第五章时间序列的模型识别汇总
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
截尾性,进而由此可以给出模型的初步识别。首先,我们需要给出样本的自相关系数 ˆk 和
偏自相关系数 ˆkk 的定义。
设平稳时间序列Xt 的一个样本 x1, , xT 。则样本自协方差系数定义为
ˆk
1 T
T k j 1
xj x
xjk x , 1 k T 1
(5.1)
ˆk ˆk , 1 k T 1
ˆkk
Dˆ k Dˆ
,
k 1, 2,
,T
(5.4)
其中
1 ˆ1
ˆ k 1
1 ˆ1
ˆ1
Dˆ ˆ1 1
ˆk2 , Dˆk ˆ1
1
ˆ2
ˆk1 ˆk2
1
ˆk1 ˆk2
ˆk
关于样本的自相关系数ˆk 的统计性质,我们将在下一章给予讨论。
Quenouille 证明, ˆkk 也满足 Bartlett 公式,即当样本容量 T 充分大时,
T
1 k
T k j 1
xj x
xjk x , 1 k T 1
(5.3)
ˆk ˆk , 1 k T 1
在上述两种估计中,当样本容量T 很大,而 k 的绝对值较小时,上述两种估计值相差不 大,其中由(5.1)定义的第一种估计值的绝对值较小。根据前面章节的讨论,因为 AR( p ),
MA( q )或者 ARMA( p, q )模型的自协方差系数 k 都是以负指数阶收敛到零,所以在对平
ˆkk ~ N 0, 1 T
这样根据正态分布的性质,我们有
(5.5)
P
ˆkk
1
68.3%
T
(5.6)
P
ˆkk
2
95.5%
T
(5.7)
这样,关于偏自相关系数 kk 的截尾性的判断,转化为利用上述性质(5.6)或者(5.7),
可以判断 ˆkk 的截尾性。具体方法为对于每一个 p>0,考查p1, p1 , p2, p2 ,…, pM , pM
稳时间序列的数据拟合 AR( p ),MA( q )或者 ARMA( p, q )模型时,希望实际计算的样本自
协方差系数ˆk 能以很快的速度收敛。因此,我们一般选择由(5.1)定义的第一种估计值作
为 k 的点估计。
根据第三章偏自相关系数的计算,利用样本自相关系数 ˆk 的值,定义样本偏自相关
系数 ˆkk 如下:
对于线性平稳时间序列模型来说,模型的识别问题就是确定 ARMA(p,q)过程的阶数, 从而判定模型的具体类别,为我们下一步进行模型的参数估计做准备。所采用的基本方法主 要是依据样本的自相关系数(ACF)和偏自相关系数(PACF)初步判定其阶数,如果利用 这种方法无法明确判定模型的类别,就需要借助诸如 AIC、BIC 等信息准则。我们分别给 出几种定阶方法,它们分别是(1)利用时间序列的相关特性,这是识别模型的基本理论依 据。如果样本的自相关系数(ACF)在滞后 q+1 阶时突然截断,即在 q 处截尾,那么我们 可以判定该序列为 MA(q)序列。同样的道理,如果样本的偏自相关系数(PACF)在 p 处截 尾,那么我们可以判定该序列为 AR(p)序列。如果 ACF 和 PACF 都不截尾,只是按指数衰 减为零,则应判定该序列为 ARMA(p,q)序列,此时阶次尚需作进一步的判断;(2)利用数 理统计方法检验高阶模型新增加的参数是否近似为零,根据模型参数的置信区间是否含零来 确定模型阶次,检验模型残差的相关特性等;(3)利用信息准则,确定一个与模型阶数有关
拖尾
拖尾
但是,在实际中 ACF 和 PACF 是未知的,对于给定的时间序列观测值 x1, x2 , , xT ,我们
需要使用样本的自相关系数 ˆk 和偏自相关系数 ˆkk 对其进行估计。然而由于ˆk 和
ˆkk 均是随机变量,对于相应的模型不可能具有严格的“截尾性”,只能呈现出在某步之后
围绕零值上、下波动,因此,我们需要借助 ˆk 和 ˆkk 的“截尾性”来判断k 和kk 的
第五章 时间序列的模型识别
前面四章我们讨论了时间序列的平稳性问题、可逆性问题,关于线性平稳时间序列模型, 引入了自相关系数和偏自相关系数,由此得到 ARMA(p, q)统计特性。从本章开始,我们将 运用数据开始进行时间序列的建模工作,其工作流程如下:
1. 模型识别 用相关图和偏相关图识别模型 形式(确定参数 p, q)
其中 x
1 T
T
x j 为样本均值,则样本自协方差系数ˆk 是Xt 的自协方差系数 k 的估
j 1
计。样本自相关系数定义为
ˆk ˆk ˆ0 , k T 1
(5.2)
是Xt 的自相关系数k 的估计。
作为Xt 的自协方差系数 k 的估计,根据数理统计知识,样本自协方差系数还可以
写为
2 / 17
ˆk
内容,一个比较直观的方法,就是通过观察自相关系数(ACF)和偏自相关系数(PACF)
可以对拟合模型有一个初步的识别,这是因为从理论上说,平稳 AR、MA 和 ARMA 模型的
ACF 和 PACF 有如下特性:
模型(序列)
AR(p)
MA(q)
ARMA(p,q)
自相关系数(ACF) 拖尾
q 阶截尾
拖尾
偏自相关系数(PACF) p 阶截尾
2. 参数估计 对初步选取的模型进行参数估计
3. 诊断与检验 包括参数的显著性检验和 残差的随机性检验
模型是否可取
吗 可取
停止
不可取
图 5.1 建立时间序列模型流程图
在 ARMA(p,q)的建模过程中,对于阶数(p,q)的确定,是建模中比较重要的步骤,也是比较 困难的。需要说明的是,模型的识别和估计过程必然会交叉,所以,我们可以先估计一个比 我们希望找到的阶数更高的模型,然后决定哪些方面可能被简化。在这里我们使用估计过程 去完成一部分模型识别,但是这样得到的模型识别必然是不精确的,而且在模型识别阶段对 于有关问题没有精确的公式可以利用,初步识别可以我们提供有关模型类型的试探性的考 虑。
1 / 17
的准则函数,既考虑模型对原始观测值的接近程度,又考虑模型中所含待定参数的个数,最 终选取使该函数达到最小值的阶数,常用的该类准则有 AIC、BIC、FPE 等。实际应用中, 往往是几种方法交叉使用,然后选择最为合适的阶数(p,q)作为待建模型的阶数。
§5.1 自相关和偏自相关系数法
在平稳时间序列分析中,最关键的过程就是利用数据去识别和建模,根据第三章讨论的ቤተ መጻሕፍቲ ባይዱ