解析几何课程教案

合集下载

解析几何课程教案

解析几何课程教案

解析几何课程教案一、教学目标1. 知识与技能:(1)理解解析几何的基本概念,如点、直线、圆等;(2)掌握坐标系中直线、圆的方程的求法与应用;(3)了解解析几何在实际问题中的应用。

2. 过程与方法:(1)通过实例引入解析几何的概念,培养学生的空间想象能力;(2)运用代数方法研究直线、圆的方程,提高学生解决问题的能力;(3)利用数形结合思想,分析实际问题,提升学生的应用能力。

3. 情感态度与价值观:(1)培养学生对数学学科的兴趣,激发学习热情;(2)培养学生克服困难的意志,提高自主学习能力;(3)感受数学在生活中的重要性,培养学生的应用意识。

二、教学内容1. 第一课时:解析几何概述(1)点的坐标;(2)直线的方程;(3)圆的方程。

2. 第二课时:直线的方程(1)直线的一般方程;(2)直线的点斜式方程;(3)直线的截距式方程。

3. 第三课时:圆的方程(1)圆的标准方程;(2)圆的一般方程;(3)圆的方程的性质。

4. 第四课时:直线与圆的位置关系(1)直线与圆相交的条件;(2)直线与圆相切的条件;(3)直线与圆相离的条件。

5. 第五课时:解析几何在实际问题中的应用(1)线性方程组的解法;(2)最大(小)值问题;(3)几何最优化问题。

三、教学策略1. 采用问题驱动的教学方法,引导学生通过观察、思考、讨论,探索解析几何的基本概念和性质;2. 利用数形结合思想,引导学生将几何问题转化为代数问题,提高解决问题的能力;3. 注重实际问题的引入,激发学生的学习兴趣,培养学生的应用意识。

四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态;2. 作业完成情况:检查学生作业的完成质量,评估学生对知识点的掌握程度;3. 课后实践:鼓励学生参加数学竞赛或研究性学习,提升学生的应用能力。

五、教学资源1. 教材:人教版《高中数学》解析几何部分;2. 教辅:同步练习册、习题集等;3. 教学软件:几何画板、数学公式编辑器等;4. 网络资源:相关教学视频、课件、论文等。

教案平面解析几何

教案平面解析几何

精品教案平面解析几何第一章:平面解析几何的基本概念1.1 坐标系学习笛卡尔坐标系及其特点理解原点、x轴、y轴、第一象限、第二象限、第三象限和第四象限的概念1.2 点、直线和圆的方程学习点的坐标表示方法理解直线方程的斜截式、点斜式和一般式学习圆的标准方程和一般方程第二章:直线方程2.1 直线方程的斜截式学习斜截式的定义和特点掌握斜截式方程的求法2.2 直线方程的点斜式学习点斜式的定义和特点掌握点斜式方程的求法2.3 直线方程的一般式学习一般式的定义和特点掌握一般式方程的求法第三章:圆的方程3.1 圆的标准方程学习圆的标准方程的定义和特点掌握圆的标准方程的求法3.2 圆的一般方程学习圆的一般方程的定义和特点掌握圆的一般方程的求法3.3 圆的方程的应用学习圆的方程在几何问题中的应用掌握圆的方程解决实际问题的方法第四章:解析几何中的图形变换4.1 坐标轴上的平移学习坐标轴上的平移对图形的影响掌握坐标轴上的平移的规律4.2 坐标轴上的旋转学习坐标轴上的旋转对图形的影响掌握坐标轴上的旋转的规律4.3 坐标轴上的对称学习坐标轴上的对称对图形的影响掌握坐标轴上的对称的规律第五章:解析几何中的几何问题5.1 点到直线的距离学习点到直线的距离的定义和求法掌握点到直线的距离公式的应用5.2 直线与圆的位置关系学习直线与圆的位置关系的定义和判断方法掌握直线与圆的位置关系解决实际问题的方法5.3 圆与圆的位置关系学习圆与圆的位置关系的定义和判断方法掌握圆与圆的位置关系解决实际问题的方法第六章:直线与直线的相交问题6.1 两直线的斜率是否存在学习如何判断两条直线斜率是否存在掌握两条直线斜率存在时的解题方法6.2 两直线垂直的条件学习两条直线垂直的判定条件掌握两条直线垂直时的解题方法6.3 两直线平行的问题学习两条直线平行的判定条件掌握两条直线平行时的解题方法第七章:解析几何中的最值问题7.1 直线与直线交点问题学习如何求解两直线交点问题掌握直线与直线交点问题的解题方法7.2 直线与圆的最值问题学习如何求解直线与圆的最值问题掌握直线与圆最值问题的解题方法7.3 圆与圆的最值问题学习如何求解圆与圆的最值问题掌握圆与圆最值问题的解题方法第八章:解析几何中的轨迹问题8.1 动点的轨迹问题学习如何求解动点的轨迹问题掌握动点轨迹问题的解题方法8.2 直线与圆的轨迹问题学习如何求解直线与圆的轨迹问题掌握直线与圆轨迹问题的解题方法8.3 圆与圆的轨迹问题学习如何求解圆与圆的轨迹问题掌握圆与圆轨迹问题的解题方法第九章:解析几何中的应用问题9.1 面积问题学习如何利用解析几何解决面积问题掌握解析几何解决面积问题的方法9.2 距离问题学习如何利用解析几何解决距离问题掌握解析几何解决距离问题的方法9.3 几何图形构造问题学习如何利用解析几何解决几何图形构造问题掌握解析几何解决几何图形构造问题的方法第十章:解析几何的拓展与提高10.1 参数方程学习参数方程的定义和特点掌握参数方程的求法及其应用10.2 极坐标方程学习极坐标方程的定义和特点掌握极坐标方程的求法及其应用10.3 解析几何在实际问题中的应用学习如何利用解析几何解决实际问题掌握解析几何解决实际问题的方法重点和难点解析重点环节一:直线方程的斜截式、点斜式和一般式斜截式、点斜式和一般式是直线方程的三个基本形式,掌握它们的定义和特点是理解解析几何的基础。

《解析几何》教案

《解析几何》教案

页眉内容《解析几何》教案第一章向量与坐标本章教学目的:通过本章学习,使学生掌握向量及其运算的概念,熟练掌握线性运算和非线性运算的基本性质、运算规律和分量表示,会利用向量及其运算建立空间坐标系和解决某些几何问题,为以下各章利用代数方法研究空间图形的性质打下基础.本章教学重点:(1)向量的基本概念和向量间关系的各种刻划。

(2)向量的线性运算、积运算的定义、运算规律及分量表示.本章教学难点:(1)向量及其运算与空间坐标系的联系;(2)向量的数量积与向量积的区别与联系;(3)向量及其运算在平面、立体几何中的应用.本章教学内容:§1.1 向量的基本概念一、定义:既有大小又有方向的量称为向量,如力、速度、位移等.二、表示:在几何上,用带箭头的线段表示向量,箭头表示向量的方向,线段长度代表向量的大小;向量的大小又叫向量的模(长度).始点为A,终点为B的向量,记作,其模记做.注:为方便起见,今后除少数情形用向量的始、终点字母标记向量外,我们一般用小写黑体字母a、b、c……标记向量,而用希腊字母λ、μ、ν……标记数量.三、两种特殊向量:1、零向量:模等于0的向量为零向量,简称零向量,以0记之.注:零向量是唯一方向不定的向量.2、单位向量:模等于1的向量称为单位向量.特别地,与非0向量同向的单位向量称为的单位向量,记作.四、向量间的几种特殊关系:1、平行(共线):向量a平行于向量b,意即a所在直线平行于b所在直线,记作a∥b,规定:零向量平行于任何向量.2、相等:向量a等于向量b,意即a与b同向且模相等,记作a=b.注:二向量相等与否,仅取决于它们的模与方向,而与其位置无关,这种与位置无关的向量称为自由向量,我们以后提到的向量都是指自由向量.3、反向量:与向量a模相等但方向相反的向量称为a的反向量,记作-a,显然,,零向量的反向量还是其自身.4、共面向量:平行于同一平面的一组向量称为共面向量.易见,任两个向量总是共面的,三向量中若有两向量共线,则三向量一定共面,零向量与任何共面向量组共面.注意:应把向量与数量严格区别开来:①向量不能比较大小,如没有意义;②向量没有运算,如类似的式子没有意义.§1.2 向量的加法一向量的加法:定义1设、,以与为邻边作一平行四边形,取对角线向量,记,如图1-1,称为与之和,并记作(图1-1)这种用平行四边形的对角线向量来规定两个向量之和的方法称作向量加法的平行四边形法则.如果向量与向量在同一直线上,那么,规定它们的和是这样一个向量:若与的指向相同时,和向量的方向与原来两向量相同,其模等于两向量的模之和.若与的指向相反时,和向量的模等于两向量的模之差的绝对值,其方向与模值大的向量方向一致.由于平行四边形的对边平行且相等,可以这样来作出两向量的和向量:定义2作,以的终点为起点作,联接(图1-2)得(1-2)该方法称作向量加法的三角形法则.(图1-2)向量加法的三角形法则的实质是:将两向量的首尾相联,则一向量的首与另一向量的尾的连线就是两向量的和向量.据向量的加法的定义,可以证明向量加法具有下列运算规律:定理1 向量的加法满足下面的运算律:1、交换律, (1.2-2)2、结合律. (1.2-3)证交换律的证明从向量的加法定义即可得证.下证结合律 .自空间任一点O开始依次作则有,所以.由定理1知,对三向量相加,不论其先后顺序和结合顺序如何,结果总是相同的,可以简单的写作.二向量的减法定义3 若,则我们把叫做与的差,记为显然,,特别地,.由三角形法则可看出:要从减去,只要把与长度相同而方向相反的向量加到向量上去.由平行四边形法可如下作出向量.设、,以与为邻边作一平行四边形,则对角线向量.例1 设互不共线的三向量、与,试证明顺次将它们的终点与始点相连而成一个三角形的充要条件是它们的和是零向量.证必要性设三向量、、可以构成三角形(图1-3),(图1-3),那么,即.充分性设,作那么,所以,从而,所以、、可以构成三角形.例2 用向量法证明:对角线互相平分的四边形是平行四边形.证设四边形的对角线、交于点且互相平分(图1-4)因此从图可看出:,所以,∥,且,即四边形为平行四边形.(图1-4)§1.3 数量乘向量定义1.3.1设是一个数量,向量与的乘积是一向量,记作,其模等于的倍,即;且方向规定如下:当时,向量的方向与的方向相同;当时,向量是零向量,当时,向量的方向与的方向相反.特别地,取,则向量的模与的模相等,而方向相反,由负向量的定义知:.据向量与数量乘积的定义,可导出数乘向量运算符合下列运算规律:定理1.3.1. 数量与向量的乘法满足下面的运算律:1) 1·=2)结合律, (1.3-1)3)分配律, (1.3-2)4) . ( 1.3-3)证 1)据定义显然成立.2)显然,向量、、的方向是一致,且= == .3)分配律如果或中至少有一个为0,等式显然成立;反之ⅰ)若,显然同向,且所以ⅱ)若不妨设若则有由ⅰ)可得,所以对的情形可类似证明.一个常用的结论:定理3. 若( 为数量 ),则向量与向量平行,记作;反之,若向量与向量平行且,则( 是数量).设是非零向量,用表示与同方向的单位向量.由于与同方向,从而与亦同方向,而且,即.我们规定:若,. 于是.这表明:一个非零向量除以它的模是一个与原向量同方向的单位向量.请注意:向量之间并没有定义除法运算,因此决不能将式子改写成形式.十分显然,这种错误是受实数运算法则的“惯性作用”所造成.例1 设AM是三角形ABC的中线,求证.(图1-5)证如图1-5,因为,所以但因而,即.例2 用向量法证明:连接三角形两边中点的线段平行于第三边且等于第三边的一半.证设△ABC两边AB,AC中点分别为M,N,则所以,且.§1.4 向量的线性关系与向量的分解定义1.4.1由向量与数量所组成的向量叫做向量的线性组合,或称可以用向量线性表示,或称可以分解成向量的线性组合.定理1.4.1如果向量,那么向量与向量共线的充要条件是可用向量线性表示,即存在实数使得, (1.4-1)并且系数被,唯一确定.证若成立,那么由定义1.3.1知向量与向量共线.反之,如果向量与向量共线,那么一定存在实数使得(见1.3节中1.3.5的证明).再证的唯一性:如果,那么,而,所以,.定理1.4.2如果向量不共线,那么向量与共面的充要条件是可用向量线性表示,即, (1.4-2)并且系数被,唯一确定.证:(图1-6)因与不共线,由定义1.1.4知.设与中之一共线,那么由定理1.4.1有,其中中有一个为零;如果与都不共线,把它们归结共同的始点,并设,,,那么经过的终点分别作的平行线依次交直线于(图1-6),因,由定理 1.4.1,可设,所以由平行四边形法则得,即.反之,设,如果中有一个为零,如,那么与共线,因此与共面.如果,那么,从向量加法的平行四边形法则知与都共面,因此与共面.最后证的唯一性.因为=,那么,如果,那么,将有,这与假设矛盾,所以.同理,这就证明了唯一性.定理1.4.3 如果向量不共面,那么空间任意向量可以由向量线性表示,即存在一组实数使得,(1.4-3)并且系数x,y,z被,唯一确定.证明方法与定理1.4.2类似.定义1.4.2对于个向量,若存在不全为零的实数,使得, (1.4-4)则称向量线性相关.不是线性相关的向量叫做线性无关,即向量线性无关:.定理1.4.4在时,向量线性相关的充要条件是其中至少有一个向量是其余向量的线性组合.证设向量线性相关,则存在不全为零的实数使得,且中至少有一个不等于0,不妨设,则;反过来,设向量中有一个向量,不妨设为,它是其余向量的线性组合,即,即.因为数,-1不全为0,所以向量线性相关.定理1.4.5 如果一组向量中的部分向量线性相关,那么这一组向量就线性相关.证设中有一部分,不妨设前r个向量线性相关,即存在不全为零的实数,使得.则有,因为不全为零,所以线性相关.推论如果一组向量中含有零向量,那么这一组向量就线性相关类似地可证明下面的定理:定理1.4.6 两向量与共线线性相关.定理1.4.7 三向量与共面线性相关.定理1.4.8 空间任意四个或四个以上的向量总是线性相关的.例1 试证明:点在线段上的充要条件是:存在非负实数,,使得,且,其中是任意取定的一点.证(先证必要性)设在线段上,则与同向,且,所以,.任取一点所以,所以,.取,,则,,.(充分性)若对任一点有非负实数,,使得,且则,所以与共线,即在直线上.又,所以在线段上.例2设为两不共线向量,证明,共线的充要条件是.证共线,线性相关,即存在不全为0的实数,使,(1.4-5)即.又因为不共线即线性无关,故方程有非零解.§1.5 标架与坐标一空间点的直角坐标:平面直角坐标系使我们建立了平面上的点与一对有序数组之间的一一对应关系,沟通了平面图形与数的研究.为了沟通空间图形与数的研究,我们用类似于平面解析几何的方法,通过引进空间直角坐标系来实现.1、空间直角坐标系过空间一定点,作三条互相垂直的数轴,它们以为原点,且一般具有相同的长度单位,这三条轴分别叫轴(横轴)、轴(纵轴)、轴(竖轴),且统称为坐标轴.通常把轴,轴配置在水平面上,而轴则是铅垂线,它们的正方向要符合右手规则:(图1-7)右手握住轴,当右手的四个指头从轴的正向以角度转向轴正向时,大拇指的指向就是轴正向.三条坐标轴就组成了一个空间直角坐标系,点叫做坐标原点.注:为使空间直角坐标系画得更富于立体感,通常把轴与轴间的夹角画成左右.当然,它们的实际夹角还是.2、坐标面与卦限三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称为坐标面.由轴与轴所决定的坐标面称为面,另外还有面与面.三个坐标面把空间分成了八个部分,这八个部分称为卦限.(图1-8)3、空间点的直角坐标取定空间直角坐标系之后,我们就可以建立起空间点与有序数组之间的对应关系.设为空间的一已知点,过点分别作垂直于轴、轴、轴的三个平面,它们与轴、轴、轴的交点依次为,这三点在轴、轴、轴的坐标依次为,于是:空间点就唯一地确定了一个有序数组,这组数叫点的坐标.依次称,,为点的横坐标、纵坐标和竖坐标,记为.反过来,若已知一有序数组,我们可以在轴上取坐标为的点,在轴上取坐标为的点,在轴取坐标为的点,然后过、、分别作轴、轴、轴的垂直平面,这三个平面的交点就是以有序数组为坐标的空间点.这样,通过空间直角坐标系,我们建立了空间点和有序数组之间的一一对应关系.定义1 我们把上面有序数组叫点在此坐标系下的坐标,记为.二空间两点间的距离公式定理1设、为空间的两点,则两点间的距离为(1.5-1)证过、各作三个分别垂直于三坐标轴的平面,这六个平面围成一个以为对角线的长方体,如图所示(图1-9)是直角三角形,故,因为是直角三角形,故,从而;而,,,故.特别地,点与坐标原点的距离为.三空间向量的坐标定义2 设是与坐标轴,同向的单位向量,对空间任意向量都存在唯一的一组实数,使得,那么我们把这组有序的实数,叫做向量在此坐标系下的坐标,记为或.定理2设向量的始终点坐标分别为、,那么向量的坐标为. (1.5-2)证由点及向量坐标的定义知,所以=.由定义知.定理3 两向量和的分量等于两向量对应的分量的和.证设,,那么=+=,所以. (1.5-3)类似地可证下面的两定理:定理4设,则.定理5 设,,则共线的充要条件是.(1.5-4)定理6三非零向量,,共面的充要条件是. (1.5-5)证因为不共面,所以存在不全为0的实数使得,由此可得因为不全为0,所以.§1.6 向量在轴上的射影一、空间点在轴上的投影:设已知点及轴,过点作轴的垂直平面,则平面与轴的交点叫做点在轴上的投影.(图1-10)二、向量在轴上的投影:定义1设向量的始点与终点在轴的投影分别为、,那么轴上的有向线段的值叫做向量在轴上的投影,记作,轴称为投影轴.(图1-11)这里,的值是这样的一个数:(1)即,数的绝对值等于向量的模.(2)当的方向与轴的正向一致时,;当的方向与轴的正向相反时,.三、空间两向量的夹角:设有两向量、交于点(若、不相交,可将其中一个向量平移使之相交),将其中一向量绕点在两向量所决定的平面内旋转,使它的正方向与另一向量的正方向重合,这样得到的旋转角度(限定)称为、间的夹角,记作.(图1-12)若、平行,当它们指向相同时,规定它们之间的夹角为;当它们的指向相反时,规定它们的夹角为.类似地,可规定向量与数轴间的夹角.将向量平行移动到与数轴相交,然后将向量绕交点在向量与数轴所决定的平面内旋转,使向量的正方向与数轴的正方向重合,这样得到的旋转角度称为向量与数轴的夹角.四投影定理:定理1.6.1向量在轴上的投影等于向量的模乘以轴与向量的夹角的余弦.即, (1.6-1)(图1-13)证过向量的始点引轴,且轴与轴平行且具有相同的正方向,那未轴与向量的夹角等于轴与向量的夹角,而且有故由上式可知:向量在轴上的投影是一个数值,而不是向量.当非零向量与投影轴成锐角时,向量的投影为正.定理1.6.2对于任何向量都有. (1.6-2)证取,那么,设分别是在轴上的投影,那么显然有,因为所以,即.类似地可证下面的定理:定理1.6.3对于任何向量与任何实数有. (1.6-3)§1.7 两向量的数性积定义1.7.1 对于两个向量a和b 把它们的模|a|,|b|及它们的夹角的余弦的乘积称为向量和的数量积 记作ab,即ab=|a||b|cos .由此定义和投影的关系可得 ab|b|Prj b a=|a|Prj a b .数量积的性质(1) a·a=|a| 2,记a·a a 2,则a2|a| 2.(2) 对于两个非零向量a、b 如果a· b=0 则a b反之 如果a b 则a· b 0.定理1.7.1 如果认为零向量与任何向量都垂直 则a b a· b 0.定理1.7.2 数量积满足下面运算律:(1)交换律 a· b= b·a(2)分配律( a b)c a c b c( (3)a)· b a·(b )(a·b)(a)·(b )(a·b) 、为数证(1)由定义知显然.(2)的证明因为当c0时上式显然成立当c0时有(a b)c|c|Prj c(a b)|c|(Prj c a Prj c b)|c|Prj c a|c|Prj c ba cb c(3)可类似地证明.例1试用向量证明三角形的余弦定理证设在ΔABC中 ∠BCA||=a ||=b ||=c要证c 2a 2+b 2 2 a b cos记a b =c 则有 c a b从而 |c|2c c(a b)(a b)a2-2ab+b2|a|2+|b|22|a||b|cos(a^b)即c 2a 2+b 2 2 a b cos数量积的坐标表示 :定理1.7.3设a{a x a y a z } b{b x b y b z }则a·b a x b x a y b y a z b z证a· b( a x i a y j a z k)·(b x i b y j b z k)a xb x i·i a x b y i·j a x b z i·ka yb x j ·i a y b y j ·j a y b z j·ka zb x k·i a z b y k·j a z b z k·ka xb x a y b y a z b z定理1.7.4设a={},则向量a的模|a|=.证由定理1.7.2知|a|2=a2=,所以 |a|=.向量的方向角和方向余弦:向量与坐标轴所成的角叫做向量的方向角,方向角的余弦叫向量的方向余弦.定理1.7.5 设a={},则a的方向余弦为cos=,cos,cos;且,其中分别是向量a与x轴,y轴,z轴的夹角.证因为ai=|a|cos且ai=,所以 |a|cos=,从而 cos=.同理可证 coscos且显然两向量夹角的余弦的坐标表示定理1.7.6设(a ^ b)则当a0、b0时 有.证 因为a·b|a||b|cos,所以.例2 已知三点M (11 1) 、A (22 1) 和B (21 2) 求AMB解从M到A的向量记为a从M到B的向量记为b则AMB就是向量a与b的夹角 .a{11 0} b{10 1}因为a b1110011所以从而.§1.8 两向量的向量积定义1.8.1 两个向量a与b的向量积(也称外积)是一个向量,记做a b或,它的模|a b||a||b|sin,它的方向与a和b垂直并且按a,b,a b确定这个顺序构成右手标架{O;a,b,a b}.从定义知向量积有下列性质:(1) a a0(2) 对于两个非零向量a,b如果a b0则a//b;反之如果a//b则a b0.定理1.8.1 两不共线向量a与b的向量积的模,等于以a与b为边所构成的平行四边形的面积.定理1.8.2两向量a与b共线的充要条件是a b0.证当a与b共线时,由于sin(a、b)=0,所以|a b|=|a||b| sin(a、b)=0,从而a b0;反之,当a b0时,由定义知,a=0,或b=0,或a//b,因零向可看成与任向量都共线,所以总有a//b,即a与b共线.定理1.8.3 向量积满足下面的运算律(1) 反交换律a b b a,(2) 分配律(a b)c a c b c,(3) 数因子的结合律 (a)b a(b)(a b) (为数).证(略).推论: c (a b) c a c b定理1.8.4 设a a x i a y j a z k b b x i b y j b z k,则a b(a y b za zb y)i(a z b x a x b z)j(a x b y a y b x)k证由向量积的运算律可得a b(a x i a y j a z k)(b x i b y j b z k)a xb x i i a x b y i j a x b z i ka yb x j i a y b y j j a y b z j k a z b x k i a z b y k a z b z k k由于i i j j k k0i j k j k i k i j所以a b(a y b z a z b y)i(a z b x a x b z)j(a x b y a y b x)k.为了帮助记忆利用三阶行列式符号上式可写成a yb z i+a z b x j+a x b y k a y b x k a x b z j a z b y i(a y b z a z b y)i(a z b x a x b z)j(a x b y a y b x)k例1设a(2 11)b(11 2)计算a b解=2i j2k k4j i i5j 3k例2已知三角形ABC的顶点分别是A (123)、B (345)、C (247)求三角形ABC的面积解根据向量积的定义可知三角形ABC的面积由于(222)(124)因此4i6j2k于是例3 设刚体以等角速度绕l轴旋转计算刚体上一点M的线速度解刚体绕l轴旋转时我们可以用在l轴上的一个向量n表示角速度它的大小等于角速度的大小它的方向由右手规则定出即以右手握住l轴当右手的四个手指的转向与刚体的旋转方向一致时大姆指的指向就是n的方向设点M到旋转轴l的距离为a再在l轴上任取一点O作向量r并以表示n与r的夹角那么a|r| sin设线速度为v那么由物理学上线速度与角速度间的关系可知v的大小为|v||n|a|n||r| sinv的方向垂直于通过M点与l轴的平面即v垂直于n与r又v的指向是使n、r、v符合右手规则因此有v n r§1.9 三向量的混合积定义1.9.1 给定空间的三个向量,我们把叫做三向量的混合积,记做或.定理1.9.1三个不共面向量的混合积的绝对值等于以为棱的平行六面体的体积,并且当构成右手系时混合积为正;当构成左手系时混合积为负,也就是=当构成右手系时,当构成左手系时.证由于向量不共面,所以把它们归结到共同的试始点可构成以为棱的平行六面体,它的底面是以为边的平行四边形,面积为,它的高为,体积是.根据数性积的定义,其中是与的夹角.当构成右手系时,,,因而可得.当构成左手系时,,,因而可得.定理1.9.2三向量共面的充要条件是.证若三向量共面,由定理1.9.1知,所以,从而.反过来,如果,即,那么根据定理1.7.1有,另一方面,有向性积的定义知,所以共面.定理1.9.3轮换混合积的三个因子,并不改变它的值;对调任何俩因子要改变混合积符号,即.证当共面时,定理显然成立;当不共面时,混合积的绝对值等于以为棱的平行六面体的体积,又因轮换的顺序时,不改变左右手系,因而混合积不变,而对调任意两个之间的顺序时,将右手系变为左,而左变右,所以混合积变号.推论:.定理1.9.4设,,,那么.证由向量的向性积的计算知,再根据向量的数性积得===.推论: 三向量共面的充要条件是.例1设三向量满足,证明:共面。

平面解析几何教案

平面解析几何教案

平面解析几何教案一、教学目标1. 知识与技能:(1)理解平面直角坐标系的概念,掌握坐标轴上的点的坐标特征;(2)掌握两点间的距离公式,了解线段中点坐标公式;(3)掌握直线的斜率公式,能够计算直线的斜率;(4)学会用两点式、截距式、斜截式求直线方程;(5)了解圆的标准方程和一般方程,能够判断点与圆的位置关系。

2. 过程与方法:(1)通过实例感受坐标系在描述几何图形中的作用;(2)利用数形结合的思想,直观理解直线的斜率概念;(3)运用转化思想,将实际问题转化为平面解析几何问题;(4)运用方程思想,解决平面解析几何问题。

3. 情感态度与价值观:(1)培养学生的数学思维能力,提高解决问题的能力;(2)培养学生对数学的兴趣,激发学习数学的积极性;(3)培养学生合作交流的能力,提高团队协作能力。

二、教学内容1. 平面直角坐标系:坐标轴上的点的坐标特征,坐标系的应用。

2. 两点间的距离与线段中点坐标:两点间的距离公式,线段中点坐标公式。

3. 直线的斜率:直线的斜率概念,斜率公式,直线的倾斜角。

4. 直线方程的求法:两点式、截距式、斜截式求直线方程。

5. 点与圆的位置关系:圆的标准方程和一般方程,判断点与圆的位置关系。

三、教学重点与难点1. 教学重点:(1)平面直角坐标系的概念及应用;(2)两点间的距离公式和线段中点坐标公式;(3)直线的斜率公式及直线的倾斜角;(4)直线方程的求法;(5)点与圆的位置关系的判断。

2. 教学难点:(1)直线的斜率公式的推导;(2)直线方程的求法;(3)点与圆的位置关系的判断。

四、教学方法1. 采用启发式教学,引导学生主动探究,发现规律;2. 利用数形结合,直观展示几何图形的性质;3. 通过实例分析,培养学生的实际应用能力;4. 运用合作学习,引导学生积极参与,提高团队协作能力。

五、教学准备1. 教学课件:平面直角坐标系、两点间的距离与线段中点坐标、直线的斜率、直线方程的求法、点与圆的位置关系;2. 教学素材:坐标轴、点、直线、圆的模型或图片;3. 教学设备:投影仪、计算机、黑板、粉笔。

高中数学解析几何教案

高中数学解析几何教案

高中数学解析几何教案教案一:平面与空间解析几何基础知识一、教学内容1. 平面解析几何的基本概念和性质a. 平面方程的一般形式b. 平面的点法式方程c. 平面的截距式方程2. 空间解析几何的基本概念和性质a. 空间直线和平面的方程b. 点到直线和点到平面的距离公式c. 直线与平面的位置关系二、教学目标1. 理解平面解析几何的基本概念和性质2. 掌握平面的方程形式以及点法式和截距式方程的应用3. 理解空间解析几何的基本概念和性质4. 掌握空间直线和平面的方程形式以及点到直线和点到平面的距离公式的运用5. 掌握直线与平面的位置关系1. 导入(5分钟)利用实际生活中的例子,引导学生思考平面和空间的概念,激发学生学习解析几何的兴趣。

2. 概念讲解(30分钟)分别介绍平面解析几何和空间解析几何的基本概念,通过示意图和实例帮助学生理解。

3. 平面解析几何的基本概念和性质(50分钟)a. 讲解平面方程的一般形式,并通过示例演示如何由一般方程得到点法式方程和截距式方程。

b. 指导学生进行练习,巩固平面的方程形式转换和方程应用题目。

4. 空间解析几何的基本概念和性质(50分钟)a. 教授空间直线和平面的方程形式,并解释其几何意义。

b. 讲解点到直线和点到平面的距离公式,并通过实例演示应用。

c. 引导学生分析直线与平面的位置关系,并讲解相应的判定条件。

5. 总结与拓展(15分钟)小结平面解析几何和空间解析几何的基本知识,并提出进一步拓展的问题,以激发学生的思考和探索欲望。

1. 教学课件或投影仪2. 教材和练习题3. 黑板和粉笔五、教学评估1. 教学过程中的教师观察和评价2. 学生的练习作业和小组讨论表现3. 课后作业的完成情况和准确性通过本教案的教学,学生能够掌握平面和空间解析几何的基本概念和性质,理解方程的几何意义,并能够应用到平面和空间解析几何的问题中。

同时,通过合作讨论和实际练习,学生的解决问题的能力和思维能力也能得到提升。

解析几何课程教案

解析几何课程教案

解析几何课程教案一、教学目标1. 让学生掌握解析几何的基本概念和基本公式。

2. 培养学生运用解析几何知识解决实际问题的能力。

3. 提高学生分析问题、解决问题的能力。

二、教学内容1. 解析几何的基本概念:坐标系、点、直线、圆等。

2. 解析几何的基本公式:直线方程、圆的方程等。

3. 解析几何中的重要性质和定理。

三、教学方法1. 采用讲授法,系统地讲解解析几何的基本概念、基本公式和重要性质。

2. 利用图形展示,让学生直观地理解解析几何的知识。

3. 设置例题和练习题,巩固所学知识,培养学生的解题能力。

四、教学步骤1. 引入坐标系,讲解点的坐标表示方法。

2. 讲解直线的基本概念和直线方程的求法。

3. 讲解圆的基本概念和圆的方程的求法。

4. 讲解解析几何中的重要性质和定理。

5. 通过例题和练习题,让学生运用所学知识解决问题。

五、教学评价1. 课堂问答:检查学生对解析几何基本概念的理解。

2. 作业批改:检查学生对解析几何知识的掌握和运用能力。

3. 阶段性测试:评估学生对解析几何的整体掌握情况。

4. 学生反馈:了解学生在学习过程中的需求和困惑,及时调整教学方法。

六、教学难点与对策1. 难点:理解并掌握解析几何中的抽象概念和复杂公式。

对策:通过具体例子和图形展示,帮助学生直观地理解抽象概念;分步骤讲解公式,让学生逐步掌握。

2. 难点:解决实际问题时的坐标运算。

对策:引导学生将实际问题转化为坐标问题,逐步讲解运算方法,让学生熟练运用。

七、教学实践与拓展1. 案例分析:选取实际问题,让学生运用解析几何知识解决。

2. 拓展练习:设计有一定难度的练习题,激发学生的学习兴趣,提高解题能力。

八、课程资源与辅助工具1. 教材:选用权威、实用的教材,为学生提供系统、全面的学习资源。

2. 网络资源:利用互联网查找相关教学视频、文章,丰富教学内容。

3. 几何画板:为学生提供直观的图形展示,帮助理解抽象概念。

九、课程进度安排1. 课时:本课程共计30课时。

高等数学教案 空间解析几何

高等数学教案 空间解析几何

高等数学教案空间解析几何一、教学目标1. 理解空间解析几何的基本概念和符号表示。

2. 掌握空间点、直线、平面、空间向量的坐标表示和运算。

3. 学会利用空间解析几何解决实际问题。

二、教学内容1. 空间解析几何的基本概念和符号表示空间直角坐标系点、直线、平面、空间向量的定义及符号表示2. 空间点、直线、平面的坐标表示和运算点的坐标表示直线的坐标表示和方程平面的坐标表示和方程空间向量的坐标表示和运算3. 空间解析几何的应用空间距离和角度的计算空间几何图形的位置关系空间向量的应用三、教学重点与难点1. 教学重点:空间解析几何的基本概念和符号表示空间点、直线、平面的坐标表示和运算空间解析几何的应用2. 教学难点:空间向量的坐标表示和运算空间解析几何解决实际问题四、教学方法1. 采用讲授法,讲解空间解析几何的基本概念、符号表示和运算方法。

2. 利用多媒体课件,展示空间几何图形的直观图像,帮助学生理解。

3. 结合实际例子,引导学生运用空间解析几何解决实际问题。

4. 布置练习题,巩固所学知识。

五、教学安排1. 第一课时:空间解析几何的基本概念和符号表示2. 第二课时:空间点、直线、平面的坐标表示和运算3. 第三课时:空间向量的坐标表示和运算4. 第四课时:空间解析几何的应用(一)5. 第五课时:空间解析几何的应用(二)六、教学内容6. 空间解析几何与空间几何图形的位置关系空间两点间的距离空间直线与平面的位置关系空间直线与直线的夹角空间向量与平面的夹角7. 空间解析几何在实际问题中的应用空间中的点到直线的距离空间中的点到平面的距离空间中的直线与平面的距离空间中的直线与直线的夹角问题七、教学重点与难点1. 教学重点:空间解析几何与空间几何图形的位置关系的理解和应用空间解析几何在实际问题中的应用2. 教学难点:空间两点间的距离的计算空间直线与平面的位置关系的理解和应用八、教学方法1. 采用讲授法,讲解空间解析几何与空间几何图形的位置关系的理解和应用。

《解析几何》课程教案

《解析几何》课程教案

一、教案基本信息教案名称:《解析几何》课程教案课时安排:共24 课时,每课时45 分钟教学对象:高中一年级学生教学目标:1. 让学生掌握解析几何的基本概念、方法和技巧。

2. 培养学生运用解析几何知识解决实际问题的能力。

3. 提高学生分析问题、解决问题的能力。

教学内容:第一章:解析几何概述1.1 解析几何的定义与发展历程1.2 坐标系与坐标轴1.3 点、直线、圆的方程第二章:直线方程2.1 直线方程的定义与分类2.2 直线方程的斜率与截距2.3 直线方程的应用第三章:圆的方程3.1 圆的方程定义与性质3.2 圆的标准方程与一般方程3.3 圆的方程应用第四章:曲线与方程4.1 曲线与方程的概念4.2 常见曲线的方程4.3 曲线与方程的应用第五章:解析几何中的问题解决策略5.1 解析几何问题的类型与解法5.2 图形分析与变换5.3 解析几何在实际问题中的应用二、教学方法1. 采用讲授法,系统地讲解解析几何的基本概念、方法和技巧。

2. 运用案例分析法,结合具体实例分析,让学生深入理解解析几何的应用。

3. 采用互动教学法,鼓励学生提问、讨论,提高学生的参与度。

4. 利用数形结合法,引导学生通过图形来直观理解解析几何问题。

三、教学评价1. 平时作业:检查学生对基本概念、方法和技巧的掌握程度。

2. 课堂练习:评估学生在课堂上解决问题、分析问题的能力。

3. 课程报告:考察学生对实际问题应用解析几何知识的能力。

4. 期末考试:全面测试学生对本课程的掌握情况。

四、教学资源1. 教材:选用权威、实用的解析几何教材。

2. 课件:制作精美、清晰的课件,辅助课堂教学。

3. 习题库:提供丰富、多样的习题,便于学生课后练习。

4. 参考资料:推荐学生阅读相关书籍、论文,拓展知识面。

五、教学进度安排第1-4 课时:解析几何概述第5-8 课时:直线方程第9-12 课时:圆的方程第13-16 课时:曲线与方程第17-20 课时:解析几何中的问题解决策略第21-24 课时:复习与总结六、教学策略及建议6.1 针对不同学生的学习基础,采取分层教学,既注重基础知识的学习,又提供一定的拓展内容。

《解析几何》课程教案

《解析几何》课程教案

一、教案基本信息教案名称:《解析几何》课程教案课时安排:共10课时,每课时45分钟教学目标:1. 让学生掌握解析几何的基本概念和基本公式。

2. 培养学生解决实际问题的能力,提高空间想象能力。

3. 引导学生运用数形结合的思想,提高数学思维能力。

教学内容:1. 坐标系与直线方程2. 圆的方程3. 二次曲线4. 空间几何5. 解析几何在实际问题中的应用二、第一课时:坐标系与直线方程教学重点:坐标系的建立,直线的斜率,直线方程的求法。

教学难点:坐标系的转换,直线方程的求法。

教学准备:黑板,粉笔,坐标系图示,实际问题案例。

教学过程:1. 导入:讲解坐标系的建立,引导学生理解坐标系的作用。

2. 新课讲解:讲解直线的斜率,直线方程的求法。

3. 案例分析:分析实际问题中的直线方程,引导学生运用所学知识解决实际问题。

4. 课堂练习:布置相关练习题,让学生巩固所学知识。

三、第二课时:圆的方程教学重点:圆的标准方程,圆的一般方程,圆的性质。

教学难点:圆的方程的求法,圆的性质的理解。

教学准备:黑板,粉笔,圆的图示,实际问题案例。

教学过程:1. 导入:讲解圆的定义,引导学生理解圆的特点。

2. 新课讲解:讲解圆的标准方程,圆的一般方程,圆的性质。

3. 案例分析:分析实际问题中的圆的方程,引导学生运用所学知识解决实际问题。

4. 课堂练习:布置相关练习题,让学生巩固所学知识。

四、第三课时:二次曲线教学重点:二次曲线的标准方程,二次曲线的性质。

教学难点:二次曲线方程的求法,二次曲线性质的理解。

教学准备:黑板,粉笔,二次曲线的图示,实际问题案例。

教学过程:1. 导入:讲解二次曲线的定义,引导学生理解二次曲线的特点。

2. 新课讲解:讲解二次曲线的标准方程,二次曲线的性质。

3. 案例分析:分析实际问题中的二次曲线,引导学生运用所学知识解决实际问题。

4. 课堂练习:布置相关练习题,让学生巩固所学知识。

五、第四课时:空间几何教学重点:空间几何的基本概念,空间几何图形的性质。

大学解析几何教案

大学解析几何教案

课程名称:高等数学授课对象:大学本科生授课时间:2课时教学目标:1. 理解解析几何的基本概念和原理,包括点、直线、圆、圆锥曲线等。

2. 掌握解析几何的基本方法,如方程法、参数法、坐标法等。

3. 能够运用解析几何的方法解决实际问题,如几何图形的定位、面积计算、轨迹分析等。

教学内容:1. 解析几何的基本概念2. 点、直线、圆的方程及其几何性质3. 圆锥曲线(椭圆、双曲线、抛物线)的方程及其几何性质4. 解析几何的应用教学过程:第一课时一、导入1. 回顾平面几何的基本概念和性质。

2. 引入解析几何的概念,强调它是平面几何的拓展。

二、解析几何的基本概念1. 点、直线、圆的方程及其几何性质。

2. 利用方程描述几何图形,理解几何图形的坐标表示。

三、课堂练习1. 列出点、直线、圆的方程。

2. 分析方程的几何意义。

四、课堂小结1. 总结解析几何的基本概念。

2. 强调方程在解析几何中的重要性。

第二课时一、圆锥曲线的方程及其几何性质1. 椭圆、双曲线、抛物线的方程。

2. 分析方程的几何意义,理解圆锥曲线的几何性质。

二、课堂练习1. 列出椭圆、双曲线、抛物线的方程。

2. 分析方程的几何意义。

三、解析几何的应用1. 几何图形的定位。

2. 面积计算。

3. 轨迹分析。

四、课堂小结1. 总结圆锥曲线的方程及其几何性质。

2. 强调解析几何在解决实际问题中的应用。

教学评价:1. 课堂练习:通过课堂练习,检验学生对解析几何基本概念和方法的掌握程度。

2. 课后作业:布置与解析几何相关的课后作业,巩固所学知识。

3. 课堂提问:通过课堂提问,了解学生对解析几何的理解和应用能力。

教学反思:1. 分析学生在解析几何学习中的难点和困惑,调整教学策略。

2. 丰富课堂内容,提高学生的学习兴趣。

3. 结合实际案例,让学生体会解析几何的应用价值。

《解析几何》教案.doc

《解析几何》教案.doc

《解析几何》教案第一章向量与坐标本章教学目的:通过木章学习,使学生掌握向量及其运算的概念,熟练掌握线性运算和非线性运算的基木性质、运算规律和分量表示,会利用向量及其运算建立空间朋标系和解决某些儿何问题,为以下各章利用代数方法硏究空间图形的性质打下基础.本章教学重点:(1)向量的基本概念和向量间关系的各种刻划。

(2)向量的线性运算、积运算的定义、运算规律及分量表示.本章教学难点:(1)向量及其运算与空间处标系的联系;(2)向量的数量积与向量积的区别与联系;(3)向量及其运算在平面、立体几何中的应用.§1.1向量的基本概念本章教学内容:一、定义:既有大小乂有方向的量称为向量,如力、速度、位移等.二、表示:在几何上,用带箭头的线段表示向量,箭头表示向量的方向,线段长度代表向量的大小;向量的大小又叫向量的模(长度).始点为A,终点为B的向量,记作石,其模记做注:为方便起见,今后除少数情形用向量的始、终点字母标记向量外,我们一般用小写黑体字母a、b、c…… 标记向量,而用希腊字母入、口、v……标记数量.三、两种特殊向量:1、零向量:模等于0的向量为零向量,简称零向量,以0记之.注:零向量是唯一方向不定的向量.2、单位向量:模等于1的向量称为单位向量•特别地,与非0向量7同向的单位向量称为么的单位向量,记作日.四、向量间的几种特殊关系:1、平行(共线):向量a平行于向量b,意即a所在直线平行于b所在宜线,记作a〃b,规定:零向聚平行于任何向量.2、相等:向量a等于向量b,意即a与b同向且模相等,记作a二b.注:二向量相等与否,仅収决于它们的模与方向,而与其位置无关,这种与位置无关的向量称为自山向量, 我们以后提到的向量都是指EI由向量.3、反向最:与向最a模相等但方向相反的向最称为a的反向量,记作-a,显然一上・=®^,零向量的反向量还是其自身.4、共面向昼平行于同一平面的一组向量称为共面向量•易见,任两个向量总是共面的,三向屋中若冇两向量共线,则三向量一定共血,零向量与任何共血向量组共面.①向量不能比较人小,如切没有意义; ②向量没有运算, 如类似的式子没有意义.注意:应把向量与数量严格区别开來:§ 1.2向量的加法向量的加法:"回、以皿与为邻边作一平行四边形QQ,取对角线向量OC,记这种用平行四边形的对角线向量來规定两个向量之和的方法称作向量加法的平行四边形法则.如竺)量s=alLj向量?=a»在同一直线上,那么,规定它们的和是这样一个向量:若QALjOi的指向相同吋,和向量的方向打原来两向量相同,其模等丁俩向屋的模z和.若32与丽的指向相反时,和向量的模等于两向量的模z差的绝对值,其方向与模值大的向量方向一致.由于平行四边形的对边平行且相等,可以这样來作岀两向量的和向量:定义2作可以冠的终点为起点作盍莎,联接无(图1-2)得^i=oc该方法称作向量加法的三角形法则.向量加法的三角形法则的实质是: 将两向量的首尾和联,则一•向量的首与另一向量的尾的连线就是两向量的和向量. 据向量的加法的定义,可以证明向量加法具有下列运算规律:定理1向量的加法满足卜•而的运算律:(1.2-2)(1.2-3)交换律的证明从向量的加法定义即可得证.则冇所以(a+J) + c = «+^+c)二向量的减法定义3若E=S+*,贝I」我们把奈叫做的差,记为显然,tt—S+(—一 ,特别地,tf—•由三角形法则可看出:要从空减去产,只要把与厂长度相同而方向相反的向最-芹加到向最心上去.由平行四边形法可(1-2)2、结介律由定理1知,or脅&脅雲对三向相加,不论其先后顺序和结合顺序如何,结果总是相同的,可以简单的写作(图1-2)下证结合律.自空间任-点0开始依次作皿=2*如下作出向量侖一石•设S=QA &=Q*y以莎与両为邻边作一平行四边形■,则对角线向例1设互不共线的三向量X、歹与匚试证明顺次将它们的终点与始点相连而成一个三介形的充要条件是它们的和是零向虽.证必要性设三向量住、b、c可以构成三角形QC (图1-3),充分性设2+5+c=o,作那么左匸M,所以^+c=ob 、£可以构成三角形41C.例2用向量法证明:对角线互相平分的四边形是平行四边形. 证设四边形厶总的对角线"C 、砂交于°点且互和平分(图1-4)因此从图可看出:皿=M*O ・=g*人O=DO*OC=DC,§ 1. 3数量乘向量定义1.3.1设2是一个数量,向量玄打2的乘积是一向量,记作血,其模等于1剑的国倍,即I 石1=1見11・|;且方向规定如下:当^>0时,向量花的方向与方的方向相同;当丄=°时,向量血是零向量,当A <°时,向量"的方向与方的方向相反.特别地,取; 匸一 1,则向量日•曲的模与方的模相等,而方向相反,由负向最的定义知:(-9据向量与数量乘积的定义,可导出数乘向量运算符合下列运算规律:定理1.3.1. 1) 2) 结合律 3) 分配律数址与向量的乘法满足下而的运算律:1 ・ a=S 3=4=叶(13】)4)(1.3-3)证1)据定义显然成立.2)显然,向量如叭"旳、如^的方向是-致,3)分配律如果« = ®或&八丄■事中至少有一个为0,等式显然成立; 反之 门若“",显然。

《解析几何》课程教案

《解析几何》课程教案

《解析几何》课程教案一、教学目标1. 知识与技能:(1)理解解析几何的基本概念和性质;(2)掌握直线的斜率、截距、方程以及直线与坐标轴的交点;(3)学会运用解析几何解决实际问题。

2. 过程与方法:(1)通过实例引导学生认识解析几何的基本概念,培养学生的空间想象能力;(2)借助图形软件或坐标纸,直观展示直线方程的图形含义,提高学生的数形结合能力;(3)运用小组讨论、探究等方法,探讨直线与坐标轴的交点问题,培养学生的合作与交流能力。

3. 情感态度与价值观:(1)培养学生对数学学科的兴趣和好奇心;(2)培养学生勇于探索、坚持不懈的科学精神;(3)通过实际问题,让学生感受数学与生活的紧密联系,提高学生运用数学解决实际问题的能力。

二、教学内容1. 解析几何的基本概念与性质(1)点的坐标;(2)直线的斜率与截距;(3)直线方程的表示方法。

2. 直线的斜率、截距与方程(1)斜率的定义与计算;(2)截距的定义与计算;(3)直线方程的斜截式与点斜式。

3. 直线与坐标轴的交点(1)直线与x轴的交点;(2)直线与y轴的交点;(3)直线与坐标轴的交点求解方法。

三、教学重点与难点1. 教学重点:(1)解析几何的基本概念与性质;(2)直线的斜率、截距与方程;(3)直线与坐标轴的交点求解方法。

2. 教学难点:(1)直线方程的表示方法;(2)直线与坐标轴的交点求解方法。

四、教学方法与手段1. 教学方法:(1)讲授法:讲解解析几何的基本概念、性质和直线的斜率、截距、方程;(2)案例分析法:分析实际问题,引导学生运用解析几何知识解决问题;(3)小组讨论法:探讨直线与坐标轴的交点问题,培养学生的合作与交流能力。

2. 教学手段:(1)多媒体教学:利用PPT、图形软件等展示直线方程的图形含义;(2)板书教学:板书关键步骤,强化学生对知识点的理解;(3)实践操作:让学生动手操作,绘制直线图形,提高学生的实践能力。

五、教学评价1. 过程性评价:关注学生在课堂上的参与程度、思考问题的方式和方法,以及与合作同学之间的交流情况;2. 终结性评价:通过课后作业、课堂测试等方式,检查学生对直线方程、直线与坐标轴交点等知识的掌握程度;3. 综合评价:结合学生的课堂表现、作业完成情况和测试成绩,全面评价学生对解析几何知识的掌握及运用能力。

《解析几何》课程教案

《解析几何》课程教案

《解析几何》课程教案一、教学目标1. 让学生掌握解析几何的基本概念和基本公式。

2. 培养学生解决实际问题能力,提高空间想象能力。

3. 引导学生运用数形结合思想,提高数学思维能力。

二、教学内容1. 解析几何的基本概念(1)坐标系(2)点、直线、圆的方程(3)图形的位置关系2. 解析几何的基本公式(1)距离和角度公式(2)直线方程的求解(3)圆的方程及其应用三、教学重点与难点1. 重点:解析几何的基本概念和基本公式的掌握。

2. 难点:直线与圆的位置关系的理解和应用。

四、教学方法1. 采用讲授法,系统讲解解析几何的基本概念和基本公式。

2. 利用数形结合思想,引导学生直观理解直线、圆等图形的性质。

3. 运用案例分析法,分析实际问题,提高学生解决实际问题的能力。

五、教学过程1. 引入:通过简单的实例,让学生感受解析几何在实际生活中的应用,激发学习兴趣。

2. 讲解:系统讲解解析几何的基本概念和基本公式,注意引导学生理解和记忆。

3. 练习:布置相关习题,让学生巩固所学知识,并及时解答学生的疑问。

4. 应用:分析实际问题,引导学生运用所学知识解决实际问题,提高学生解决实际问题的能力。

5. 总结:对本节课的内容进行总结,强调重点和难点,布置课后作业。

教案暂编至此,如有需要,后续章节将继续编写。

请您参考并提出宝贵意见。

六、教学评价1. 评价方式:过程性评价与终结性评价相结合,主要评价学生对解析几何基本概念和公式的掌握程度,以及解决实际问题的能力。

2. 评价指标:(1)课堂参与度:学生参与课堂讨论、提问和练习的情况。

(2)作业完成情况:学生完成作业的质量和速度。

(3)实际问题解决能力:学生运用所学知识解决实际问题的能力和创新意识。

七、教学资源1. 教材:《解析几何》教材,为学生提供系统的学习材料。

2. 课件:制作精美的课件,辅助讲解,提高课堂效果。

3. 习题库:收集各种类型的习题,为学生提供充足的练习机会。

4. 案例素材:收集与实际问题相关的素材,用于教学实践环节。

高中数学解析几何教案

高中数学解析几何教案

高中数学解析几何教案
目标:学生掌握平面几何的基本概念,包括点、线、角等,能够运用这些概念解决相关问题。

教学重点:点、线、角的基本性质,平面几何的基本概念。

教学难点:对相关定义的理解和应用。

教学准备:
1. 教师准备相关的教学素材,包括图纸、尺子等。

2. 学生准备相关的学习用具,包括笔、纸等。

教学活动:
1. 热身:教师给学生出示一些平面几何图形,让学生观察并描述其中的点、线、角等基本
元素。

2. 导入:教师引导学生回顾点、线、角的定义,并解释它们在平面几何中的重要性。

3. 学习:
a. 点的性质:教师讲解点的定义及性质,要求学生掌握点的概念和特点。

b. 线的性质:教师讲解直线、射线、线段的定义及性质,要求学生会区分不同类型的线。

c. 角的性质:教师讲解角的定义及性质,包括顶点、边、内角和外角等概念,要求学生能
正确识别各种角。

4. 练习:教师设计一些练习题,让学生巩固所学知识,并在实践中掌握点、线、角的应用。

5. 总结:教师总结本节课的重点内容,强调点、线、角是平面几何的基本要素,学生需要
在后续学习中不断运用这些概念。

6. 作业:布置相关的作业,让学生继续巩固所学知识。

教学反馈:通过课堂练习和作业检查,及时发现并纠正学生的错误,确保他们对平面几何
的基本概念有深入理解。

解析几何专题教案

解析几何专题教案

解析几何专题教案一、教学目标1. 知识与技能:(1)理解解析几何的基本概念,掌握直角坐标系中点的坐标表示方法。

(2)熟练运用解析几何方法解决实际问题,提高空间想象能力。

2. 过程与方法:(1)通过实例分析,引导学生掌握点的坐标表示方法,培养学生的抽象思维能力。

(2)运用图形直观展示解析几何问题,培养学生数形结合的解题思想。

3. 情感态度与价值观:(1)培养学生对数学的兴趣,激发学生探索几何问题的热情。

(2)培养学生克服困难的意志,增强学生解决问题的信心。

二、教学内容1. 解析几何基本概念(1)直角坐标系(2)点的坐标表示方法(3)直线、圆的方程2. 点的坐标表示方法及应用(1)坐标轴上的点(2)坐标轴上的点与几何图形的关系(3)点的坐标在实际问题中的应用三、教学重点与难点1. 教学重点:(1)解析几何的基本概念(2)点的坐标表示方法及应用2. 教学难点:(1)直线、圆的方程的推导与理解(2)坐标轴上的点与几何图形的关系四、教学方法与手段1. 教学方法:(1)讲授法:讲解解析几何基本概念、直线的方程等。

(2)实践操作法:引导学生动手绘制图形,分析点的坐标表示方法。

(3)案例分析法:分析实际问题,培养学生运用解析几何方法解决问题的能力。

2. 教学手段:(1)黑板:板书关键知识点、解题步骤等。

(2)多媒体课件:展示图形、动态演示等。

(3)练习题:巩固所学知识,提高解题能力。

五、教学过程1. 导入新课:(1)复习相关知识点,如坐标轴、坐标系等。

(2)通过实例引入解析几何的基本概念。

2. 讲解新课:(1)讲解直线的方程,引导学生理解直线的几何性质。

(2)讲解点的坐标表示方法,结合实例进行分析。

3. 课堂练习:(1)布置练习题,巩固点的坐标表示方法。

(2)选讲典型题目,分析解题思路和方法。

4. 课堂小结:总结本节课所学内容,强调解析几何的基本概念和点的坐标表示方法的重要性。

5. 课后作业:布置作业,要求学生掌握点的坐标表示方法,并能运用解析几何解决实际问题。

空间解析几何教案

空间解析几何教案

空间解析几何教案一、教案概述本教案旨在通过系统化的教学资源和教学活动,引导学生深入理解空间解析几何的基本概念和方法,培养学生的空间思维能力和解决实际问题的能力。

通过结合生动的例子和练习,帮助学生掌握空间直线、平面、向量等基本知识,并能运用解析几何的方法解决相关问题。

二、教学目标1. 理解空间直线、平面和向量的定义和性质。

2. 掌握使用坐标表示空间直线、平面和向量的方法。

3. 能够利用解析几何的方法解决空间几何相关问题。

4. 培养学生的空间思维和问题解决能力。

三、教学内容和步骤1. 空间直线的表示和性质- 定义和性质简介- 坐标表示法- 练习题解析和讲解2. 空间平面的表示和性质- 定义和性质简介- 坐标表示法- 练习题解析和讲解3. 空间向量的表示和性质- 定义和性质简介- 坐标表示法- 练习题解析和讲解4. 空间直线与平面的位置关系- 直线与平面的交点- 直线与平面的垂直、平行关系 - 练习题解析和讲解5. 空间向量的运算- 向量的加法、减法和数量积 - 应用示例与实际问题- 练习题解析和讲解6. 空间解析几何的应用- 点到直线的距离- 直线之间的夹角- 三角形面积与平行四边形面积- 练习题解析和讲解四、教学方法1. 针对性讲解:通过逐步解析和讲解例题,引导学生理解和掌握空间解析几何的基本概念和方法。

2. 组织练习:配备合适的练习题,让学生在课下巩固所学知识。

3. 提问与讨论:通过提问和师生互动的方式,激发学生的思考和讨论,并及时纠正误解。

4. 实际应用:引入实际问题,培养学生将解析几何方法应用于实际问题的能力。

五、教学资源和评估1. 教学资源- 教材:提供规范的教学知识和例题- 多媒体资源:投影仪、电子板等辅助工具- 练习题集:提供大量的练习题供学生巩固所学知识2. 教学评估- 课堂表现:积极回答问题、参与讨论的学生- 练习和作业:完成的准确度和深度- 课堂测试:检验学生对所学知识的掌握程度- 期末考试:综合评估学生在空间解析几何上的全面能力六、教学反思和改进通过对学生学习情况的观察和教学效果的评估,及时调整和改进教学方法和内容。

《立体几何与空间解析几何》教案

《立体几何与空间解析几何》教案

《立体几何与空间解析几何》教案立体几何与空间解析几何教案一、教学目标本教案的教学目标如下:1. 理解立体几何和空间解析几何的概念和基本原理。

2. 掌握立体几何和空间解析几何的基本定理和公式。

3. 能够运用立体几何和空间解析几何的知识解决相关问题。

4. 培养学生的思维能力、观察力和推理能力。

二、教学内容本教案的教学内容包括以下几个方面:1. 立体几何的基本概念和性质。

2. 空间解析几何的基本概念和性质。

3. 立体几何和空间解析几何的基本定理和公式。

4. 立体几何和空间解析几何的应用实例。

三、教学方法本教案将采用以下教学方法:1. 讲授法:通过讲解让学生了解立体几何和空间解析几何的基本概念和原理。

2. 实例法:通过具体的实例引导学生理解和应用立体几何和空间解析几何的知识。

3. 实验法:通过实验让学生亲自观察和验证立体几何和空间解析几何的定理和公式。

4. 讨论法:组织学生进行讨论,培养他们的思维能力和合作精神。

四、教学评估为了评估学生对立体几何和空间解析几何的掌握情况,本教案将采用以下评估方式:1. 课堂测试:通过课堂测试了解学生对基本概念、定理和公式的理解和应用能力。

2. 作业评定:根据学生完成的作业评定其对立体几何和空间解析几何的掌握情况。

3. 个人报告:要求学生根据自己的实践经验,撰写关于立体几何和空间解析几何的个人报告。

五、教学资源本教案所需的教学资源包括以下几个方面:1. 教科书:提供对立体几何和空间解析几何的详细讲解和案例分析。

2. 教具:提供用于实验和演示的几何模型和计算工具。

3. 多媒体设备:用于展示示意图、实例演示和视频资料。

六、教学安排本教案的教学安排如下:七、研究反思通过本课的研究,学生将能够全面掌握立体几何和空间解析几何的基本概念和原理,并能够灵活运用所学知识解决实际问题。

通过讨论和实验的方式,学生的思维能力和观察力也将得到提高。

为了加强学生对知识的理解和能力的培养,课后作业和个人报告的要求将促进学生的自主研究和深入思考。

教案平面解析几何

教案平面解析几何

精品教案平面解析几何一、教学目标:1. 知识与技能:使学生掌握平面解析几何的基本概念、基本性质和基本公式,能够运用解析几何知识解决实际问题。

2. 过程与方法:通过自主学习、合作探讨等方式,培养学生的逻辑思维能力和解决问题的能力。

3. 情感、态度与价值观:激发学生对平面解析几何的兴趣,培养学生的抽象思维能力,提高学生分析问题、解决问题的能力。

二、教学内容:1. 坐标系与直线方程:介绍直角坐标系、斜率、直线方程的点斜式、一般式等。

2. 圆的方程:讲解圆的标准方程、圆的一般方程,以及圆的性质。

3. 点到直线的距离:推导点到直线距离公式,并讲解应用。

4. 直线与圆的位置关系:分析直线与圆的位置关系,讲解相交、相切、相离的条件。

5. 解析几何中的图形变换:介绍平移、旋转等变换在解析几何中的应用。

三、教学重点与难点:1. 教学重点:直线方程、圆的方程、点到直线的距离、直线与圆的位置关系、解析几何中的图形变换。

2. 教学难点:直线与圆的位置关系的判断,以及解析几何中的图形变换。

四、教学方法:1. 采用问题驱动法,引导学生主动探究,提高学生的逻辑思维能力。

2. 利用多媒体课件,直观展示几何图形的变换,帮助学生理解抽象概念。

3. 创设实际问题情境,让学生运用所学知识解决实际问题,提高学生的应用能力。

五、教学过程:1. 导入新课:通过生活中的实例,引出平面解析几何的概念,激发学生的学习兴趣。

2. 自主学习:让学生自主学习直线方程、圆的方程等基本概念和性质。

3. 课堂讲解:讲解点到直线的距离公式,分析直线与圆的位置关系,以及解析几何中的图形变换。

5. 课堂练习:布置相关练习题,让学生巩固所学知识。

7. 课后作业:布置适量作业,巩固所学知识,提高学生的应用能力。

六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。

2. 练习作业评价:检查学生作业的完成情况,评估学生对知识的掌握程度。

数学解析几何公开课教案高中

数学解析几何公开课教案高中

数学解析几何公开课教案高中数学解析几何公开课教案(高中)引言:数学解析几何是高中数学的一门重要课程,它以解析的方法研究几何问题。

本节课旨在通过公开课的形式,生动地介绍解析几何的基本概念和相关内容,帮助学生更好地理解和掌握这门学科。

一、课堂导入在开始正式讲解课程内容前,我会以一个实生实例来引发学生对解析几何的兴趣和认知。

例如,通过介绍两点间的距离计算方法,引导学生思考如何用解析几何中的方法来解决这个问题。

二、解析几何的基本概念1. 笛卡尔坐标系:在介绍笛卡尔坐标系的建立和使用方法时,我会通过图示和具体案例的演示,帮助学生理解坐标系的含义和作用。

2. 直线和曲线的方程:接下来,我将详细讲解直线和曲线在解析几何中的表示方法,并通过实例让学生掌握求解直线和曲线方程的步骤和技巧。

三、解析几何的相关知识点1. 直线的性质:在这一部分,我将介绍直线的斜率、倾斜角以及直线的平行和垂直关系。

通过一些实际问题和例题,学生将更好地理解这些概念和性质。

2. 圆的方程:在讲解圆的方程时,我会结合具体的图像和实例,帮助学生掌握圆的一般方程和特殊情况下的方程求解方法。

3. 曲线的性质:本部分将涉及椭圆、双曲线和抛物线的基本性质和方程。

通过比较这些曲线的方程和图像特点,学生能够更好地理解它们之间的差异和联系。

四、解析几何综合练习为了巩固学生对解析几何知识的掌握,我将设计一些与前述内容相关的综合练习题,并提供解题思路和步骤,帮助学生培养解决实际问题的能力。

五、课堂总结与延伸在课堂的最后,我将对本节课的内容进行简要总结,并提供一些相关的拓展学习资源,供学生自主学习和进一步提高。

结语:通过这堂公开课,学生们将了解到解析几何的基本概念和重要性,并掌握一些常见的解析几何知识和技巧。

希望学生们能够通过这次课的学习,对解析几何充满兴趣,并在今后的学习中能够更好地应用解析几何的方法解决各类几何问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章矢量与坐标教学目的1、理解矢量的有关概念,掌握矢量线性运算的法则及其运算性质;2、理解矢量的乘法运算的意义,熟悉它们的几何性质,并掌握它们的运算规律;3、利用矢量建立坐标系概念,并给出矢量线性运算和乘法运算的坐标表示;4、能熟练地进行矢量的各种运算,并能利用矢量来解决一些几何问题。

教学重点矢量的概念和矢量的数性积,矢性积,混合积。

教学难点矢量数性积,矢性积与混合积的几何意义。

参考文献(1)解析几何(第三版),吕林根许子道等编,高等教育出版社,(2)解析几何思考与训练,梁延堂马世祥主编,兰州大学出版社,授课课时8§矢量的概念教学目的1、理解矢量的有关概念; 2、掌握矢量间的关系。

教学重点矢量的两个要素:摸与方向。

教学难点矢量的相等参考文献(1)解析几何(第三版),吕林根许子道等编,高等教育出版社,(2)解析几何思考与训练,梁延堂马世祥主编,兰州大学出版社,授课课时1一、有关概念1. 矢量2. 矢量的表示3. 矢量的模二、特殊矢量1. 零矢2. 单位矢三、矢量间的关系1. 平行矢2. 相等矢3. 自由矢4. 相反矢5. 共线矢6. 共面矢7. 固定矢量例1. 设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:=. 当ABCD是空间四边形时,这等式是否也成立例2. 回答下列问题:(1) 若矢量设点O是正六边形ABCDEF的中心,在矢量、、、、、、、、、、和中,哪些矢量是相等的2. 如图1-3,设ABCD-EFGH是一个平行六面体,在下列各对矢量中,找出相等的矢量和互为相反矢量的矢量:(1) 、; (2) 、; (3) 、; (4) 、; (5) 、.矢量的线性运算(§矢量的加法、§矢量的数乘)教学目的1、掌握矢量加法的两个法则、数量与矢量的乘法概念及运算律;2、能用矢量法证明有关几何命题。

教学重点矢量加法的平行四边形法则、数量与矢量的乘法概念教学难点运算律的证明、几何命题转化为矢量间的关系参考文献(1)解析几何(第三版),吕林根许子道等编,高等教育出版社,(2)解析几何思考与训练,梁延堂马世祥主编,兰州大学出版社,授课课时1一、概念1. 两个例子2. 矢量的加法法则(1) 三角形法则(2) 平行四边形法则二、性质1. 运算规律(1) 交换律+=+;(2) 结合律(+)+=+(+);(3) +=;(4) +(-)=.2. 矢量加法的多边形法则3. 矢量减法4. 三角不等式(1)|+|≤||+||, |-|≥||-||;(2)|++…+|≤||+||+…+||.例1. 从矢量方程组中解出矢量.例2. 用矢量法证明平行四边形对角线互相平分.作业题:1. 设两矢量与共线,试证+=+.2. 证明:四边形ABCD为平行四边形的充要条件是对任一点O有+=+.§数量乘矢量一、概念1. 数乘的例子2. 数乘的定义二、性质1. 运算规律(1)1=.(2) 结合律()=().(3) 第一分配律(+)=+.(4) 第二分配律(+)=+.例1. 如图1-7,设M是平行四边形ABCD的中心,O是任意一点,证明例2. 设点O是平面上正多边形A1A2…A n的中心,证明:作业题:1. 设L、M、N分别是ΔABC的三边BC、CA、AB的中点,证明:三中线矢量, , 可以构成一个三角形.2. 设L、M、N是△ABC的三边的中点,O是任意一点,证明+=++.3. 用矢量法证明,四面体对棱中点的连线相交于一点且互相平分.§矢量的线性关系与矢量的分解教学目的1、理解矢量在直线和平面及空间的分解定理;2、掌握矢量间的线性相关性及判断方法。

教学重点矢量的三个分解定理及线性相关的判断。

教学难点分解定理的证明参考文献(1)解析几何(第三版),吕林根许子道等编,高等教育出版社,(2)解析几何思考与训练,梁延堂马世祥主编,兰州大学出版社,授课课时1一、矢量的分解1. 线性运算2. 线性组合3. 矢量在直线上的分解:定理1 如果矢量,那么矢量与矢量共线的充要条件是可以用矢量线性表示,或者说是的线性组合,即=x,且系数x被,唯一确定. 称为用线性组合来表示共线矢量的基底.4. 矢量在平面上的分解:定理2 如果矢量, 不共线,那么矢量与, 共面的充要条件是可以用矢量, 线性表示,或者说矢量可以分解成矢量, 的线性组合,即=x+y,且系数x, y被, , 唯一确定. , 称为平面上矢量的基底.5. 矢量在空间的分解:定理3 如果矢量, , 不共面,那么空间任意矢量可以由矢量, , 线性表示,或者说矢量可以分解成矢量, , 的线性组合,即=x+y+z,且系数x, y, z被, , , 唯一确定. , , 称为空间矢量的基底.二、矢量的线性关系1.定义对于n (n≥1)个矢量, , …, ,如果存在不全为零的n个数1, 2,…, n, 使得+2+…+n=,1那么n个矢量, , …, 叫做线性相关. 矢量, , …, 线性无关是指,只有当1=2=…=n=0时,上式才成立. 2.判断方法推论1 一个矢量线性相关的充要条件是=.定理4 矢量, , …, (n≥2)线性相关的充要条件是其中有一个矢量是其余矢量的线性组合.定理5 如果一组矢量中的一部分矢量线性相关,那么这一组矢量就线性相关.推论2 一组矢量中如果含有零矢量,那么这组矢量必线性相关.定理6 两矢量共线的充要条件是它们线性相关.定理7 三矢量共面的充要条件是它们线性相关.定理8 空间任何四个矢量总是线性相关.推论3 空间四个以上矢量总是线性相关.例1. 设一直线上三点A, B, P满足=(-1),O是空间任意一点,求证:=例2. 在△ABC中,设=,=,AT是角A的平分线(它与BC交于T点),试将分解为,的线性组合.作业题:1. 在平行四边形ABCD中,(1) 设对角线=,=,求, , , ;(2) 设边BC和CD的中点为M和N,且=, =,求, .2. 在△ABC中,设=, =, D、E是边BC的三等分点,将矢量, 分解为, 的线性组合.3. 用矢量法证明: 三角形三中线共点.4. 设G是△ABC的重心,O是空间任意一点,试证=(+).5.设=(i=1, 2, 3, 4),试证P1, P2, P3, P4四点共面的充要条件是存在不全为零的实数i (i=1, 2, 3, 4)使+2+3+4=, 且.1§标架与坐标教学目的1、能利用矢量建立坐标系概念;2、理解点的坐标及矢量分量的表示方法;3、掌握矢量线性运算及线段定比分点的坐标表示方法。

教学重点标架概念及点和矢量的坐标表示方法教学难点矢量的分量参考文献(1)解析几何(第三版),吕林根许子道等编,高等教育出版社,(2)解析几何思考与训练,梁延堂马世祥主编,兰州大学出版社,授课课时1一、空间坐标系1. 空间中的一个定点O,连同三个不共面的有序矢量, , 的全体,叫做空间中的一个标架,记做{O;,}.2. 对于标架{O;,,},如果, , 间的相互关系和右手拇指、食指、中指相同,那么这个标架叫做右旋标架或称右手标架;如果, , 间的相互关系和左手的拇指、食指、中指相同,那么这个标架叫做左旋标架或称左手标架.3. 表达式=x+y+z中的x, y, z叫做矢量关于标架{O;,,}的分量或称为坐标,记做{x, y, z}或{x, y, z}.4. 对于取定了标架{O;,,}的空间中任意点P,矢量叫做点P的径矢,径矢关于标架{O;,,}的分量x, y, z叫做点P关于标架{O;,,}的坐标,记做P (x, y, z)或(x, y, z).5. 当空间取定标架{ O; ,, }之后,空间全体矢量的集合或者全体点的集合与全体有序三数组x, y, z的集合具有一一对应的关系,这种一一对应的关系叫做空间矢量或点的一个坐标系. 空间坐标系也常用{O;,,}来表示,此时点O叫做坐标原点,, , 都叫做坐标矢量.6. 由右(左)旋标架决定的坐标系叫做右(左)旋坐标系或右(左)手坐标系;仿射标架、笛卡尔标架与直角标架所确定的坐标系分别叫做仿射坐标系、笛卡尔坐标系与直角坐标系.二、平面坐标系1. 约定用{O;}表示直角坐标系,以后在讨论空间问题时所采用的坐标系,一般都是空间右手直角坐标系.2. 过点O沿着三坐标矢量, , 的方向引三轴Ox, Oy, Oz,可以用这三条具有公共点O的不共面的轴Ox, Oy, Oz来表示空间坐标系,记做O—x y z,此时点O叫做空间坐标系的原点,三条轴Ox, Oy, Oz都叫做坐标轴,且依次叫做x轴,y轴和z轴,每两条坐标轴所决定的平面叫做坐标面,分别叫做xOy平面,yOz平面与xOz平面. 三坐标平面把空间划分为八个区域,每一个区域都叫做卦限.3. 平面上一个定点O, 连同两个不共线的有序矢量, 的全体,叫做平面上的一个标架,记做{O;,},如果, 都是单位矢量,那么{O;,}叫做笛卡尔标架;与相互垂直的笛卡尔标架叫做笛卡尔直角标架,简称直角标架;在一般情况下,{O;,}叫做仿射标架.4. 对于标架{O;,},将绕O旋转,使的方向以最近的路径旋转到与的方向相合时,如果旋转方向是逆时针的,则这种标架叫做右旋标架或称右手标架;5. 表达式=x+y中的x, y叫做矢量关于标架{O;,}的分量或称为坐标,记做{x, y}或{x, y}.6. 对于取定了标架{O;,}的平面上的任意点P,矢量叫做点P的径矢,径矢关于标架{O;,}的分量x, y叫做点P关于标架{O;,}的坐标,记做P(x, y)或(x, y).7. 当平面上取定标架{O;,}之后,平面上全体矢量的集合或者全体点的集合与全体有序数对x, y的集合具有一一对应的关系,这种一一对应的关系叫做平面上矢量或点的一个坐标系. 平面坐标系也常用{O;,}来表示,此时点O叫做坐标原点,, 都叫做坐标矢量.8. 由右(左)旋标架决定的坐标系叫做右(左)旋坐标系或右(左)手坐标系;仿射标架、笛卡尔标架与直角标架所确定的坐标系分别叫做仿射坐标系、笛卡尔坐标系与直角坐标系.15. 约定用{O;,}表示直角坐标系, 在讨论平面问题时所采用的坐标系,一般都是平面右手直角坐标系.9. 过点O沿着坐标矢量, 的方向引二轴Ox, Oy,可以用这二条具有公共点O的不共线的轴Ox,Oy来表示平面坐标系,记做O-x y,此时点O叫做平面坐标系的原点,Ox叫做x轴,Oy叫做y轴. 两坐标轴把平面分成四个区域,每一个区域都叫做象限.三、直线坐标系1. 直线上一个定点O,连同直线上一个非零矢量的全体,叫做直线上的一个标架,记做{O;},如果为单位矢量,那么{O;}叫做笛卡尔标架,在一般情况下,{O;}叫做仿射标架.2. 表达式=x中的x叫做矢量关于标架{O;}的分量或称为坐标,记做{x}或{x}.3. 对于取定了标架{O;}的直线上任意点P,矢量叫做点P的径矢,径矢关于标架的分量x叫做点P关于标架{O;}的坐标,记做P(x)或(x).4. 当直线上取定标架{O;}之后,直线上全体矢量的集合或全体点的集合与全体实数x的集合具有一一对应的关系,这种一一对应的关系叫做直线上矢量或点的一个坐标系. 直线上的坐标系也常用{O;}来表示,此时点O叫做坐标原点,叫做坐标矢量.5. 由仿射标架与笛卡尔标架所确定的坐标系分别叫做仿射坐标系与笛卡尔坐标系.6. 取定标架{O; }的直线,叫做坐标轴或简称为轴,原点为O,坐标写成x的轴记做Ox.例1. 在空间直角坐标系{O;}下,求P(2,-3,-1),M(a, b, c)关于(1) 坐标平面;(2) 坐标轴;(3) 坐标原点的各个对称点的坐标.例2. 已知矢量, , 的分量如下:(1) ={0, -1, 2},={0, 2, -4},={1, 2, -1};(2) ={1, 2, 3},={2, -1, 0},={0, 5, 6}.试判别它们是否共面能否将表成,的线性组合若能表示,写出表示式.作业题:1. 指出坐标满足下列条件的点(x, y, z)在空间的位置.(1)x=y;(2)y z<0; (3)x y z<0.2. 平行于z轴的矢量有什么特点平行于x轴和y轴的矢量又分别有什么特点3. 已知线段AB被点C(2, 0, 2)和D(5,-2, 0)三等分,试求这个线段两端点A与B的坐标.§矢量在轴上的射影教学目的1、掌握射影与射影矢量的概念及矢量线性运算的射影表示;2、理解矢量在轴上的的射影与坐标的关系。

相关文档
最新文档