北师大版七年级数学上册教案《角的比较》
北师大版七年级上册4.4角的比较教学设计
1.教师引导学生回顾本节课所学的内容,总结角的大小比较的方法和技巧。
2.学生分享自己在学习过程中遇到的困难和收获。
3.教师强调本节课的重点,提醒学生在日常生活中多观察、多思考,将所学知识应用到实际问题中。
4.布置课后作业,巩固所学知识。
五、作业布置
为了巩固本节课所学知识,培养学生的独立思考和应用能力,特布置以下作业:
3.探究题:
小组合作,讨论并总结:在平面几何中,还有哪些关于角的大小比较的性质和定理?请举例说明。
作业要求:
1.作业需独立完成,书写工整,保持卷面整洁。
2方法。
3.对于选做题,鼓励学生发挥想象,勇于尝试,培养创新意识。
4.探究题要求小组共同讨论,形成统一的结论,并在课堂上进行分享。
1.充分发挥学生的主体作用,鼓励学生积极参与,表达自己的观点和疑问。
2.注重培养学生的空间想象能力,通过实物演示、动手操作等方式,帮助学生建立角的直观印象。
3.引导学生运用已学知识,发现角的大小比较的规律,培养学生的逻辑思维和归纳总结能力。
4.针对不同学生的学习情况,提供有针对性的指导,关注个体差异,使每位学生都能在原有基础上得到提高。
(2)同角或等角的余角相等:如果两个角是同一个角或相等角的余角,那么这两个角的大小相等。
(3)角的补角相等:两个角的和为180度,这两个角叫做补角,它们的大小相等。
2.教师结合实例,进行演示,让学生在实际操作中掌握角的大小比较方法。
(三)学生小组讨论
1.教师将学生分成若干小组,每组发放一套含有不同角度的扇形卡片。
(二)过程与方法
1.引导学生观察生活中的实例,发现角的大小有差异,激发学生对角的大小比较的兴趣。
2.通过小组合作,让学生动手操作,使用直尺和量角器测量角的大小,培养学生的动手操作能力和合作精神。
北师大版数学七年级上册4.4《角的比较》教学设计
北师大版数学七年级上册4.4《角的比较》教学设计一. 教材分析《角的比较》这一节的内容主要涉及到角的概念和角的分类。
通过这一节的学习,学生能够理解角的大小比较方法,掌握锐角、直角、钝角、平角、周角的定义,并能够正确判断各种角的类型。
本节课的内容对于学生来说比较抽象,需要通过大量的实例和练习来帮助学生理解和掌握。
二. 学情分析学生在学习这一节内容之前,已经学习了线段、射线和直线的基本概念,对于图形的认识有一定的基础。
但是,对于角的概念和角的分类,学生可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。
此外,学生可能对于角的大小比较方法存在一定的困难,需要通过大量的练习来熟练掌握。
三. 教学目标1.知识与技能:学生能够理解角的概念,掌握锐角、直角、钝角、平角、周角的定义,并能够正确判断各种角的类型。
2.过程与方法:学生能够通过观察、操作、交流等活动,探索角的大小比较方法,并能够运用这些方法解决实际问题。
3.情感态度价值观:学生能够积极参与数学学习,培养观察和思考的能力,提高对数学的兴趣。
四. 教学重难点1.教学重点:学生能够理解角的概念,掌握锐角、直角、钝角、平角、周角的定义,并能够正确判断各种角的类型。
2.教学难点:学生能够探索角的大小比较方法,并能够运用这些方法解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实例和图片,引发学生的兴趣和好奇心,帮助学生理解角的概念和角的分类。
2.操作教学法:通过学生的实际操作,培养学生的动手能力和观察能力,帮助学生探索角的大小比较方法。
3.交流讨论法:通过学生的交流和讨论,促进学生的思维发展,培养学生的合作意识。
六. 教学准备1.教具准备:准备一些角的模型和图片,用于展示和讲解。
2.学具准备:准备一些硬纸板和直尺,让学生自己制作和测量角。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实例和图片,如钟表、自行车等,引导学生观察和思考这些实例中的角,引发学生的兴趣和好奇心,从而引出本节课的主题——角的比较。
北师大版数学七年级上册4.4《角的比较》教案
北师大版数学七年级上册4.4《角的比较》教案一. 教材分析《角的比较》是北师大版数学七年级上册4.4节的内容,主要包括角的概念、分类和度量。
本节课通过引入角的比较,让学生理解角的大小不仅与边的长短有关,还与角的开口大小有关。
教材内容由浅入深,从基本概念到实际应用,使学生能够逐步掌握角的大小比较方法。
二. 学情分析学生在进入七年级前,已经学习了角的基本概念,如锐角、直角、钝角等。
他们对角的大小有一定的认识,但可能仅局限于边的长短。
通过本节课的学习,学生需要理解角的大小不仅与边的长短有关,还与角的开口大小有关。
此外,学生需要学会用量角器测量角的大小,并能进行角的比较。
三. 教学目标1.知识与技能:学生能够理解角的概念,掌握角的大小比较方法,会用量角器测量角的大小。
2.过程与方法:学生通过观察、操作、交流等活动,培养逻辑思维能力和解决问题的能力。
3.情感态度与价值观:学生培养对数学的兴趣,激发探究精神,培养合作意识。
四. 教学重难点1.教学重点:学生能够理解角的大小比较方法,会用量角器测量角的大小。
2.教学难点:学生能够灵活运用角的大小比较方法,解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入角的概念,激发学生学习兴趣。
2.启发式教学法:引导学生主动探究角的大小比较方法,培养学生的思维能力。
3.合作学习法:学生分组讨论,共同解决问题,培养学生的合作意识。
六. 教学准备1.教具:量角器、直尺、三角板等。
2.教学素材:课件、教学图片等。
七. 教学过程1.导入(5分钟)利用课件展示生活中常见的角,如钟表、自行车等,引导学生关注角的大小。
提问:你们认为角的大小与什么有关?2.呈现(10分钟)介绍角的概念,讲解角的大小比较方法。
通过示例,让学生明白角的大小不仅与边的长短有关,还与角的开口大小有关。
3.操练(10分钟)学生分组进行实践活动,使用量角器测量不同角的大小,并进行比较。
教师巡回指导,解答学生的疑问。
北师大版数学七上4.4《角的比较》word教案2篇
4.4角的比较教学目标:1. 使学生通过联想线段大小的比较方法,找到角的大小的比较方法2.在现实情境中,进一步丰富对角与锐角、钝角、直角、平角、周角极其大小关系的认识。
3.在操作活动中认识角的平分线,能画出一个角的平分线4.培养学生类比联想的思维能力和对知识的迁移能力。
教学重点:角的两种比较方法、角的和、差、倍、分的作法和计算、角的平分线定义。
教学难点:角平分线定义的各种数学表达式。
教学过程:一、类比联想,提出问题,探索解决问题的方法1.类比联想,提出问题前面学习了线段的概念之后,紧接着就学习了比较线段的大小以及线段的和、差、倍、分的画法问题。
上节课我们已经学习了角的概念,类似的,今天我们也要学习如何比较角的大小,以及角的和、差、倍、分的画法问题。
(板书课题)2.类比联想,探索解决问题的方法(1)师生共同回忆线段大小比较的方法,以及和、差、倍、分的画法。
(2)分组讨论,发现方法。
提出问题:如图1-26(a),试比较∠AOB和∠COD的大小并画出∠AOB+∠COD。
教师让学生讨论,动手画图,在此基础上,教师引导学生归纳总结出:(a)角大小比较的方法:重叠法和度量法。
(b)角的和、差、倍、分的画法。
3.角的大小可以有两种比较方法:重叠比较法和度量法。
(1)重叠比较法:由线段的重叠比较法知,将要比较的两条线段一端重合,再看另一端的位置角的比较也类似,提问谁能用两个三角板演示一下,然后总结,在比较角的大小的过程中,要让角的顶点和角的一条边都重合,看另一条边落在角内还是角外。
(让学生自己总结出三种不同的结论,并让学生在黑板上画出图形,如图1-26(b.)记作:∠AOB=∠COD记作:∠AOB>∠COD记作:∠AOB<∠COD(2)度量法:因为角可以用量角器来量出度数,度数大的角大于度数小的角,通过角的度数来比较角的大小。
(注意写法)例1 如图1-27,比较∠AOB与∠CDE的大小。
因为量得∠AOB=35°,∠CDE=65°。
七年级数学上册 角的比较教案 北师大版 精品
4.4角的比较一、教材分析本节课所学的知识既是对“角的测量”内容的拓展,也是今后几何学习的重要基础。
教学中从实际出发,注重学生的合作交流,从活动中积累经验和知识。
二、教学目标【知识与技能】1.在现实情境中,进一步丰富锐角、钝角、直角及大小的认识;2.学会比较角的大小,能估计一个角的大小;3.在操作活动中认识角平分线,能画出一个角的平分线。
4.认识度、分、秒,并会进行简单的换算。
【情感态度与价值观】1.能通过角的测量、折叠等体验数、符号和图形是描述现实世界的重要手段。
2.通过实际观察、操作体会角的大小,发展几何直觉。
3.能用符号语言叙述角的大小关系,解决实际问题。
三、教学重点与难点教学重点:角的大小的比较方法教学难点:从图形中观察角的和、差关系。
四、教学设计(一)引入:1、请同学们回忆,比较两条线段的大小关系有哪几种方法?(测量法和叠合法---为新课的学习做铺垫)类比联想,探索解决问题的方法2、[展示公园示意图或引导学生观看P148/图4-15并回答](1)请同学们把图中的五大景点中的任何两个之间都用线段连接。
(2)教师任选其中的两个角并提问:你能比较出这两个角的大小吗?你是怎样比较的?说明:由学生探讨出角的大小比较的一种方法———测量法。
(二)新课1、今天我们就来学习角的大小的比较。
刚才同学们已经探讨出一种方法:测量法(板书)现在请大家看老师手中的一副三角板(各指出每个三角板的一个锐角),你还能想出其它的方法比较出这两个角的大小吗?说明:由学生动手操作探讨出叠合法的比较过程,教师总结并板书出此方法的名称若两个角能完全重合,你们说说这两个角的大小有何关系?(相等)2、利用三角板提问:你们能告诉老师这三个内角各属于什么角?(锐角、锐角、直角)在小学里大家还学过哪些角?(钝角、平角、周角)谁能告诉我这5种角是怎样判别的吗?说明:由学生根据小学的知识进行回顾总结,然后教师利用多媒体显示下列内容:3、重新展示公园示意图。
北师大版七年级数学上册《基本平面图形——角的比较》教学PPT课件(4篇)
角的大小的比较方法: (1)如果已知角是锐角、直角、钝角、平角、周角几类中不同 类的角,就可以直接由它们之间的关系比较出它们的大小; (2)可以通过量角器进行量度来比较角的大小; (3)可以根据各角在同一图中的位置关系比较角的大小.
角的平分线
活动:大家在练习本上画一个角,然后把角的两边 对折,展开以后你会发现折痕把角分成了两个角, 这两个角有什么关系呢,它们又和原来的角有着怎 样的等量关系?
4.4 角的比较
知识回顾 比较两条线段的长短的方法? 1、度量法:用刻度尺测量线段的长度的方法。 2、叠合法:将其中一条线段移到另一条线段 上作比较。
猜想:比较两个角的大小方法?
获取新知
问题:有一天学生张虎和王鹏各带了一把折扇(如图),下面是他们的 一段对话:
张:我的折扇大一些,所以我的折扇的角也大一些.
2
2
2
(2)结合(1)的结论可求出∠DOE的度数,从而求出∠BOE的度数
解:(1)因为OC平分∠AOD,
1 所以∠DOC= 2 ∠AOD.
因为OE平分∠BOD,
1
所以∠DOE= 2∠BOD.
所以∠COE=∠DOC+∠DOE=
1
(∠AOD+∠BOD)
= 1 ∠AOB= 1 ×130°=65°.
2
2
2
2. 已知,如图,∠AOB = 130°,∠AOD = 30°,∠BOC = 70° ,问:OC 是∠AOB 的平 分线吗?OD 是∠AOC 的平分线吗?
解: OC不是∠AOB 的平分线 OD是∠AOC 的平分线 B
C D
A O
3. 如图,直线 m 外有一定点 O,A 是 m 上的 一个动点,当点 A 从左向右运动时,观察∠α 和 ∠β 是如何变化的,∠α 和 ∠β 之间有关系吗?
4角的比较-北师大版七年级数学上册教案
4 角的比较-北师大版七年级数学上册教案一、教学目标1.能够辨别并命名正方形、长方形、菱形、平行四边形四种特殊的四边形;2.能运用物体的外形进行比较。
二、教学重点与难点1.教学重点:通过四边形的特征来辨别区分正方形、长方形、菱形、平行四边形;2.教学难点:学生根据实际问题思考运用物体外形进行比较。
三、教学内容和步骤1. 正方形1.先请学生观察正方形图形,引导学生回忆正方形的定义及特征;2.请一名学生到达讲台上,展示正方形卡片,引导学生积极提问,并回答学生的疑问;3.让学生分组讨论或笔头思考正方形的判定条件;4.练习:画出一些图形,让学生判断哪些是正方形,哪些不是。
2. 长方形、菱形、平行四边形1.引导学生回忆长方形、菱形、平行四边形的定义及特征,发现与正方形的不同之处;2.请一名或几名学生在讲台上展示长方形、菱形、平行四边形卡片,引导学生积极提问,并回答学生的疑问;3.练习:画出一些图形,让学生区分并判断长度或角度。
3. 通过图形比较物体的大小1.以两种面包为例,通过不同的外形展示面包的大小之间的区别;2.请学生选出自己手中的球,并与一个或多个同学比较,通过球的大小和数量比较来引导学生认识“更多”“更大”的概念;3.帮助学生进一步发现、联系实际问题,思考其他物品的大小比较。
四、教学方法1.情境教学法:学生通过实际问题思考运用物体外形进行比较;2.课堂互动教学法:请学生在学习过程中,有积极提问、回答的行为。
五、教学评估1.给学生分发学生手册,让学生做相应的课堂练习,批改错题;2.补充练习:在学生家长或学生网络平台上,给学生布置作业,检查学生是否掌握好了本节课的内容;3.可以组织同学们和家人比较身边物品的大小,并把观察结果写成案例。
2024年北师大七年级数学上册4.2 第2课时 角的比较(课件)
1. 如图:已知∠1 = ∠3,那么( C )
A.∠1 = ∠2
B. ∠2 = ∠3
C.∠AOC = ∠BOD D. ∠1 = 1 BOD 2
B
A
C
32
1D
O
2. 如图所示,已知直线 AB,CD
相交于点 O,OA 平分∠EOC,
∠EOC=70°,则∠BOD 等于( B )
C
B A
C
O'
D O'
D
DB O O'
1. 若射线 O'C 在 2. 若射线 O'C 与射 3. 若射线 O'C 在
∠AOB 内部,那 线 OA重合,那么 ∠AOB 外部,那么
∠AOB__>_∠DO'C. ∠AOB_=__∠DO'C. ∠AOB_<__∠DO'C.
议一议
1. 角的大小与两边画出部分的长短是否相关? 角的大小与两边画出部分的长短无关.
难点:角的平分线的应用。
线段 定义 类比
角
定义
表示 表示
大小 运算
大小 运算
叠合法 度量法 和、差、倍、分 叠合法 度量法 和、差、倍、分
1 比较角的大小
类比线段长短的比较,你认为该如何比较两个角 的大小?
55° 40°
度量法
1
2
因为 55°>40°,所以∠1>∠2.
叠
A
合
A A
法O
B
O
BO
C
A.30°
B.35°
C.20°
D.40°
3. 如图,OB 是∠AOC 的平分线,OD 是∠COE
北师大版七年级上册第四章角的比较教案
北师大版七年级上册第四章角的比较教案教学目的:【知识与技艺】1.运用类比的方法,会比拟两个角的大小.2.看法角的平分线,掌握角的和、差、倍、分关系.【进程与方法】经过类比线段大小的比拟,掌握角的大小比拟方法,看法角的平分线及表示方法,开展先生的符号感和数感,开展几何图形看法和探求看法.【情感态度】在积极参与,协作交流中体验到教学活动充溢着探求和发明,提高先生学习数学的兴味.教学重难点:【教学重点】会比拟角的大小,会剖析图中角的和差关系,能熟练运用角的平分线.【教学难点】角的和、差、倍、分关系.教学进程:一、情境导入,初步看法还记得怎样比拟线段的长短吗?相似地,你能比拟角的大小吗?【教学说明】经过类比线段大小的比拟方法,先生很容易失掉角的大小比拟方法.二、思索探求,获取新知1.角的大小比拟效果1 怎样比拟角的大小呢?【教学说明】先生经过类比线段大小的比拟方法,再与同伴交流,归结角的大小比拟方法.【归结结论】与比拟线段的长短相似,假设直接观察难以判别,我们可以有两种方法对角停止比拟:一种方法是用量角器量出它们的度数,再停止比拟,即度量法;另一种方法是将两个角的顶点及一条边重合,另一条边放在重合边的同侧就可以比拟大小,即叠合法.效果2 依据教材第119页上方的〝做一做〞.【教学说明】先生经过观察、剖析,与同伴停止交流,进一步掌握角的大小比拟方法.3.角的平分线定义及表示方法教材第119页上方的〝做一做〞.效果3 EOF为不时线,∠AOB=90°,OE平分∠COB,∠EOC=15°,求∠AOF的度数.【教学说明】先生观察、剖析,与同伴交流,经过计算,进一步掌握角的平分线的性质及角的和差关系.【归结结论】在停止角的和、差、倍、分计算时,往往结合图形来剖析数量关系.4.估量角的度数效果4 〔1〕如图估量∠AOB,∠DEF的度数.〔2〕量一量,验证你的估量.【教学说明】先生先估量,再用量角器量一量,验证自己的估量能否正确.三、运用新知,深化了解1.∠AOB的外部任取一点C,作射线OC,那么以下各式中正确的选项是〔〕A.∠AOB>∠AOCB.∠AOC>∠BOCC.∠BOC=∠AOCD.∠BOC>∠AOC2.教材第120页下面〝随堂练习〞第1题.3.教材第120页下面〝随堂练习〞第2题.4.如下图,OB是∠AOC的平分线,DO平分∠COE,假定∠AOE=128°,求∠BOD 的度数.【教学说明】先生自主完成,加深对新学知识的了解,检测对角的大小比拟,角的平分线性质的掌握状况,对先生的疑惑教员应及时指点.完成上述标题后,教员引导先生完成练习册中本课时练习的课堂作业局部.【答案】1.A2.〔1〕135°,135°,45°〔2〕图中两个钝角相等,一个钝角和一个锐角的和为180°.3.45°,30°,60°4.64°四、师生互动,课堂小结1.师生共同回忆角的大小比拟,角的平分线性质等知识点.2.经过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教员引导先生回忆知识点,让先生大胆发言,积极与同伴交流,加深对知识的了解.课后作业:1.布置作业:从教材〝习题4.4〞中选取.2.完成练习册中本课时的相应作业.教学反思:本节课从先生探求角的大小比拟方法,角的平分线定义及性质,到运用角的和、差、倍、分处置详细效果,培育先生运用知识的才干,激起先生学习的兴味.。
北师大版七年级上册数学4.4角的比较优秀教案
4.4角的比较1.会用胸怀法和叠合法比较两个角的大小.2.理解角的均分线的定义,并能借助角的均分线的定义解决问题.3.理解两个角的和、差、倍、分的意义,会进行角的运算.一、情境导入同学们,如图是我们生活中常用的剪刀模型,此刻考考大家,剪刀张开的两个角哪个大呢?二、合作研究研究点一:角的比较在某工厂生产流水线上生产如下图的工件,此中∠α称为工件的中心角,生产要求∠α的标准角度为30°±1°,一名质检员在查验时,手拿一量角器逐个丈量∠α的度数.请你运用所学的知识剖析一下,该名质检员采纳的是哪一种比较方法?你还可以给该质检员设计更好的质检方法吗?请谈谈你的方法.分析:角的比较方法有丈量法和叠合法,此中丈量法更详细,叠合更直观.在质检中,采纳叠合法比较快捷.解:该质检员采纳的方法是丈量法,还可以够使用叠合法,即在工件中找出一个角度为31°和一个角度为29°的两个工件,而后可把几个工件夹在这两个工件中间,使极点和一边重合,察看另一边的状况.方法总结:本题主要考察了角的大小比较,解题的重点是掌握角的大小比较的方法.研究点二:角度的相关计算【种类一】利用角均分线进行角度的计算如图,∠ AOB= 120 °,OD 均分∠ BOC, OE 均分∠ AOC.(1)求∠ EOD 的度数;(2)若∠ BOC= 90°,求∠ AOE 的度数 .分析:( 1)依据OD 均分∠BOC,OE 均分∠AOC 可知∠DOE =∠DOC+∠EOC=121(∠ BOC+∠ AOC )=∠ AOB,由此即可得出结论;( 2)先依据∠BOC= 90°求出∠ AOC 的度数,再依据角均分线的定义即可得出结论 . 解:( 1)∵∠ AOB= 120°,OD 均分∠ BOC ,OE 均分∠ AOC,∴∠ EOD=∠ DOC +∠ EOC=1(∠ BOC+∠ AOC)=1∠AOB=1×120°= 60°;222(2)∵∠ AOB= 120°,∠ BOC= 90°,∴∠ AOC= 120°- 90°= 30°,∵ OE 均分∠ AOC,∴∠ AOE=1∠ AOC=1× 30°= 15°.22方法总结:能够依据图形正确找到角之间的和差关系,理解角均分线的观点是解题的重点 .【种类二】利用三角板叠合进行角度的计算如图,将一副三角板折叠放在一同,使直角的极点重合于点=()O,则∠ AOC+∠ DOBA.120 °B.180 °C.150 °D.135 °分析:由图可得:∠ AOC+∠ DOB=∠ AOB+∠ COD = 90°+ 90°= 180°.应选 B.方法总结:本题主要考察学生对角的计算的理解和掌握,解答本题的重点是让学生经过察看图示,发现几个角之间的关系.【种类三】长方形折叠计算角的度数如图,将长方形ABCD 沿 EF 折叠,C 点落在 C′处,D 点落在 D ′处 .若∠ EFC = 119 °,则∠ BFC ′为()A.58 °B.45 °C.60 °D.42 °分析:∵将长方形 ABCD 沿 EF 折叠, C 点落在 C′处, D 点落在 D′处,∠ EFC =119°,∴∠EFC ′=∠ EFC= 119°,∠EFB = 180°-∠EFC = 61°,∴∠ BFC′=∠ EFC ′-∠ EFB = 119°-61°= 58°,应选 A.方法总结:掌握折叠的性质,要擅长发现题中的隐含条件:折叠前后两图形是完整重合的,其角不变 .研究点三:角度的计算计算:(1)153°29′42+″26°40′32;″(2)110°36-′90°37′28;″(3)62°24′17×″4.分析:( 1)同样单位相加,超出60 向上一位进 1 即可;( 2)先借 1°化为分和秒,而后同一单位分别相减即可得解;( 3)每一个单位分别乘以4,分、秒高出60 的部分向上一个单位进 1 即可.解:(1) 153°29′42+″26°40′32=″179°69′74=″180°10′14;″(2)110°36-′90°37′28=″109°95′60-″90°37′28=″19°58′32;″(3)62°24′17×″4=248°96′68=″249°37′8″.方法总结:角度的运算规律为:( 1)加减法时将同一单位进行加减,加法够60 进1,减法不够减要借 1 当 60;( 2)乘法时将数与度、分、秒分别相乘,而后从小到大逢60进 1.三、板书设计教课过程中,重申学生自主研究和合作沟通,经过丈量、折叠等操作手段,体验数、符号和图形是描绘现实世界的重要手段,发展直观意识,同时升华学生的感情态度和价值观.。
北师大版数学七年级上册《4 角的比较》教学设计3
北师大版数学七年级上册《4 角的比较》教学设计3一. 教材分析《角的比较》是北师大版数学七年级上册第四单元的内容。
这部分内容是在学生已经掌握了角的概念和分类的基础上进行的,旨在让学生通过观察和操作,进一步理解角的大小比较方法,提高学生的空间想象能力和逻辑思维能力。
二. 学情分析七年级的学生已经具备了一定的观察和操作能力,对于角的概念和分类也有了一定的了解。
但是,对于角的大小比较,他们可能还存在着一些困惑,需要通过实际操作和引导,帮助他们进一步理解和掌握。
三. 教学目标1.知识与技能:使学生掌握角的大小比较方法,能够运用这些方法解决实际问题。
2.过程与方法:通过观察、操作、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们积极思考、合作交流的学习习惯。
四. 教学重难点1.重点:角的大小比较方法。
2.难点:如何引导学生理解和掌握角的大小比较方法,并能够运用到实际问题中。
五. 教学方法采用问题驱动法、观察操作法、小组合作法等,引导学生通过自主学习、合作交流,掌握角的大小比较方法。
六. 教学准备1.准备一些角的大小不同的图片,用于导入和巩固环节。
2.准备一些练习题,用于操练和家庭作业环节。
七. 教学过程1.导入(5分钟)通过展示一些角的大小不同的图片,让学生观察并说出它们的大小。
引导学生思考:如何比较这些角的大小呢?2.呈现(10分钟)讲解角的大小比较方法,如使用直尺和量角器测量角的大小,或者通过构造辅助线来比较角的大小。
同时,展示一些实例,让学生理解这些方法的运用。
3.操练(10分钟)让学生分组进行操作,运用刚刚学到的方法比较不同角的大小。
每组选出一个代表,汇报他们的比较结果。
4.巩固(10分钟)出示一些练习题,让学生独立完成。
然后,选取一些学生的作业,进行讲解和评价。
5.拓展(5分钟)引导学生思考:角的大小比较方法还可以用在哪些地方呢?例如,在解决实际问题时,如何比较角的大小?6.小结(5分钟)让学生总结今天所学的内容,说出自己对角的大小比较方法的理解。
北京师范大学出版社数学七年级数学上册第四章第四节《角的比较》教案
在学生小组讨论环节,我注意到大家对于角的比较在实际生活中的应用有很多自己的想法。这说明学生们已经能够将所学知识运用到实际情境中,这是一个很好的现象。但我也提醒他们要注意,理论知识虽然重要,但实际操作同样不可忽视。因此,在今后的教学中,我会更加注重培养学生们将理论知识与实际操作相结合的能力。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与角的比较相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,使用量角器测量不同物体的角度,并比较它们的大小。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
-角的和差运算:理解并掌握同位角、补角、余角等概念,并能进行相应的计算。
举例:重点强调锐角、直角、钝角的判别,如30度是锐角,90度是直角,120度是钝角。
2.教学点
-难点一:角的度量单位换算,特别是分秒之间的转换容易混淆。
-难点二:角的和差运算,尤其是涉及补角、余角的计算。
-难点三:在实际问题中应用角的比较,如从多个角度观察和比较物体,确定角度关系。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解角的基本概念。角是由两条射线的公共端点(顶点)所围成的图形部分。角的大小比较是几何学中的基础,它在日常生活和各类工程测量中有广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。通过比较三角板上的不同角度,我们来学习如何判断角的大小。
北师大版七年级上册数学 4.4 角的比较 优秀教案
4.4角的比较1.会用度量法和叠合法比较两个角的大小.2.理解角的平分线的定义,并能借助角的平分线的定义解决问题.3.理解两个角的和、差、倍、分的意义,会进行角的运算.一、情境导入同学们,如图是我们生活中常用的剪刀模型,现在考考大家,剪刀张开的两个角哪个大呢?二、合作探究探究点一:角的比较在某工厂生产流水线上生产如图所示的工件,其中∠α称为工件的中心角,生产要求∠α的标准角度为30°±1°,一名质检员在检验时,手拿一量角器逐一测量∠α的度数.请你运用所学的知识分析一下,该名质检员采用的是哪种比较方法?你还能给该质检员设计更好的质检方法吗?请说说你的方法.解析:角的比较方法有测量法和叠合法,其中测量法更具体,叠合更直观.在质检中,采用叠合法比较快捷.解:该质检员采用的方法是测量法,还可以使用叠合法,即在工件中找出一个角度为31°和一个角度为29°的两个工件,然后可把几个工件夹在这两个工件中间,使顶点和一边重合,观察另一边的情况.方法总结:此题主要考查了角的大小比较,解题的关键是掌握角的大小比较的方法.探究点二:角度的有关计算【类型一】利用角平分线进行角度的计算如图,∠AOB=120°,OD平分∠BOC,OE平分∠AOC.(1)求∠EOD的度数;(2)若∠BOC=90°,求∠AOE的度数.解析:(1)根据OD 平分∠BOC ,OE 平分∠AOC 可知∠DOE =∠DOC +∠EOC =12(∠BOC +∠AOC )=12∠AOB ,由此即可得出结论; (2)先根据∠BOC =90°求出∠AOC 的度数,再根据角平分线的定义即可得出结论. 解:(1)∵∠AOB =120°,OD 平分∠BOC ,OE 平分∠AOC ,∴∠EOD =∠DOC +∠EOC =12(∠BOC +∠AOC )=12∠AOB =12×120°=60°; (2)∵∠AOB =120°,∠BOC =90°,∴∠AOC =120°-90°=30°,∵OE 平分∠AOC ,∴∠AOE =12∠AOC =12×30°=15°. 方法总结:能够根据图形正确找到角之间的和差关系,理解角平分线的概念是解题的关键.【类型二】 利用三角板叠合进行角度的计算如图,将一副三角板折叠放在一起,使直角的顶点重合于点O ,则∠AOC +∠DOB=( )A.120°B.180°C.150°D.135°解析:由图可得:∠AOC +∠DOB =∠AOB +∠COD =90°+90°=180°.故选B.方法总结:此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.【类型三】 长方形折叠计算角的度数如图,将长方形ABCD 沿EF 折叠,C 点落在C ′处,D 点落在D ′处.若∠EFC =119°,则∠BFC ′为( )A.58°B.45°C.60°D.42°解析:∵将长方形ABCD 沿EF 折叠,C 点落在C ′处,D 点落在D ′处,∠EFC =119°,∴∠EFC ′=∠EFC =119°,∠EFB =180°-∠EFC =61°,∴∠BFC ′=∠EFC ′-∠EFB =119°-61°=58°,故选A.方法总结:掌握折叠的性质,要善于发现题中的隐含条件:折叠前后两图形是完全重合的,其角不变.探究点三:角度的计算计算:(1)153°29′42″+26°40′32″;(2)110°36′-90°37′28″;(3)62°24′17″×4.解析:(1)相同单位相加,超过60向上一位进1即可;(2)先借1°化为分和秒,然后同一单位分别相减即可得解;(3)每一个单位分别乘以4,分、秒超出60的部分向上一个单位进1即可.解:(1)153°29′42″+26°40′32″=179°69′74″=180°10′14″;(2)110°36′-90°37′28″=109°95′60″-90°37′28″=19°58′32″;(3)62°24′17″×4=248°96′68″=249°37′8″.方法总结:角度的运算规律为:(1)加减法时将同一单位进行加减,加法够60进1,减法不够减要借1当60;(2)乘法时将数与度、分、秒分别相乘,然后从小到大逢60进1.三、板书设计教学过程中,强调学生自主探索和合作交流,通过测量、折叠等操作手段,体验数、符号和图形是描述现实世界的重要手段,发展直观意识,同时升华学生的情感态度和价值观.。
北师大版 数学七年级上册4.4角的比较教案
4.4、角的比较学习目标:1、经历比较角的大小的研究过程,体会角的比较和线段的比较方法的一致性;2、会比较角的大小,能估计一个角的大小;3、在操作活动中认识角平分线,能画出一个角的平分线。
学习重点:角的大小的比较方法。
学习难点: 从图形中观察角的和、差关系。
一、知识链接:1、回顾引入:2、类比学习:(1)回忆两个线段是如何比较大小的。
(2)直接呈现问题:锐角、钝角、直角三种角之间可以排出大小关系,那么一般的两个角(可能都是锐角)如何比较它们的大小呢?并明晰。
二、自主预习、探究:(一)角的比较1、请同学们在准备好的纸片上任意画一个角,再与小组其他同学所画的角比较一下大小,并按顺序排列. 说说是怎样比较的。
2、使用叠合法比较角的大小必须注意哪些细节?3、角的大小与两边画出部分的长短是否相关?4、总结角的比较有种方法:。
(二)、角平分线1、阅读课本P119图4-19及相应内容并完成1-4问。
2、阅读课本P119图4-20及相应内容、明确角平分线的定义。
作出∠AOB 的平分线OC。
对这个定义的理解要注意以下几点:(1)角平分线是一条射线,不是一条直线,也不是一条线段.它是由角的顶点出发的一条射线,这一点也很好理解,因为角的两边都是射线.(2)当一个角有角平分线时,可以产生几个数学表达式.可写成∵ OC是∠AOB的角平分线,∴∠AOB=2∠AOC=2∠COB, (1)∠AOC=∠COB, (2)反过来,∵∠AOB=2∠AOC=2∠COB或∠AOC=∠COB,∴ OC为∠AOB的角平分线.(三)探究3、阅读课本P119图4-21及相应内容并完成问题。
4、探究活动:利用一副三角板,你能画出哪些度数的角?请画出来。
三、展示提升:1、已知:∠ AOB=760,OC为∠ AOB的角平分线,那么∠ AOC=,∠ AOC=∠ AOB,∠ AOB=∠ COB2、已知,如图,∠AOB=130°∠AOD=30°∠BOC=70°问:OC是∠AOB的平分线吗?OD是∠AOC的平分线吗?为什么?3、思考:如图OB是∠AOC的平分线,∠COD=2∠AOB,试说明OC是哪一个角的平分线?4、下面的式子中,能表示“OC是∠ AOB的角平分线”的等式是()A、2 ∠ AOC=∠ BOCB、∠ AOC=0.5∠ AOBC、∠ AOB=2 ∠ BOCD、∠ AOC=∠ BOC5、已知OB是∠AOC的平分线, OD是∠COE的平分线, 如果∠AOE=1300,那么∠BOD是多少度?。
4.4角的比较教案北师大版数学七年级上册
4.4角的比较2.如何比较两角的大小?学习准备1.线段的长短比较方法: 、、.2.角的分类(1) :大于0度小于90度的角;(2) :等于90度的角;(3) :大于90度而小于180度的角;(4)平角: ;(5)周角: .3.阅读教材第4节《角的比较》.教材精读1.角的大小比较(1) :把两个角的顶点及一边重合,另一边落在重合边的同旁,则可比较大小.如图,∠AOB与∠CED,重合顶点O,E和边OA,EC,OB与ED落在重合边同旁,符号语言:因为OD落在∠AOB内部,所以∠CED<∠AOB.(2) :量出两角的度数,按度数比较角的大小.2.角平分线的定义从一个角的顶点引出一条,把这个角分成两个的角,这条叫做这个角的平分线.符号语言:因为OC 平分∠AOB ,所以∠AOC=∠BOC. ∠AOB=2∠ 或∠AOB=2∠ ; 或∠AOC=12∠ ,∠BOC=12∠ .续表当堂训练1.若OC是∠AOB的平分线,则(1)∠AOC=;(2)∠AOC=12;(3)∠AOB=2.2.12平角=直角,14周角=平角=直角,135°角=平角.3.如图,∠AOC=∠BOD=90°(1)∠AOB=62°,求∠COD的度数;(2)若∠DOC=2∠COB,求∠AOD的度数.4.如图,∠AOC=+=;∠BOC==.5.如图,AB,CD相交于点O,OB平分∠DOE,若∠DOE=60°,则∠AOC的度数是.第3题图第4题图第5题图6.如图,已知射线OC,OD在∠AOB的内部,且∠AOB=150°,∠COD=30°,射线OM,ON 分别平分∠AOD,∠BOC,求∠MON的大小.板书设计角的比较1.角的比较2.角平分线3.实践练习教学反思。
4角的比较-北师大版七年级数学上册教案
4 角的比较-北师大版七年级数学上册教案一、教学目标1.了解4个角相互比较的关系;2.掌握按大小关系分类的方法;3.能在比较中分类;4.能够运用学习过的知识解决实际问题。
二、教学重点和难点1.教学重点:按大小关系分类,解决实际问题。
2.教学难点:在分类中灵活应用知识点。
三、教学内容和步骤1. 比较左右对顶角步骤:1.展示图片,引导学生根据图形比较左右对顶角的大小,并且按大小关系分类;2.让学生自行找出规律,将规律整理完毕后在黑板上呈现。
教学目的:1.让学生对左右对顶角有更深的了解;2.培养学生分类的能力。
2. 比较前后对顶角步骤:1.展示图片,引导学生根据图形比较前后对顶角的大小,并且按大小关系分类;2.让学生自行找出规律,将规律整理完毕后在黑板上呈现。
教学目的:1.让学生对前后对顶角有更深的了解;2.培养学生分类的能力。
3. 比较相邻角步骤:1.展示图片,引导学生根据图形比较相邻角的大小,并且按大小关系分类;2.让学生自行找出规律,将规律整理完毕后在黑板上呈现。
教学目的:1.让学生对相邻角有更深的了解;2.培养学生分类的能力。
4. 完成练习1.完成教科书上的练习;2.完成自己设计的练习。
5. 课堂总结1.对本节课所学内容进行回顾;2.引导学生总结学到的知识点,并且对不懂的内容提出疑问。
四、教学反思通过此次课堂教学,我发现学生们对于左右对顶角、前后对顶角、相邻角的概念都有了一定的了解。
在规律整理的时候,一些学生也有一定的思考能力,但是有一部分学生在分类中缺乏运用知识点的能力。
教学中,我需要更加注重学生分类和灵活运用知识点的能力的培养。
北师大版七年级数学上册教案-第四章第四节 角的比较
北师大版七年级数学上册教案第四节角的比较【教学目标】1.会比较角的大小,能估计一个角的大小.2.知道角平分线的概念,能画出一个角的平分线.【教学重难点】重点:角的大小比较方法.难点:从图形中观察角的大小关系.【教学过程】一、创设情境,导入新课还记得怎样比较线段的长短吗?类似地,你能比较角的大小吗?与同伴进行交流.二、师生互动,探究新知1.角的比较.角是可以比较的,由比较的结果,可分为两角相等、不相等且有大小之分.(1)叠合法(或折叠法):移动∠DEF使顶点E与顶点B重合,一边ED和BA重合,另一边EF 和BC 落在BA 的同旁;若EF 和BC 重合,记作∠DEF =∠ABC ,如上图(1);若EF 落在∠ABC 的外部,记作∠DEF>∠ABC ,如上图(2); 若EF 落在∠ABC 的内部,记作∠DEF<∠ABC ,如上图(3). 结论:比较两角∠ABC 与∠DEF 的大小的结果有且只有下列三种情况之一:∠DEF =∠ABC ,∠DEF>∠ABC ,∠DEF<∠ABC.(2)度量法:在小学学过用量角器量一个角.方法:①分别量出两个角的度数;②比较两个度数的大小.结果:度数大的角大.注意:角的大小与两边画的长短无关.2.角的平分线.(1)定义:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.(2)图形:(3)表示方法: ∠AOB =2∠AOC =2∠BOC 或∠AOC =∠BOC =12∠AOB.三、运用新知,解决问题1.如图,在方格纸上有三个角.(1)先估计每个角的大小,再用量角器量一量;(2)找出三个角之间的等量关系.2.如图,OC是∠AOB的平分线,∠BOD=13∠COD,∠BOD=15°,求∠COD,∠BOC和∠AOB的度数.四、课堂小结,提炼观点学会比较角大小的几种方法.五、布置作业,巩固提升教材第120页习题4.4.【板书设计】角的比较1.角的大小比较方法:度量法、叠合法.2.角平分线及表示方法.。
北师大版七年级数学上册《角的比较》示范课教学设计
第四章基本平面图形4 角的比较一、教学目标1.经历比较角的大小的研究过程,体会角的比较和线段的比较方法的一致性;2.会比较角的大小,能估计一个角的大小;3.在操作活动中认识角的平分线,能画出一个角的平分线;4.能通过角的比较等体验数、符号和图形是描述现实世界的重要手段.二、教学重难点重点:会比较角的大小,能估计一个角的大小.难点:在操作活动中认识角的平分线,能画出一个角的平分线.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【情境导入】教师活动:教师出示问题,引发学生思考.师:同学们,还记得怎样比较线段的长短吗?预设答案:度量法:用直尺测量,并比较.叠合法:将其中一条线段“移”到另一条线段上,使其一端点与另一线段的一端点重合,然后观察两条线段另外两个端点的位置作比较.【小组合作】类比线段长短的比较方法,想一想,该怎样比较两个角的大小呢?与同伴相互交流.哪条路最近?预设答案:度量法∠ABC>∠DEF叠合法:将两个角的顶点及一条边重合,另一条边放在重合边的同侧进行比较.∠AOB和∠A'O'B'相等记作∠AOB =∠A'O'B'∠AOB大于∠A'O'B'记作∠AOB>∠A'O'B'∠AOB小于∠A'O'B'记作∠AOB<∠A'O'B'【做一做】根据图求解下列问题:(1)比较∠AOB,∠AOC,∠AOD,∠AOE 的大小,并指出其中的锐角、直角、钝角、平角.(2)试比较∠BOC和∠DOE的大小.(3)小亮通过折叠的方法,使OD与OC重合,OE落在∠BOC的内部,所以∠BOC大于∠DOE.你能理解这种方法吗?(4)请在图中画出小亮折叠的折痕OF,∠DOF与∠COF有什么大小关系?预设答案:(1)解:∠AOB<∠AOC<∠AOD<∠AOE∠AOB是锐角,∠AOC是直角,∠AOD是钝角,∠AOE是平角.(2)∠BOC>∠DOE(3)小亮用的是叠合法.(4)∠DOF=∠COF【归纳】从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.射线OC是∠AOB的平分线.∠AOC=∠BOC=1∠AOB2(或∠AOB=2∠AOC=2∠BOC)【做一做】(1)如图,估计∠AOB,∠DEF的度数.提示:量一量,验证你的估计!∠AOB<∠DEF教师活动:教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.【典型例题】例1 如图直线m外有一定点O,A是m上的一个动点.当点A从左向右运动时观察∠a和∠β是如何变化的∠a和∠β之间有关系吗?答案:∠a越来越小,∠β越来越大,例2 如图,OC是∠AOB的平分线,∠BOD ∠COD,∠BOD=15°,则∠COD=____°,=13∠BOC=____°,∠AOB=____°.分析:因为∠BOD=1∠COD,3∠BOD=15°,教师活动:教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.【随堂练习】1.如图,在方格纸上有三个角.(1)先估计每个角的大小,再用量角器量一量;(2)找出三个角之间的等量关系.答案:(1)∠1=135°;∠2=45°;∠3=135°.(2)∠1=∠3;∠1+∠2=180°;∠3+∠2=180°.2.如图,∠AOB=170°,∠AOC=∠BOD=90°,求∠COD的度数.解:因为∠BOC=∠AOB–∠AOC=170°–90°=80°所以∠COD=∠BOD–∠BOC=90°–80°=10°3.借助一副三角尺的拼摆,你能画出75°的角吗?15°呢?你还能画出哪些角?这些角有什么共同特征?答案:能画出无数个角,这些角的度数都是15的倍数.思维导图的形式呈现本节课的主要内容:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《角的比较》教学设计
教材分析
本节课是教材第四章的第四节,学生对点、线、角这些基本的几何元素已具有一定的认知水平,本节对学生认识空间与图形具有重要的作用。
教学目标
【知识与能力目标】
会比较角的大小,能估计一个角大小。
【过程与方法目标】
经历比较角的大小的研究过程,体会角的大小比较和线段长短比较方法的一致性。
【情感态度价值观目标】
在操作活动中认识角的平分线,体会类比的数学思想。
教学重难点
【教学重点】
会比较角的大小,能估计一个角大小,认识角平分线。
【教学难点】
认识角平分线并用数学的语言描述。
课前准备
1、多媒体课件;
2、学生完成相应预习内容。
教学过程
一、引入
1.线段的比较方法(1).从“形”出发,利用线段移动叠合的方法(2).以“数”出发,通过度量长度进行数值大小比较
2.类比线段比较大小的方法,如何比较两个角的大小呢?
思考:①使用叠合法比较角的大小必须注意哪些细节?②角的大小与两边的长度是否相关?
叠合法:把两个角的顶点和一边分别重合,另一条边放在重合边的同侧,通过另一边的位置关系比较大小。
②角的大小与两边长度无关。
设计意图:通过类比,学生已经可以自行用度量法和叠合法进行比较了。
二、探索
1角的和差
2. 根据下图,求解下列问题:
(1)比较∠AOB、∠AOC、∠AOD、∠AOE的大小,并指出其中的锐角、直角、钝角、平角(并将所学的角进行分类)
(2)试比较∠BOC和∠DOE的大小
(3)小亮通过折叠的方法,使OD与OC重合, OE落在∠BOC的内部,所以∠BOC大于∠DOE。
你能理解这种方法吗?
(4)请在图中画出小亮折叠的折痕OF,∠DOF与∠COF有什么大小关系?
3.角平分线
在纸上画一个角并剪下,将它对折使其两边重合,折痕与角两边所成的两个角的大小关系怎样?
角平分线定义:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫这个角的平分线
几何语言∵OC 是∠AOB 的角平分线
∴ ∠AOC = ∠BOC = 2
1 ∠AOB 或∠AOB = 2∠AOC = 2∠BOC
设计意图:掌握角的和差,并通过练习进行巩固。
通过对图形的直观感受,尝试让学生自己叙述角的平分线的定义, 目的在于应用类比的方法获得数学猜想和规范数学语言。
三、练习
1、如图:(1)如果BD 是∠ABC 的角平分线,那么
∠1=_______ =_______
(2)如果∠ABC=2 ∠2,那么BD 是_______的_____
2.如图:已知∠1=∠3,那么( ).
A.∠1=∠2
B. ∠2=∠3
C.∠AOC =∠BOD
D. ∠1=2
1∠BOD
3、已知,如图,∠AOB=130°,∠AOD=30°,∠BOC=70°, 问:OC 是∠AOB 的平分线吗?OD 是∠AOC 的平分线吗?为什么?
4、如图,点O在直线AB上,OD、OE分别是∠AOC 、∠BOC的平分线,则∠EOD= ____
设计意图:通过练习检测学生对角平分线的掌握情况及含有角平分线的复杂图形的分解。
四、归纳小结
本节课学习了哪些内容?
作业布置
必做题:习题4.4
教学反思
要注意创设实际问题情境,运用多种手段如实物、多媒体、动手制作、情景再现等让学生读图、识图、画图进而掌握图形符号语言,通过观察、类比、联想、实践和合作交流去解决一个一个力所能及的问题串,在实践中发展学生的数学直觉思维和数感。