船用防撞雷达
雷达的基本概念和发展简史
第十三页,编辑于星期三:十二点 四十七分。
1.1.2 雷达原理的发现和早期雷达
19 世纪后期,电磁理论的建立和电磁波实验的突破,为雷达的产
生奠定了基础
1864 年,麦克斯韦提出了电磁理论,预见到了电磁波的存在。
1886 年,赫兹用实验证明了电磁波的存在,验证了电磁波的发生接收
和散射。
1903 年-1904 年,斯琴 ·赫尔斯麦耶发明电动镜,利用无线电波回
“宙斯盾” AN/SPY-1 雷达
B-1B 雷达
第二十四页,编辑于星期三:十二点 四十七分。
1.1.4 战后雷达的发展
AN/TPS-59 雷达
AN/FPS-117 雷达
AN/SPS-40雷达
第二十五页,编辑于星期三:十二点 四十七分。
1.1.4 战后雷达的发展
AN/FPS-115 雷达
第二十六页,编辑于星期三:十二点 四十七分。
1.1.3 第二次世界大战中的雷达
二战期间:雷达功能进一步增强,对雷达发展具有重要影响的高功 率磁控管问世,且首次出现了雷达电子战。
SCR-270 警戒雷达
第十七页,编辑于星期三:十二点 四十七分。
1.1.3 第二次世界大战中的雷达
SCR-584 防空火控雷达
雷达电子战
第十八页,编辑于星期三:十二点 四十七分。
随着微电子机械和数字信号处理等技术的飞速发展,为有源
电扫相控阵列多功能雷达发展提供了技术动力,这种雷达系 统是新一代高分辨率雷达的代表。
第二十八页,编辑于星期三:十二点 四十七分。
陆地、建筑物、车辆、兵器、人员等。
噪声:
外部噪声、 雷达系统噪声。
杂波: 目标所在背景反射回的电磁波,即无用回波。如地面(地杂波)、海面
雷达的历史回顾
1959年,美国通用电器公司研制出弹道导弹预警雷达系统,可发现並跟踪3000英里外,600英里高的导弹,预警时间为20分钟。
笔者综述了雷达的诞生,有的时间与有关文献资料略有差异。另外雷达有几十种类型,尚难列岀各种雷达的出现时间。夲文作为学科发展史讨论用,目前我国有关各学科发展史尚未见有权威出版物,导致教科书、论文中阐述研制背景时,对科学史叙述错误甚多,其中包括院士、知名专家、教授在内,这种情况也该引起重视了。
1917年,罗伯特·沃特森·瓦特(Robert Watson-Watt)成功设计雷暴定位装置,它宣告了雷达的诞生。
1922年,英国马可尼(M.G.Marconi)在无线电工程师学会(IRE)领奖时,提出船用防撞雷达测角的建议。发表演说的题目是可防止船只相撞的平面测角雷达。
1922年,美国泰勒和杨建议在两艘军舰上装备高频发射机和接收机以搜索敌舰。
1934年,海军研究实验室(Naval REsearch Lab.)的佩奇(R.M.Page),首次拍摄到由飞机反射回来的,短脉冲回波的照片。
1935年,英国人和德国人首次实现,用空中飞机反射回波形成的短脉冲来測距。
1935年,法国古顿用磁控管产生波长为16厘米的电磁波,可以在雾天或黑夜发现其它船只。这是雷达民用的开始。
1914-1918年,第一次世界大战。飞机在战场上的作用越来越大。当时飞机飞行速度不高,人们是通过声波探测来提前预警飞机信息。因此有的科普作家认为雷达的诞生从声波探测开始,也有人认为雷达的诞生是起始于多普勒效应的发现。
船用雷达的操作和使用
船用雷达的操作和使用船用雷达是船舶上常见的导航设备,它通过发射和接收微波信号来探测周围环境,并提供相关的信息给船舶驾驶员,以确保航行的安全。
以下是关于船用雷达的操作和使用的详细说明。
1.雷达系统组成船用雷达一般由以下几个部分组成:-雷达发射器:产生微波信号并向四周发射。
-雷达接收器:接收反弹回来的信号,并将其转化为图像。
-显示器:显示雷达所接收到的图像,并提供相关的信息。
-软件控制系统:用于控制雷达的各项参数和功能。
2.雷达的工作原理船用雷达利用微波信号来测量和跟踪目标物体的位置和距离。
当雷达发射器发射出的微波信号遇到物体时,一部分信号会被物体反射回来,雷达接收器接收到反射回来的信号后,通过信号处理和图像重建,形成雷达图像。
3.雷达的操作步骤以下是一般的雷达操作步骤:-打开雷达开关:将雷达接通电源,打开相关开关。
-设置雷达参数:根据航行需求,设置雷达的工作频率、功率、扫描范围等参数。
-定位雷达:将雷达安装到适当的位置,确保雷达可以360度无阻碍的扫描周围环境。
-调整雷达扫描模式和范围:根据航行需求,调整雷达的扫描模式和范围,可以选择水平扫描、垂直扫描、或者组合扫描等模式。
-观察雷达图像:通过观察雷达的显示器,获取周围环境的信息,包括航道、目标物体、岩礁、其他船只等。
-自动或手动跟踪目标:根据需要,雷达可以根据用户设置自动跟踪目标,也可以手动选择跟踪目标。
-分析和决策:根据雷达提供的信息,船舶驾驶员进行分析和决策,选择适当的航向和航速。
4.雷达的使用注意事项在使用船用雷达时,需要注意以下几个方面:-正确设置雷达参数:根据航行条件和需求,合理设置雷达的频率、功率、扫描范围等参数,以获取准确的雷达图像。
-关注目标物体:通过观察雷达图像,及时发现与船只航行有关的目标物体,如其他船只、浮标、岩礁等,并根据需要采取相应的行动。
-定期校准雷达:定期对雷达进行校准和维护,以确保其准确性和可靠性,同时保持雷达设备的清洁。
航海雷达新性能标准[1]
16
SharpEye radar...look, Wa, no magnetron! Mar 5, 2007
17
In the SharpEye radar the solid state power amplifier has a peak output power of just 170W, this contrasts with typical marine radar systems in which the magnetron has a 30kW peak output. But SharpEye produces more energy than the magnetron system therefore exceeding conventional radar in detection performance
4)探测小型漂浮和固定的危险物,用于安全导航和避碰;
5)探测漂浮和固定的导航标用于安全导航。 旧标准( The radar equipment should provide an indication, in relation to the ship of the position of other surface craft and obstructions and of buoys, shorelines and navigational marks in a manner which will assist in navigation and in avoiding 7 collision. )
大于10000总吨
320mm 340×340mm yes 40 40 200 yes
旧标准:150~1000总吨,180mm
1000~10000总吨,250mm
船用雷达 详细介绍ppt课件
收发机
c
直角坐标 数据内存
光栅扫描 a — 原始方位和船首信号;b — 触发脉冲;c — 原始视频; 雷达 d — 数字方位信号;e— 数字视频
①将原始视频杂波抑制,然后与天线方位信号、船艏信号量化 ②进行坐标转换,产生光栅扫描信号
第四节 雷达显示系统
三、测距、测方位的误差测定和校正:
混频二极管(混频晶体) ○检查:万用表R100或R1 k档测正反向电阻, 严禁使用R1或R10 k档,损坏晶体 反正电阻比应大于100以上
○电流:说明本振和混频晶体是否工作。具体数值查说明书
回波幅度: V 级 本振输出: mV级 晶体电流值只由本振输出决定
○注意:铅管屏蔽(防高频辐射)、防振、防潮保管 更换或检测时应关高压,取下装上人机同电位
方位标志
荧光屏边缘
Fig. 距离与方位测量
第一节 雷达测距与测方位原理
一. 雷达测距原理
1、物理基础:超高频无线电波在空间直线传播 遇物标能良好反射 2、测距公式:R = 1/2·C × t Δ t : 往返于天线与目标的时间 C: 电磁波在空间直线传播速度 C = 3×102 m/ s
如△t = 1μs,则,R = 150 m;对应于1 nm 距离, △t =12.35 μs 荧光屏的单位长度:在不同量程代表不同的距离
2.波导:用于3 cm雷达
由矩形空心管构成 — 由铜拉制成
第二节 微波传输线及雷达天线系统
波导元件
①均匀波导:直、扭、弯、软波导 ②不均匀波导: 谐振腔、带销钉的波导、 分支、开缝波导等 波导接头:扼流接头
(a)Waveguide section (b) Broad side ben(e) Pliable Short piston
船用雷达
船用雷达0引言雷达概念形成于20世纪初。
雷达是英文radar的音译,为Radio Detection And Ranging的缩写,意为无线电检测和测距的电子设备。
它是利用电磁波探测目标的电子设备。
雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方向、速度等状态参数。
雷达主要由天线、发射机、接收机(包括信号处理机)和显示器等部分组成。
船上装备雷达始自第二次世界大战期间,战后逐渐扩大到民用商船。
1雷达的基本工作原理雷达发射机产生足够的电磁能量,经过收发转换开关传给天线。
天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,向前传播。
电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回雷达的方向,被雷达天线获取。
天线获取的能量经过收发转换开关送到接收机,形成雷达的回波信号。
由于在传播过程中电磁波会随着传播距离而衰减,雷达回波信号非常微弱,几乎被噪声所淹没。
接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波中的信息,送到显示器,显示出目标的距离、方向、速度等。
2船用导航雷达2.1 船用导航雷达简介船用导航雷达(marine radar )是保障船舶航行,探测周围目标位置,以实施航行避让、自身定位等用的雷达,也称航海雷达。
它特别适用于黑夜、雾天引导船只出入海湾、通过窄水道和沿海航行,主要起航行防撞作用。
2.2 船用雷达与普通雷达的区别一般雷达把自身作为不动点表示在平面位置显示器的中心。
但在航海中,船舶自身在运动,总是与固定目标或运动目标作相对运动。
适应航海环境的雷达,应是真正运动的雷达,须能自动输入船舶自身的航速和航向,数据必须相当准确。
2.3船用导航雷达的最小作用距离—盲区导航雷达是用来探测水上目标的方位和距离,它不受气候影响,可以全天候引导船舶进出港口、码头和海上安全航行。
导航雷达最大作用距离主要取决于雷达脉冲的传播天线,如雷达天线高度、目标大小、形状及反射天线等。
浅析船用雷达和AIS的综合应用的优势与局限性
船用导航雷达和AIS综合应用的优势与局限性摘要:船用导航雷达和船舶自动识别系统(AIS)是两部重要的助航仪器,本文分析了导航雷达和AIS在单独使用时各自的功能和特点,并指出二者在综合应用中所表现出的优势和局限性以及针对其局限性的注意事项。
关键词:导航雷达、AIS、综合应用目前,全球经济趋于一体化,航运业迅猛发展,船舶数量急剧增加,于此同时海难、海损事故也随之增加,给广大海员的生命安全、国家财产和海洋环境造成严重威胁。
为加强航行安全,保护海洋环境,船舶间、船岸间信息的充分、快速、准确交换就显得尤为重要和突出。
一、船用导航雷达的功能和特点1.雷达在应用中的优势伴随船舶数量的激增,船舶碰撞事故的事故率也居高不下,因此,如何实现船舶间的协调行动,避免船舶碰撞就显得异常重要。
雷达作为船舶避碰的主要助航仪器,从出现至今一直发挥着重要的作用。
雷达是自主式导航设备,可以扫描到海面上的具有一定大小的物标并将其回波显示在雷达显示器上,从而将海面上物表和本船的相对位置关系清晰显示,让操作者获得较为全面的交通形式图像。
通过对物标船的标绘,可以判断物标船和本船是否存在碰撞危险,更可以求取避让措施,核实避让行动的效果。
传统的船舶避碰是用眼睛实际观察周围船舶的运动态势,进而凭借经验采取改向或变速措施来实现船舶间的安全避让。
不难发现,传统的避让方法受受能见度的影响较大,比如海上大雾天气,航海员仅凭肉眼能观测到的距离大大减小,有时会减小到几十米,就不能实现安全航行的目标。
而有了雷达就大不相同,雷达受能见度影响小,精度高(30米左右),决策时间短(通过雷达自动标绘仪—ARPA跟踪物标并求取避让措施仅需3-5分钟时间),雷达的探测距离可以达到10—20海里,驾驶员的工作负担大大减轻。
另一方面,当船舶发生碰撞事故时,在避让行动中得雷达观测信息可以作为海事调查的证据,给海事处理也带来了很大方便。
2.雷达在应用中的局限性尽管雷达在应用中有上述的优势,但其局限性也不容忽视。
雷达的历史回顾
雷达的历史回顾都世民雷达是英文名词“Radar”的音译,它的原意是:无线电探测和定位。
早先概念是:由雷达发射机产生具有给定参数的电磁波,经天线辐射到空间,通过天线波束在空间扫描,一旦目标出现,就会对辐照的电磁波产生反射和散射,此反射波和散射波再被雷达天线接收,送至接收机,经检波、放大和信息处理后,即可获得空中目标的位置和目标的其它属性。
这里所说的发射机就是雷达的辐射源。
因此这种雷达称作有源雷达。
后来,随着电子技术、雷达技术和各种武器技术的发展,如今雷达的概念有所扩展,除上述有源雷达外,又派生出无源雷达,也就是说这种雷达没有辐射源,这种雷达是借用空间已有的电波,照射到目标所形成的囬波来探测目标。
如今学术界称这种雷达为外辐射源雷达。
从雷达本身看,它是无辐射源,实际上是有源,这源是外部辐射源。
雷达的诞生1864年,伟大的电磁之父麥克斯韦(JamesC1erkMaxwe11)发表了巨著“电磁学通论”,从数学和物理学,论证了电磁波的存在,并指出光就是电磁波!1886年,赫兹(HeinerichHertz)巧夺天工,他发明了天线,将谐振回路形成的电磁波,辐射到空间,证实了电磁波的存在。
1897年,波波夫利用无线电波探测物体。
1897J J Thompson)展开对真空管内阴极射线的研究。
1903年-1904年,德国侯斯美尔(Christian Hulsmeyer)发明了船用防撞雷达,获得了专利权。
这种雷达只能测量目标的距离。
同年,世界上出现了第一架飞机。
1906年,德弗瑞斯特(De Forest Lee)发明真空三极管,是世界上第一种可放大信号的主动电子元件.1914-1918年,第一次世界大战。
飞机在战场上的作用越来越大。
当时飞机飞行速度不高,人们是通过声波探测来提前预警飞机信息。
因此有的科普作家认为雷达的诞生从声波探测开始,也有人认为雷达的诞生是起始于多普勒效应的发现。
1916年,马可尼(Marconi Franklin)开始研究短波信号反射。
史上最全的军用雷达分类
史上最全的军用雷达分类军用雷达利用电磁波发现目标并测定其位置、速度和其他特性的军用电子装备。
“雷达”一词是英文RADAR的音译,原意是无线电探测和测距。
雷达具有发现目标距离远,测定目标坐标速度快,能全天候使用等特点。
因此在警戒、引导、武器控制、侦察、航行保障、气象观测、敌我识别等方面获得广泛应用,成为现代战争中一种重要的电子技术装备。
原理和组成典型的雷达是脉冲雷达,主要由天线、收发转换开关、发射机、接收机、定时器、显示器、电源等部分组成(图1脉冲雷达原理方框图)。
发射机产生强功率高频振荡脉冲。
具有方向性的天线,将这种高频振荡转变成束状的电磁波(简称波束),以光速在空间传播。
电磁波在传播过程中遇到目标时,目标受到激励而产生二次辐射,二次辐射中的一小部分电磁波返回雷达,为天线所收集,称为回波信号。
接收机将回波信号放大和变换后,送到显示器上显示,从而探测到目标的存在。
为了使雷达能够在各个方向的广阔空域内搜索、发现和跟踪目标,通常采用机械转动天线或电子控制波束扫描的方法,使天线的定向波束以一定的方式在空间扫描。
定时器用于控制雷达各个部分保持同步工作。
收发转换开关可使同一副天线兼作发射和接收之用。
电源供给雷达各部分需要的电能。
目标的距离是根据电磁波从雷达传播到目标所需要的时间(即回波信号到达时间的一半)和光速(每秒30万公里)相乘而得的。
目标的方位角和仰角是利用天线波束的指向特性测定的。
根据目标距离和仰角,可测定目标的高度。
当目标与雷达之间存在相对运动时,雷达接收到目标回波的频率就会产生变化。
这种频移称为多普勒频移,它的数值与目标运动速度的径向分量成正比。
据此,即可测定目标的径向速度。
战术技术性能主要包括:雷达的最大作用距离,最小作用距离,方位角和仰角工作范围,精确度,分辨力,数据率,反干扰能力,生存能力,机动性、可靠性、维修性和环境适应性;以及雷达的工作体制,载波频率,发射功率,信号形式,脉冲重复频率,脉冲宽度,接收机灵敏度,天线的波束形状和扫描方式,显示器的形式和数量等。
船用雷达工作原理
船用雷达工作原理雷达是利用电磁波进行遥感探测的无线电传感技术。
船用雷达利用超高频电磁波能够穿透雾、雨、霜、雪等恶劣气象环境,对水面、陆地、船只等进行探测,以实现船舶导航、安全警示和通讯等功能。
船用雷达主要由雷达天线、发射、接收、信号处理等部分组成,其工作原理为:雷达天线发出一束高功率、短脉冲的电磁波,并接收回波信号,在信号处理装置中将回波信号转换为可视化的雷达图像,以指引船只航行和避免风险。
船用雷达的发射部分包括频率发生器、高频功率放大器、脉冲调制器等。
频率发生器产生电波,高频功率放大器将电波放大,脉冲调制器将电波转换成短脉冲形式,控制发射时间和频率,从而实现雷达的发射功能。
雷达天线是船用雷达中的核心部分,用于发射和接收电磁波,在不同方向上扫描目标并接收回波信号。
雷达天线的构造形式有大臂、小臂、座式、开合式等多种,其选用应依据不同的使用场景和需求来决定。
接收部分由接收器、低噪声放大器、中频放大器、检波器、A/D转换器等组成。
接收器接收到回波信号后将其放大,并通过中频放大器将信号转换为中频信号,检波器将中频信号解调成低频信号,A/D转换器将模拟信号转换为数字信号,供信号处理部分进一步处理。
信号处理部分由波形处理器、滤波器、调制解调器、图像处理器等组成。
波形处理器将数字信号转换为基本波形,滤波器对信号进行滤波、降噪处理,调制解调器将信号转换成可视化图像信号,图像处理器将信号转换为雷达图像,供船员使用。
总之,船用雷达通过发射短脉冲电磁波、接收回波信号并进行处理,能够精确定位船只位置和目标方位、距离,提高船舶导航和安全性能。
在恶劣气象、强光干扰等环境中,船用雷达仍能实现高精度探测,为航行带来便利和保障。
船用雷达详细介绍
船用雷达详细介绍船用雷达是指安装在船舶上,用来探测和测量周围环境的雷达系统。
它是船舶上必备的重要设备之一,具有广泛的应用领域,包括航海、渔业、船舶导航和安全等。
船用雷达的基本原理是利用电磁波的反射和回波来探测目标物体的位置和距离。
雷达系统会通过发射器发射一束脉冲电磁波,并追踪这些波的回波来确定目标物体的位置和距离。
通过测量回波的时间和频率,船用雷达能够计算出目标的位置、距离和速度等重要信息。
船用雷达通常由以下几个主要部件组成:天线、发射器、接收器、显示器和控制装置。
天线用于发射和接收电磁波,发射器产生电磁波脉冲,接收器接收和处理回波信号,显示器显示目标物体的信息,控制装置用于操作和控制雷达系统。
船用雷达的主要功能包括航海导航、碰撞防范、目标检测和跟踪等。
船舶在海上航行时,通过船用雷达可以确定周围环境的情况,包括其他船只、浮标、礁石等。
船用雷达能够提供目标物体的位置、距离和速度等信息,帮助船舶避免碰撞和安全导航。
船用雷达的技术特点主要包括雷达分辨率、探测距离、工作频率和功率等。
雷达分辨率是指雷达系统能够分辨出的最小目标物体的大小,通常与天线的直径有关。
探测距离是指雷达系统能够探测到目标物体的最远距离,通常取决于功率和工作频率。
工作频率是指雷达系统发射和接收电磁波的频率,通常根据不同的应用需求选择合适的频率。
船用雷达有多种不同类型,包括X波段雷达、S波段雷达、L波段雷达、K波段雷达等。
不同类型的雷达在性能和应用方面有所差异。
例如,X波段雷达具有较高的分辨率和探测距离,适用于长距离航行和海上作业;而S波段雷达则适用于近距离导航和安全防范。
除了基本功能外,现代船用雷达还具有一些先进的特性和功能,如自动目标跟踪、天气雷达、海上目标识别系统等。
自动目标跟踪可以自动追踪目标物体的运动轨迹,方便船舶管理和操作;天气雷达可以探测和预测天气情况,提供给船舶相关的气象信息;海上目标识别系统可以识别和跟踪目标物体,确保船舶的安全航行。
船载导航雷达技术最新应用
岸警卫队颁布规定, 要求所有进入美国水域的船只 装备并使用避碰系统, 促进了计算机自动雷达标绘 仪( ARPA ) 的迅速发展[ 2] 。
20 世纪 80 年代, 军用雷达技术快速发展, 人们 乐观地认为船用导航雷达技术也会突飞猛进, 甚至 设想应用脉冲多普勒、相控阵、合成孔径成像、超视 距探测等技术体制[ 3] 。30 年过去了, 船用导航雷达 技术与军用雷达技术的差距却越来越大, 除了屈指 可数的新技术, 如波导缝隙阵列天线、固态调制器、 数字终端显示、数字信号处理、固态功放、连续波等, 其余变化都是小改小革, 如组合导航( 接入船舶自动 识别设备、运行电子海图) 、波 束锐化、双量程显示 等, 而非雷达体制上的根本变化。时至今日, 无论军 用还是民用船舶, 仍然大量使用磁控管导航雷达, 甚
第 53 卷 第 9 期 2013 年 9 月
电讯技术 Telecommunication Engineering
doi: 10. 3969/ j. issn. 1001- 893x. 2013. 09. 025
Vol. 53 No. 9 Sep. 2013
船用导航雷达的技术发展及最新应用*
彭祥龙**
目标检测
分辨力与精度
抗相
技术 体制
近 距离
# 1247 #
www. teleonline. cn
电讯技术
2013 年
至连数字信号处理技术都未广泛使用。究其原因, 民用船舶是导航雷达的主要市场, 成本与性价比是 首要因素。激烈的市场竞争导致雷达的重心放在了 产品的价格而不是新技术应用上, 除非有法律条文 明确规定, 否则那些价格居高不下的技术就一直得 不到应用。
最近 10 年, 世界经济、消费电子技术与航运业 欣欣向荣, 船用导航雷达迎来新的发展机遇。本文 简述了导航雷达市场行情, 说明了技术现状与发展 趋势, 并介绍了导航雷达在安全监视、生态保护等非 导航领域的最新应用。
船用雷达的操作方法
船用雷达的操作方法
船用雷达的操作方法主要包括以下步骤:
1. 打开雷达电源:首先将船用雷达的电源开关打开,确保雷达设备能够正常供电。
2. 调整雷达参数:设置雷达的工作参数,例如雷达的功率、增益、频率等。
根据实际需求,调整雷达的参数以实现最佳的工作效果。
3. 打开雷达显示器:将船用雷达的显示器打开,以便观察雷达回波图像。
根据雷达设备的类型和型号,雷达显示器可能是一个独立的设备,也可能是与雷达设备集成在一起的。
4. 设置雷达扫描模式:根据实际需要,选择适当的雷达扫描模式,例如水平扫描、垂直扫描、容许扇形扫描等。
不同的雷达扫描模式适用于不同的任务和环境。
5. 观察雷达回波:通过雷达显示器观察雷达的回波图像。
回波图像通常显示船周围的物体和障碍物的位置、距离和大小等信息。
6. 根据雷达回波进行导航:根据雷达回波图像,结合其他导航设备(例如电子地图、GPS等),进行航行导航。
根据雷达回波的位置和特征,及时调整船只航向,避免与障碍物碰撞。
7. 维护和保养雷达设备:定期进行雷达设备的维护和保养,包括清洁雷达天线、检查设备连接和电源等,以保证雷达设备的长期稳定运行。
需要注意的是,船用雷达的操作方法可能会根据具体的雷达设备型号和制造商而有所不同。
因此,在使用船用雷达之前,建议阅读并熟悉相关的操作手册和使用说明。
船用产品检验指南-船用雷达
船用产品检验指南-船用雷达第1章雷达检验指南1.适用范围本指南适用于船用雷达的型式认可和检验(高速船导航雷达除外)。
2.认可和检验依据2.1 IEC 60092-101 《船用电气设备第101部分:定义及总要求》2.2 IEC 60945-2002 《海上导航和无线电通信设备及系统.一般要求.测试方法和要求的测试结果》2.3 IEC 60936-1-2002 《海上导航和无线电通信设备及系统.雷达.第1部分:船用雷达.性能要求》2.4 IEC 61162 《海上导航和无线电通信设备及系统的数字接口》2.5 IMO A477(XII) 《船用雷达性能标准》2.6 IMO A.694(17) 《作为全球海上遇险和安全系统(GMDSS)组成部分的船载无线电设备和电子助航设备的一般要求》2.7 IMO MSC.64(67)附件4 《雷达设备性能标准的建议案》2.8 中华人民共和国海事局《船舶与海上设施法定检验规则》第4篇第5章2.9 中国船级社GD01-2006 《电气电子产品型式认可试验指南》3.术语和定义3.2 相对航行:以偏离真北的角度表示的相对于本身船舶位置的某一目标的运动方向。
它是由船舶本身雷达对目标距离和方位的多次测量推断出的。
3.3 真航向:以偏离真北的角度表示的某一目标的真实运动方向。
它是通过目标的相对运动和船舶本身的真实运动的矢量合成而得。
3.4 相对运动:相对航向和相对速度的合成。
3.5 真运动:真航向和真速度的合成。
3.6 真速度:通过目标的相对运动和船舶本身的真运动山的矢量合成而得出某一目标的速度。
3.7 相对速度:相对于船舶本身位置的某一目标的速度。
它是由船舶本身雷达对目标距离和方位的多次测量推断出来的。
3.8 真方位:以偏离真北的角度表示的某一目标从船舶本身或从另一目标起算的方向。
3.9 相对方位:以偏离船舶本身船首航向角度表示的某目标从船舶本身起算的方向。
3.10 真运动显示:船舶本身和每一目标都是以真运动方式移动的一种显示。
海事雷达概念
海事雷达概念雷达是一种利用电磁波和回波的原理进行目标识别和测距的设备。
而海事雷达则是在海洋环境下使用的雷达系统。
本文将详细介绍海事雷达的概念、原理和应用。
一、概念海事雷达是一种船舶导航设备,用于检测和确定船只周围的水域。
它通过发射无线电波,接收并分析回波,识别和跟踪其他船只、浮标、岛屿等物体,从而帮助船舶避免碰撞、确定航线及港口导航。
二、原理海事雷达的原理基于电磁波的传播和回波的分析。
雷达发射器发射特定频率和脉冲宽度的无线电波,并将其定向发送到海面。
当波束遇到物体时,部分能量会被反射回雷达接收器。
接收器将接收到的回波信号转化为可视化的目标图像,并计算出目标与雷达之间的距离、方向和速度等信息。
三、功能和应用海事雷达在航海过程中发挥着重要的作用,提供以下功能和应用:1. 碰撞预警:海事雷达可以及时检测到其他船只、障碍物或浮标,通过实时显示目标位置、距离和运动方向,提醒船舶避免航道冲突和潜在的碰撞风险。
2. 航线规划:海事雷达可以帮助船舶确定最佳航线,避免危险区域和浅水区,确保船只安全地到达目的地。
通过雷达的图像和数据,船长可以评估海况和潮流对航行的影响,做出相应的决策。
3. 天气预警:海事雷达能够探测到远离船只的天气变化,如暴风雨、浓雾等。
及时获得天气信息可以帮助船舶调整航行计划,防止遭遇恶劣天气造成安全风险。
4. 搜救和救援:在紧急情况下,海事雷达可以用于定位和追踪遇险船只。
它可以帮助搜救人员确定目标位置,提供宝贵的搜索线索,提高搜救效率。
5. 港口导航:海事雷达可以帮助船舶确定港口入口、防止搁浅,找到正确的进港通道,确保安全停靠。
四、雷达系统的组成海事雷达系统由以下主要组件组成:1. 发射器和接收器:发射器负责发射电磁波,而接收器则接收和分析回波信号。
2. 天线:天线用于将发射器产生的电磁波转化为空间中的电磁场,并接收回波信号。
不同的天线设计可以提供不同的雷达性能,如增加探测距离和放大回波信号。
船用雷达技术要求和使用要求
船⽤雷达技术要求和使⽤要求1. 主题内容和适⽤范围本标准适⽤于船⽤导航雷达。
1.1 ⽆线电频率雷达设备⼯作的⽆线电频率在任何时刻均应在国际电信联盟颁发的“⽆线电规则”所规定的范围内。
2. ⽬的雷达设备应能相对于本船的其他⽔⾯船舶和障碍物、浮标、海岸线以及导航标志的位置,这将有助于导航和避碰。
设备的安装应满⾜该设备所规定的性能标准。
3. 性能要求所有雷达设备均应满⾜下述最低要求。
3.1 作⽤距离在正常传播条件下,当雷达天线架设在海⾯以上15⽶⾼度时,在⽆杂波的情况下,设备应清楚地显⽰出:3.1.1 海岸线⾼度为60⽶的陆地,距离为20海⾥。
⾼度为6⽶的陆地,距离为7海⾥。
3.1.2 ⽔⾯⽬标对5000吨(总吨,下同)的船舶,不管其⾸向如何,距离为7海⾥。
对10⽶长的⼩船,距离为3海⾥。
对有效反射⾯积约10平⽅⽶的导航浮标之类的⽬标,距离为2海⾥。
3.2 显⽰3.2.1 雷达设备应提供⾸向向上⾮稳定相对平⾯位置显⽰,在没有外部放⼤装置的情况下,其有效显⽰直径不⼩于下列规定:3.2.1.1 500 吨到1600 吨以下的船舶为180毫⽶;3.2.1.2 1600 吨到10000 吨以下的船舶为250毫⽶;3.2.1.3 10000 吨和10000 吨以上的船舶,⼀台雷达的显⽰器为340毫⽶,另⼀台雷达的显⽰器为250毫⽶。
3.2.1.4 若放⼤后的显⽰精度在本标准的精度范围内,也可以使⽤光学放⼤装置。
3.2.1.5 与雷达导航或避碰⽆关的任何信息只允许显⽰在屏幕有效直径的外⾯。
3.2.2 设备应供应下列两组显⽰量程中的任⼀组:3.2.2.1 1.5、3、6、12、24海⾥以及⼀档不⼩于0.5海⾥且不⼤于0.8海⾥的量程组;3.2.2.2 1、2、4、8、16、32海⾥的量程组。
3.2.3 设备还可以提供其他量程。
3.2.3.1 所提供的其他量程应⽐第3.3.2条所要求的最⼩量程更⼩,或者⽐第3.3.2条所要求的最⼤量程更⼤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
船用防撞雷达
1.功能简介
该雷达是一种工作于24GHz的收发分置的多发射多接收体制调频连续波雷达(MIMO 雷达),采用平面微带天线阵列,相位比较测向体制,集成度高,定位精度高,能提供优异的目标探测与分辨能力,可自动检测100米范围内小船以及2000m范围内的大船,可以第一时间了解平台周围的其他船舶情况,以最快的时间确定应急方案。
该雷达不受光线、能见度与恶劣天气的影响,可在大雨、大雪、重度雾霾、一定海情等各种天气下均能够正常工作,是一种能够做到24小时全天候监测的雷达传感器。
该雷达对小船的监测距离可达1000米,覆盖角度大,系统支持多雷达自动组网,实现对舰载平台的360°无缝监视,支持与摄像头联动使用,单个探测节点可以获取监控区域的实时的雷达报警信息,引导球形监控摄像机对靠近舰载平台的目标跟踪监视,并自动对闯入目标报警、录像取证。
该雷达具有以下功能。
(1)精确定位
可对监测区域内船舶进行定位、跟踪,输出目标运行轨迹。
具有跟踪定位精确,探测精度高的特点。
(2)作用距离远,探测能量集中
监测距离远,可对1000米范围内的小船、2000m范围内的大船目标进行实时监测;
(3)多目标跟踪
数据处理能力强,单台雷达可同时监控64个目标;
(4)全天候全天时高可靠工作;
(5)支持雷达有线协同自组网。
(6)支持雷达无线协同自组网。
(7)支持移动终端无线操控与显示。