正余弦定理知识点

合集下载

正余弦定理知识点及题型归纳

正余弦定理知识点及题型归纳

正余弦定理是三角学中的重要知识点,用于解决与三角形相关的问题。

下面是对正余弦定理的知识点及题型归纳:一、正弦定理1. 定义:在任意三角形ABC中,设角A、B、C所对应的边分别为a、b、c,那么有sinA/a = sinB/b = sinC/c。

2. 性质:-等式两边同时乘以任意非零常数,等式仍然成立;-等式两边同时除以相同的角,等式仍然成立;-等式两边同时取反函数,等式仍然成立。

3. 应用:-已知三个角的度数,求边长;-已知两个边的长度,求第三个边的长度;-已知一个角和一条边的长度,求另外两个角的度数;-已知一个角和两条边的长度,求第三个角的度数。

二、余弦定理1. 定义:在任意三角形ABC中,设角A、B、C所对应的边分别为a、b、c,那么有cosA = (b ²+ c²- a²) / (2bc)。

2. 性质:-等式两边同时乘以任意非零常数,等式仍然成立;-等式两边同时除以相同的角,等式仍然成立;-等式两边同时取反函数,等式仍然成立。

3. 应用:-已知三个角的度数,求边长;-已知两个边的长度,求第三个边的长度;-已知一个角和一条边的长度,求另外两个角的度数;-已知一个角和两条边的长度,求第三个角的度数。

三、题型归纳1. 已知三个角的度数,求边长:-根据正弦定理或余弦定理,将已知的角度代入公式中,求解边长;-如果已知的是弧度制的角度,需要将其转换为角度制。

2. 已知两个边的长度,求第三个边的长度:-根据正弦定理或余弦定理,将已知的两个边的长度代入公式中,求解第三个边的长度;-如果已知的是弧度制的角度,需要将其转换为角度制。

3. 已知一个角和一条边的长度,求另外两个角的度数:-根据正弦定理或余弦定理,将已知的角度和边的长度代入公式中,求解另外两个角的度数;-如果已知的是弧度制的角度,需要将其转换为角度制。

4. 已知一个角和两条边的长度,求第三个角的度数:-根据正弦定理或余弦定理,将已知的角度和两条边的长度代入公式中,求解第三个角的度数;-如果已知的是弧度制的角度,需要将其转换为角度制。

高中数学知识点总结(第四章 三角函数、解三角形 第七节 正弦定理和余弦定理)

高中数学知识点总结(第四章 三角函数、解三角形 第七节 正弦定理和余弦定理)

第七节 正弦定理和余弦定理一、基础知识 1.正弦定理a sin A =b sin B =c sin C=2R (R 为△ABC 外接圆的半径).正弦定理的常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R; (3)a ∶b ∶c =sin A ∶sin B ∶sin C ; (4)a +b +c sin A +sin B +sin C =a sin A. 2.余弦定理a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C . 3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高);(2)S △ABC =12ab sin C =12bc sin A =12ac sin B ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).二、常用结论汇总——规律多一点 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.第一课时 正弦定理和余弦定理(一) 考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形[典例] (1)(2019·江西重点中学联考)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.[解析] (1)由正弦定理可得sin B =b sin A a =2×sin 30°3=13,∵a =3>b =2,∴B <A ,即B为锐角,∴cos B =1-sin 2B =223. (2)∵sin B =12且B ∈(0,π),∴B =π6或B =5π6,又∵C =π6,∴B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =bsin B ,即3sin 2π3=b sinπ6,解得b =1. [答案] (1)223 (2)1考法(二) 余弦定理解三角形[典例] (1)(2019·山西五校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)(2018·泰安二模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b2c -a=sin Asin B +sin C,则角B =________.[解析](1)∵b cos A +a cos B =c 2,∴由余弦定理可得b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac=c 2,整理可得2c 2=2c 3,解得c =1,则△ABC 的周长为a +b +c =2+2+1=5.(2)由正弦定理可得c -b 2c -a =sin A sin B +sin C =ab +c, ∴c 2-b 2=2ac -a 2,∴c 2+a 2-b 2=2ac ,∴cos B =a 2+c 2-b 22ac =22,∵0<B <π,∴B =π4.[答案] (1)D (2)π4[题组训练]1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24B .-24C.34D .-34解析:选B 由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12 B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以t a n A =-1, 因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin Aa =2×222=12, 又0<C <π4,所以C =π6.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.解:(1)由正弦定理可得b 2+c 2=a 2+bc ,由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C 得c =a sin C sin A=3×3+2232×6=1+263.考点二 判定三角形的形状[典例] (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形[解析] (1)法一:因为b cos C +c cos B =a sin A , 由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B =a c ,所以a b =ac,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.[答案] (1)B (2)C[变透练清] 1.变条件若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________.解析:根据正弦定理可得a 2+b 2<c 2,由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角,所以△ABC 是钝角三角形. 答案:钝角三角形 2.变条件若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.解析:因为c -a cos B =(2a -b )cos A , C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B ·cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , 所以cos A (sin B -sin A )=0, 所以cos A =0或sin B =sin A , 所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形. 答案:等腰或直角三角形 3.变条件若本例(2)条件改为“cos A cos B =ba=2”,那么△ABC 的形状为________.解析:因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又因为A ,B ∈(0,π),所以2A =π-2B ,即A +B =π2,所以C =π2,于是△ABC是直角三角形.答案:直角三角形[课时跟踪检测]A 级1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.(2018·重庆六校联考)在△ABC 中,cos B =ac (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形解析:选A 因为cos B =ac ,由余弦定理得a 2+c 2-b 22ac =a c ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3, cos B =23,则b =( )A .14B .6 C.14D.6解析:选D ∵b sin A =3c sin B ⇒ab =3bc ⇒a =3c ⇒c =1,∴b 2=a 2+c 2-2ac cos B =9+1-2×3×1×23=6,∴b = 6.5.(2019·莆田调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C+c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sin B cos C +sin C sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6. 6.(2019·山西大同联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A.5 B .3 C.10D .4解析:选B 由正弦定理可得2(sin B cos A +sin A cos B )=c sin C , ∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =32+22-2×3×2×13=9,∴a =3.7.在△ABC 中,AB =6,A =75°,B =45°,则AC =________. 解析:C =180°-75°-45°=60°, 由正弦定理得AB sin C =ACsin B ,即6sin 60°=AC sin 45°,解得AC =2. 答案:28.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sinB ,则c =________.解析:∵3sin A =2sin B ,∴3a =2b . 又∵a =2,∴b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×⎝⎛⎭⎫-14=16,∴c =4. 答案:49.(2018·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sinB =________,c =________.解析:由正弦定理a sin A =bsin B ,得sin B =b a ·sin A =27×32=217.由余弦定理a 2=b 2+c 2-2bc cos A , 得7=4+c 2-4c ×cos 60°,即c 2-2c -3=0,解得c =3或c =-1(舍去). 答案:2173 10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.解析:因为sin A ,sin B ,sin C 成等差数列,所以2sin B =sin A +sin C .由正弦定理得a +c =2b ,又因为a =2c ,可得b =32c ,所以cos A =b 2+c 2-a 22bc=94c 2+c 2-4c 22×32c 2=-14.答案:-1411.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B . (1)求证:a =2b cos B ; (2)若b =2,c =4,求B 的值.解:(1)证明:因为A =2B ,所以由正弦定理a sin A =b sin B ,得a sin 2B =bsin B ,所以a =2b cos B .(2)由余弦定理,a 2=b 2+c 2-2bc cos A , 因为b =2,c =4,A =2B ,所以16c os 2B =4+16-16cos 2B ,所以c os 2B =34,因为A +B =2B +B <π,所以B <π3,所以cos B =32,所以B =π6.12.(2019·绵阳模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,结合正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 又由余弦定理,得a 2=b 2+c 2-2bc cos A , 所以bc =-2bc cos A ,即cos A =-12.由于A 为△ABC 的内角,所以A =2π3.(2)由已知2a sin A =(2b +c )sin B +(2c +b )sin C ,结合正弦定理,得2sin 2A =(2sin B +sin C )sin B +(2sin C +sin B )sin C , 即sin 2A =sin 2B +sin 2C +sin B sin C =sin 22π3=34.又由sin B +sin C =1,得sin 2B +sin 2C +2sin B sin C =1,所以sin B sin C =14,结合sin B +sin C =1,解得sin B =sin C =12.因为B +C =π-A =π3,所以B =C =π6,所以△ABC 是等腰三角形.B 级1.(2019·郑州质量预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2c os 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D .6解析:选A 由2c os 2A +B2-cos 2C =1,得1+c os(A +B )-(2c os 2C -1)=2-2c os 2C -cos C =1,即2c os 2C +cos C -1=0,解得cos C =12或cos C =-1(舍去).由4sin B =3sin A及正弦定理,得4b =3a ,结合a -b =1,得a =4,b =3.由余弦定理,知c 2=a 2+b 2-2ab cos C =42+32-2×4×3×12=13,所以c =13.2.(2019·长春模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n Cc,若sin(A -B )+sin C =2sin 2B ,则a +b =________. 解析:∵2sin A a =t a n C c =sin C c cos C ,且由正弦定理可得a =2R sin A ,c =2R sin C (R 为△ABC的外接圆的半径),∴cos C =12.∵C ∈(0,π),∴C =π3.∵sin(A -B )+sin C =2sin 2B ,sin C =sin(A +B ),∴2sin A cos B =4sin B cos B .当cos B =0时,B =π2,则A =π6,∵c =3, ∴a =1,b =2,则a +b =3.当cos B ≠0时,sin A =2sin B ,即a =2b .∵cos C =a 2+b 2-c 22ab =12,∴b 2=1,即b =1,∴a =2,则a +b =3.综上,a +b =3.答案:33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b . (1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解:(1)2a cos C -c =2b ⇒2sin A cos C -sin C =2sin B ⇒2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C , ∵sin C ≠0,∴cos A =-12,又A ∈(0,π),∴A =2π3.(2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BDsin A ,∴sin ∠ADB =AB sin A BD =22.又∠ADB ∈(0,π),A =2π3,∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,b =c =2,由余弦定理,得a 2=c 2+b 2-2c ·b ·cos A =(2)2+(2)2-2×2×2c os 2π3=6,∴a = 6.第二课时 正弦定理和余弦定理(二) 考点一 有关三角形面积的计算[典例] (1)(2019·广州调研)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos B =34,则△ABC 的面积等于( )A .37 B.372C .9D.92(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若△ABC 的面积为34(a 2+c 2-b 2),则B =________.[解析] (1)法一:由余弦定理b 2=a 2+c 2-2ac cos B ,代入数据,得a =3,又cos B =34,B ∈(0,π),所以sin B =74,所以S △ABC =12ac sin B =372. 法二:由cos B =34,B ∈(0,π),得sin B =74,由正弦定理b sin B =csin C 及b =7,c =4,可得sin C =1,所以C =π2,所以sin A =cos B =34,所以S △ABC =12bc sin A =372.(2)由余弦定理得cos B =a 2+c 2-b 22ac ,∴a 2+c 2-b 2=2ac cos B . 又∵S =34(a 2+c 2-b 2),∴12ac sin B =34×2ac cos B , ∴t a n B =3,∵B ∈()0,π,∴B =π3.[答案] (1)B (2)π3[变透练清] 1.变条件本例(1)的条件变为:若c =4,sin C =2sin A ,sin B =154,则S △ABC =________. 解析:因为sin C =2sin A ,所以c =2a ,所以a =2,所以S △ABC =12ac sin B =12×2×4×154=15.答案:15 2.变结论本例(2)的条件不变,则C 为钝角时,ca的取值范围是________.解析:∵B =π3且C 为钝角,∴C =2π3-A >π2,∴0<A <π6 .由正弦定理得ca =sin ⎝⎛⎭⎫2π3-A sin A=32cos A +12sin A sin A =12+32·1t a n A.∵0<t a n A <33,∴1t a n A>3, ∴c a >12+32×3=2,即ca >2. 答案:(2,+∞)3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(2b -a )cos C =c cos A . (1)求角C 的大小;(2)若c =3,△ABC 的面积S =433,求△ABC 的周长.解:(1)由已知及正弦定理得(2sin B -sin A )cos C =sin C cos A , 即2sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sin B , ∵B ∈(0,π),∴sin B >0,∴cos C =12,∵C ∈(0,π),∴C =π3.(2)由(1)知,C =π3,故S =12ab sin C =12ab sin π3=433,解得ab =163.由余弦定理可得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab , 又c =3,∴(a +b )2=c 2+3ab =32+3×163=25,得a +b =5.∴△ABC 的周长为a +b +c =5+3=8.[解题技法]1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. 考点二 平面图形中的计算问题[典例] (2018·广东佛山质检)如图,在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB =1. (1)若AC =5,求△ABC 的面积; (2)若∠ADC =π6,CD =4,求sin ∠CAD .[解] (1)在△ABC 中,由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·c os ∠ABC , 即5=1+BC 2+2BC ,解得BC =2,所以△ABC 的面积S △ABC =12AB ·BC ·sin ∠ABC =12×1×2×22=12.(2)设∠CAD =θ,在△ACD 中,由正弦定理得AC sin ∠ADC =CDsin ∠CAD ,即AC sin π6=4sin θ, ① 在△ABC 中,∠BAC =π2-θ,∠BCA =π-3π4-⎝⎛⎭⎫π2-θ=θ-π4, 由正弦定理得AC sin ∠ABC =ABsin ∠BCA ,即AC sin 3π4=1sin ⎝⎛⎭⎫θ-π4,② ①②两式相除,得sin 3π4sin π6=4sin ⎝⎛⎭⎫θ-π4sin θ,即4⎝⎛⎭⎫22sin θ-22cos θ=2sin θ,整理得sin θ=2cos θ. 又因为sin 2θ+c os 2θ=1,所以sin θ=255,即sin ∠CAD =255.[解题技法]与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系.具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.[提醒] 做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.[题组训练]1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________.解析:设AB =a ,∵AB =AD,2AB =3BD ,BC =2BD ,∴AD =a ,BD =2a 3,BC =4a 3. 在△ABD 中,c os ∠ADB =a 2+4a 23-a22a ×2a 3=33,∴sin ∠ADB =63,∴sin ∠BDC =63. 在△BDC 中,BD sin C =BCsin ∠BDC, ∴sin C =BD ·sin ∠BDC BC =66.答案:662.如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列.(1)求sin ∠CED ; (2)求BE 的长. 解:设∠CED =α.因为∠CBE ,∠BEC ,∠BCE 成等差数列, 所以2∠BEC =∠CBE +∠BCE ,又∠CBE +∠BEC +∠BCE =π,所以∠BEC =π3.(1)在△CDE 中,由余弦定理得EC 2=CD 2+DE 2-2CD ·DE ·c os ∠EDC , 即7=CD 2+1+CD ,即CD 2+CD -6=0, 解得CD =2(CD =-3舍去). 在△CDE 中,由正弦定理得EC sin ∠EDC =CDsin α,于是sin α=CD ·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知0<α<π3,由(1)知cos α=1-sin 2α=1-2149=277,又∠AEB =π-∠BEC -α=2π3-α,所以c os ∠AEB =c os ⎝⎛⎭⎫2π3-α=c os 2π3cos α+sin 2π3sin α=-12×277+32×217=714. 在Rt △EAB 中,c os ∠AEB =EA BE =2BE =714,所以BE =47.考点三 三角形中的最值、范围问题[典例] (1)在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,A ≠π2,sin C +sin(B -A )=2sin 2A ,则角A 的取值范围为( )A.⎝⎛⎦⎤0,π6 B.⎝⎛⎦⎤0,π4 C.⎣⎡⎦⎤π6,π4D.⎣⎡⎦⎤π6,π3(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2A +cos 2B =2cos 2C ,则cos C 的最小值为( )A.32B.22C.12D .-12[解析] (1)在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin 2A ,即2sin B cos A =22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理得,b=2a ,所以A 为锐角.又因为sin B =2sin A ∈(0,1],所以sin A ∈⎝⎛⎦⎤0,22,所以A ∈⎝⎛⎦⎤0,π4. (2)因为cos 2A +cos 2B =2cos 2C ,所以1-2sin 2A +1-2sin 2B =2-4sin 2C ,得a 2+b 2=2c 2,cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12,当且仅当a =b 时等号成立,故选C. [答案] (1)B (2)C[解题技法]1.三角形中的最值、范围问题的解题策略解与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角取值范围等求解即可.2.求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解, 已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,b -c <a <b +c ,三角形中大边对大角等.[题组训练]1.在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A = b sin A ,则sin A +sin C 的最大值为( )A.2B.98C .1D.78解析:选B ∵a cos A =b sin A ,由正弦定理可得,sin A cos A =sin B sin A ,∵sin A ≠0,∴cos A =sin B ,又B 为钝角,∴B =A +π2,sin A +sin C =sin A +sin(A +B )=sin A +cos 2A =sin A +1-2sin 2A =-2⎝⎛⎭⎫sin A -142+98,∴sin A +sin C 的最大值为98. 2.(2018·哈尔滨三中二模)在△ABC 中,已知c =2,若sin 2A +sin 2B -sin A sin B =sin 2C ,则a +b 的取值范围为________.解析:∵sin 2A +sin 2B -sin A sin B =sin 2C ,∴a 2+b 2-ab =c 2,∴cos C =a 2+b 2-c 22ab =12,又∵C ∈(0,π),∴C =π3.由正弦定理可得a sin A =b sin B =2sin π3=433,∴a =433sin A ,b =433sin B .又∵B =2π3-A ,∴a +b =433sin A +433sin B =433sin A +433sin ⎝⎛⎭⎫2π3-A =4sin ⎝⎛⎭⎫A +π6.又∵A ∈⎝⎛⎭⎫0,2π3,∴A +π6∈⎝⎛⎭⎫π6,5π6,∴sin ⎝⎛⎭⎫A +π6∈⎝⎛⎦⎤12,1,∴a +b ∈(2,4]. 答案:(2,4]3.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos B b +cos C c =sin A 3sin C .(1)求b 的值;(2)若cos B +3sin B =2,求△ABC 面积的最大值.解:(1)由题意及正、余弦定理得a 2+c 2-b 22abc +a 2+b 2-c 22abc =3a 3c ,整理得2a 22abc =3a3c ,所以b = 3.(2)由题意得cos B +3sin B =2sin ⎝⎛⎭⎫B +π6=2, 所以sin ⎝⎛⎭⎫B +π6=1, 因为B ∈(0,π),所以B +π6=π2,所以B =π3.由余弦定理得b 2=a 2+c 2-2ac cos B , 所以3=a 2+c 2-ac ≥2ac -ac =ac , 即ac ≤3,当且仅当a =c =3时等号成立. 所以△ABC 的面积S △ABC =12ac sin B =34ac ≤334,当且仅当a =c =3时等号成立.故△ABC 面积的最大值为334.考点四 解三角形与三角函数的综合应用考法(一) 正、余弦定理与三角恒等变换[典例] (2018·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 b sin A =ac os ⎝⎛⎭⎫B -π6. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. [解] (1)在△ABC 中,由正弦定理a sin A =b sin B ,可得b sin A =a sin B .又因为b sin A =ac os ⎝⎛⎭⎫B -π6, 所以a sin B =ac os ⎝⎛⎭⎫B -π6, 即sin B =32cos B +12sin B , 所以t a n B = 3.因为B ∈(0,π),所以B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,得b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =ac os ⎝⎛⎭⎫B -π6,可得sin A =37. 因为a <c ,所以cos A =27. 所以sin 2A =2sin A cos A =437,cos 2A =2c os 2A -1=17.所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314. 考法(二) 正、余弦定理与三角函数的性质[典例] (2018·辽宁五校联考)已知函数f (x )=c os 2x +3sin(π-x )c os(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.[解] (1)f (x )=c os 2x -3sin x cos x -12=1+cos 2x 2-32sin 2x -12=-sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z ,又∵x ∈[0,π],∴函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤0,π3和⎣⎡⎦⎤5π6,π. (2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π6, ∴f (A )=-sin ⎝⎛⎭⎫2A -π6=-1, ∵△ABC 为锐角三角形,∴0<A <π2,∴-π6<2A -π6<5π6,∴2A -π6=π2,即A =π3.又∵b sin C =a sin A ,∴bc =a 2=4, ∴S △ABC =12bc sin A = 3.[对点训练]在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,(2a -c )cos B -b cos C =0. (1)求角B 的大小;(2)设函数f (x )=2sin x cos x cos B -32cos 2x ,求函数f (x )的最大值及当f (x )取得最大值时x 的值.解:(1)因为(2a -c )cos B -b cos C =0, 所以2a cos B -c cos B -b cos C =0, 由正弦定理得2sin A cos B -sin C cos B -cos C sin B =0, 即2sin A cos B -sin(C +B )=0,又因为C +B =π-A ,所以sin(C +B )=sin A . 所以sin A (2cos B -1)=0.在△ABC 中,sin A ≠0,所以cos B =12,又因为B ∈(0,π),所以B =π3.(2)因为B =π3,所以f (x )=12sin 2x -32cos 2x =sin ⎝⎛⎭⎫2x -π3, 令2x -π3=2k π+π2(k ∈Z),得x =k π+5π12(k ∈Z),即当x =k π+5π12(k ∈Z)时,f (x )取得最大值1.[课时跟踪检测]A 级1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2A =sin A ,bc =2,则 △ABC 的面积为( )A.12 B.14C .1D .2解析:选A 由cos 2A =sin A ,得1-2sin 2A =sin A ,解得sin A =12(负值舍去),由bc =2,可得△ABC 的面积S =12bc sin A =12×2×12=12.2.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若(2a +c )cos B +b cos C =0,则角B 的大小为( )A.π6 B.π3C.2π3D.5π6解析:选C 由已知条件和正弦定理,得(2sin A +sin C )cos B +sin B cos C =0.化简,得2sin A cos B +sin A =0.因为角A 为三角形的内角,所以sin A ≠0,所以cos B =-12,所以B =2π3. 3.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =3,S △ABC =22,则b 的值为( )A .6B .3C .2D .2或3解析:选D 因为S △ABC =12bc sin A =22,所以bc =6,又因为sin A =223,A ∈⎝⎛⎭⎫0,π2, 所以cos A =13,因为a =3,所以由余弦定理得9=b 2+c 2-2bc cos A =b 2+c 2-4,b 2+c 2=13,可得b =2或b =3. 4.(2018·昆明检测)在△ABC 中,已知AB =2,AC =5,t a n ∠BAC =-3,则BC 边上的高等于( )A .1 B.2 C.3D .2解析:选A 法一:因为t a n ∠BAC =-3,所以sin ∠BAC =310,c os ∠BAC =-110.由余弦定理,得BC 2=AC 2+AB 2-2AC ·ABc os ∠BAC =5+2-2×5×2×⎝⎛⎭⎫-110=9,所以BC =3,所以S △ABC =12AB ·AC sin ∠BAC =12×2×5×310=32,所以BC 边上的高h =2S △ABCBC =2×323=1.法二:在△ABC 中,因为t a n ∠BAC =-3<0,所以∠BAC 为钝角,因此BC 边上的高小于2,结合选项可知选A.5.(2018·重庆九校联考)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,且a sin B =3b cos A ,当b +c =4时,△ABC 面积的最大值为( )A.33B.32C.3D .23解析:选C 由a sin B =3b cos A ,得sin A sin B =3sin B cos A ,∴t a n A =3,∵0<A <π,∴A =π3,故S △ABC =12bc sin A =34bc ≤34⎝⎛⎭⎫b +c 22=3(当且仅当b =c =2时取等号),故选C.6.(2019·安徽名校联盟联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( )A .2+3B .2+2C .3D .3+2解析:选A 由b +2c cos A =0,得b +2c ·b 2+c 2-a 22bc =0,整理得2b 2=a 2-c 2.由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+3c 24ac ≥23ac 4ac =32,当且仅当a =3c 时等号成立,此时角B 取得最大值,将a =3c 代入2b 2=a 2-c 2可得b =c .又因为bc =1,所以b =c =1,a =3,故△ABC 的周长为2+ 3.7.在△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:由余弦定理知72=52+BC 2-2×5×BC ×cos 120°, 即49=25+BC 2+5BC ,解得BC =3(负值舍去). 故S △ABC =12AB ·BC sin B =12×5×3×32=1534.答案:15348.(2019·长春质量检测)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若 12b cos A =sin B ,且a =23,b +c =6,则△ABC 的面积为________.解析:由题意可知cos A 2=sin B b =sin Aa ,因为a =23,所以t a n A =3,因为0<A <π,所以A =π3,由余弦定理得12=b 2+c 2-bc =(b +c )2-3bc ,又因为b +c =6,所以bc =8,从而△ABC 的面积为12bc sin A =12×8×sin π3=2 3.答案:239.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠BAC =π2,点D 在边BC上,AD =1,且BD =2DC ,∠BAD =2∠DAC ,则sin Bsin C=________.解析:由∠BAC =π2及∠BAD =2∠DAC ,可得∠BAD =π3,∠DAC =π6.由BD =2DC ,令DC =x ,则BD =2x .因为AD =1,在△ADC 中,由正弦定理得1sin C =x sin π6,所以sin C =12x,在△ABD 中,sin B =sin π32x =34x ,所以sin B sin C =34x 12x=32.答案:3210.(2018·河南新乡二模)如图所示,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足,若DE =22,则cos A =________.解析:∵AD =DB ,∴∠A =∠ABD ,∠BDC =2∠A .设AD =DB =x , ∴在△BCD 中,BC sin ∠BDC =DB sin C,可得4sin 2A =xsin π3. ①在△AED 中,DE sin A =AD sin ∠AED ,可得22sin A =x1. ② 联立①②可得42sin A cos A =22sin A 32,解得cos A =64.答案:6411.(2019·南宁摸底联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知 c (1+cos B )=b (2-cos C ).(1)求证:2b =a +c ;(2)若B =π3,△ABC 的面积为43,求b .解:(1)证明:∵c (1+cos B )=b (2-cos C ),∴由正弦定理可得sin C +sin C cos B =2sin B -sin B cos C , 即sin C cos B +sin B cos C +sin C =sin(B +C )+sin C =2sin B , ∴sin A +sin C =2sin B ,∴a +c =2b .(2)∵B =π3,∴△ABC 的面积S =12ac sin B =34ac =43,∴ac =16.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac =(a +c )2-3ac . ∵a +c =2b ,∴b 2=4b 2-3×16,解得b =4. 12.在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长; (2)求c os ⎝⎛⎭⎫A -π6的值. 解:(1)因为cos B =45,0<B <π,所以sin B =35.由正弦定理得AC sin B =AB sin C ,所以AB =AC ·sin Csin B =6×2235=5 2.(2)在△ABC 中,因为A +B +C =π,所以A =π-(B +C ), 又因为cos B =45,sin B =35,所以cos A =-c os(B +C )=-c os ⎝⎛⎭⎫B +π4=-cos Bc os π4+sin B sin π4=-45×22+35×22=-210.因为0<A <π,所以sin A =1-c os 2A =7210. 因此,c os ⎝⎛⎭⎫A -π6=cos Ac os π6+sin A sin π6=-210×32+7210×12=72-620. B 级1.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =2A ,则2ba的取值范围是( )A .(2,2)B .(2,6)C .(2,3)D .(6,4)解析:选B ∵B =2A ,∴sin B =sin 2A =2sin A cos A ,∴ba =2cos A .又C =π-3A ,C为锐角,∴0<π-3A <π2⇒π6<A <π3,又B =2A ,B 为锐角,∴0<2A <π2⇒0<A <π4,∴π6<A <π4,22<cosA <32,∴2<b a <3,∴2<2ba< 6. 2.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +bc os 2A =2a ,则角A 的取值范围是________.解析:由已知及正弦定理得sin 2A sin B +sin Bc os 2A =2sin A ,即sin B (sin 2A +c os 2A )=2sin A ,∴sin B =2sin A ,∴b =2a ,由余弦定理得cos A =b 2+c 2-a 22bc =4a 2+c 2-a 24ac =3a 2+c 24ac ≥23ac 4ac =32,当且仅当c =3a 时取等号.∵A 为三角形的内角,且y =cos x 在(0,π)上是减函数,∴0<A ≤π6,则角A 的取值范围是⎝⎛⎦⎤0,π6. 答案:⎝⎛⎦⎤0,π6 3.(2018·昆明质检)如图,在平面四边形ABCD 中,AB ⊥BC ,AB =2,BD =5,∠BCD =2∠ABD ,△ABD 的面积为2.(1)求AD 的长; (2)求△CBD 的面积.解:(1)由已知S △ABD =12AB ·BD ·sin ∠ABD =12×2×5×sin ∠ABD =2,可得sin ∠ABD =255,又∠BCD =2∠ABD ,所以∠ABD ∈⎝⎛⎭⎫0,π2,所以c os ∠ABD =55. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2·AB ·BD ·c os ∠ABD ,可得AD 2=5,所以AD = 5.(2)由AB ⊥BC ,得∠ABD +∠CBD =π2,所以sin ∠CBD =c os ∠ABD =55. 又∠BCD =2∠ABD ,所以sin ∠BCD =2sin ∠ABD ·c os ∠ABD =45,∠BDC =π-∠CBD -∠BCD =π-⎝⎛⎭⎫π2-∠ABD -2∠ABD =π2-∠ABD =∠CBD , 所以△CBD 为等腰三角形,即CB =CD .在△CBD 中,由正弦定理BD sin ∠BCD =CDsin ∠CBD ,得CD =BD ·sin ∠CBDsin ∠BCD=5×5545=54, 所以S △CBD =12CB ·CD ·sin ∠BCD =12×54×54×45=58.。

高中数学知识点总结正弦定理与余弦定理

高中数学知识点总结正弦定理与余弦定理

高中数学知识点总结正弦定理与余弦定理正弦定理与余弦定理是高中数学中的重要知识点,用于求解不规则三角形的边长和角度。

本文将对这两个定理进行详细总结与讲解。

一、正弦定理1.1 定义正弦定理是指在任意三角形中,三条边与其对应的角的正弦值之间的关系。

设三角形的三边分别为a、b、c,对应的角度为A、B、C,则正弦定理的表达式为:a/sinA = b/sinB = c/sinC1.2 推导我们通过利用三角形的面积公式S=1/2 * a * b * sinC,并将其转换为对角线的形式,可以得到正弦定理的推导过程。

1.3 应用正弦定理可以用于求解不规则三角形的边长和角度。

当我们已知三条边或者两条边和夹角时,可以利用正弦定理求解未知的边长或者角度。

二、余弦定理2.1 定义余弦定理是指在任意三角形中,三条边和它们对应的角之间的关系。

设三角形的三边分别为a、b、c,对应的角度为A、B、C,则余弦定理的表达式为:c^2 = a^2 + b^2 - 2ab * cosC2.2 推导我们可以通过利用向量的几何关系,将余弦定理的表达式推导出来。

这个过程较为繁琐,这里就不做详细讲解。

2.3 应用余弦定理可以用于求解不规则三角形的边长和角度。

当我们已知三条边或者两条边和夹角时,可以利用余弦定理求解未知的边长或者角度。

三、正弦定理与余弦定理的比较3.1 适用范围正弦定理适用于任意三角形,而余弦定理只适用于任意三角形,不能用于直角三角形。

3.2 计算难度正弦定理的计算相对简单,只需要记住一个公式,而余弦定理的计算稍复杂,需要使用开方和乘法等运算。

3.3 精度误差由于余弦定理中涉及到平方运算,可能会带来一定的误差,而正弦定理中没有涉及到平方运算,计算结果更加准确。

3.4 应用场景正弦定理在计算不规则三角形的边长和角度时较为常用,尤其适用于已知两边和夹角的情况。

而余弦定理在计算不规则三角形的边长和角度时同样常用,特别适用于已知三边的情况。

1.1 正弦定理和余弦定理

1.1 正弦定理和余弦定理

1.1 正弦定理和余弦定理知识点归纳: 一.正弦定理:R CcB b A a 2sin sin sin ===(R 为△ABC 外接圆的半径) (1)变形公式 :1.化边为角:2sin 2sin 2sin a R A b R B c R C ===,,;2.化角为边:Rc C R b B R a A 2sin ,2sin ,2sin === 3.::sin :sin :sin a b c A B C = 4.三角形的内切圆半径cb a S r ABC++=∆2二.余弦定理:A bc c b a cos 2222-+=;变形:(1)bc a c b A 2cos 222-+=;B ac c a b cos 2222-+=; ac b c a B 2cos 222-+=;C ab b a c cos 2222-+=. abc b a C 2cos 222-+=变形:(2)A C B C B A cos sin sin 2sin sin sin 222-+=B C A C A B cos sin sin 2sin sin sin 222-+= C B A B A C cos sin sin 2sin sin sin 222-+=三.三角形中的边角关系和性质:(1)π=++C B A2222π=++C B A 在Rt △中,222c b a =+,C=A+B=900.(2)-tanC B)+(A tan -cosC, B)+cos(A sinC,=B)+sin(A ==(3)2cos 2sinC B A =+ 2sin 2cos CB A =+ 2c o t 2t a nC B A =+ (4)tanA+tanB+tanC= tanA ·tanB ·tanC(5)b a >⇔B A >⇔B A sin sin >.⇔cosA<cosB (6)21sin 21==C ab S ×底×高Rabc 4=.)(2c b a r ++=(三角形的内切圆半径r ,外接圆半径R )(7)ma+nb=kc ⇔msinA+nsinB=ksinC (8)ma=nb ⇔ msinA=nsinB(9)若A 、B 、C 成等差数列,则B 060=.(10)若三角形中三内角成等差数列,三边成等比数列⇔三角形为正三角形(11)余弦定理是勾股定理的推广:判断C ∠为锐角222c b a >+⇔,C ∠为直角222c b a =+⇔, C ∠为钝角222c b a <+⇔.课堂训练 一、选择题1.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于……………………....( ) A .30° B .30°或150° C .60° D .60°或120°2.已知△ABC 中,AB =6,∠A =30°,∠B =120°,则△ABC 的面积为…………..( ) A .9B .18C .93D .1833.已知△ABC 中,a ∶b ∶c =1∶3∶2,则A ∶B ∶C 等于………………………..( )A .1∶2∶3B .2∶3∶1C .1∶3∶2D .3∶1∶2 4.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k≠0),则k 的取值范围为…..( ) A .(2,+∞) ] B .(-∞,0) C .(-21,0)D .(21,+∞)5. 在△ABC 中,根据下列条件解三角形,其中有一解的是………………………..( ) A .b =7,c =3,C =30° B .b =5,c =42,B =45° C .a =6,b =63,B =60° D .a =20,b =30,A =30° * 6.在△ABC 中,A =60°,b =1,其面积为3,则sin sin sin a b cA B C++++等于….( )A .33B .3392C .338D .239二、填空题7.在△ABC 中,若∠B =30°,AB =23,AC =2,则△ABC 的面积是________. 8.设△ABC 的外接圆半径为R ,且已知AB =4,∠C =45°,则R =________.9.已知△ABC 的面积为23,且b =2,c =3,则∠A =________.10*.若三角形中有一个角为60°,夹这个角的两边的边长分别是8和5,则它的内切圆半径等于________,外接圆半径等于________. 三、解答题11.在△ABC 中,∠C =60°,BC =a ,AC =b ,a +b =16. (1)试写出△ABC 的面积S 与边长a 的函数关系式.(2)当a 等于多少时,S 有最大值?并求出这个最大值.12.在△ABC 中,已知a 2-a =2(b +c ),a +2b =2c -3,若sin C ∶sin A =4∶13,求a ,b ,c .13.在△ABC 中,求证2tan 2tanBA b a b a -=+-.14*.在一个三角形中,若有一个内角不小于120°,求证:最长边与最短边之比不小于3.同步提升 一、选择题:1、在△ABC 中,已知b =4 ,c =2 ,∠A=120°,则a 等于( )A .2B .6C .2 或6D .272、在△ABC 中,已知三边a 、b 、c 满足(a +b +c)(a +b -c)=3ab ,则∠C 等于 ( ) A .15° B .30° C .45° D .60°3、已知在△ABC 中:,sinA: sinB: sinC =3: 5 :7,那么这个三角形的最大角是 ( )A .135°B .90°C .120°D .150°4、在△ABC 中,若c 4-2(a 2+b 2)c 2+a 4+a 2b 2+b 4=0,则C 等于 ( )A .90°B .120°C .60°D .120°或60° 二、填空题:5、已知△ABC 中,A =60°,最大边和最小边是方程x 2-9x +8=0的两个正实数根,那么BC 边长______.6、△ABC 中,a 、b 分别是角A 和角B 所对的边,a =3,b =1,B 为30°,则角A 的值为______.7、在△ABC 中,cos A =135,sin B =53,则cos C 的值为______. 8、在△ABC 中,若sin A sin B =cos 22C ,则△ABC 为______.9、若三角形中有一个角为60°,夹这个角的两边的边长分别是8和5,外接圆半径等于_______. 三、解答题:10、在ABC ∆中,,15,8,2==+=+ac c a B C A 求b 的值。

高中数学必修五-正弦定理与余弦定理

高中数学必修五-正弦定理与余弦定理

正弦定理与余弦定理知识集结知识元正弦定理公式知识讲解1.正弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C 变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin Acos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC 中,已知a ,b 和角A 时,解的情况A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <ba ≥b a >b 解的个数一解两解一解一解由上表可知,当A 为锐角时,a <b sin A ,无解.当A为钝角或直角时,a ≤b ,无解.2、三角形常用面积公式1.S =a •h a (h a 表示边a 上的高);2.S =ab sin C =ac sin B =bc sin A .3.S =r (a +b +c )(r 为内切圆半径).【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识(1)测距离问题:测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决.解题关键在于明确:①测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决;②测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题.(2)测量高度问题:解题思路:①测量底部不可到达的建筑物的高度问题,由于底部不可到达,因此不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.②对于顶部不可到达的建筑物高度的测量问题,我们可选择另一建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、俯角等构成三角形,在此三角形中利用正弦定理或余弦定理求解即可.点拨:在测量高度时,要理解仰角、俯角的概念.仰角和俯角都是在同一铅锤面内,视线与水平线的夹角.当视线在水平线之上时,成为仰角;当视线在水平线之下时,称为俯角.例题精讲正弦定理公式例1.已知△ABC中,角A,B,C所对的边分别是a,b,c.若A=45°,B=30°,a=,则b=()A.B.1C.2D.例2.在△ABC中,角A,B,C的对边分别为a,b,c,若,则B=()A.B.C.D.或例3.在△ABC中,已知三个内角为A,B,C满足sin A:sin B:sin C=3:5:7,则C=()A.90°B.120°C.135°D.150°利用正弦定理解三角形知识讲解【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识例题精讲利用正弦定理解三角形例1.在△ABC中,a,b,c是内角A,B,C所对的边.若a>b,则下列结论不一定成立的()A.A>B B.sin A>sin BC.cos A<cos B D.sin2A>sin2B例2.在△ABC中,角A,B,C的对边分别是a,b,c,且,则角A的大小为()A.B.C.D.例3.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,若sin B =b sin A ,则a =()A.B .C .1D .三角形面积公式的简单应用知识讲解1.余弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R 是△ABC 外接圆半径)a 2=b 2+c 2﹣2bc cos A ,b 2=a 2+c 2﹣2ac cos B ,c 2=a 2+b 2﹣2ab cos C变形形式①a =2R sin A ,b =2R sin B ,c =2R sin C ;②sin A =,sin B =,sin C =;③a :b :c =sin A :sin B :sin C ;④a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin A cos A =,cos B =,cos C =解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC 中,已知a ,b 和角A 时,解的情况A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <ba≥ba >b 解的个数一解两解一解一解由上表可知,当A 为锐角时,a <b sin A ,无解.当A 为钝角或直角时,a ≤b ,无解.例题精讲三角形面积公式的简单应用例1.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,且(a +b )2=c 2+ab ,B =30°,a =4,则△ABC 的面积为()A .4B .3C .4D .6例2.设△ABC 的三个内角A ,B ,C 成等差数列,其外接圆半径为2,且有,则三角形的面积为()A .B .C .或D .或例3.在△ABC中角ABC的对边分别为a、b、c,cos C=,且a cos B+b cos A=2,则△ABC面积的最大值为()A.B.C.D.利用余弦定理解三角形当堂练习填空题练习1.如图,O在△ABC的内部,且++3=,则△ABC的面积与△AOC的面积的比值为_____.练习2.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知c2-8=(a-b)2,a=2c sin A,则△ABC的面积为____.练习3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,则的最大值是____.解答题练习1.'在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;的最大值.(2)若D为AC的中点,且BD=1,求S△ABC'练习2.'在△ABC中,角A、B、C的对边分别是a、b、c,若(a+c)sin B-b sin C=b cos A.(1)求角A;(2)若△ABC的面积为4,a=6,求△ABC的周长.'练习3.'△ABC内角A,B,C所对的边分别为a,b,c.若。

正弦定理和余弦定理知识点讲解+例题讲解(含解析)

正弦定理和余弦定理知识点讲解+例题讲解(含解析)

导数的概念及运算一、知识梳理1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2.S △ABC =2ab sin C =2bc sin A =2ac sin B =4R =2(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .3.在△ABC 中,已知a ,b 和A 时,解的情况如下:4.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C2.5.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 3.在△ABC 中,两边之和大于第三边,两边之差小于第三边, A >B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B .二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)三角形中三边之比等于相应的三个内角之比.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( )(4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形;当b 2+c 2-a 2=0时,△ABC 为直角三角形;当b 2+c 2-a 2<0时,△ABC 为钝角三角形.( ) 解析 (1)三角形中三边之比等于相应的三个内角的正弦值之比. (3)已知三角时,不可求三边.(4)当b 2+c 2-a 2>0时,三角形ABC 不一定为锐角三角形. 答案 (1)× (2)√ (3)× (4)×2.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC =( ) A.π6B.π3C.2π3D.5π6解析 在△ABC 中,设AB =c =5,AC =b =3,BC =a =7,由余弦定理得cos ∠BAC =b 2+c 2-a 22bc =9+25-4930=-12,由A ∈(0,π),得A =2π3,即∠BAC =23π. 答案 C3.在△ABC 中,a cos A =b cos B ,则这个三角形的形状为________. 解析 由正弦定理,得sin A cos A =sin B cos B , 即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B , 即A =B 或A +B =π2,所以这个三角形为等腰三角形或直角三角形. 答案 等腰三角形或直角三角形4.(2018·烟台质检)已知△ABC 中,A =π6,B =π4,a =1,则b 等于( ) A.2B.1C. 3D.2解析 由正弦定理a sin A =b sin B ,得1sin π6=bsin π4,∴112=b22,∴b = 2.答案 D5.(2018·全国Ⅱ卷)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( ) A.4 2B.30C.29D.25解析 由题意得cos C =2cos 2 C 2-1=2×⎝ ⎛⎭⎪⎫552-1=-35.在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ×BC ×cos C =52+12-2×5×1×⎝ ⎛⎭⎪⎫-35=32,所以AB =4 2.答案 A6.(2019·荆州一模)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =22,cos A =34,sin B =2sin C ,则△ABC 的面积是________. 解析 由sin B =2sin C ,cos A =34,A 为△ABC 一内角, 可得b =2c ,sin A =1-cos 2A =74, ∴由a 2=b 2+c 2-2bc cos A , 可得8=4c 2+c 2-3c 2, 解得c =2(舍负),则b =4.∴S △ABC =12bc sin A =12×2×4×74=7. 答案 7考点一 利用正、余弦定理解三角形【例1】 (1)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.(2)(2019·枣庄二模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若 (a +b )(sin A -sin B )=(c -b )sin C ,则A =( ) A.π6 B.π3 C.5π6 D.2π3(3)(2018·全国Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2B.π3C.π4D.π6解析 (1)由正弦定理,得sin B =b sin C c =6×323=22, 结合b <c 得B =45°,则A =180°-B -C =75°. (2)∵(a +b )(sin A -sin B )=(c -b )sin C ,∴由正弦定理得(a +b )(a -b )=c (c -b ),即b 2+c 2-a 2=bc . 所以cos A =b 2+c 2-a 22bc =12,又A ∈(0,π),所以A =π3.(3)因为a 2+b 2-c 2=2ab cos C ,且S △ABC =a 2+b 2-c24,所以S △ABC =2ab cos C 4=12ab sin C ,所以tan C =1.又C ∈(0,π),故C =π4. 答案 (1)75° (2)B (3)C【训练1】 (1)(2017·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( ) A.π12B.π6C.π4D.π3(2)(2019·北京海淀区二模)在△ABC 中,A ,B ,C 的对边分别为a ,b ,c .若2cos 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D.6(3)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A.1个 B.2个 C.0个 D.无法确定解析 (1)由题意得sin(A +C )+sin A (sin C -cos C )=0, ∴sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,则sin C (sin A +cos A )=2sin C sin ⎝ ⎛⎭⎪⎫A +π4=0,因为C ∈(0,π),所以sin C ≠0,所以sin ⎝ ⎛⎭⎪⎫A +π4=0,又因为A ∈(0,π),所以A +π4=π,所以A =3π4.由正弦定理a sin A =c sin C ,得2sin 3π4=2sin C ,则sin C =12,又C ∈(0,π),得C =π6.(2)由2cos 2A +B 2-cos 2C =1,可得2cos 2A +B 2-1-cos 2C =0,则有cos 2C +cos C =0,即2cos 2C +cos C -1=0,解得cos C =12或cos C =-1(舍),由4sin B =3sin A ,得4b =3a ,① 又a -b =1,②联立①,②得a =4,b =3, 所以c 2=a 2+b 2-2ab cos C =16+9-12=13,则c =13.(3)∵b sin A =6×22=3,∴b sin A <a <b . ∴满足条件的三角形有2个. 答案 (1)B (2)A (3)B 考点二 判断三角形的形状【例2】 (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cb <cos A ,则△ABC 为( ) A.钝角三角形 B.直角三角形 C.锐角三角形D.等边三角形(2)设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析(1)由cb<cos A,得sin Csin B<cos A,又B∈(0,π),所以sin B>0,所以sin C<sin B cos A,即sin(A+B)<sin B cos A,所以sin A cos B<0,因为在三角形中sin A>0,所以cos B<0,即B为钝角,所以△ABC为钝角三角形.(2)由正弦定理得sin B cos C+sin C cos B=sin2A,∴sin(B+C)=sin2A,即sin A=sin2A.∵A∈(0,π),∴sin A>0,∴sin A=1,即A=π2,∴△ABC为直角三角形.答案(1)A(2)B【训练2】若将本例(2)中条件变为“c-a cos B=(2a-b)cos A”,判断△ABC的形状.解∵c-a cos B=(2a-b)cos A,C=π-(A+B),∴由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,∴sin A cos B+cos A sin B-sin A cos B=2sin A cos A-sin B cos A,∴cos A(sin B-sin A)=0,∴cos A=0或sin B=sin A,∴A=π2或B=A或B=π-A(舍去),∴△ABC为等腰或直角三角形.考点三 和三角形面积、周长有关的问题 角度1 与三角形面积有关的问题【例3-1】 (2017·全国Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积. 解 (1)由sin A +3cos A =0及cos A ≠0, 得tan A =-3,又0<A <π,所以A =2π3.由余弦定理,得28=4+c 2-4c ·cos 2π3.即c 2+2c -24=0,解得c =-6(舍去),c =4.(2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6. 故△ABD 与△ACD 面积的比值为12AB ·AD sin π612AC ·AD=1.又△ABC 的面积为12×4×2sin ∠BAC =23,所以△ABD 的面积为 3. 角度2 与三角形周长有关的问题【例3-2】 (2018·上海嘉定区模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a sin B =3b cos A .若a =4,则△ABC 周长的最大值为________. 解析 由正弦定理a sin A =bsin B ,可将a sin B =3b cos A 转化为sin A sin B =3sin B cos A . 又在△ABC 中,sin B >0,∴sin A =3cos A , 即tan A = 3. ∵0<A <π,∴A =π3.由余弦定理得a 2=16=b 2+c 2-2bc cos A =(b +c )2-3bc ≥(b +c )2-3⎝⎛⎭⎪⎫b +c 22,则(b+c)2≤64,即b+c≤8(当且仅当b=c=4时等号成立),∴△ABC周长=a+b+c=4+b+c≤12,即最大值为12.答案12【训练3】(2019·潍坊一模)△ABC的内角A,B,C的对边分别为a,b,c,已知(a+2c)cos B+b cos A=0.(1)求B;(2)若b=3,△ABC的周长为3+23,求△ABC的面积.解(1)由已知及正弦定理得(sin A+2sin C)cos B+sin B cos A=0,(sin A cos B+sin B cos A)+2sin C cos B=0,sin(A+B)+2sin C cos B=0,又sin(A+B)=sin C,且C∈(0,π),sin C≠0,∴cos B=-12,∵0<B<π,∴B=23π.(2)由余弦定理,得9=a2+c2-2ac cos B.∴a2+c2+ac=9,则(a+c)2-ac=9.∵a+b+c=3+23,b=3,∴a+c=23,∴ac=3,∴S△ABC =12a a c sin B=12×3×32=334.三、课后练习1.△ABC的内角A,B,C的对边分别为a,b,c,若cos C=223,b cos A+a cosB=2,则△ABC的外接圆面积为()A.4πB.8πC.9πD.36π解析由题意及正弦定理得2R sin B cos A+2R sin A cos B=2R sin(A+B)=2(R为△ABC的外接圆半径).即2R sin C=2.又cos C=223及C∈(0,π),知sin C=13.∴2R=2sin C=6,R=3.故△ABC 外接圆面积S =πR 2=9π. 答案 C2.(2019·武汉模拟)在△ABC 中,C =2π3,AB =3,则△ABC 的周长为( ) A.6sin ⎝ ⎛⎭⎪⎫A +π3+3 B.6sin ⎝ ⎛⎭⎪⎫A +π6+3 C.23sin ⎝ ⎛⎭⎪⎫A +π3+3D.23sin ⎝ ⎛⎭⎪⎫A +π6+3解析 设△ABC 的外接圆半径为R ,则2R =3sin 2π3=23,于是BC =2R sin A =23sin A ,AC =2R sin B =23sin ⎝ ⎛⎭⎪⎫π3-A .于是△ABC 的周长为23⎣⎢⎡⎦⎥⎤sin A +sin ⎝ ⎛⎭⎪⎫π3-A +3=23sin ⎝ ⎛⎭⎪⎫A +π3+3. 答案 C3.(2019·长春一模)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若⎝ ⎛⎭⎪⎫12b -sin C cos A =sin A cos C ,且a =23,则△ABC 面积的最大值为________. 解析 因为⎝ ⎛⎭⎪⎫12b -sin C cos A =sin A cos C , 所以12b cos A -sin C cos A =sin A cosC ,所以12b cos A =sin(A +C ),所以12b cos A =sin B , 所以cos A 2=sin Bb , 又sin B b =sin A a ,a =23, 所以cos A 2=sin A 23,得tan A =3,又A ∈(0,π),则A =π3, 由余弦定理得(23)2=b 2+c 2-2bc ·12=b 2+c 2-bc ≥2bc -bc =bc ,即bc ≤12(当且仅当b =c =23时取等号), 从而△ABC 面积的最大值为12×12×32=3 3. 答案 334.(2018·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos ⎝ ⎛⎭⎪⎫B -π6.(1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值.解 (1)在△ABC 中,由正弦定理a sin A =bsin B , 得b sin A =a sin B , 又由b sin A =a cos ⎝ ⎛⎭⎪⎫B -π6, 得a sin B =a cos ⎝ ⎛⎭⎪⎫B -π6,即sin B =cos ⎝ ⎛⎭⎪⎫B -π6,可得tan B = 3. 又因为B ∈(0,π),可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3, 有b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =a cos ⎝ ⎛⎭⎪⎫B -π6,可得sin A =37. 因为a <c ,故cos A =27. 因此sin 2A =2sin A cos A =437, cos 2A =2cos 2A -1=17.所以,sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314.5.我国南宋著名数学家秦九韶发现了由三角形三边求三角形面积的“三斜公式”,设△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,面积为S ,则“三斜求积”公式为S =14⎣⎢⎡⎦⎥⎤a 2c 2-⎝ ⎛⎭⎪⎫a 2+c 2-b 222.若a 2sin C =4sin A ,(a +c )2=12+b 2,则用“三斜求积”公式求得△ABC 的面积为________. 解析 根据正弦定理及a 2sin C =4sin A ,可得ac =4, 由(a +c )2=12+b 2,可得a 2+c 2-b 2=4, 所以S △ABC =14⎣⎢⎡⎦⎥⎤a 2c 2-⎝ ⎛⎭⎪⎫a 2+c 2-b 222=14×(16-4)= 3. 答案3。

正弦定理、余弦定理知识点

正弦定理、余弦定理知识点

正弦定理、余弦定理1. 三角形常用公式:A +B +C =π;S =21ab sin C =21bc sin A ==21ca sin B ;2.三角形中的边角不等关系:A>B ⇔a>b,a+b>c,a-b<c ;; 3.正弦定理:A asin =Bb sin =Ccsin =2R (外接圆直径);正弦定理的变式:⎪⎩⎪⎨⎧===C R c B R b AR a sin 2sin 2sin 2;a ∶b ∶c =sin A ∶sin B ∶sinC .4.正弦定理应用范围:①已知两角和任一边,求其他两边及一角. ②已知两边和其中一边对角,求另一边的对角.③几何作图时,存在多种情况.如已知a 、b 及A ,求作三角形时,要分类讨论,确定解的个数.已知两边和其中一边的对角解三角形,有如下的情况: (1)A 为锐角a=bsin A bsin A<a<b a b ≥ 一解 两解 一解(2)A 为锐角或钝角 当a>b 时有一解.5.余弦定理 a 2=b 2+c 2-2bccosA .c 2=a 2+b 2-2abcosC .b 2=a 2+c 2-2accosB . 若用三边表示角,余弦定理可以写为、6.余弦定理应用范围:(1)已知三角形的三条边长,可求出三个内角; (2)已知三角形的两边及夹角,可求出第三边.知识点1 运用判断三角形形状例题1在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.【分析】利用正弦定理或余弦定理判断三角形形状,可以将三角形中的边用角表示,也可将角用边来表示.从中找到三角形中的边角关系,判断出三角形的形状. 【答案】解法1:由扩充的正弦定理:代入已知式 2RsinAcosB=2RsinBcosAsinAcosB-cosAsinB=0 , sin(A-B)=0A-B=0 ∴A=B 即△ABC 为等腰三角形解法2:由余弦定理: 22222222bca cb b ac b c a a -+⋅=-+⋅ 22b a = ∴ b a = 即△ABC 为等腰三角形.巩固练习1.在中,若2222sin sin 2cos cos b C c B b B C +=,试判断三角形的形状.2.在ABC ∆中,已知a 2tanB=b 2tanA,试判断这个三角形的形状.3.已知ABC ∆中,有cos 2cos sin cos 2cos sin A C BA B C+=+,判断三角形形状.知识点2 运用正、余弦定理解三角形解三角形问题中正、余弦定理的选择:(1)在下述情况下应首先使用余弦定理:①已知三条边(边边边),求三个角;②已知两边和它们的夹角(边角边),求其它一边和两角;(2)在下述情况下应首先使用正弦定理:①已知两边和一边的对角(边边角),求其它一边和两角;②已知两角和任一边(角角边、角边角),求其它两边和一角. 例题2 在△ABC 中,已知3=a ,2=b ,B=45︒ 求A 、C 及c .【分析】在解斜三角形应用过程中,注意要灵活地选择正弦定和余弦定理,解得其它的边和角【答案】解法1:由正弦定理得:23245sin 3sin sin === b B a A ∵B=45︒<90︒ 即b <a ∴A=60︒或120︒当A=60︒时C=75︒ 22645sin 75sin 2sin sin +===BC b c 当A=120︒时C=15︒ 22645sin 15sin 2sin sin -===B C b c 解法2:设c =x 由余弦定理 B ac c a b cos 2222-+=将已知条件代入,整理:0162=+-x x 解之:226±=x当226+=c 时2)13(231226223)226(22cos 22221=++=+⋅⋅-++=-+=bc a c b A 从而A=60︒ ,C=75︒ 当226-=c 时同理可求得:A=120︒ 巩固练习1.已知在ABC ∆中,2,6,45==︒=∠BC AB A在ABC ∆中,213,2tan tan +=-=c b bb c B A ,求三内角2.在ABC ∆中,已知B C A 2=+,32tan tan +=⋅C A ,求A 、B 、C 的大小,又知顶点C 的对边C 上的高等于34,求三角形各边a 、b 、c 的长.知识点3 解决与三角形在关的证明、计算问题例题3 已知A 、B 、C 为锐角,tanA=1,tanB=2,tanC=3,求A+B+C 的值.【分析】本题是要求角,要求角先要求出这个角的某一个三角函数值,再根据角的范围确定角.本题应先求出A+B 和C 的正切值,再一次运用两角和的正切公式求出A+B+C .【答案】 A B C 、、为锐角 ∴<++<0270°°A B C 又,,由公式可得tan tan A B ==12tan()tan tan tan tan A B A B A B +=+-⋅=+-=-112123[]tan()tan ()A B C A B C ++=++=++-+⋅tan()tan tan()tan A B C A B C 1 =-+--⨯33133() =0所以A+B+C=πsin sin sin sin cos cos cos cos 2222221336ααββααββ-++-+=221336-+=(cos cos sin sin )αβαβ --=-25936cos()αβ∴-=cos()αβ5972巩固练习1.在∆ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,设a+c=2b,A-C=3π,求sinB 的值.2.在中,a ,b ,c 分别是的对边长,已知a ,b ,c 成等比数列,且,求的大小及的值.3.在ABC ∆中,若4,5==b a且3231)cos(=-B A ,求这个三角形的面积.例题4 在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c,证明:C B A cb a sin )sin(222-=-.【分析】在用三角式的恒等变形证明三角形中的三角等式时,其解题的一般规律是:二项化积、倍角公式,提取公因式,再化积.遇有三角式的平方项,则利用半角公式降次.【答案】证法一:由正弦定理得C A B C B A c b a 2222222sin 22cos 2cos sin sin sin -=-=-=C A B A B 2sin 2)sin()sin(2-+-=CB AC 2sin )sin(sin -=C B A sin )sin(-.证法二:由余弦定理得a 2=b 2+c 2-2bccosA,则222c b a -=22cos 2cA bc c -=1-c b 2∙cosA,又由正弦定理得c b =C Bsin sin ,∴222cb a -=1-C B sin sin 2∙cosA=C A B C sin cos sin 2sin -=C A B B A sin cos sin 2)sin(-+=C A B B A sin cos sin cos sin -=C B A sin )sin(-. 证法三:C B A sin )sin(-=CAB B A sin cos sin cos sin -. 由正弦定理得cbC B c a C A ==sin sin ,sin sin ,∴CB A sin )sin(-=cAb B a cos cos -,又由余弦定理得C B A sin )sin(-=cbc a c b b ac b c a a 22222222-+⋅--+⋅=22222222)()(c a c b b c a -+--+=222c b a -.巩固练习1.已知锐角三角形ABC 中,3sin()5A B +=,1sin()5A B -=. (1)求证tan 2tan A B =;(2)设3AB =,求AB 边上的高.参考答案课堂互动例题1 巩固练习1.【答案】[解法1]:由正弦定理2sin sin sin a b cR A B C===,R 为外接圆的半径,将原式化为22228sin sin 8sin sin cos cos R B C R B C B C =,sin sin 0B C ≠,sin sin cos cos B C B C ∴=. 即cos()0B C +=,90B C ∴+=,90A =.故为直角三角形[解法2]:将已知等式变为2222(1cos )(1cos )2cos cos b C c B b B C -+-=,由余弦定理可得22222222222222a b c a c b b c b c ab ac ⎛⎫⎛⎫+-+-+-⋅-⋅ ⎪ ⎪⎝⎭⎝⎭222222222a c b a b c bc ac ab+-+-=⋅⋅,即22b c +22222222()()4a b c a c b a ⎡⎤+-++-⎣⎦=也即222b c a +=,故为直角三角形.2.【答案】解法1:由已知得A A b B B a cos sin cos sin 22=,由正弦定理得AAB B B A cos sin sin cos sin sin 22=,∵sinAsinB ≠0,∴sinAcosA=sinBcosB,即sin2A=sin2B,∴2A=2B 或2A=1800-2B,即A=B 或A+B=900.∴ABC ∆是等腰三角形或直角三角形.解法2: 由已知得A A bB B a cos sin cos sin 22=,由正弦定理得A a b b a cos cosB 22=,即Ab a cos cosB =,又由余弦定理得bcac b b a 22ac b -c a 222222-+=+,整理得(a 2-b 2)(a 2+b 2-c 2)=0,∴a=b,或a 2+b 2=c 2, ∴ABC ∆是等腰三角形或直角三角形. 3.解:由已知得例题2 巩固练习1.【答案】解法1:由正弦定理,得2345sin 26sin =︒=C 因3226sin =⨯=⋅A AB 6,2==AB BC 由623<<,则有二解,即︒=∠60C 或︒=∠120C︒=︒-︒-︒=∠754560180B 或︒=︒-︒-︒=∠1545120180B故13sin sin +=⇒⋅=AC B ABC AC 或13-=AC ,︒=∠︒=∠15,120B C ︒=∠︒=∠75,60B C 解法2:令AC=b ,则由余弦定理222245cos 62)6(=︒-+b b 1302322±=⇒=+-b b b又C b b cos 222)6(222⋅-+=︒=∠±=⇒60,21cos C C 或︒=∠120C ︒=︒+︒-︒=∠⇒75)6045(180B 或︒=︒+︒-︒=∠15)12045(180B . 2【答案】由已知有bc B A 21tan tan =+,化简并利用正弦定理:B C B A B A B A sin sin 2sin cos sin cos cos sin =+ BCB A B A sin sin 2sin cos )sin(=+0cos sin 2sin =-A C C由0sin ≠,故︒=⇒=6021cos A A 由213+=cb,可设k c k b 2,)13(=+=,由余弦定理,得 k a k k k a 6)13(24)13(22222=⇒+-++=由正弦定理Cc A a sin sin =得 226232sin sin =⋅==kk a A c C 由b c <则C 是锐角,故︒=--︒=︒=75180,45C A B C3.【答案】由已知,得2C A B +=,又由︒=++180C B A ︒=⇒60B 故4160cos sin sin 2=︒=C A ①又由B c a S ABC sin 2134⋅⋅==∆164334=⇒=⇒ac ac ② 故64)sin ()sin (sin sin 22===C c A a C A ac 8sin sin ==⇒Cc A a由3460sin 8sin 8sin sin =︒⋅=⋅==B AB a b 则21260cos cos 222=-+=︒=ac b c a B即964848)(3)(222=+=+⇒=-+c a ac b c a 64=+⇒c a ③ 把③与②联立,得)26(2),26(2-=+=c a 或)26(2),26(2+=-=c a4.【答案】由已知B C A 2=+,及︒=+︒=⇒︒=++120,60180C A B C B A由CA C A C A tan tan 1tan tan )tan(-+=+及32tan tan ,3)tan(+=⋅-=+C A C A得33tan tan +=+C A ,以C A tan ,tan 为一元二次方程032)33(2=+++-x x 的两个根,解方程,得⎩⎨⎧+==32tan 1tan C A 或⎩⎨⎧=+=1tan 32tan C A ⎩⎨⎧︒=︒=⇒7545C A 或⎩⎨⎧︒=︒=4575C A 若︒=︒=75,45C A ,则860sin 34=︒=a ,6445sin 34=︒=b ,)13(445sin 75sin 8sin sin +=︒︒==A C a c 若︒=︒=45,75C A ,则︒=60sin 34a ︒==75sin 34,8b )13(64-=)623(4-=)13(8sin sin -==B C b c 例题3 巩固练习1.【答案】由正弦定理和已知条件a+c=2b,得sinA+sinC=2sinB.由和差化积公式,得2sin 2C A +cos 2C A -=2sinB. 由A+B+C=π得sin2C A +=cos 2B .又A-C=3π,得2cos 23B =sinB.∴2cos 23B=2sin 2B cos 2B ,∵0<2B <2π,∴cos 2B ≠0,∴sin 2B =43.∴cos 2B =2sin 12B -=413,∴sinB=2sin 2B cos 2B =2∙43∙413=839. 2.【答案】(I )成等比数列 又 在中,由余弦定理得(II )在中,由正弦定理得 .3.【答案】解法1:由余弦定理得c c bc a c b A 892cos 2222-=-+= cc ac b c a B 1092cos 2222+=-+= 由正弦定理得:B A B A sin 45sin sin 4sin 5=⇒= 3231)cos 1(4510989222=-++⋅-⇒B c c c c 3231])109(1[4580812224=+-+-c c c c 63632318016282222=⇒=⇒=-⇒c c cc 故1694893689cos 2=-=-=c c A 7165sin =A 4715sin 21=⋅⋅=∆A c b S ABC解法2:如图,作B A CAD -=∠,AD 交BC 于D ,令x CD =则由5=a 知,x AD x BD -=-=5,5,在CAD ∆中 由余弦定理3231)5(84)5()cos(222=--+-=-x x x B A 化简得199=⇒=x x ,在CAD ∆中由正弦定理)sin(4)sin(sin )sin(sin B A B A CD AD C B A CD C AD -=-⋅=⇒-=783)(cos 142=--=B A 74158735421sin 21=⨯⨯⨯=⋅⋅=∆C BC AC S ABC例题4 巩固练习1.【答案】(1)证明:因为3sin()5A B +=,1sin()5A B -=, 所以3sin cos cos sin 51sin cos cos sin 5A B A B A B A B ⎧+=⎪⎪⎨⎪-=⎪⎩,2sin cos 51cos sin 5A B A B ⎧=⎪⎪⇒⎨⎪=⎪⎩,tan 2tan A B ⇒=.所以tan 2tan A B =(2)因为2A B ππ<+<,3sin()5A B +=, 所以3tan()4A B +=-,即tan tan 31tan tan 4A B A B +=--, 将tan 2tan A B =代入上式并整理得 22tan 4tan 10B B --=.解得2tan 2B =,舍去负值得2tan 2B +=,从而tan 2tan 2A B ==. 设AB 边上的高为CD.则tan tan CD CD AB AD DB A B =+=+=AB=3,得CD= 2AB 边上的高等于2。

正余弦定理讲义

正余弦定理讲义

正余弦定理讲义
正余弦定理是高中数学中的重要知识点,也是解决三角形相关问题的基础。

本讲义将详细介绍正余弦定理的定义、公式及其应用。

一、正余弦定理的定义
正余弦定理是指在任意三角形ABC中,设三角形三边分别为
a、b、c,对应的内角分别为A、B、C,那么:
① 余弦定理:$a^2=b^2+c^2-2bccos A$;
② 正弦定理:$dfrac{a}{sin A}=dfrac{b}{sin
B}=dfrac{c}{sin C}$。

二、正余弦定理的公式
1. 余弦定理的公式:
$a^2=b^2+c^2-2bccos A$;
$b^2=a^2+c^2-2accos B$;
$c^2=a^2+b^2-2abcos C$。

2. 正弦定理的公式:
$dfrac{a}{sin A}=dfrac{b}{sin B}=dfrac{c}{sin C}$。

三、正余弦定理的应用
1. 判断三角形是否存在
若已知三角形的三边长,应用正余弦定理可以求出三个角的正余弦值,从而判断这个三角形是否存在。

2. 求角度
已知三角形的三边长,应用余弦定理可以求出对应角的余弦值,进而求出对应角的角度大小。

3. 求边长
已知三角形的某两边和夹角,应用余弦定理可以求出第三边的长度。

4. 判断三角形的形状
通过正余弦定理可以判断三角形是锐角三角形、钝角三角形还是直角三角形。

5. 解决实际问题
应用正余弦定理可以解决很多实际问题,如测量高楼建筑物的高度、计算船舶航行距离等。

以上就是正余弦定理的讲义内容,希望对大家学习有所帮助。

正余弦定理重要知识点(经典)

正余弦定理重要知识点(经典)

正余弦定理重要知识点本张武林秘籍,乃武林之精髓所在,得此天书者,细细研习,来日方长,必成大器。

下星期一需要全部背住,不然你不知道我要出哪一招。

1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B (R 是三角形外接圆半径). 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B3、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-4、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac+-B =,222cos 2a b c C ab +-=. 5、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B 两边夹角的正弦值两边之积⨯⨯=∆21ABC S 高底⨯=∆21ABC S 6、①如果一个三角形两边的平方和等于第三边,那么第三边所对的角为直角; ②如果小于第三边的平方,那么第三边所对的角为钝角;③如果大于第三边的平方,那么第三边所对角为锐角。

(课本第6页右下角)例如a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若①222a b c +=,则90C =;②若222a b c +<,则.︒︒<<18090C ,C 为钝角③若222a b c +>,则︒︒<<900C ;C 为锐角7、在三角形中一些重要的知识点;1.π=++C B A ,)0(,,π,∈C B A2.任意两边之和大于第三边,任意两边之差小于第三边。

正弦定理余弦定理知识点

正弦定理余弦定理知识点

正弦定理余弦定理知识点正弦定理和余弦定理是三角学中两个重要的定理。

它们在解决三角形问题时起着重要的作用。

在本文中,我们将详细介绍这两个定理的定义、推导过程以及应用场景。

首先,我们来看正弦定理。

正弦定理描述了三角形中各边与其对应角度之间的关系。

设三角形的三个边长为a、b、c,对应的夹角为A、B、C,则正弦定理可以表述为以下公式:a / sin(A) =b / sin(B) =c / sin(C) = 2R其中R是三角形外接圆的半径。

接下来,我们来推导正弦定理。

设三角形的三个顶点为A、B、C,对应的边长为a、b、c。

以边长a为底边,作角A的高,垂足为D。

则有以下关系:sin(B) = BD / csin(C) = CD / b再设三角形的外接圆半径为R,即OD=R,其中O为三角形外接圆心。

那么,我们可以推导得出以下关系:sin(B) = BD / c = 2R / csin(C) = CD / b = 2R / b。

由于三角形的三个内角之和为180度,所以有角A=180度-B-C。

将以上关系带入得到以下公式:sin(A) = sin(180度 - B - C) = sin(B + C) = sin(B)cos(C) + cos(B)sin(C) =(2R / c)cos(C) + (2R / b)sin(C)。

化简以上公式,得到sin(A) = (2R / c)cos(C) + (2R / b)sin(C) = (2R / bc)(bcos(C) + csin(C))a / sin(A) = 2R / (bc)(bcos(C) + csin(C)) = 2R。

可见,我们得到了正弦定理。

正弦定理可以用来计算三角形中的未知边长或角度,同时也可以用来证明一些三角形的性质。

接下来,我们来看余弦定理。

余弦定理描述了三角形中各边与角度之间的关系。

设三角形的三个边长为a、b、c,对应的夹角为A、B、C,则余弦定理可以表述为以下公式:c² = a² + b² - 2abcos(C)。

正弦定理余弦定理知识点总结及最全证明

正弦定理余弦定理知识点总结及最全证明

正弦定理余弦定理知识点总结及最全证明正弦定理概述:正弦定理是三角形的一个重要定理,它描述了三角形中各边与其相对的正弦值之间的关系。

正弦定理可以用于求解任意三角形的边长或角度。

正弦定理表达式:在一个三角形ABC中,有以下正弦定理的表达式:a/sin(A) = b/sin(B) = c/sin(C)其中,a、b、c分别表示三角形的边长,A、B、C表示三角形的角度。

正弦定理表明,三角形的任意一边的长度与这条边相对的角的正弦值成正比。

正弦定理的证明:可以使用数学推导来证明正弦定理。

这里给出一种较为详细的证明方法。

证明:1. 通过三角形的边长关系:a = b * sin(A) / sin(B)和c = b *sin(C) / sin(B),可得到以下关系式:a * sin(B) = b * sin(A)和c * sin(B) = b * sin(C)2.利用向量叉积原理知识,假设D为线段BC上的一点,则由向量的垂直性知:向量BD与向量AD是垂直的,向量CD与向量AD是垂直的。

3. 记向量AD为向量a,向量BD为向量b,向量CD为向量c,由向量b与向量a的垂直性可得:向量b·向量a = ,b, * ,a, *sin(∠BA) = b * AD * sin(∠BA)。

4. 同理,由向量c与向量a的垂直性可得:向量c·向量a = ,c,* ,a,* sin(∠CA) = c * AD * sin(∠CA)。

5. 因为∠C + ∠A = ∠BA,即∠CA + ∠BA = 180°,所以sin(∠BA) = sin(∠CA)。

所以有b * AD * sin(∠BA) = c * AD *sin(∠CA)。

6. 即有b * AD * sin(∠BA) = c * AD * sin(∠BA),那么b = c,所以定理得证。

余弦定理概述:余弦定理是三角形的另一个重要定理,它描述了三角形中各边与其相对的角之间的关系。

正弦余弦定理 ---讲义

正弦余弦定理 ---讲义

正弦余弦定理 讲义一、基本知识点 正弦定理:R C cB bA a2sin sin sin ===正弦定理的基本作用:1.两角和任意一边,求其它两边和一角;(一解)2.两边和其中一边对角,求其它的两角和一边(一解或者两解)(详见图示)已知a, b 和A, 用正弦定理求B 时的各种情况:⑴若A 为锐角时:⎪⎪⎩⎪⎪⎨⎧≥<<=<)( b a ) ,( b a bsinA)( bsinA a sin 锐角一解一钝一锐二解直角一解无解A b a b a b a b a baa 已知边a,b 和∠A仅有一个解有两个解仅有一个解无解a ≥b CH=bsinA<a<b a=CH=bsinA a<CH=bsinA A C B A C B1A BAC B2C H H H⑵若A 为直角或钝角时:⎩⎨⎧>≤)( b a 锐角一解无解b a余弦定理:,cos 2222A bc c b a -+=⇔bc a c b A 2cos 222-+=余弦定理的基本作用:1.已知三边,求三角;(一解)2.已知两边和夹角,求一边和两角(一解)公式一:a b c 111S ah bh ch 222===公式二:111S absinC acsinB bcsin A 222===公式三:S p(p a)(p b)(p c)=--- 其中1p (a b c)2=++称为三角形的半周长。

推导:将公式二中的角的关系变为边的关系,根据22sin C cos C 1+=,2sin C 1cos C =-,及余弦定理ab c b a C 2cos 222-+=的变形2222abcosC a b c =+-,则 2111S absinC ab 1cos C ab (1cosC)(1cosC)222==-=-+ 22114a b (1cosC)(1cosC)(2ab 2abcosC)(2ab 2abcosC)44=-+=-+ 222222222211(2ab a b c )(2ab a b c )[c (a b)][(a b)c ]44=--+++-=--+- 11111(c a b)(c a b)(a b c)(a b c)(c a b)(c a b)(a b c)(a b c)42222=+--++++-=+--++++-设1p (a b c)2=++,则S p(p a)(p b)(p c)=---。

正弦定理、余弦定理

正弦定理、余弦定理

正弦定理、余弦定理【知识点梳理】1.正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 2.正弦定理的推论:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b cC C++===A +B +A B .3.余弦定理:在C ∆AB 中,有:2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.4.余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac+-B =,222cos 2a b c C ab +-=.5.三角形面积公式:①111sin sin sin 222C S bc ab C ac ∆AB =A ==B ; ②pr c p b p a p p S ABC =---=∆))()((,其中2cb a p ++=,r 为内切圆半径; ③RabcS ABC 4=∆,R 为外接圆半径. 6.解△ABC 中,注意解可能有多种情况,B A B A b a sin sin <⇔<⇔<. 7.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则【典型例题】例题1:在△ABC 中,a =23,b =6,A =30°,解三角形.变式1:在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A =60°,a =3,b =1,则c 等于( )A .1B .2 C.3-1 D. 3变式2:在△ABC 中,已知a =22,A =30°,B =45°,解三角形.题型二、运用余弦定理解三角形例题2:在∆ABC 中,已知=a c 45oB =,求b 及A .变式3:在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,求边c .变式4:已知三角形ABC 的三边长为a =3,b =4,c =37,求△ABC 的最大内角.题型三、三角形形状判断例题3:在ABC ∆中,若60=B ,c a b +=2,试判断ABC ∆形状.变式5:在ABC ∆中,已知2cos cos sin 2AC B =,则ABC ∆为 三角形.变式6:在△ABC 中,sin A :sin B :sin C =2:3:4,试判断三角形的形状.变式7:在△ABC 中,已知(a +b +c )(b +c -a )=3bc ,且sin A =2sin Bcos C ,试确定△ABC 的形状.题型四、面积问题例题4:在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且CB cos cos =c a b+-2.(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.变式8:在△ABC 中,A=60°,AB=5,BC=7,则△ABC 的面积为 .变式9:在△ABC 中,内角A 、B 、C 对边的边长分别是a 、b 、c .已知c =2,C =3π. (1)若△ABC 的面积等于3,求a 、b 的值; (2)若sin C +sin(B -A )=2sin2A ,求△ABC 的面积.题型五、与向量综合例题5:已知A B C 、、为ABC ∆的三内角,且其对边分别为a b c 、、.若向量2(cos 2A =m ,cos 1)2A-,向量(1=n ,cos1)2A+,且21⋅=-m n . (1)求A 的值;(2)若a =S =b c +的值.【方法与技巧总结】1、已知两角A 、B ,一边a ,由A+B+C=π及sin sin sin a b cA B C==,可求角C ,再求b 、c ; 2、已知两边b 、c 与其夹角A ,由a 2=b 2+c 2-A bc cos 2,求出a ,再由余弦定理,求出角B 、C ;3、已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C ;4、已知两边a 、b 及其中一边的对角A ,由正弦定理sin sin a bA B=,求出另一边b 的对角B ,由C=π-(A+B),求出c ,再由sin sin a c A C =求出C ,而通过sin sin a bA B =求B 时,可能出一解,两解或无解.【训练题组A 】1.已知ABC ∆中,c b a 、、分别是角C B A 、、的对边, 60,3,2===B b a ,则A =( )A.135 B.45 C.135或45 D.902.已知锐角△ABC 的面积为33,BC =4,CA =3, 则角C 的大小为( )A. 75°B. 60°C. 45°D. 30°3.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形 4.在△ABC 中,若2cosBsinA=sinC ,则△ABC 一定是 三角形. 5.在△ABC 中,A=120°,AB=5,BC=7,则CBsin sin 的值为 . 6.在△ABC 中,BC=2,B=3π,若△ABC 的面积为23,则tanC 为 . 7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,7=b ,3=c ,则B= .8.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________. 9.下列判断中不正确的结论的序号是 .①△ABC 中,a =7,b =14,A =30°,有两解 ②△ABC 中,a =30,b =25,A =150°,有一解 ③△ABC 中,a =6,b =9,A =45°,有两解 ④△ABC 中,b =9,c =10,B =60°,无解10.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若7,8,9a b c ===,则AC 边上的中线长为 . 11.在△ABC 中,已知a =2,b =22,C =15°,求A .12.在△ABC 中,cos B =-135,cos C =54. (1)求sin A 的值; (2)若△ABC 的面积S △ABC =233,求BC 的长.13.在△ABC 中,内角A,B,C 的对边分别为a ,b ,c ,且b cosB .(1)求角B 的大小;(2)若b =3,sinC=2sinA ,求a ,c 的值.14.已知向量(sin ,1)a x =- ,1,)2b x =- ,函数()()2f x a b a =+⋅- .(1)求函数()f x 的最小正周期T ;(2)已知a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边,其中A 为锐角,a =4c =,且()1f A =,求A ,b 和ABC ∆的面积S .15.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a +b =5,c=7,且4sin 22B A +-cos2C =27.(1)求角C 的大小; (2)求△ABC 的面积.【训练题组B 】1.在△ABC 中,若a cos A =b cos B =ccos C;则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形2.在△ABC 中,角,,A B C 所对的边分别为,,a b c ,若B=30°,b=2,32=c ,则△ABC 的面积为( )A .3B .32C .2或3D .32 或3 3.在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A = ;a = .4.在△ABC 中,若∠A:∠B:∠C=1:2:3,则=c b a :: .5.已知函数()21cos cos 2f x x x x =-+. (1)求函数()f x 的对称中心和单调区间;(2)已知ABC ∆内角A 、B 、C 的对边分别为a ,b ,3,且()1f C =,若向量()()1,sin 2,sin m A n B ==与共线,求a 、b 的值.6.ABC ∆的面积是30,内角,,A B C 所对边长分别为,,a b c ,12cos 13A =. (1)求⋅;(2)若1c b -=,求a 的值.7.在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状.8.在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.9.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a =3,b =2,1+2cos(B +C )=0,求边BC 上的高.10.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2 A =2a .(1)求ba;(2)若c 2=b 2+3a 2,求B .【训练题组C 】1.在ABC ∆中,若π125=∠A ,π41=∠B ,26=AB ,则=AC ( ) A .3 B .32 C .33 D .342.在ABC ∆中角A 、B 、C 的对边分别是a 、b 、c ,若(2)cos cos b c A a C -=, 则cos A =______.3.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足sin cos c A C =.(1)求角C 的大小;(2sin()2A B π-+的最大值,并求取得最大值时角,A B 的大小.4.(汕头市2013届高三3月教学质量测评)△ABC 中内角A,B,C 的对边分别为a ,b ,c ,向量(2sin2Am =,2(cos ,2cos 1)4An A =- ,且//.(1)求角A 的大小;(2)若a =ABC b +c 的值.5.如图,在△ABC 中,45C ∠=,D 为BC 中点,2BC =.记锐角ADB α∠=,且满足7cos 225α=-. (1)求cos α; (2)求BC 边上高的值.【参考答案】【训练题组A 答案】1.【答案】B ,【解析】依题意,由正弦定理sin sin a b A B =得,sin sin 60A = ,解得sin 2A =,又b a >,∴45A =,故选B. 2.【答案】B3.【答案】C ,解析:由sin :sin :sin 5:11:13A B C =及正弦定理得a :b :c =5:11:13,由余弦定理得0115213115cos 222<⨯⨯-+=c ,所以角C 为钝角.335πBD A10.【答案】711.解:由余弦定理得c 2=a 2+b 2-2ab cos C =8-43,所以c =6-2,由正弦定理得sin A =asin C c =12,因为b >a ,所以B >A ,又∵0°<A <180°,∴A =30°. 12.解:(1)由cosB=135-,得sinB=1312,由cosC=54,得sinC=53. 所以sinA=sin(B+C)=sinBcosC+cosBsinC=6533.(2)由S △ABC =233,得21×AB×AC×sinA=233.由(1)知sinA=6533,故AB×AC=65.又AC=CB AB sin sin ⨯=1320AB ,故1320AB 2=65,AB=213.所以BC=CA AB sin sin ⨯=211.13.解:(1) 由正弦定理可得sin sin cos B A A B =,即得tan B =3B π∴=.(2) sinC=2sinA ,由正弦定理得2c a =,由余弦定理2222cos b a c ac B =+-,229422cos3a a a a π=+-⋅,解得a =2c a ∴==14.解:(1)2()()22f x a b a a a b =+⋅-=+⋅- 21sin 1cos 22x x x =+++-1cos 21222x x -=-12cos 22x x =-sin(2)6x π=-因为2ω=,所以22T ππ== (2)()sin(2)16f A A π=-=.因为(0,)2A π∈,52(,)666A πππ-∈-,所以262A ππ-=,3A π=.由2222cos a b c bc A =+-,得211216242b b =+-⨯⨯,即2440b b -+=.解得2b =.故11sin 24sin 6022S bc A ==⨯⨯⨯= 15.解:(1)∵A+B+C=180°,由4sin 22B A +-cos2C=27,得4cos 22C -cos2C=27,∴4·2cos 1C +-(2cos 2C -1)=27,整理得4cos 2C -4cosC +1=0,解得cosC=21,∵0°<C <180°,∴C=60°.(2)由余弦定理得c 2=a 2+b 2-2ab cosC ,即7=a 2+b 2-ab ,∴7=(a +b )2-3ab , 由条件a +b =5,得7=25-3ab ,ab =6, ∴S △ABC =21ab sinC=21×6×23=233.【训练题组B 答案】1.【答案】B ,【解析】由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C (R 为△ABC 外接圆半径).∴sin A cos A =sin B cos B =sin Ccos C. 即tan A =tan B =tan C ,∴A =B =C . 2.【答案】D3.【答案】255,210【解析】因为△ABC 中,tan A =2,所以A 是锐角,且sin Acos A =2,sin 2A +cos 2A =1,联立解得sin A =255,再由正弦定理得a sin A =bsin B,代入数据解得a =210.4.【答案】 2,【解析】因为∠A:∠B:∠C=1:2:3,则可知A,B,C 分别为00030,60,90,,根据直角三角形中边的比例关系可知,::2a b c = 5.6.解:由12cos 13A =,得5sin 13A ==. 又1sin 302bc A =,∴156bc =.(1)12cos 15614413AB AC bc A ⋅==⨯= . (2)2222cos a b c bc A =+-212()2(1cos )12156(1)2513c b bc A =-+-=+⋅⋅-=,∴5a =. 7.解:由已知(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,得b 2[sin(A -B )+sin C ]=a 2[sin C -sin(A -B )],即b 2sin A cos B =a 2cos A sin B ,即sin 2B sin A cos B =sin 2A cos B sin B ,所以sin 2B =sin 2A , 由于A ,B 是三角形的内角.故0<2A <2π,0<2B <2π. 故只可能2A =2B 或2A =π-2B ,即A =B 或A +B =π2.故△ABC 为等腰三角形或直角三角形.8.解:(1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4,联立方程组⎩⎪⎨⎪⎧ a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)由题意,得sin(B +A )+sin(B -A )=4sin A cos A ,即sin B cos A =2sin A cos A . 当cos A =0,即A =π2时,B =π6,a =433,b =233;当cos A ≠0时,得sin B =2sin A ,由正弦定理,得b =2a .联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎨⎧a =233,b =433.所以△ABC 的面积S =12a b sin C =233.9.解:∵在△ABC 中,cos(B +C )=-cos A ,∴1+2cos(B +C )=1-2cos A =0,∴A =π3.在△ABC 中,根据正弦定理a sin A =b sin B ,∴sin B =b sin A a =22. ∵a >b ,∴B =π4,∴C =π-(A +B )=512π.∴sin C =sin(B +A )=sin B cos A +cos B sin A =22×12+22×32=6+24. ∴BC 边上的高为b sin C =2×6+24=3+12. 10.解:(1)由正弦定理得,sin 2A sin B +sin B cos 2A =2sin A ,即sin B (sin 2A +cos 2A )=2sin A .故sin B =2sin A ,所以ba= 2.(2)由余弦定理和c 2=b 2+3a 2,得cos B = 1+3 a2c.由(1)知b 2=2a 2,故c 2=(2+3)a 2. 可得cos 2B =12,又cos B >0,故cos B =22,所以B =45°.【训练题组C 答案】 1. 答案:D2.解析:由(2)cos cos b c A a C -=,得2cos cos cos b A c A a C =+,2sin cos sin cos sin cos B A C A A C =+,故2sin cos sin()B A A C =+,又在ABC ∆中sin()sin 0A C B +=>,故1cos 2A =,3.解:(1)由sin cos c A C =结合正弦定理得,sin sin a cA C==从而sin C C =,tan C = ∵0C π<<,∴3C π=;(2)由(1)知23B A π=-sin()cos 2A B A B π-+=-2cos()3A A π=--22coscos sin sin 33A A A ππ=--1cos 2A A =+sin()6A π=+ ∵203A π<<,∴5666A πππ<+<当62A ππ+=sin()2A B π-+取得最大值, 此时,33A B ππ==.4.(1) →→n m // )14cos 2(2sin2cos 32-=∴AA A A AA A A A sin 2cos 2sin 2)14cos 2(2sin 2cos 32==-=∴3tan =∴A 又),0(π∈A 3π=∴A(2)3233sin 21sin 21===∆πbc A bc S ABC 6=∴bc由余弦定理得:3cos2222πbc c b a -+= 2537)(2=+=+⇒bc c b5=+∴c b5.解析:(1)∵27cos 22cos 125αα=-=-,∴29cos 25α=, ∵(0,)2πα∈,∴3cos 5α=.(2)方法一:由(1)得4sin 5α==, ∵45CAD ADB C α∠=∠-∠=-,∴sin sin()sin coscos sin44410CAD πππααα∠=-=-=, 在ACD ∆中,由正弦定理得:sin sin CD ADCAD C=∠∠,∴1sin 5sin CD CAD CAD⨯⋅∠===∠, 则高4sin 545h AD ADB =⋅∠=⨯=. 方法二:如图,作BC 边上的高为AH 在直角△ADH 中,由(1)可得3cos 5DB AD α==,则不妨设5,AD m = 则3,4DH m AH m ==注意到=45C ∠,则AHC ∆为等腰直角三角形,所以CD DH AH +=,则134m m +=,所以1m =,即4AH =.CBD AH。

正弦定理和余弦定理知识点与题型归纳

正弦定理和余弦定理知识点与题型归纳

●高考明方向掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.★备考知考情1.利用正、余弦定理求三角形中的边、角问题是高考考查的热点.2.常与三角恒等变换、平面向量相结合出现在解答题中,综合考查三角形中的边角关系、三角形形状的判断等问题.3.三种题型都有可能出现,属中低档题. 一、知识梳理名师一号P62知识点一 正弦定理其中R 为△ABC 外接圆的半径变形1:2sin ,2sin ,2sin ,===a R A b R B c R C 变形2:sin ,sin ,sin ,222===a b c A B C R R R变形3:∶∶∶∶sinA sinB sinC=a b c 注意:补充关于边的齐次式或关于角的正弦的齐次式均可利用正弦定理进行边角互化;知识点二 余弦定理222222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2⎧+-=⎪⎧=+-⎪+-⎪⎪=+-⇔=⎨⎨=+-⎪⎪⎩+-⎪=⎪⎩b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab 注意:补充1关于边的二次式或关于角的余弦均可考虑利用余弦定理进行边角互化;2勾股定理是余弦定理的特例3在∆ABC 中,222090︒︒<+⇔<<a b c A用于判断三角形形状名师一号P63问题探究 问题3判断三角形形状有什么办法判断三角形形状的两种途径:一是化边为角;二是化角为边, 并常用正弦余弦定理实施边、角转换.知识点三 三角形中常见的结论△ABC 的面积公式有:①S =错误!a ·hh 表示a 边上的高;②S =错误!ab sin C =错误!ac sin B =错误!bc sin A =错误!;--知两边或两边的积及其夹角可求面积③S =错误!ra +b +cr 为内切圆半径.补充1++=A B C π2在三角形中大边对大角,大角对大边.3任意两边之和大于第三边,任意两边之差小于第三边.4有关三角形内角的常用三角函数关系式sin()sin ,cos()cos ,tan()tan sin cos ,cos sin 2222+=+=-+=-++==B C A B C A B C A B C A B C A 利用++=A B C π及诱导公式可得之5在△ABC 中的几个充要条件:名师一号P63问题探究 问题4sin A >sin B 错误!>错误! a >b A >B .补充 cos cos A B A B >⇔<若R ∈、αβ或2k απβπ=-+k Z ∈或2k αβπ=-+k Z ∈45套之7--196锐角△ABC 中的常用结论 ∆ABC 为锐角三角形⇔02<<、、A B C π4.解斜三角形的类型名师一号P63问题探究 问题1利用正、余弦定理可解决哪几类问题在解三角形时,正弦定理可解决两类问题:1已知两角及任一边,求其它边或角;2已知两边及一边的对角,求其它边或角.情况2中结果可能有一解、二解、无解,应注意区分.余弦定理可解决两类问题:1已知两边及夹角或两边及一边对角的问题;2已知三边问题.a b A补充已知两边和其中一边的对角如,,用正弦定理或余弦定理均可名师一号P63问题探究问题2选用正、余弦定理的原则是什么若式子中含有角的余弦或边的二次式,要考虑用余弦定理;若遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.补充:一、正弦定理推导必修5证明思路:转化到特殊情形----直角三角形中二、余弦定理推导必修52011年陕西高考考查余弦定理的证明18.本小题满分12分叙述并证明余弦定理;2222cos a b c bc A =+-, 2222cos b c a ca B =+-,2222cos c a b ab C =+-.证明:证法一 如图,2c BC = ()()AC AB AC AB =-•-即2222cos a b c bc A =+-同理可证 2222cos b c a ca B =+-,证法二 已知ABC ∆中,,,A B C 所对边分别为,,,a b c ,以A 为原点,AB 所在直线为x 轴建立直角坐标系,则(cos ,sin ),(,0)C b A b A B c ,∴222222222||(cos )(sin )cos 2cos sin a BC b A c b A b A bc A c b A ==-+=-++222cos b c bc A =+-,即 2222cos a b c bc A =+-同理可证 2222cos b c a ca B =+-,二、例题分析:一利用正、余弦定理解三角形例1.1名师一号P62 对点自测1在△ABC 中,A =60°,B =75°,a =10,则c 等于A .5错误!B .10错误! D .5错误!解析 由A +B +C =180°,知C =45°,由正弦定理得:错误!=错误!.即错误!=错误!. ∴c =错误!.注意:已知两角及任一边,求其它边或角----正弦定理,解唯一例1.2名师一号P62 对点自测2在△ABC 中,若a =3,b =错误!,A =错误!,则C 的大小为________.解析 由正弦定理可知sin B =错误!=错误!=错误!,所以B =错误!或错误!舍去,因为a >b 即A =错误!> B 所以B =错误!所以C =π-A -B =π-错误!-错误!=错误!.一解变式1: 在△ABC 中,若b =3,a =错误!,A =错误!, 则C 的大小为________.答案: sin B >1无解变式2:在ABC ∆中,已知45︒===a b B , 解ABC ∆.答案:60,75,︒︒+===A C c或120,15,2︒︒-===A C c两解变式3:求边c注意:知道两边和其中一边的对角如,,a b A 解三角形 可用正弦定理先求出角B 也可用余弦定理先求出边c 再求解;两种方法均须注意解的个数可能有一解、二解、无解,应注意区分.练习:补充2009山东文17已知函数x x x x f sin sin cos 2cossin 2)(2-+=ϕϕ ππϕ=<<x 在)0(处取最小值; I 求ϕ的值;Ⅱ在ABC ∆中,c b a ,,分别是角A,B,C 的对边,已知,23)(,2,1===A f b a 求角C; 解析 Ⅰfx =2sinx 1cos cos sin sin 2x x ϕϕ++- =sinx+ϕ.因为 fx 在x =π时取最小值,所以 sin π+ϕ=-1,故 sin ϕ=1.又 0<ϕ<π,所以ϕ=2π, Ⅱ由Ⅰ知fx=sinx+2π=cosx. 因为fA=cosA=3,且A 为△ABC 的角, 所以A =6π. 由正弦定理得 sinB =sin b A a =22, 又b >a, 当4π=B 时,,12746πππππ=--=--=B A C 当43π=B 时,.12436πππππ=--=--=B A C 综上所述,12127ππ==C C 或例2. 补充若满足条件060=C ,a BC AB ==,3的ABC ∆有两个,求a 的取值范围. 32<<a注意:判断三角形解的个数常用方法:1在ABC ∆中,已知,,A a b ;构造直角三角形判断 2利用余弦定理判断一元二次方程正根个数 勿忘大边对大角判断已知两边及其中一边对角,判断三角形解的个数的方法:①应用三角形中大边对大角的性质以及正弦函数的值域判断解的个数.②在△ABC 中,已知a 、b 和A ,以点C 为圆心,以边长a 为半径画弧,此弧与除去顶点A 的射线AB 的公共点的个数 即为三角形的个数,解的个数见下表:图示已知a 、b 、A ,△ABC 解的情况.ⅰA 为钝角或直角时解的情况如下:ⅱA 为锐角时,解的情况如下:③运用余弦定理转化为关于一元二次方程 正根个数问题练习:已知ABC ∆中,若22,2==b a ,且三角形有两解,求角A 的取值范围;答案:由条件知b sin A <a ,即2错误!sin A <2, ∴sin A <错误!,∵a <b ,∴A <B ,∴A 为锐角,∴0<A <错误!.例3.1名师一号P62 对点自测3在△ABC 中,a =错误!,b =1,c =2,则A 等于A .30°B .45°C .60°D .75° 解析 由余弦定理得:cos A =错误!=错误!=错误!,∵0<A <π,∴A =60°.注意:已知三边,求其它边或角---余弦定理例3.2名师一号P63 高频考点例122014·新课标全国卷Ⅱ钝角三角形ABC的面积是错误!,AB=1,BC=错误!,则AC=A.5 C.2 D.1解:由题意知S=错误!AB·BC·sin B,△ABC即错误!=错误!×1×错误!sin B,解得sin B=错误!,∴B=45°或B=135°.当B=45°时,AC2=AB2+BC2-2AB·BC·cos B=12+错误!2-2×1×错误!×错误!=1.此时AC2+AB2=BC2,△ABC为直角三角形,不符合题意;当B=135°时,AC2=AB2+BC2-2AB·BC·cos B=12+错误!2-2×1×错误!×错误!=5,解得AC=错误!.符合题意.故选B.注意:已知两边夹角,求其它边或角---余弦定理小结:已知与待求涉及三边和一角的关系---余弦定理例4.1名师一号P63 高频考点例112014·江西卷在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则错误!的值为A.-错误!C.1解:∵3a=2b,∴由正弦定理得错误!=错误!=错误!.∴错误!=错误!,∴错误!=2×错误!-1=2×错误!-1=错误!-1=错误!.例4.2名师一号P62 对点自测已知△ABC三边满足a2+b2=c2-错误!ab,则此三角形的最大内角为__________.解析∵a2+b2-c2=-错误!ab,∴cos C=错误!=-错误!,故C=150°为三角形的最大内角.注意:1关于边的齐次式或关于角的正弦的齐次式均可利用正弦定理进行边角互化;2关于边的二次式或关于角的余弦均可考虑利用余弦定理进行边角互化.注意等价转换练习:2010·天津理在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=错误!bc,sin C=2错误!sin B,则A=A.30°B.60°C.120°D.150°解:由余弦定理得:cos A=错误!,由题知b2-a2=-错误!bc,c2=2错误!bc,则cos A=错误!, 又A∈0°,180°,∴A=30°,故选A.注意:已知三边比例关系---余弦定理二三角形的面积例1.1名师一号P62 对点自测62014·福建卷在△ABC中,A=60°,AC=4,BC=2错误!,则△ABC的面积等于________.解析由题意及余弦定理得cos A=错误!=错误!=错误!,解得c=2.所以S=错误!bc sin A=错误!×4×2×sin60°=2错误!.故答案为2错误!.注意:a b A解三角形可用正知道两边和其中一边的对角如,,弦定理先求出角B也可用余弦定理先求出边c再求解;两种方法均须注意解的个数本例用余弦求边更快捷.例1.2名师一号P63 高频考点例32014·浙江卷在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=错误!,cos2A-cos2B=错误!sin A cos A-错误! sin B cos B.1求角C的大小;2若sin A=错误!,求△ABC的面积.解:1由题意得错误!-错误!=错误!sin2A-错误!sin2B,即错误!sin2A-错误!cos2A=错误!sin2B-错误! cos2B,sin错误!=sin错误!.由a≠b,得A≠B,又A+B∈0,π.得2A-错误!+2B-错误!=π,即A+B=错误!,所以C=错误!.2由c=错误!,sin A=错误!,错误!=错误!,得a=错误!.由a<c,得A<C,从而cos A=错误!,故sin B=sin A+C=sin A cos C+cos A sin C=错误!.所以△ABC的面积为S=错误!ac sin B=错误!.规律方法三角形面积公式的应用原则1对于面积公式S=错误!ab sin C=错误!ac sin B=错误! bc sin A,一般是已知哪一个角就使用哪一个公式.2与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.三三角形形状的判定例1.1名师一号P63 高频考点例2在△ABC中a,b,c分别为内角A,B,C的对边,且2a sin A =2b+c sin B+2c+b sin C.1求A的大小;2若sin B+sin C=1,试判断△ABC的形状.解:1由已知,根据正弦定理得2a2=2b+c·b+2c+bc,即a2=b2+c2+bc.由余弦定理得a2=b2+c2-2bc cos A,故cos A=-错误!,∵0<A<180°,∴A=120°.2由1得sin 2A =sin 2B +sin 2C +sin B sin C =错误!.又sin B +sin C =1,解得sin B =sin C =错误!.∵0°<B <60°,0°<C <60°,故B =C =30°,A =120°.∴△ABC 是等腰钝角三角形.法二:因为A =120°,且A +B +C=180°所以sin B +sin C =1即sin60°-C +sin C =1 可求得C=30°例1.2补充根据所给条件,判断△ABC 的形状.1若a cos A =b cos B ,则△ABC 形状为________. 2若错误!=错误!=错误!,则△ABC 形状为________. 解析:1 解法一: 由正弦定理得sinA cos A =sinB cos B 即sin2A =sin2B22A B ∴= 或 22A B π=-A B ∴= 或 2A B π+= ∴△ABC 是等腰三角形或直角三角形.解法二:由余弦定理得a cos A =b cos Ba ·错误!=b ·错误!a 2c 2-a 4-b 2c 2+b 4=0,∴a 2-b 2c 2-a 2-b 2=0∴a 2-b 2=0或c 2-a 2-b 2=0∴a =b 或c 2=a 2+b 2∴△ABC是等腰三角形或直角三角形.2由正弦定理得错误!=错误!=错误!即tan A=tan B=tan C,∵A、B、C∈0,π,∴A=B=C,∴△ABC为等边三角形.注意:利用正、余弦定理进行边角互化1关于边的齐次式或关于角的正弦的齐次式均可利用正弦定理进行边角互化;2关于边的二次式或关于角的余弦均可考虑利用余弦定理进行边角互化;规律方法依据已知条件中的边角关系判断三角形的形状时,主要有如下两种方法:1利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.2利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A+B+C=π这个结论.加加练P9 第6题∆中,已知ABC∆为则ABCA.等边三角形B.等腰直角三角形C.锐角三角形D.钝角三角形答案:B计时双基练P252 第2题四三角形的综合问题例1.补充 在△ABC 中,sinC-A=1,sinB=31. Ⅰ求sinA 的值;Ⅱ设AC=错误!,求△ABC 的面积.解:Ⅰ由2C A π-=,且C A B π+=-,∴42B A π=-,∴sin sin()sin )42222B B B A π=-=-, ∴211sin (1sin )23A B =-=,又sin 0A >,∴sin A = Ⅱ如图,由正弦定理得sin sin AC BC B A=∴sin 31sin 3AC A BC B ===, 又sin sin()sin cos cos sin C A B A B A B =+=+∴11sin 223ABC S AC BC C ∆=••==注意:关注三角形内角和、特殊角、三角恒等变换公式、 知两边夹角求面积公式的选择;例2.补充已知ABC ∆中,角A B C 、、所对的边 A BC分别为a b c 、、,3B π∠=,b =求a c +的取值范围解法一:正弦定理结合三角最值 当且仅当62A ππ+=即3A π=时等号成立 法二:余弦定理结合不等式 由2222cos b a c ac B =+-得2228a c ac =+-即()2283a c ac =+-a c ∴+≤当且仅当a c =时等号成立 又三角形两边之和大于第三边注:这是一道好题,刚好都能运用“正余弦定理求解最值问题”的两种主要方法解决; 小结:借助正弦定理,转化为角的正弦值,利用三角函数最值求解借助余弦定理,转化为边的关系,利用均值不等式求解余弦定理注意两数和差与这两数的平方和、两数的积 的关系的运用练习:加加练P11 第11题已知△ABC 中,外接圆半径是1,且满足()()222sin sin sin sin A C A B b -=-,则△ABC 面积的最大值为答案:4计时双基练P251 第6题补充已知向量(sin ,1)2A m =-,()2,cos()nBC =+, ,,A B C 为锐角..ABC ∆的内角,其对应边为a ,b ,c . Ⅰ当m n ⋅取得最大值时,求角A 的大小;Ⅱ在Ⅰ成立的条件下,当a =,求22b c +的取值范围. 解:Ⅰ2(sin 212sin 22sin 2cos 2sin2)cos(sin 22--=++-=+=+-=⋅A A A A A C B A nm 0,0,0sin 2242A A A ππ<<∴<<∴<<,1sinA ∴=时,即A π=时,m n ⋅取得最大值,∴A π=正弦定理:2sin sin sin ===a b c R A B C其中R 为△ABC 外接圆的半径 22442cos 22cos(2)3sin 2cos 242sin(23b c B B B B B π+=---=-+=-ABC ∆为锐角三角形★注意:∆ABC 为锐角三角形⇔02<<、、A B C π讲评:1、计时双基练 P252 基础11---多个三角形问题2014·湖南卷如图,在平面四边形ABCD 中,AD =1,CD =2,AC =错误!.1求cos ∠CAD 的值;2若cos ∠BAD =-错误!,sin ∠CBA =错误!,求BC 的长.解 1由余弦定理可得cos ∠CAD =错误!=错误!=错误!,∴cos ∠CAD =错误!.2∵∠BAD 为四边形内角,∴sin ∠BAD >0且sin ∠CAD >0,则由正余弦的关系可得sin ∠BAD =错误!=错误!,且sin ∠CAD =错误!=错误!,由正弦的和差角公式可得sin ∠BAC =sin ∠BAD -∠CAD=sin ∠BAD cos ∠CAD -sin ∠CAD cos ∠BAD=错误!×错误!-错误!×错误!=错误!+错误!=错误!, 再由△ABC 的正弦定理可得错误!=错误!BC =错误!×错误!=3.2、45套之7--192---方程的思想课后作业一、计时双基练P251基础1-6;课本P63变式思考1、3补充练习1、2、3二、计时双基练P251基础7-11;培优1-4课本P63变式思考2三、课本P64典例、※对应训练补充练习4、5预习 第七节补充练习:1、2009山东文17已知函数x x x x f sin sin cos 2cos sin 2)(2-+=ϕϕ ππϕ=<<x 在)0(处取最小值; I 求ϕ的值;Ⅱ在ABC ∆中,c b a ,,分别是角A,B,C 的对边,已知,23)(,2,1===A f b a 求角C;解析Ⅰfx =2sinx 1cos cos sin sin 2x x ϕϕ++- =sinx+ϕ.因为 fx 在x =π时取最小值,所以 sin π+ϕ=-1,故 sin ϕ=1. 又 0<ϕ<π,所以ϕ=2π, Ⅱ由Ⅰ知fx=sinx+2π=cosx. 因为fA=cosA=3,且A 为△ABC 的角, 所以A =6π. 由正弦定理得 sinB =sin b A a =22, 又b >a,当4π=B 时,,12746πππππ=--=--=B A C 当43π=B 时,.12436πππππ=--=--=B A C 综上所述,12127ππ==C C 或 2、 已知ABC ∆中,若22,2==b a ,且三角形有两解,求角A 的取值范围;答案:由条件知b sin A <a ,即2错误!sin A <2,∴sin A <错误!,∵a <b ,∴A <B ,∴A 为锐角,∴0<A <错误!.3、已知△ABC 中,∠A =60°,BC=2错误!,则其外接圆面积为__________.答案:4π★注意:勿忘正弦定理中三角形各边与对角正弦的比为外接圆直径sin sin in 2s a b c A B R C=== R 为三角形外接圆半径 4、在四边形ABCD 中,∠B =∠D =90°,∠A =60°, AB =4,AD =5,则AC 的长为B .2错误!解析 如图,连结AC ,设∠BAC =α,则AC ·cos α=4,AC ·cos60°-α=5,两式相除得,错误!=错误!,展开解得,tan α=错误!∵α为锐角,∴cos α=错误!∴AC =错误!=2错误!解法二:补充△ABD 中,由余弦定理得21BD =由∠B =∠D =90°知AC 为△ABD 的外接圆直径由正弦定理得2127sin sin 620BD AC R A ︒====5、已知向量(sin ,1)2A m =-,()2,cos()nBC =+, ,,A B C 为锐角..ABC ∆的内角,其对应边为a ,b ,c .Ⅰ当m n ⋅取得最大值时,求角A 的大小; Ⅱ在Ⅰ成立的条件下,当a =, 求22b c +的取值范围. 解:Ⅰ2(sin 212sin 22sin 2cos 2sin2)cos(sin 22--=++-=+=+-=⋅A A A A A C B A nm 0,0,0sin 2242A A A ππ<<∴<<∴<<,1sinA ∴=时,即A π=时,m n ⋅取得最大值,∴A π=正弦定理:2sin sin sin ===a b c R A B C其中R 为△ABC 外接圆的半径 22442cos 22cos(2)2cos 242sin(23b c B B B B B π+=---=-+=-∆ABC 为锐角三角形⇔02<<、、A B C π6、2013年广州二模文数 第17题某单位有A 、B 、C 三个工作点,需要建立一个公共无线网络发射点O ,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为80AB =m ,70BC =m ,50CA =m .假定A 、B 、C 、O 四点在同一平面上.1求BAC ∠的大小;2求点O 到直线BC 的距离.答案13BAC π∠=23m 课后作业三、计时双基练P251基础1-6;课本P63变式思考1补充练习1、3、例2四、计时双基练P251基础7-11;培优1-4课本P63变式思考3补充练习2三、课本P63变式思考2课本P64典例、※对应训练补充练习4、5预习 第七节。

余弦定理、正弦定理课件-2025届高三数学一轮复习

余弦定理、正弦定理课件-2025届高三数学一轮复习

(2,8) .

2 + 1 > 0,
1
[解析] ∵2 a +1, a ,2 a -1是三角形的三边,∴ > 0,
解得 a > .显然2 a
2
2 − 1 > 0,
+1是三角形的最大边,则要使2 a +1, a ,2 a -1构成三角形,需满足 a +2 a -1
>2 a +1,解得 a >2.设最大边对应的角为θ(钝角),则 cos θ=
3
3
(6)在斜△ ABC 中,tan A +tan B +tan C =tan A ·tan B ·tan C .
(7)在△ ABC 中, a = b cos C + c cos B ; b = a cos C + c cos A ; c = b cos A + a cos B
(射影定理).
二、基础题练习
c2=② a2+b2-2ab cos C


.






=③
sin sin sin
2R
.

定理
余弦定理
2
cos A=

变形 cos B=④
cos C=⑤
2 −2
2
2
正弦定理
(1)a=2R sin A,b=⑥ 2R sin B ,
c=⑦ 2R sin C ;


(2) sin

(3)任意两边之和大于第三边,任意两边之差小于第三边.
(4)在△ ABC 中, sin ( A + B )= sin C ; cos ( A + B )=- cos C ;tan( A + B )=
-tan C ;

正余弦定理重点知识点

正余弦定理重点知识点

正弦定理和余弦定理一、正、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则定理正弦定理余弦定理内容asin A=bsin B=csin C=2Ra2=b2+c2-2bc cos A;b2=c2+a2-2ca cos B;c2=a2+b2-2ab cos C常见变形(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)a∶b∶c=sin A∶sin B∶sin C;(4)a+b+csin A+sin B+sin C=asin A=bsin B=csin C;(5)a sin B=b sin A,b sin C=c sin B,a sin C=c sin Acos A=b2+c2-a22bc;cos B=c2+a2-b22ac;cos C=a2+b2-c22ab二、常见正余弦定理的应用1、正弦定理求角:2、边角互化之正弦定理:3、边角互化之射影定理:4、余弦定理求边角: 5边角互化的速判:6、边角互化--伪降幂公式:三、对三角形解的个数的探究---正弦定理可以用来解决两类解三角形的问题:1.已知两角和任意一边,求另两边和另一角; 2.已知两边和其中一边的对角,求其他的边和角.第一类问题有唯一解,当三角形的两角和任一边确定时,三角形就被唯一确定. 第二类问题的三角形不能唯一确定,可能出现一解、两解或无解的情况. 下面以已知a ,b 和A ,解三角形为例加以说明.法一;由正弦定理、正弦函数的有界性及三角形的性质可得:0121法则(大招秒杀)(1)若sin B =b sin Aa >1,则满足条件的三角形的个数为0,即无解; (2)若sin B =b sin Aa =1,则满足条件的三角形的个数为1;(3)若sin B =b sin Aa <1,则满足条件的三角形的个数为1或2.显然由0<sin B =b sin Aa <1可得B 有两个值,一个为钝角,一个为锐角,考虑到“大角对大边”、“三角形内角和等于180°”等,此时需进行讨论.判断三角形解的个数也可由“三角形中大边对大角”来判定.设A 为锐角,若a ≥b ,则A ≥B ,从而B 为锐角,有一解;若a <b ,则A <B ,由正弦定理得sin B =b sin Aa ;①sin B >1,无解;②sin B =1,一解;③sin B <1,两解.四、三角形的面积公式S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 、r 分别是三角形外接圆、内切圆的半径),并可由此计算R ,r .五、三角形中的不定量问题题型一 最值问题:1、角度相关的最值问题:内角关系式+正弦型函数已知条件选用公式三角形的一边及此边上的高公式1:S △ABC =12a ·h a =12b ·h b =12c ·hc (h a ,h b ,h c 分别为边a ,b ,c 上的高)三角形的两边及夹角公式2:S △ABC =12ab sin C =12bc sin A =12ac sinB三角形的两角及一边公式3:S △ABC =12a 2sin B sin C sin A ,S △ABC =12b 2sin A sin Csin B ,S △ABC =12c 2sin A sin Bsin C.三角形的三边公式4:(海伦公式)S △ABC =()()()c p b p a p p ---,其中p =12(a +b +c ).2、边长相关的最值问题:①正弦定理+正弦型函数 ②余弦定理+基本不等式3、对称速算(已知对边对角b 、B ,求22,,ca ac c a ++周长,面积的最值和取值范围都可用)两边相等有最值,再看临界题型二 多三角形问题锁定三角形,选择公式:两角用正弦,一角用余弦 题型三 割线问题(通法:锁定三角形,选择公式) 常规算法:正余弦定理的选用 已知割线分比1、涉及对应角:向量法(巴掌定理再求模)2、不涉及对应角:补角模型:抓住补角,两次余弦(依据:0cos cos 180=+=+βαβα,) 3、涉及堆堆角:堆堆角模型:堆堆角,面积法(利用大三角形面积=两小三角形面积和) 题型四:中线模型1、常规以及解答题求中线方法:两次余弦定理求中线长2、选填注意中线定理的应用:题型五:角分线模型1、特殊割线模型,注意角平分线定理的应用:角分线模型+补角模型2、中难题优先考虑:堆堆角,面积法 题型六:四边形问题1、求值问题:补角模型(抓住补角,两次余弦)2、秒杀大招(对角互补): 海伦公式秒杀面积:托勒密定理秒杀对角线最大值:BD AC AD BC CD AB ⋅≥⋅+⋅四点共圆取等cab F ED A BC最值问题:正弦定理+正弦型函数Or 余弦定理+基本不等式补充知识点--三角形中线、角平分线定理一、中线定理,又称阿波罗尼斯定理,一种欧式几何的定理,表示三角形三边和中线长度关系 定理:三角形一条中线两侧所对边平方和等于底边的一半平方和与该中边平方和的2倍2222122b c a AD +=+ 2222122b a c CF +=+2222122a c b BE +=+证明:三角形ABC 的边,,a b c 所对的角分别为,,A B C ,其中点,,D E F 分别是,,BC AC AB 的中点,如图所示:以2222122b c a AD +=+为例 在三角形ABD ,由余弦定理,可得:2222cos AB AD BD AD BD ADB =+-⋅∠,即222112cos 22c AD a AD a ADB ⎛⎫⎛⎫=+-⋅⋅∠ ⎪ ⎪⎝⎭⎝⎭-------①在三角形ADC 中,又余弦定理可知:2222cos AC AD CD AD CD ADC =+-⋅∠即222112cos 22b AD a AD a ADC ⎛⎫⎛⎫=+-⋅⋅∠ ⎪ ⎪⎝⎭⎝⎭-----②ADC ADC π∠+∠=,则ADC ADC π∠=-∠, ∴cos cos ADC ADC ∠=-∠有①②联立,且①+②,得:2222122c b AD a +=+,命题得证. 二、角平分线定理:定理1:角平分线上的点到这个角两边的距离相等定理2:三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例. 证明:如图,在ABC ∆,AD 是BAC ∠的平分线,过点D 作AB DE ⊥,AC DF ⊥,AD 是角BAC ∠的平分线,AB DE ⊥,AC DF ⊥DF DE =∴(定理1)DE AB S ABD ⋅=∆21 ,AD AC S ACD ⋅=21ACAB S S ACD ABD ::=∴∆∆,过点A 作BC AG ⊥,垂直为GAG BD S ABD ⋅=∆21 ,AG CD S ACD ⋅=∆21CDBD S S ACD ABD ::=∴∆∆CD BD AC AB ::=∴定理3:已知AD是ABC的角平分,则CDBDACABAD⋅-⋅=2(角平分线长定理)补充向量知识点六:向量的代数策略和几何策略题型1:建系法巧算模与夹角:有垂直,有特殊角度,可建系题型2:建系法巧算数量积、巧定系数:不定图形求值问题,可取特殊情况建系题型3:建系法处理动点最值:动点可利用共线向量,求出坐标题型4:几何法巧算向量:题型5:几何法巧算模的最值:三角不等式(中间和差模,两边模和差)正余弦定理在实际中的应用对实际应用问题中的一些名称、术语的含义的理解(1)坡角:坡向与水平方向的夹角,如图.(2)仰角和俯角:在视线和水平线所成角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角,如图.(3)方位角:指从正北方向顺时针转到目标方向线所成的角,如图中B点的方位角为α.(4)方向角:从指定方向线到目标方向线所成的小于90°的水平角,如南偏西60°,指以正南方向为始边,顺时针方向向西旋转60°.如图中∠ABC为北偏东60°或为东偏北30°.(1)(2)(3)(4)。

正余弦知识点总结

正余弦知识点总结

知识点正、余弦定理总结第一章 解三角形 §1.1 正弦定理和余弦定理材拓展1.几何法证正弦定理设BD 为△ABC 外接圆⊙O 的直径,则BD =2R ,下面按∠A 为直角、锐角、钝角三种情况加以证明.(1)若∠A 为直角,如图①,则BC 经过圆心O ,∴BC 为圆O 的直径,BC =2R ,asin A=BCsin 90°=BC =2R . (2)若∠A 为锐角,如图②,连结CD ,则∠BAC =∠BDC ,在Rt △BCD 中,BC sin ∠BDC =BCsin ∠BAC,∵BC sin ∠BDC =BD =2R ,∴BC sin ∠BAC =2R . 即a sin A=2R . (3)若∠A 为钝角,如图③,连结CD ,则∠BAC +∠CDB =π,所以sin ∠BAC =sin ∠CDB ,在Rt △BCD 中,BCsin ∠CDB=BD =2R ,又∵BC sin ∠CDB =BCsin ∠BAC ,∴BC sin ∠BAC=2R ,即a sin A =2R .可证得:a sin A =2R .同理可证:b sin B =2R ,csin C=2R .所以,不论△ABC 是锐角三角形,直角三角形,还是钝角三角形,都有:a sin A =bsin B =csin C=2R (其中R 为△ABC 的外接圆的半径).正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于其外接圆的直径.2.坐标法证余弦定理如图所示,以△ABC的顶点A为原点,射线AC为x轴的正半轴,建立直角坐标系,这时顶点B可作角A终边的一个点,它到原点的距离r=c.设点B的坐标为(x,y),由三角函数的定义可得:x=c cos A,y=c sin A,即点B为(c cos A,c sin A),又点C的坐标是(b,0).由两点间的距离公式,可得:a=BC=(b-c cos A)2+(-c sin A)2.两边平方得:a2=(b-c cos A)2+(-c sin A)2=b2+c2-2bc cos A.以△ABC的顶点B或顶点C为原点,建立直角坐标系,同样可证b2=a2+c2-2ac cos B,c2=a2+b2-2ab cos C.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦值的积的2倍.余弦定理的第二种形式是:cos A=b2+c2-a22bc,cos B=a2+c2-b22ac,cos C=a2+b2-c22ab.易知:A为锐角⇔b2+c2-a2>0;A为直角⇔b2+c2-a2=0;A为钝角⇔b2+c2-a2<0.由此可见:余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.法突破一、解三角形的常见类型及解法方法链接:在三角形的边、角六个元素中,只要知道三个,其中至少一个元素为边,即已知条件应用定理一般解法一边和两角(如a,B,C)正弦定理由A+B+C=180°,求角A;由正弦定理求出b与c.在有解时只有一解.两边和夹角(如a,b,C)余弦定理正弦定理由余弦定理求第三边c;由正弦定理求出小边所对的角;再由A+B+C=180°求出另一角.在有解时只有一解.三边(a,b,c)余弦定理由余弦定理求出角A、B;再利用A+B+C =180°,求出角C.在有解时只有一解.两边和其中一边的对角(如a,b,A)正弦定理余弦定理由正弦定理求出角B;由A+B+C=180°,求出角C;再利用正弦定理或余弦定理求c.可有两解,一解或无解.在解题过程中,也可以先利用正弦定理求解,再利用“三角形内角和定理”和“大边对大角”来检验.例1如图所示,在四边形ABCD中,已知AD⊥CD,AD=10,AB=14,∠BDA=60°,∠BCD =135°.求BC的长.解在△ABD中,设BD=x,则BA2=BD2+AD2-2BD·AD·cos∠BDA,即142=x2+102-2·10x·cos 60°,整理得x2-10x-96=0,解之得x1=16,x2=-6(舍去).由正弦定理:BCsin∠CDB=BDsin∠BCD,∴BC=16sin 135°·sin 30°=8 2.二、三角形解的个数判断方法链接:已知三角形的两边及一边的对角,可用正弦定理解三角形,也可用余弦定理解三角形.如已知a,b,A,可先由余弦定理求出边c,即列关于c的方程a2=b2+c2-2bc cos A,解出c后要注意验证c值是否与a,b能构成三角形.符合题意的c值有几个,对应的三A为锐角A为钝角或直角图形关系式a=b sin A a≥bb sin A<a<ba<b sin Aa>b a≤b解个数一解一解两解无解一解无解例2已知△ABC中,b=3,c=33,B=30°,求a的值.先将b=3,c=33,B=30°代入b2=a2+c2-2ac cos B,有32=a2+(33)2-2a·33·cos 30°.整理,得a2-9a+18=0.所以a=6或a=3,经检验6和3均符合题意.所以a的值为6或3.方法二利用正弦定理求解.∵c sin B=323,∴c>b>c sin B.∴△ABC有两解.∵c sin C =b sin B =6,∴sin C =32. ∴C =60°或C =120°. 当C =60°时,A =180°-B -C =90°.由a sin A =b sin B =6,解得:a =6. 当C =120°时,A =180°-B -C =30°.由a sin A =b sin B=6,解得a =3.所以a 的值为6或3. 三、三角形的面积公式及应用方法链接:三角形面积的常用计算公式(1)S =12ah a (h a 表示a 边上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c ) (r 为三角形内切圆半径);(4)S =abc4R(可由正弦定理推得);(5)S =2R 2sin A ·sin B ·sin C (R 是三角形外接圆半径); (6)S =p (p -a )(p -b )(p -c ) (p 是三角形的半周长). 例3 在△ABC 中,已知∠B =60°,面积为103,外接圆半径为R =733,求三边a ,b ,c .解 b =2R sin B =2×733×32=7,∵S △ABC =12ac sin B ,∴103=12ac ×32,∴ac =40,由b 2=a 2+c 2-2ac cos B ,得a 2+c 2=89.由⎩⎪⎨⎪⎧ a 2+c 2=89ac =40 解得⎩⎪⎨⎪⎧a +c =13a -c =±3. ∴⎩⎪⎨⎪⎧ a =8c =5或⎩⎪⎨⎪⎧a =5c =8. 所以△ABC 的三边长为a =8,b =7,c =5或a =5,b =7,c =8. 四、利用正、余弦定理求三角形外接圆半径方法链接:利用正弦定理a sin A =b sin B =csin C=2R ,(其中R 是△ABC 的外接圆半径)可以推得以下结论:(1)R =a 2sin A =b 2sin B =c2sin C;(2)R =a +b +c2(sin A +sin B +sin C );(3)R =abc4S(其中S 为△ABC 的面积);(4)R =abc 4p (p -a )(p -b )(p -c )(其中p 为12(a +b +c ),即△ABC 的半周长).有了这些结论,我们可以容易解决涉及三角形外接圆的问题. 例4如图所示,已知∠POQ =60°,M 是∠POQ 内的一点,它到两边的距离分别为MA =2,MB =11,求OM 的长.解 如图所示,连接AB ,由已知O ,A ,M ,B 四点都在以OM 为直径的圆上.这个圆就是△ABM 的外接圆. ∵∠POQ =60°,∴∠AMB =120°.在△ABM 中,AB 2=MA 2+MB 2-2MA ·MB cos 120°.∴AB 2=22+112-2×2×11×⎝⎛⎭⎫-12=147∴AB =7 3. 由正弦定理得OM =AB sin ∠AMB =AB sin 120°=73sin 60°=14.五、利用正、余弦定理判断三角形形状方法链接:(1)判断三角形的形状,主要有以下两种途径:①利用正、余弦定理,把已知条件转化为边边关系,然后通过因式分解,配方等方法,得出边的相应关系,从而判断三角形的形状;②利用正、余弦定理,把已知条件转化为角角关系,然后通过三角恒等变形,得出内角的关系,从而判断三角形的形状.(2)判断三角形的形状时,在等式变形中,一般两边不要约去公因式,以免漏解.(3)常见的三角形有:正三角形、等腰三角形、直角三角形、等腰直角三角形、钝角三角形或锐角三角形.例5 在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状. 解 方法一 由正弦定理,设a sin A =b sin B =c sin C=k >0, ∴a =k sin A ,b =k sin B ,c =k sin C ,代入已知条件得 k sin A cos A +k sin B cos B =k sin C cos C , 即sin A cos A +sin B cos B =sin C cos C .根据二倍角公式得sin 2A +sin 2B =sin 2C , 即sin[(A +B )+(A -B )]+sin[(A +B )-(A -B )] =2sin C cos C ,∴2sin(A +B )cos(A -B )=2sin C cos C . ∵A +B +C =π,∴A +B =π-C , ∴sin(A +B )=sin C ≠0, ∴cos(A -B )=cos C , 又∵cos(A +B )=-cos C , ∴cos(A -B )+cos (A +B )=0,∴2cos A cos B =0,∴cos A =0或cos B =0, 即A =90°或B =90°,∴△ABC 是直角三角形. 方法二 由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab,代入已知条件得 a ·b 2+c 2-a 22bc +b ·a 2+c 2-b 22ac +c ·c 2-a 2-b 22ab=0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4. ∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.六、利用正、余弦定理证明三角形中的恒等式方法链接:证明三角恒等式有三种方向:一种是从等式某一侧证到另一侧;一种是将式子的两侧同时整理化简得到相同的结果;最后一种是将要证的恒等式进行适当的等价变形,证明等价变形后的式子成立即可.不论哪种方向都应遵循“从繁化简”的原则.例6 在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,求证:a 2-b 2cos A +cos B +b 2-c 2cos B +cos C +c 2-a 2cos C +cos A=0.分析 利用正弦定理把边角统一为角的代数式,再结合三角公式求证.证明 由正弦定理a sin A =b sin B =csin C=2R .∴a =2R sin A ,b =2R sin B ,C =2R sin C .∴a 2-b 2cos A +cos B =4R 2(sin 2A -sin 2B )cos A +cos B =4R 2[(1-cos 2A )-(1-cos 2B )]cos A +cos B=4R 2(cos 2B -cos 2A )cos A +cos B=4R 2(cos B -cos A );同理b 2-c 2cos B +cos C =4R 2(cos C -cos B );c 2-a 2cos C +cos A=4R 2(cos A -cos C ).∴左边=a 2-b 2cos A +cos B +b 2-c 2cos B +cos C +c 2-a 2cos C +cos A=4R 2(cos B -cos A )+4R 2(cos C -cos B )+4R 2(cos A -cos C ) =4R 2(cos B -cos A +cos C -cos B +cos A -cos C )=0. ∴左边=右边.即a 2-b 2cos A +cos B +b 2-c 2cos B +cos C +c 2-a 2cos C +cos A =0成立.区突破1.忽视构成三角形的条件而致错例1 已知钝角三角形的三边a =k ,b =k +2,c =k +4,求k 的取值范围. [错解] ∵c >b >a 且△ABC 为钝角三角形, ∴C 为钝角.由余弦定理得cos C =a 2+b 2-c 22ab=k 2+(k +2)2-(k +4)22k (k +2)=k 2-4k -122k (k +2)<0.∴k 2-4k -12<0,解得-2<k <6. 又∵k 为三角形的边长,∴k >0. 综上所述,0<k <6.[点拨] 忽略了隐含条件:k ,k +2,k +4构成一个三角形,k +(k +2)>k +4.即k >2而不是k >0.[正解] ∵c >b >a ,且△ABC 为钝角三角形, ∴C 为钝角.由余弦定理得cos C =a 2+b 2-c 22ab =k 2-4k -122k (k +2)<0.∴k 2-4k -12<0,解得-2<k <6.由两边之和大于第三边得k +(k +2)>k +4, ∴k >2,综上所述,k 的取值范围为2<k <6.2.忽视边角之间的关系而致错 例2 在△ABC 中,已知A =60°,a =6,b =2,则∠B =____. [错解] 在△ABC 中,由正弦定理,可得sin B =b sin A a =2sin 60°6=22,所以B =45°或B =135°.[点拨] 上述错解中的错误十分明显,若B =135°,则A +B =195°>180°,故B =135°不适合题意,是个增解.这个增解产生的根源是忽视了a >b 这一条件,根据三角形的边角关系,角B 应小于角A ,故B =135°应舍去.[正解] 在△ABC 中,由正弦定理可得sin B =b sin A a =2sin 60°6=22,因为a >b ,所以A >B ,所以B =45°.3.忽视角之间的关系而致错例3 在△ABC 中,tan A tan B =a 2b 2,试判断三角形的形状.[错解] tan A tan B =a 2b 2⇔sin A cos B cos A sin B =sin 2Asin 2B ,⇔cos B cos A =sin A sin B, ⇔sin A cos A =sin B cos B , ⇔sin 2A =sin 2B ,∴A =B . ∴△ABC 是等腰三角形.[点拨] 上述错解忽视了满足sin 2A =sin 2B 的另一个角之间的关系:2A +2B =180°.[正解] tan A tan B =a 2b 2⇔sin A cos B cos A sin B =sin 2Asin 2B ,⇔cos B cos A =sin A sin B⇔sin A cos A =sin B cos B ⇔sin 2A =sin 2B⇔2A =2B 或2A +2B =π.∴A =B 或A +B =π2.∴△ABC 是等腰三角形或直角三角形.题多解例 已知△ABC 中,AB =1,BC =2,则角C 的取值范围是( )A .0<C ≤π6B .0<C <π2C.π6<C <π2D.π6<C ≤π3分析 数学中的许多问题可以从不同角度去考虑.例如本题可以从正弦定理、余弦定理、构造图形等角度去考虑.解析 方法一 (应用正弦定理) ∵AB sin C =BC sin A , ∴1sin C =2sin A∴sin C =12sin A ,∵0<sin A ≤1,∴0<sin C ≤12.∵AB <BC ,∴C <A ,∴C 为锐角,∴0<C ≤π6.方法二 (应用数形结合)如图所示,以B 为圆心,以1为半径画圆,则圆上除了直线BC 上的点外,都可作为A 点.从点C 向圆B 作切线,设切点为A 1和A 2,当A 与A 1、A 2重合时,角C 最大,易知此时:BC =2,AB =1,AC ⊥AB ,∴C =π6,∴0<C ≤π6.答案 A题赏析1.(2009·上海)已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.(1)证明 ∵m ∥n ,∴a sin A =b sin B ,即a ·a 2R =b ·b 2R,其中R 是△ABC 外接圆半径, ∴a 2=b 2,∴a =b .∴△ABC 为等腰三角形. (2)解 由题意知m ·p =0, 即a (b -2)+b (a -2)=0. ∴a +b =ab .由余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab , 即(ab )2-3ab -4=0.∴ab =4(舍去ab =-1),∴S △ABC =12ab sin C =12×4×sin π3= 3.赏析 在正、余弦定理与平面向量的交汇点上命题是近几年高考的热点题型之一,题目难度一般不大,以中、低档题为主.2.(2011·大纲卷)△ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,a sin A +c sin C -2a sin C =b sin B .(1)求B ; (2)若A =75°,b =2,求a ,c .解 (1)由正弦定理得a 2+c 2-2ac =b 2, 由余弦定理得b 2=a 2+c 2-2ac cos B ,故cos B =22.又B 为三角形的内角,因此B =45°. (2)sin A =sin(30°+45°) =sin 30°cos 45°+cos 30°sin 45°=2+64.故a =b sin Asin B =2+62=1+3,c =b sin C sin B =2×sin 60°sin 45°= 6.。

(完整版)正弦定理、余弦定理知识点

(完整版)正弦定理、余弦定理知识点

正弦定理、余弦定理讲师:王光明【基础知识点】1. 三角形常用公式:A +B +C =π;S =ab sin C =bc sin A ==ca sin B ;2121212.三角形中的边角不等关系: A>B a>b,a+b>c,a-b<c ;;⇔3.【正弦定理】:===2R (外接圆直径);A a sin B b sin Ccsin 正弦定理的变式:; a ∶b ∶c =sin A ∶sin B ∶sin C .⎪⎩⎪⎨⎧===C R c B R b AR a sin 2sin 2sin 24.正弦定理应用范围: ①已知两角和任一边,求其他两边及一角. ②已知两边和其中一边对角,求另一边的对角.③几何作图时,存在多种情况.如已知a 、b 及A ,求作三角形时,要分类讨论,确定解的个数.已知两边和其中一边的对角解三角形,有如下的情况:(1)A 为锐角AABa=bsin A bsin A<a<b a b ≥ 一解 两解 一解(2)A 为锐角或钝角当时有一解.a>b 5.【余弦定理】 a 2=b 2+c 2-2bccosA .c 2=a 2+b 2-2abcosC .b 2=a 2+c 2-2accosB .若用三边表示角,余弦定理可以写为、6.余弦定理应用范围:(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边.【习题知识点】知识点1 运用判断三角形形状例题1在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.【分析】利用正弦定理或余弦定理判断三角形形状,可以将三角形中的边用角表示,也可将角用边来表示.从中找到三角形中的边角关系,判断出三角形的形状.【解析】解法1:由扩充的正弦定理:代入已知式2RsinAcosB=2RsinBcosAsinAcosB-cosAsinB=0 , sin(A-B)=0A-B=0 ∴A=B 即△ABC 为等腰三角形解法2:由余弦定理: 22222222bc a c b b ac b c a a -+⋅=-+⋅ 22b a = ∴ b a =即△ABC 为等腰三角形.知识点2 运用正、余弦定理解三角形解三角形问题中正、余弦定理的选择:(1)在下述情况下应首先使用余弦定理: ①已知三条边(边边边),求三个角;②已知两边和它们的夹角(边角边),求其它一边和两角;(2)在下述情况下应首先使用正弦定理:①已知两边和一边的对角(边边角),求其它一边和两角;②已知两角和任一边(角角边、角边角),求其它两边和一角.例题2 在△ABC 中,已知,,B=45︒ 求A 、C 及c .3=a 2=b 【分析】在解斜三角形应用过程中,注意要灵活地选择正弦定和余弦定理,解得其它的边和角【解析】解法1:由正弦定理得:23245sin 3sin sin === b B a A ∵B=45︒<90︒ 即b <a ∴A=60︒或120︒当A=60︒时C=75︒ 22645sin 75sin 2sin sin +===BCb c当A=120︒时C=15︒ 22645sin 15sin 2sin sin -===B C b c 解法2:设c =x 由余弦定理将已知条件代入,整理:解之:B ac c a b cos 2222-+=0162=+-x x 226±=x 当时 从而A=60︒ ,C=75︒226+=c 2)13(231226223)226(22cos 22221=++=+⋅⋅-++=-+=bc a c b A 当时同理可求得:A=120︒ C=15︒.226-=c 知识点3 解决与三角形在关的证明、计算问题例题3 已知A 、B 、C 为锐角,tanA=1,tanB=2,tanC=3,求A+B+C 的值. 【分析】本题是要求角,要求角先要求出这个角的某一个三角函数值,再根据角的范围确定角.本题应先求出A+B 和C 的正切值,再一次运用两角和的正切公式求出A+B+C .【解析】 A B C 、、为锐角∴<++<0270°°A B C 又,,由公式可得tan tan A B ==12tan()tan tan tan tan A B A B A B +=+-⋅=+-=-112123[]tan()tan ()A B C A B C ++=++=++-+⋅tan()tan tan()tan A B C A B C 1 =-+--⨯33133() =0所以A+B+C=π知识点4 求三角形的面积例题4 △ABC 中,D 在边BC 上,且BD =2,DC =1,∠B =60o ,∠ADC =150o ,求AC 的长及△ABC 的面积.【解析】在△ABC 中,∠BAD =150o -60o =90o ,∴AD =2sin60o =3.A在△ACD 中,AD 2=(3)2+12-2×3×1×cos150o =7,∴AC =7. ∴AB =2cos60o =1.S △ABC =21×1×3×sin60o =343.知识点4 解决实际为题例题4 如图,海中有一小岛,周围3.8海里内有暗礁。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正余弦定理知识点
部门: xxx
时间: xxx
整理范文,仅供参考,可下载自行编辑
平面向量知识点
考试内容:数学探索©版权所有向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离、平移.数学探索©版权所有考试要求:数学探索©版权所有<1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念.数学探索©版权所有<2)掌握向量的加法和减法.数学探索©版权所有<3)掌握实数与向量的积,理解两个向量共线的充要条件.数学探索©版权所有<4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.数学探索©版权所有<5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.数学探索©版权所有<6)掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用掌握平移公式.
1.本章知识网络结构
2.向量的概念
(1>向量的基本要素:大小和方向向量的表示:几何表示法
;字母表示:a;
坐标表示法 a=xi+yj=<x,y)
(3>向量的长度:即向量的大小,记作|a|
(4>特殊的向量:零向量a=O|a|=
单位向量aO为单位向量|aO|=
(5>相等的向量:大小相等,方向相同x1,y1>=<x2,y2)
(6> 相反向量:a=-b b=-a a+b=0
(7>平行向量(共线向量>:方向相同或相反的向量,称为平行向量.记作a∥b.平行向量也称为共线向量
3.向量的运算
,
1.
2.时,同
向。

向。

.
是一个数
1. 2.
4.重要定理、公式 (1>平面向量基本定理
e1,e2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数λ1, λ2,使a =λ1e1+λ
(2>两个向量平行的充要条件 a∥b
a =λb(b≠0>
x1y2-x2y1=
(3>两个向量垂直的充要条件 a⊥b
a·b=O
x1x2+y1y2=
(4>线段的定比分点公式 设点P 分有向线段
所成的比为λ,即
=λ
,则


(线段的定比分点的向量公式
(线段定比分点的坐标公式
当λ=1时,得中点公式:
=<+)或
(5>平移公式
设点P(x,y>按向量a=<h,k)平移后得到点P′<x′,y′),
则=+a或
曲线y=f<x)按向量a=<h,k)平移后所得的曲线的函数解读式为:
y-k=f<x-h>
(6>正、余弦定理
正弦定理:
余弦定理:a2=b2+c2-2bccosA,
b2=c2+a2-2cacosB,
c2=a2+b2-
<7)三角形面积计算公式:
设△ABC的三边为a,b,c,其高分别为ha,hb,hc,半周长为P,外接圆、内切圆的半径为R,r.
①S△=1/2aha=1/2bhb=1/2chc②S△=Pr ③S△=abc/4R
④S△=1/2sinC·ab=1/2ac·sinB=1/2cb·sinA
⑤S△= [海伦公式]
⑥S△=1/2<b+c-a)ra[如下图]=1/2<b+a-c)rc=1/2<a+c-b)rb [注]:到三角形三边的距离相等的点有4个,一个是内心,其余3个是旁心.
如图:
图1中的I为S△ABC的内心,S△=Pr
图2中的I为S△ABC的一个旁心,S△=1/2<b+c-a)ra
附:三角形的五个“心”;
重心:三角形三条中线交点.
外心:三角形三边垂直平分线相交于一点.
内心:三角形三内角的平分线相交于一点.
垂心:三角形三边上的高相交于一点.
旁心:三角形一内角的平分线与另两条内角的外角平分线相交一点.
⑸已知⊙O是△ABC的内切圆,若BC=a,AC=b,AB=c [注:s为△ABC的半周长,即]
则:①AE==1/2<b+c-a)
②BN==1/2<a+c-b)
③FC==1/2<a+b-c)
综合上述:由已知得,一个角的邻边的切线长,等于半周长减去对边<如图4).
特例:已知在Rt△ABC,c为斜边,则内切圆半径r=<如图3).
⑹在△ABC中,有下列等式成立.
证明:因为所以,所以,
结论!
⑺在△ABC中,D是BC上任意一点,则.
证明:在△ABCD中,由余弦定理,有①
在△ABC中,由余弦定理有②,②代入①,化简可得,<斯德瓦定理)
①若AD是BC上的中线,;
②若AD是∠A的平分线,,其中为半周长;
③若AD是BC上的高,,其中为半周长.
⑻△ABC的判定:
△ABC为直角△∠A + ∠B =
<△ABC为钝角△∠A + ∠B<
>△ABC为锐角△∠A + ∠B>
附:证明:,得在钝角△ABC中,
⑼平行四边形对角线定理:对角线的平方和等于四边的平方和.
空间向量
1.空间向量的概念:
具有大小和方向的量叫做向量
注:⑴空间的一个平移就是一个向量
⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量
⑶空间的两个向量可用同一平面内的两条有向线段来表示2.空间向量的运算
定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下
运算律:⑴加法交换律:
⑵加法结合律:
⑶数乘分配律:
3共线向量
表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.平行于记作.
当我们说向量、共线<或//)时,表示、的有向线段所
在的直线可能是同一直线,也可能是平行直线.
4.共线向量定理及其推论:
共线向量定理:空间任意两个向量、<≠),//的充要
条件是存在实数λ,使=λ.
推论:如果为经过已知点A且平行于已知非零向量的直线,
那么对于任意一点O,点P在直线上的充要条件是存在实数t满足等式 p1EanqFDPw

其中向量叫做直线的方向向量.
5.向量与平面平行:
已知平面和向量,作,如果直线平行于或在
内,那么我们说向量平行于平面,记作:.
通常我们把平行于同一平面的向量,叫做共面向量
说明:空间任意的两向量都是共面的
6.共面向量定理:
如果两个向量不共线,与向量共面的充要条件是存在
实数使
推论:空间一点位于平面内的充分必要条件是存在有序
实数对,使或对空间任一点,有

①式叫做平面的向量表达式
7空间向量基本定理:
如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组,使
推论:设是不共面的四点,则对空间任一点,都存在
唯一的三个
有序实数,使
8空间向量的夹角及其表示:
已知两非零向量,在空间任取一点,作,则
叫做向量与的夹角,记作;且规定,显
然有;若,则称与互相垂直,记作:
.DXDiTa9E3d
9.向量的模:
设,则有向线段的长度叫做向量的长度或模,记作:
.
10.向量的数量积:.
已知向量和轴,是上与同方向的单位向量,作点
在上的射影,作点在上的射影,则叫做向量在轴上
或在上的正射影. RTCrpUDGiT
可以证明的长度.
11.空间向量数量积的性质:
<1).<2).<3).
12.空间向量数量积运算律:
<1).<2)<交换律)<3)
<分配律).
空间向量的坐标运算
一.知识回顾:
<1)空间向量的坐标:空间直角坐标系的x轴是横轴<对应为横坐标),y轴是纵轴<对应为纵轴),z轴是竖轴<对应为竖坐标).5PCzVD7HxA
①令=(a1,a2,a3>,,则

(用到常用的向量模与向量之间的转化:
>
②空间两点的距离公式:.
<2)法向量:若向量所在直线垂直于平面,则称这个向量垂直于
平面,记作,如果那么向量叫做平面的法向量.
<3)用向量的常用方法:
①利用法向量求点到面的距离定理:如图,设n是平面的法向
量,AB是平面的一条射线,其中,则点B到平面的距离为
.jLBHrnAILg
②利用法向量求二面角的平面角定理:设分别是二面角
中平面的法向量,则所成的角就是所求二面角的平面角或其
补角大小<方向相同,则为补角,反方,则为其夹角).xHAQX74J0X
③证直线和平面平行定理:已知直线平面,,且
CDE三点不共线,则a∥的充要条件是存在有序实数对使
.<常设求解若存在即证毕,若不
存在,则直线AB与平面相交).LDAYtRyKfE
申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

相关文档
最新文档