北邮高等数学英文版课件Lecture 10-2

合集下载

北京邮电大学国际学院线性代数讲义Lecture 02

北京邮电大学国际学院线性代数讲义Lecture 02

1 0 0 0 0
and we end up with
1 0 0 0 0
1 1 0 0 0 1 0 0 0 0
1 1 0 0 0 1 0 0 0 0
1 1 2 0 1 3 pivotal row 1 1 1 0 1 1 0 0 0 1 1 0 0 0 1 1 2 0 1 3. 0 4 0 3
in row k 1 is greater that the number of leading zero entries in row k . nonzero entries.
Row Echelon Form
Definition: The process of using row operation I, II and III to transform a linear system into one whose augmented matrix is in row echelon form is called Gaussian elimination. Remark: Row operation II is necessary in order to scale the rows so that lead coefficients are all 1. Remark: If the row echelon form of the augmented matrix contains a row of the form 0 0 0 1 The system has no solution set. Otherwise, the system will have solution set. Definition: If a system has solution set, we will be referred as consistent and if a system has no solution, we will be referred as inconsistent.

高等数学 北邮第2版

高等数学  北邮第2版

高等数学北邮第2版介绍《高等数学北邮第2版》是由北京邮电大学出版社出版的教材,主要面向高等院校的理工科专业学生。

本教材是高等数学领域的经典教材之一,经过多年的使用和改进,逐渐发展成为一本综合性的高等数学教材。

本教材分为多个部分,涵盖了高等数学的各个方面,包括数列与极限、函数与连续、导数与微分、定积分与定积分应用、常微分方程等内容。

每个章节都以理论知识和例题相结合的形式,旨在帮助学生深入理解高等数学的概念和原理,并培养学生的数学思维和解题能力。

目录1.数列与极限2.函数与连续3.导数与微分4.定积分与定积分应用5.常微分方程6.二重积分与曲线积分7.空间解析几何数列与极限在数学中,数列是将自然数映射到数域的一个函数。

数列的极限是数列中接近某一特定值的值。

数列与极限是高等数学中的重要概念,它们贯穿了高等数学的各个领域。

本章介绍了数列的基本概念和性质,包括数列的定义、极限的定义和性质、极限存在准则等等。

通过学习本章,学生将掌握数列的极限计算方法,并能够应用数列的极限解决实际问题。

函数与连续函数是数学中的一个基本概念,它描述了两个数集之间的对应关系。

连续是函数在某一点处没有跳跃或间断的特性,连续性是函数中的一个重要概念。

本章介绍了函数的基本概念和性质,包括函数的定义、函数的运算、反函数与复合函数等。

同时,本章还介绍了连续函数的定义和性质,并通过例题讲解了如何判断函数的连续性以及如何应用连续函数解决实际问题。

导数与微分导数是函数在某一点处的变化率,微分是函数在某一点处的近似变化量。

导数与微分是高等数学中的核心概念,它们在数学和物理等领域具有广泛的应用。

本章介绍了导数的定义和性质,包括导数的计算公式、导数的几何意义、高阶导数等。

同时,本章还介绍了微分的定义和性质,包括微分的近似计算、微分中值定理等。

通过学习本章,学生将掌握导数和微分的计算方法,并能够应用导数和微分解决实际问题。

定积分与定积分应用定积分是计算曲线下面积的数学工具,定积分应用是将定积分应用于实际问题的过程。

《信号与系统》第十章课件(英文版)

《信号与系统》第十章课件(英文版)

9The z-transform reduces to the Fourier transform for values of z Unit circle on the unit circle.
Im z=ejω
z-plane
ω
1
Re
5
Sichuan University <Signals and Systems> Ch 10 The z-Transform
Example 10.3 Consider a signal that is the sum of two real
exponentials: x[n] = 7⎜⎛ 1 ⎟⎞ n u[n] − 6⎜⎛ 1 ⎟⎞ n u[n].
⎝3⎠
⎝2⎠
The z-transform is then
∑ ∑ X ( z) = 7 +∞ ⎜⎛ 1 ⎟⎞n u[n]z −n − 6 +∞ ⎜⎛ 1 ⎟⎞ n u[n]z −n
z z-transform expand the application in which Fourier analysis can be used.
2
Sichuan University <Signals and Systems> Ch 10 The z-Transform
10.1 The z-Transform
Transform 2. The Inverse z-Transform 3. Geometric Evaluation of the Fourier Transform from the Pole-
Zero Plot 4. Properties of the z-Transform and some Common z-Transform

北京邮电大学国际学院高等数学(下)幻灯片讲义(无穷级数)Le.

北京邮电大学国际学院高等数学(下)幻灯片讲义(无穷级数)Le.

1(x 2

2) +
1(x 4

2)2
=
3−
3x 2
+
x2 4
#
8
Convergence of Power Series
Abel’s Theorem (1)
(2)

∑ Consider the series an xn. n=0
If it converges at x0 , x0 ≠ 0 , then it must converge
but converges for| x − x0 |< R. The series may or may not converge at either of the endpointsx = x0 − Randx = x0 + R. 2. The series converges for every x(R = ∞) . 3. The series converges at x = x0 and diverges elsewhere (R = 0).
n=1
13
Finding the Interval of Convergence Using the Ratio Test
∑ Solution Apply the Ratio Test to the series | un | , where un
is the nth term of the series in question.
divergence points is called the divergence domain of the series.
1
2
Series of Functions
Definition (Sum function and Convergence)

高数Lecture_2

高数Lecture_2

Geometric Series
The sum of the first n terms of this geometric progression is expressed as
qn −1 a( )(q ≠ 1) q −1
Where a is the first term of a geometric progression, and q is the geometric ratio
Mathematics for Economics and Business
Lecture 2: Mathematics of Finance Ⅱ
Terms
Simple interest Deposit Compound interest Principal Future value Geometric progression Geometric ratio Sinking fund Mortgage payments Outstanding debt Instalment 单利 存款 复利 现值(本金) ( 终值 等比数列 公比 偿债基金(零存整取) 分期付款 有待偿还的债务 分期付款
r n S = P(1+ ) 100
where the future value, or the final sum, is denoted by S, the principal, or the original sum of money, is denoted by P, and the interest rate is denoted by r
Lecture Goals
After completing this lecture, you should be able to: Calculate compound interest Apply geometric series to calculate the total investment and instalments

高数英文课程

高数英文课程
dy dx
1 variable t x ( x ) ; hence we obtain
is also a composite function of x with intermediate
d y
d dy d dy dt 2 dx dx dx dt dx dx & d y( t ) 1 &t ) x ( t ) & dt x ( & y( & & & & x( t ) & t ) x( t ) y( t ) 1 & 2 & [ x ( t )] x( t ) & & & & & & xy xy 3 & x

x x(t ) y y(t )
(1) If the functions x x(t ) and y y(t ) are both derivable with respect to t in ( , ) and x( t ) 0, then &
dy dx & y & x ;
y y( t )
is called the function defined by the parametric equations.
For example, if the frictional damping of air is omitted, the locus of motion of a projectile may be represented by a parametric equation:
12
2
Finish.

北邮高等数学英文课件Lecture 12-2

北邮高等数学英文课件Lecture 12-2

then, one of the normal vector of this surface is ( z x , z y ,1). Notice that γ is the angle between this vector and the positive direction of z – axis, 1 then cos . So, 2 2 zx z y 1 1 2 S d z x z2 y 1d |cos | ( xy ) ( xy )
(S)

2 f ( x ( y , z ), y , z )dS f ( x , y , z ) x 2 y x z 1dydz . ( )
Integrating Over a Surface
Example Integrate f ( x , y , z ) xyz over the surface of the cube cut from the first octant by the planes x 1, y 1 and z 1. Solution We integrate xyz over each of the
Similarly, if the surface can be expressed as
y f ( x , z ), ( x , z ) ( xz ) R 2 , or x f ( y , z ), ( y , z ) ( yz ) R 2 ,
we have
S
( )
y y( x , z ), ( x , z ) ( xz ) R 2 ,
then the surface integral of first type of f on (S) can be reduce to double integral

(高等数学英文课件)Some exercises of CHAPTER 2

(高等数学英文课件)Some exercises of CHAPTER 2
d. no
目录 上页 下页 返回 结束
P159 40.
Analysis
f0limf0hf0...
h 0
h
f 0 02 f 0 0
f0 lim f0 h f0 lim fh
h 0
h
h 0 h
h2 f h h 2
h
h
h
目录 上页 下页 返回 结束
P159 40.
Analysis
f0limf0hf0
3. Horizontal Asymptotes
alxi m fxx,blxi m fxax
yaxb
目录 上页 下页 返回 结束
P123
60. Asymptotes
f
x
x3 x2 1 x2 1
1. Horizontal Asymptotes
limf x ...
x
2. Vertical Asymptotes
rx2000011x
1. 销量为100台的边际收益.
rx20000x2 r100 2
2. 用收益函数的导数来估计当销量从每周100台增加 到每周101台时所产生的额外的收益.
r r100
3. 计算极限并解释经济意义.
lim rxlim 2 0 0 0 0x20
x
x
目录 上页 下页 返回 结束
x
2. Vertical Asymptotes
limf x x0
x?
3. Horizontal Asymptotes
a
lim x
f
x
x
lxim
2sinx x
1 x2
0
目录 上页 下页 返回 结束
P132 6.

高等数学电子课件第十章 10.1精品文档

高等数学电子课件第十章 10.1精品文档

lim n
1q

即级数发散;
(3) 若q=-1,则级数成为: a a a a ( 1 )n 1a
由于
sn
0,

a
,
当n为偶数 当n为奇数
所以
lim
n
sn
不存在,故级数发散.
第十章 无穷级数
第一节 数项级数的概念与性质
(3) 若q=1,则级数成为:
a a a a
第十章 无穷级数
第一节 数项级数的概念与性质
例如:下列各式均为常数项级数
1 1 1
1
2n
n1
24
2n


n12 n ;
n1

( 1 )n 1 1 1 1 1 ( 1 )n 1 ;
n 1

cosncos1cos2 cosn .
第一节 数项级数的概念与性质
二、数项级数的基本性质
性质1. 若级数

un
n1

收敛于 S 即, S u n , 则各项
n1
乘以常数
k
所得级数


k un
也收敛 ,其和为 kS .
n1
结论: 级数的每一项同乘一个不为零的常数, 敛散性不变.
第十章 无穷级数
第一节 数项级数的概念与性质
由于 sn
na
所以
lim
n
sn
不存在,
所以级数也发散.
综上
aqnBiblioteka q1时,收敛其和a为 1-q
n0 当q 1时,发散
第十章 无穷级数
1
例如:
2n
n0

高等数学英文版课件PPT 05 Integrals

高等数学英文版课件PPT 05 Integrals

n
n
Ai f (xi)xi
i 1
i 1
机动 目录 上页 下页 返回 结束
Figure 3
y y=f(x)
S1 S2
Si
Sn
oa
Xi-1
Xi
x b
approximated by
y y=f(x)
Figure 4
R1 R2
o a x1 x2
Ri
Rn
Xi-1
Xi
xi
xn b
x
机动 目录 上页 下页 返回 结束
necessary to give this type of limit a special name and notation.
1. Definition of a Definite Integral
If f is a function defined on a closed interval [a, b], let
|| P || max{x1,, xn}
Step 2: Approximation—By the partition above, the area of S can be approximated by the sum of areas of n rectangles .
Using the partition P one can divide the region S into n strips
f (x)dx = the area under the graph of f from a to b.
a
In general, a definite integral can be interpreted as a
difference of areas:

《高等数学课件-全英文版(英语思维篇)》

《高等数学课件-全英文版(英语思维篇)》
Fundamental Theorem of Calculus
Discover the Fundamental Theorem of Calculus and its significance in integration.
Riemann Sums
Explore Riemann sums as a method for approximating definite integrals.
Functions and Graphs
Types of Functions
Discover the different types of functions and their graphical representations.
Graph Plotting
Learn how to plot and analyze functions using mathematical tools and software.
Differentiation
1
Derivative Definition
Learn the definition and basic rules
Chain Rule
2
of differentiation.
Discover how to differentiate
composite functions using the
Work and Energy
Explore how integration is used to calculate work and energy in various scenarios.
Differential Equations
1
Introduction to Differential

英语讲解高等数学教材

英语讲解高等数学教材

英语讲解高等数学教材Mathematics is often regarded as a challenging subject for many students, especially at the advanced level. To assist students in grasping the concepts more effectively, providing English explanations alongside the high-level mathematics textbook can greatly enhance understanding. This article aims to highlight the benefits of incorporating English explanations into the teaching of high-level mathematics.1. Enhancing ComprehensionEnglish explanations in high-level mathematics textbooks can help students comprehend complex concepts more easily. By presenting the material in a different language, students are encouraged to think and analyze the content from a fresh perspective. Additionally, English explanations can provide alternative explanations and examples, ensuring that students have a well-rounded understanding of the topic.2. Improving Language ProficiencyIntegrating English explanations into high-level mathematics textbooks also helps students improve their English language proficiency. As they engage with mathematical concepts in English, students are exposed to academic vocabulary and sentence structures commonly used in technical subjects. This exposure enhances their language skills and prepares them for future academic pursuits.3. Bridging the Language GapHigh-level mathematics often involves sophisticated vocabulary and specialized terminology. Some students may find it challenging to understand these terms solely in their native language. By providing English explanations, the language gap is bridged, enabling students to grasp the meaning of technical terms more accurately. This ensures that no language barrier impedes students' understanding and learning progress.4. Facilitating International StudyWith the increasing globalization of education, many students aspire to pursue higher studies abroad. English explanations in high-level mathematics textbooks prepare students for this international exposure. By familiarizing themselves with technical vocabulary in English, students gain confidence in their ability to study mathematics in an English-speaking environment.5. Encouraging Deeper ReflectionEnglish explanations encourage students to think critically and deeply about mathematical theories and concepts. When students are exposed to different explanations and perspectives in English, they are encouraged to engage in analytical thinking, compare different approaches, and develop a more comprehensive understanding of the topic at hand.In conclusion, incorporating English explanations into high-level mathematics textbooks brings numerous benefits to both comprehension and language proficiency. By bridging the language gap, students are able to fully grasp complex concepts, regardless of their language background. Moreover, this integration prepares students for future academic pursuits and international study. Ultimately, English explanations enhance students'understanding and enjoyment of high-level mathematics, paving the way for success in this challenging subject.。

北邮高级数理逻辑课件

北邮高级数理逻辑课件

形式系统由{∑, TERM, FORMULA, AXIOM, RULE}等5个部分构成,其中 称为符号表,TERM 为项集;FORUMULA 为公式集;AIXIOM 为公理集;RULE 为推理规则集。

:1、 符号表∑为非空集合,其元素称为符号。

2、 设∑*为∑上全体字的组合构成的集合。

项集TERM 为∑*的子集,其元素称为项;项集TERM 有子集V ARIABLE 称为变量集合,其元素称为变量。

F(X) a, X,3、 设∑*为∑上全体字的组合构成的集合。

公式结FORMULA 为∑*的子集,其元素称为公式;公式集有子集ATOM ,其元素称为原子公式。

A(f(a,x1,y)), A →B4、 公理集AXIOM 是公式集FROMULA 的子集,其元素称为公理。

5、 推理规则集RULE 是公式集FORMULA 上的n 元关系集合,即RULE=)}2(|{n FORMULA r n n n r ⊆∧≥∧∃是正整数,其元素称为形式系统的推理规则。

其中公式集和项集之间没有交叉,即TERM ∩FORMULA =φ,公式和项统称为表达式。

由定义可知,符号表∑、项集TERM 、公式集FORMULA 是形式系统的语言部分。

而公理集AXIOM 、推理规则集RULE 为推理部分形式系统特性1、 符号表∑为非空、可数集合(有穷、无穷都可以)。

2、 项集TERM 、公式集FORMULA 、公理集AXIOM 和推理规则集RULE 是递归集合,即必须存在一个算法能够判定给定符号串是否属于集合(可判定的)。

3、 形式系统中的项是用来描述研究的对象,或者称为客观世界的。

而公式是用来描述这些研究对象的性质的。

这个语言被称为对象语言。

定义公式和项产生方法的规则称为词法。

公理:I))((A B A →→ II))()(())(((C A B A C B A →→→→→→ III ))())()(((A B B A →→⌝→⌝证明:A →A(1)A →(A →A)((A →(B →C))→((A →B)→(A →C))((A →(B →A))→((A →B)→(A →A))((A →((A →A)→A))→((A →(A →A))→(A →A))A →((A →A)→A))(A →(A →A))→(A →A)(A →(A →A))A →ABB A A →, 已知:R 是一个有关公式的性质证明:R 对于所有公式有效I. 对于)(FSPC Atom p ∈,则)(P RII. 假设公式A 和B 都具有RIII. )(FSPC Atom A ∈∀,且)(A R ,则)(A R ⌝IV. B A ,∀是公式,如果)(A R 且)(B R ,则)(B A R →根据:形式系统的联结词只有两个→⌝,,因为在命题逻辑的语义上,其他联结词可以有这两个联结词表示。

section11北邮双语教学课件共69页

section11北邮双语教学课件共69页
2
The Concepts of Sets
Definition A set [集合] is a collection of all objects which are sharing some properties. Each of the objects belonging to a set is called an element [元素] of the set.
Example Set A {1, 2}, B { x | x2 3x 2 0} AB
Hale Waihona Puke Definition If A B and A B , then A is called a proper subset
[真子集] of B,
denoted by
A B
or
A B.
Example: the integer set [整数集] is denoted by Z. Z { x | x is an integer} {0, 1, 2, }
Example: the rational number [有理数集] is denoted by Q. Q { x | x is a rational number}
Remark (Notations) Sets are always denoted as capital letters, such as A, B, … . The elements of a set usually are denoted as small letters, such as a, b, … . The relation a A means that a is an element of set A, read as “ a belongs toA ”. The relation a A or a A means that a does not belong to A .

北京邮电大学高等数学教材英文版

北京邮电大学高等数学教材英文版

北京邮电大学高等数学教材英文版Beijing University of Posts and Telecommunications Advanced Mathematics Textbook (English Version)IntroductionThe Beijing University of Posts and Telecommunications (BUPT) is renowned for its comprehensive and cutting-edge curriculum. As part of its commitment to providing a world-class education, BUPT offers an English version of its advanced mathematics textbook. This article will delve into the content, structure, and importance of the BUPT Advanced Mathematics Textbook (English Version).Content OverviewThe BUPT Advanced Mathematics Textbook covers a wide range of topics, including calculus, linear algebra, differential equations, and probability theory. Each chapter provides a comprehensive introduction to the topic, followed by detailed explanations and examples that illustrate the concepts. The textbook also includes exercises and practice problems to reinforce understanding and improve problem-solving skills.Structure of the TextbookThe textbook consists of several sections, each specifically designed to enhance comprehension and facilitate learning. Here is an overview of the main sections:1. Introduction: This section provides a brief overview of the topic, its relevance, and its applications in various fields.2. Theory and Concepts: In this section, the fundamental theory and concepts related to the topic are presented in a clear and concise manner. Definitions, theorems, and formulas are introduced, followed by in-depth explanations.3. Examples and Illustrations: To further enhance understanding, the textbook includes numerous examples and illustrations that demonstrate the application of the theory and concepts explained in the previous section. These examples provide real-life scenarios where the mathematical principles can be applied.4. Exercises and Problem Solving: A vital component of the textbook, this section offers a wide range of exercises and problems to test the reader's comprehension and analytical skills. Solutions and step-by-step explanations are provided to assist students in the learning process.Importance of the TextbookThe English version of the BUPT Advanced Mathematics Textbook serves a crucial role in promoting international education and collaborations. It enables international students to access and comprehend BUPT's advanced mathematics curriculum, fostering cross-cultural exchange and learning. Moreover, the textbook contributes to the overall improvement of mathematics education by providing a comprehensive resource for both students and instructors.ConclusionThe BUPT Advanced Mathematics Textbook (English Version) plays a significant role in Beijing University of Posts and Telecommunications'commitment to academic excellence and internationalization. With its comprehensive content, well-structured format, and emphasis on application and problem-solving, the textbook equips students with the necessary knowledge and skills to excel in advanced mathematics. It serves as a valuable resource for both domestic and international students, further reinforcing BUPT's reputation as a leading institution in mathematics education.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
Finding Local Extreme Values
Example Find the local extreme values of
f ( x , y ) xy x 2 y 2 2 x 2 y 4.
Solution The function is defined and differentiable for all x and y and
3. f ( P0 ) is not an extreme lue of the function f if AC B 2 0; 4. Can not be determined if AC B 2 0.
8
Note
2 The expression AC B 2 or f xx f yy f xy is called the discriminant or
order partial derivatives in a neighbourhood of the point P0 ( x0 , y0 ), and P0 is a stationary point of the function f.
A f xx ( P0 ),
Let
B f xy ( P0 ), C f yy ( P0 ).
its domain has no boundary points. The function therefore has extreme
values only at the points where fx and fy are simultaneously zero. These leads to
Example Find the local extreme values of
f ( x , y ) xy x 2 y 2 2 x 2 y 4.
Solution (continued) To see if it does so, we calculate f xx 2, The discriminant of f at (-2,-2) is
5
Examples for Saddle Point
z z
y
x x
y
Function point (0,0).
xy( x 2 y 2 ) z at the 2 2 x y
Function
point (0,0).
z y 2 y 4 x 2 at the
6
Finding Local Extreme Values
Theorem Suppose that both partial derivatives of the function f ( x , y )
exist at the point ( x0 , y0 ) , and ( x0 , y0 ) is an extreme point of the function f. Then
Section 10.2
Extreme Value Problems of Multivariable Functions
1
Unrestricted Extreme Values
Definition Suppose the that the function f ( x , y ) is defined in U ( x0 , y0 ).
f xx 0, giving rise to a local maximum,and upwards if f xx 0, giving
rise to a local minimum. On the other hand, if the discriminant is negative at P0 ( x0 , y0 ), then the surface curves up in some directions and down in others, so we have a saddle point.
1. Interior points where f x f y 0.
2. Interior points where one or both of f x and f y do not exist. Definition An interior point of the domain of a function f ( x , y ) where both fx and fy are zero or where one or both fx and fy do not
exist everywhere. where Therefore, local extreme values can occur only
fx 2x 0
and
f y 2 y 0.
z
The only possibility is the origin, where the value of f is zero. Since f is never
f x y 2 x 2 0, f y x 2 y 2 0,
or
x y 2.
Therefore, the point (-2,-2) is the only point f may take on an extreme value.
10
Finding Local Extreme Values
For example, the function
z x 2 y 2 attains a minimum at the point
(0,0) and z 1 x 2 y 2 attains a maximum at the point (0,0).
The Necessary Condition for An Extreme Value
Example Find the local extreme values of f ( x , y ) x 2 y 2 .
Solution The domain of f is the entire plane ( so there are no
boundary points ) and the partial derivatives f x 2 x and f y 2 y
Hessian of f. It is sometimes easier to remember it in determinant form,
f xx f yy f
2 xy
f xx f xy
f xy f yy
.
The last theorem says that if the discriminant is positive at the point P0 , then the surface curves the same way in all directions: downwards if
exist is a critical point of f.
4
Saddle Point
Thus, the only points where a function f ( x , y ) can assume extreme values are critical points and boundary points. As with differentiable functions of a single variable, not every critical point gives rise to a local extremum. A differentiable function of a single variable might have a point of inflection. A differentiable function of two variables might have a saddle point.
Then
1. f ( P0 ) is a minimum value of the function f if A 0 and AC B 2 0; 2. f ( P0 ) is a maximum value of the function f if A 0 and AC B 2 0;
2 f xx f yy f xy ( 2)( 2) (1)2 4 1 3.
f yy 2,
f xy 1.
The combination
f xy 0 and
negative, we see that the origin gives a
local minimum.
x
y
7
Sufficient Condition for Extreme Values
Theorem Suppose that function z f ( x , y ) has continuous second
Definition
A differentiable function f ( x , y ) has a saddle point at a
f ( x , y ) f (a , b ) and domain points (x,y)
stationary point (a,b) if in every open disk centered at (a,b) there are domain points (x,y) where where f ( x , y ) f (a , b ). The corresponding point (a,b,f(a,b)) on the surface z f ( x , y ) is called a saddle point of the surface.
3
f ( x , y ) x 2 y 2 , the point (0,0) is a stationary
相关文档
最新文档