类。定量数据包括 连续型和离散型,而定性数据则包括有序和无序类型。
根据时间序列趋势分类
时间序列可分为平稳和非平稳两类。平稳时间序列是指其统计特 性不随时间变化而变化,而非平稳时间序列则表现出明显的趋势

第五章 平稳时间序列模型的建立

第五章 平稳时间序列模型的建立

2. 样本偏自相关函数截尾性的判断方法
可以证明:若序列xt为AR(p)序列,则
k>p后,序列的样本偏自相关函数ˆkk 服
从渐近正态分布,即近似的有:
ˆkk
~
N (0, 1 ) n
此处n表示样本容量。于是可得:
P( ˆkk
1 ) 31.7% n
P( ˆkk
2 ) 4.5% n
在实际进行检验时,可对每个k>0,分
将上式展开得:
xt 1xt1 p xtp 0 at 1at1 2at2 qatq
此时,所要估计的未知参数有p+q+1个。
式中:
0 (1 1 2 p )
即有:
0
11 2 p
在实际估计模型时,可将θ0看作一个常数估计, 若θ0显著不为0,则μ≠0,此时θ0 、 μ 有如上关系。 若θ0显著为0,则可认为μ=0,在最终模型中将此常数 项去掉即可。
– 原假设:序列非平稳
H0:1 1
– 备择假设:序列平稳
检验统计量
H0:1 1
– –
时 1 1 时 1 1
t (1 )
ˆ1 1 S (ˆ1 )
渐近 N (0,1)
ˆ1 1 S(ˆ1)
DF统计量
1 1 时
t (1 )
ˆ1 1 S (ˆ1 )
渐近 N (0,1)
1 1 时
ˆ1 S (ˆ1
对ACF和PACF的截尾性作一判断。
1. 样本自相关函数截尾性的判断方法
理 则论k>上q后证,明序:列若的序样列本xt自为相MA关(q函)序数列ˆ k,渐
近服从正态分布,即:
ˆ k
~
N (0, 1 (1 2 q
n

时间序列的模型识别课件

时间序列的模型识别课件

时间序列的模型基础
1 自回归模型(AR)
利用过去时刻的观测值来预测未来时刻的值。
2 移动平均模型(MA)
根据过去时刻的预测误差来预测未来时刻的值。
3 自回归移动平均模型(ARMA)
结合自回归和移动平均模型的特点,适用于一般的时间序列。
时间序列的平稳性检验
1 平稳性的概念
时间序列的均值和方差在时间上保持恒定。
ARMA模型
自回归移动平均模型是自回归模型和移动平均模型的综合应用。它能够捕捉 时间序列的长期和短期动态特征。
ARIMA模型
自回归积分移动平均模型是自回归模型、差分和移动平均模型的组合应用。 它适用于具有趋势和季节性的时间序列。
季节性调整
对具有季节性的时间序列进行季节性调整可以消除季节性的影响,使时间序 列更具可预测性。
时间序列的模型识别ppt 课件
时间序列是按照时间顺序排列的数据集合,它具有趋势、季节性和周期性等 特征。本课程将介绍时间序列的基础概念和模型识别方法,帮助您更好地理 解和应用时间序列分析。
介绍时间序列
时间序列是按照时间顺序排列的数据集合,常见于经济、金融、气象等领域。了解时间序列的基 本概念和特征对于进行模型识别和预测至关重要。
2 单位根检验
用于判断时间序列是否具有单位根,进而确定是否为平稳序列。
3 差分
通过对时间序列进行差分,将非平稳序列转化为平稳序列。
AR模型
自回归模型是基于过去时刻的观测值进行预测的模型。它的特点是具有记忆性,各个时刻的值受 前面时刻的影响。
MA模型
移动平均模型是根据过去时刻的预测误差进行预测的模型。它的特点来自对预 测误差有很好的适应能力。

第五章-时间序列的模型识别

第五章-时间序列的模型识别

希望是本无所谓有,无所谓无的。这正如地上的路;其实地上本没有路,走的人多了,也便 成了路。
生命赐给我们,我们必须奉献生命,才能获得生命。
中落入 ˆkk
1 T
或 ˆkk
2 的比例是否占总数 M 的 68.3%或 95.5%。 T
一般地,我们取 M T 。如果 p p0 之前ˆkk 都明显地不为零,而当 p p0 时,
出初步的模型识别。
表 5.3 某车站 1993-1997 年个月的列车运行数量数据(单位:千列·千米)
k
观测值 k
观测值 k
观测值 k
观测值 k
观测值 k
观测值
1 1196.8 11 1206.5 21 1238.9 31 1261.6 41 1183.0 51 1306.0 2 1181.3 12 1204.0 22 1267.5 32 1274.5 42 1228.0 52 1209.0 3 1222.6 13 1234.1 23 1200.9 33 1196.4 43 1274.0 53 1248.0 4 1229.3 14 1146.0 24 1245.5 34 1222.6 44 1218.0 54 1208.0 5 1221.5 15 1304.9 25 1249.9 35 1174.7 45 1263.0 55 1231.0 6 1148.4 16 1221.9 26 1220.1 36 1212.6 46 1205.0 56 1244.0 7 1250.2 17 1244.1 27 1267.4 37 1215.0 47 1210.0 57 1296.0 8 1174.4 18 1194.4 28 1182.3 38 1191.0 48 1243.0 58 1221.0 9 1234.5 19 1281.5 29 1221.7 39 1179.0 49 1266.0 59 1287.0 10 1209.7 20 1277.3 30 1178.1 40 1224.0 50 1200.0 60 1191.0 图 5.3,5.4 分别为原始数据和平稳化以后(第 8 章将给出具体平稳化方法)数据的散点图。 希望是本无所谓有,无所谓无的。这正如地上的路;其实地上本没有路,走的人多了,也便 成了路。

时间序列的模型识

时间序列的模型识
时间序列的模型识别
• 时间序列的基本概念 • 时间序列的模型 • 时间序列的模型识别方法 • 时间序列的预测 • 时间序列的应用
01
时间序列的基本概念
时间序列的定义
总结词
时间序列是指按照时间顺序排列的一系列观测值。
详细描述
时间序列是按照时间顺序排列的一系列数据点,可以是数字、文本或其他类型 的数据。这些数据点通常表示在某个特定时间点上的测量值或观察结果。
详细描述
参数法通常需要预先设定一些数学模型,如AR模型、MA模型、ARMA模型等,然后通过最小二乘法 、最大似然估计等方法估计模型的参数。如果实际数据与某个模型的拟合度较高,则认为该模型适用 于该时间序列。
图形法
总结词
图形法是一种直观的方法,通过绘制时间序 列的图形和各种统计量来识别模型。
详细描述
图形法包括绘制时间序列的时序图、自相关 图、偏自相关图等,以及计算各种统计量如 峰度、偏度等。通过观察图形的特征和统计 量的值,可以初步判断时间序列的模型类型。
信息准则法
总结词
信息准则法是一种基于信息论的方法,通过比较不同模型的复杂度和拟合度来选择最优 模型。
详细描述
信息准则法包括AIC准则、BIC准则等,它们通过计算模型的复杂度和拟合度来选择最 优模型。复杂度越小、拟合度越高的模型被认为是更好的模型。信息准则法可以自动选
详细描述
差分自回归移动平均模型
ARIMA模型
总结词
详细描述
总结词
详细描述
自回归积分滑动平均模 型
ARIMA模型是一种结合 了自回归、积分和移动 平均三种模型的混合模 型。它通过同时考虑时 间序列中的过去值、过 去误差值和时间序列的 非平稳性来预测未来值 。

时间序列分析与的基本模型

时间序列分析与的基本模型

时间序列分析与的基本模型时间序列分析是一种重要的统计学方法,用于预测和解释时间序列的行为。

它可以应用于各种领域,如经济学、金融学、气象学等。

本文将介绍时间序列分析的基本模型及其应用。

一、时间序列分析概述时间序列分析是指通过对时间序列数据进行建模和分析,来研究时间序列的特征、趋势和周期性等。

它可以帮助我们理解时间序列中的规律,并进行预测和决策。

二、基本模型1. 自回归模型(AR)自回归模型是一种线性模型,它假设当前观测值与过去的观测值之间存在关系。

自回归模型的一般形式为AR(p),其中p表示过去p个观测值对当前观测值的影响程度。

AR模型可以用公式表示为:```X(t) = c + Σ(φ(i) * X(t-i)) + ε(t)```其中,X(t)表示当前观测值,φ(i)表示对应滞后期的系数,ε(t)表示误差项。

2. 移动平均模型(MA)移动平均模型是一种线性模型,它假设当前观测值与过去观测值的误差之间存在关系。

移动平均模型的一般形式为MA(q),其中q表示过去q个观测误差对当前观测值的影响程度。

MA模型可以用公式表示为:```X(t) = μ + Σ(θ(i) * ε(t-i)) + ε(t)```其中,μ表示均值,θ(i)表示对应滞后期的系数,ε(t)表示误差项。

3. 自回归移动平均模型(ARMA)自回归移动平均模型是自回归模型和移动平均模型的结合。

ARMA模型的一般形式为ARMA(p,q),其中p表示自回归项数,q表示移动平均项数。

ARMA模型可以用公式表示为:```X(t) = c + Σ(φ(i) * X(t-i)) + Σ(θ(i) * ε(t-i)) + ε(t)```4. 自回归积分移动平均模型(ARIMA)自回归积分移动平均模型是自回归模型、差分和移动平均模型的结合。

ARIMA模型的一般形式为ARIMA(p,d,q),其中p表示自回归项数,d表示差分次数,q表示移动平均项数。

ARIMA模型可以用公式表示为:```(1-B)^d * X(t) = c + Σ(φ(i) * X(t-i)) + Σ(θ(i) * ε(t-i)) + ε(t)```其中,B是滞后算子。

第5章 时间序列的模型识别PPT参考课件

第5章 时间序列的模型识别PPT参考课件

原理(模型阶数简约原则 parsimony principle):
设Xt(1≤t≤N)是零均值平稳序列,用模型AR模型拟合
AR p : Xt 1Xt1 2 Xt2 L p Xt p t 残差平方和Q0
AR p 1 : Xt 1Xt1 2 Xt2 L p1Xt p1 t 残差平方和Q1
2020/2/15
25
结论:对于给定的显著性水平α
若F>Fα(s,N-r),则拒绝原假设,认为后面s个回归因子对 因变量的影响是显著的,表明M1合适;
若F<Fα(s,N-r),则接受原假设,认为这s个回归因子对因 变量的影响是不显著的,表明M2合适。
2020/2/15
14
AR(p)模型定阶的F准则
1967年,瑞典控制论专家K.J.Aström教授将F检验准则用于 对时间序列模型的定阶。
2020/2/15
23
BIC准则
AIC准则是样本容量N的线性函数,在N→∞时不收敛 于真实模型,它通常比真实模型所含的未知参数要多, 是过相容的。
为了弥补AIC准则的不足,Akaike于1976年提出BIC准 则,而Schwartz在1978年根据Bayes理论也得出同样的 判别标准,称为SBC准则。理论上已证明,SBC准则 是最优模型的真实阶数的相合估计。
Xt 1Xt1 L p Xt p t 1t1 L qtq , t : WN 0, 2 AIC T ln ˆ 2 2 p q 1
说明:
第一项:体现了模型拟合的好坏,它随着阶数的增大而减小; 第二项:体现了模型参数的多少,它随着阶数的增大而变大。
2020/2/15
21
AIC准则用于ARMA模型的定阶

时间序列分析简介与模型

时间序列分析简介与模型

第二篇 预测方法与模型预测是研究客观事物未来发展方向与趋势的一门科学。

统计预测是以统计调查资料为依据,以经济、社会、科学技术理论为基础,以数学模型为主要手段,对客观事物未来发展所作的定量推断和估计。

根据社会、经济、科技的预测结论,人们可以调整发展战略,制定管理措施,平衡市场供求,进行各种各样的决策。

预测也是制定政策,编制规划、计划,具体组织生产经营活动的科学基础。

20世纪三四十年代以来,随着人类社会生产力水平的不断提高和科学技术的迅猛发展,特别是近年来以计算机为主的信息技术的飞速发展,更进一步推动了预测技术在国民经济、社会发展和科学技术各个领域的应用。

预测包含定性预测法、因果关系预测法和时间序列预测法三类。

本篇对定性预测法不加以介绍,对后两类方法选择以下几种介绍方法的原理、模型的建立和实际应用,分别为:时间序列分析、微分方程模型、灰色预测模型、人工神经网络。

第五章 时间序列分析在预测实践中,预测者们发现和总结了许多行之有效的预测理论和方法,但以概率统计理论为基础的预测方法目前仍然是最基本和最常用的方法。

本章介绍其中的时间序列分析预测法。

此方法是根据预测对象过去的统计数据找到其随时间变化的规律,建立时间序列模型,以推断未来数值的预测方法。

时间序列分析在微观经济计量模型、宏观经济计量模型以及经济控制论中有广泛的应用。

第一节 时间序列简介所谓时间序列是指将同一现象在不同时间的观测值,按时间先后顺序排列所形成的数列。

时间序列一般用 ,,,,21n y y y 来表示,可以简记为}{t y 。

它的时间单位可以是分钟、时、日、周、旬、月、季、年等。

一、时间序列预测法时间序列预测法就是通过编制和分析时间序列,根据时间序列所反应出来的发展过程、方向和趋势,进行类推或延伸,借以预测下一段时间或以后若干年可能达到的水平。

其容包括:收集与整理某种社会现象的历史资料;将这些资料进行检查鉴别,排成数列;分析时间序列,从中寻找该社会现象随时间变化而变化的规律,得出一定的模型,以此模型去预测该社会现象将来的情况。

时间序列的分析——模型的识别与预测

时间序列的分析——模型的识别与预测

模型的识别与预测一、实验内容依照某AR 模型生成一段数据(1000),同时用另一MA 模型生成一段数据(200),合成一段1200长度的数据1)依赖于这1200个数据的前800个数据,识别这段数据背后的AR 模型。

2)在1)的基础上对新数据进行预测,并通过后续的400个数据进行判别(数据模型是否匹配)或者模型的修正(修正只需要提供思路和方法)。

二、理论基础 1.时间序列模型介绍时间序列是随时间改变而随机地变化的序列。

时间序列分析的目的是找出它的变化规律,即线性模型,主要有三种:AR 模型(自回归模型)、MA 模型(滑动平均模型)和ARMA 模型(自回归滑动平均模型或混合模型)。

设{X t }为零均值的实平稳时间序列,阶数为p 的AR 模型定义为t p t p t t t a X X X X ++++=---ϕϕϕ (2211)其 ,0][ =t a E ⎩⎨⎧≠==,,0,,][2s t s t a a E a t s δt s X a E t s >=,0][其中{p k k ,...,2,1,=ϕ}成为自回归系数,白噪声序列{t a }成为新信息序列;阶数为q 的MA 模型定义为211...-----=t q t t t a a a X θθ其中{q k k ,...,2,1,=θ}称为滑动平均系数;P 阶自回归q 阶ARMA 模型定义为q t q t t p t p t t a a a X X X -------=---θθϕϕ (1111)记为ARMA (p ,q )。

2. 模型的识别根据教材对平稳时间序列的特性分析,对初步识别平稳时间序列的类型提供了依据,如表1所示:表1 各时间序列模型的特性3. 模型阶数的确定1)样本自相关函数和样本偏相关函数设有零均值平稳时间序列{t X }的一段样本观测值N x x x ,...,,21,样本协方差函数估计式为1,...,1,011^-==+-=∑N k xx Nki k N i i k γ同理样本自相关函数定义为1,...,1,0^^^-==N k k k γγρ2)MA 模型阶数的确定设{t X }是正态的零均值平稳MA (q )序列,而对于充分大的N ,可以认为^kρ的分布近似于正态分布))/1(,0(2N N ,从而,^k ρ的截尾性判断如下:首先计算^^2^1,...,,M ρρρ(取10/N M ≈),因为q 值未知,故令q 值从小到大,分别检验M q q q +++^2^1^,...,,ρρρ满足N k 1^≤ρ 或N k 2^≤ρ 的比例是否占总个数M 的68.3%或95.5%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13
上海财经大学 统计与管理学院 14
上海财经大学 统计与管理学院 15
上海财经大学 统计与管理学院 16
上海财经大学 统计与管理学院 17
上海财经大学 统计与管理学院 18
上海财经大学 统计与管理学院 19
上海财经大学 统计与管理学院 20
上海财经大学 统计与管理学院 21
上海财经大学 统计与管理学院 22
上海财经大学 统计与管理学院 5
上海财经大学 统计与管理学院
6
上海财经大学 统计与管理学院
7
上海财经大学 统计与管理学院 8
上海财经大学 统计与管理学院 9
上海财经大学 统计与管理学院 10
上海财经大学 统计与管理学院 11
上海财经大学 统计与管理学院 12
上海财经大学 统计与管理学院
上海财经大学 统计与管理学院 27
上海财经大学 统计与管理学院 28
上海财经大学 统计与管理学院 29
上海财经大学 统计与管理学院 30
上海财经大学 统计与管பைடு நூலகம்学院 31
上海财经大学 统计与管理学院 32
上海财经大学 统计与管理学院
33
上海财经大学 统计与管理学院 34
上海财经大学 统计与管理学院
上海财经大学 统计与管理学院 23

X t 1 X t 1 2 X t 2 p X t p t 进行拟合。根据模型阶数节省原则(parsimony principle),采取由低阶逐步升高的“过拟合”办 法。先对观测数据拟合模型AR(p)(p=1,2,…), 用递推最小二乘估计其参数并分别计算对应模型 的残差平方和。根据适用的模型应具有较小的残 差平方和的特点,用F准则判定模型的阶数改变 后相应的残差平方和变化是否显著。
时间序列的模型识别

前面四章我们讨论了时间序列的平稳性问题、可 逆性问题,关于线性平稳时间序列模型,引入了 自相关系数和偏自相关系数,由此得到ARMA(p, q)统计特性。从本章开始,我们将运用数据开始 进行时间序列的建模工作,其工作流程如下:
上海财经大学 统计与管理学院 1
上海财经大学 统计与管理学院 2
上海财经大学 统计与管理学院 4

§5.1
自相关和偏自相关系数法
在平稳时间序列分析中,最关键的过程就是 利用数据去识别和建模,根据第三章讨论的内容, 一个比较直观的方法,就是通过观察自相关系数 (ACF)和偏自相关系数(PACF)可以对拟合模 型有一个初步的识别,这是因为从理论上说,平 稳AR、MA和ARMA模型的ACF和PACF有如下特 性:

在ARMA(p,q)的建模过程中,对于阶数(p,q)的确 定,是建模中比较重要的步骤,也是比较困难的。 需要说明的是,模型的识别和估计过程必然会交 叉,所以,我们可以先估计一个比我们希望找到 的阶数更高的模型,然后决定哪些方面可能被简 化。在这里我们使用估计过程去完成一部分模型 识别,但是这样得到的模型识别必然是不精确的, 而且在模型识别阶段对于有关问题没有精确的公 式可以利用,初步识别可以我们提供有关模型类 型的试探性的考虑。
35
上海财经大学 统计与管理学院
36
上海财经大学 统计与管理学院 37
上海财经大学 统计与管理学院 38
上海财经大学 统计与管理学院 39
上海财经大学 统计与管理学院
40
上海财经大学 统计与管理学院 41
上海财经大学 统计与管理学院
42
上海财经大学 统计与管理学院 43
上海财经大学 统计与管理学院

5.2.1 AR(p)模型定阶的F准则 1967年,瑞典控制论专家K.J.Aström教授将F检验准则用 于对时间序列模型的定阶。设(1≤t≤N)是零均值平稳序列 的一段样本。并用模型AR(p)
上海财经大学 统计与管理学院 24
上海财经大学 统计与管理学院 25
上海财经大学 统计与管理学院
26
上海财经大学 统计与管理学院
3

对于线性平稳时间序列模型来说,模型的识别问题就是确定 ARMA(p,q)过程的阶数,从而判定模型的具体类别,为我们下一步进 行模型的参数估计做准备。所采用的基本方法主要是依据样本的自 相关系数(ACF)和偏自相关系数(PACF)初步判定其阶数,如果 利用这种方法无法明确判定模型的类别,就需要借助诸如AIC、BIC 等信息准则。我们分别给出几种定阶方法,它们分别是(1)利用时 间序列的相关特性,这是识别模型的基本理论依据。如果样本的自 相关系数(ACF)在滞后q+1 阶时突然截断,即在q处截尾,那么我 们可以判定该序列为MA(q)序列。同样的道理,如果样本的偏自相关 系数(PACF)在p处截尾,那么我们可以判定该序列为AR(p)序列。 如果ACF和PACF 都不截尾,只是按指数衰减为零,则应判定该序列 为ARMA(p,q)序列,此时阶次尚需作进一步的判断;(2)利用数理 统计方法检验高阶模型新增加的参数是否近似为零,根据模型参数 的置信区间是否含零来确定模型阶次,检验模型残差的相关特性等; (3)利用信息准则,确定一个与模型阶数有关的准则函数,既考虑 模型对原始观测值的接近程度,又考虑模型中所含待定参数的个数, 最终选取使该函数达到最小值的阶数,常用的该类准则有AIC、BIC、 FPE等。实际应用中,往往是几种方法交叉使用,然后选择最为合适 的阶数(p,q)作为待建模型的阶数。
44
相关文档
最新文档