2.13有理数的混合运算-课件.ppt

合集下载

《有理数的加减法》课件

《有理数的加减法》课件
详细描述
有理数的减法在现实生活中有着广泛的应用,如温度的测量 和表示、海拔和潜水深度、速度和加速度等。通过这些实例 ,我们可以更好地理解有理数减法的意义和作用,并学会在 实际问题中运用所学知识。
04
有理数的加减混合运算
顺序关系
遵循从左到右的顺序
在有理数的加减混合运算中,应先进 行加法运算,再进行减法运算,且在 处理括号内的表达式时,应先进行括 号内的运算。
01
线性方程
在解决线性方程问题时,我们需要进行有理数的加减运算。例如,在解
一元一次方程时,我们需要对方程两边的项进行加减运算。
02 03
概率统计
在概率统计中,我们经常需要计算概率和统计量,这涉及到有理数的加 减法。例如,在计算期望值和方差时,我们需要进行大量的有理数加减 运算。
几何学
在几何学中,我们经常需要计算长度、面积和体积等,这涉及到有理数 的加减法。例如,在计算矩形的周长时,我们需要将矩形的长和宽相加 。
03
有理数的减法
减法转换为加法
总结词
有理数的减法可以通过加法来计算,这是有理数加减法的一个重要原则。
详细描述
在进行有理数的减法运算时,可以将减法转换为加法,即用被减数加上减数的 相反数来代替原来的减法运算。例如,计算“5 - 3”时,可以将其转换为“5 + (-3)”,这样就可以利用加法的规则来得出结果。
生物统计
在进行生物统计时,我们经常需要计算各种生物学指标并进行比较,这涉及到有理数的加 减法。例如,在比较不同种群的数量时,我们需要将各个种群的数量进行加减运算。
THANKS
感谢观看
VS
异类项的加法需要注意分母不能为零 ,即不能出现 $frac{a}{0}$ 的形式。

有理数的加减混合运算-有理数及其运算 优秀PPT课件

有理数的加减混合运算-有理数及其运算 优秀PPT课件

例1填空:
(-8)+ =-5;(-8)+ =-3; 8+ =-7;(-8)+ =4 (-8)- =-5;(-8)- =-3; 8- =-7;(-8)- =4
解:(-8)+ 3 =-5;(-8)+ 5 =-3; 8+ (-15 ) =-7;(-8)+ 12 =4 (-8)- (-3) =-5;(-8)- (-5) =-3; 8- 15 =-7;(-8)- (-12) =4
3 3 10 32 ) 例2.计算( 4 4
例3下列变形中,正确的是
(1 ) (2 ) (3) (4 ) (5 ) 1-4+5-4=1-4+4-5; 1-2+3-4=2-1+4-3; 2-3-4+5=2-3+5-4; 2-3-4+5=2-(3-4)+5; 2-3-4+5=2-3-(4+5)
解法二:设立标准数 设每个的汉堡标准质量为200克,则可列出下表:
序 号 误 差 值 序 号 误 差 值 1 +1 2 +4 3 -1 4 -3 5 +3 6 0 7 +1 8 +2 9 -2 10 -3
11 -4
12 - 28
13 -2
14 +3
15 0
16 +2
17 +1
18 -1
19 -3
20 +5
例6电子跳蚤落在数轴上表示2003这个数的 点上。它第一步往左跳一个单位,第二步 往右跳 2 个单位,第三步往左跳 3个单位, 第四步往右跳4个单位,依次类推,当跳了 一百步时,电子跳蚤恰好落在了 K 点。你 能求出点K所表示的数吗?
例7. 水库管理人员为了掌握水库蓄水情况,需要观测水位变化,下 表是某水库一周内水位高低的变化情况(正数表示比前一日上升的 值,负数表示比前一日下降的值)。

《有理数的混合运算》 课件 (共25张PPT)

《有理数的混合运算》 课件 (共25张PPT)

当堂训练
36 ( 1 1)2 ; 23
4 (3) 2 6; (2)3 13 ( 1 );
2 [(3) 2 (5) 2 ] (2);
解:原式 4 2 1 9 3 3
42 99
2 9
在有理数的混合运算中,我们要注意什么?
注意: (1)运算顺序 (2)符号
扑克牌(去掉大小王),根据牌面上 的数字进行混合运算(每张牌只能用一 次),使得运算结果为24或-24。其中红 色代表正数,黑色代表负数,J、Q、K分 别表示11、12、13。
二 教法学法分析
本节课我采用探究式教学法,师生互动,讲练结合 ,小 组合作游戏比赛等方式提高学生的学习兴趣巩固来学习效 果
一教材分析
本节课是在学生学习了有理数的加减乘除乘法运算的基础上,进一 步加深学生对有理数各运算的认识,同时起到复习全章的作用。有 理数的混合运算是一种基础的运算模型,在计算中占重要的地位, 为以后学习方程和函数奠定了基础。
解:
3
100 22 2 2
3
100 4 2 3
2
25 3
22
辨析:

2
2

4


6


1

3
3
正确解法:
解:原式
442 9
42 9
14 9
3
分析:这个算式有哪几种运算?运算顺序又是怎么样的?
解:原式 18 3 1
3
18 1
17
例 2
(3)2


2 3

(

(2024秋新版本)北师大版七年级数学上册 《有理数的混合运算》PPT课件

(2024秋新版本)北师大版七年级数学上册 《有理数的混合运算》PPT课件

A.﹣16
B.16 C.20
2. 计算:(-13-12)÷54 = -23 .
D.24
课堂检测
基础巩固题
1.计算12-7×(-4)+8÷(-2)2的结果是( D )
A.-24
B.-20
C.6
D.42
2.下列各式中,计算结果等于0的是( C )
A.(-4)2-(-42) B.-42-42 C.-42+(-4)2 D.-42-(-4)2 3.设a=-2×42,b=-(2×4)2,c=-(2-4)2,则a,b,c的大小关系为( B )
=-54+12+15
=-8+(-3)×18-(-4.5)
=-27;
=-8-54+4.5 =-57.5.
课堂检测
基础巩固题
5.找错,并把正确的答案写在横线上.
(1)-24 -
22 3
+
9 4
=
-16 -
4 9
+
4 9
=
-16;
解:-24 -
22 3
+
9 4
=
-16 -
4 3
+
4 9
=
-
152 9

(2)-(-2)3 ÷49×(-32)2
=-3-2÷3 =-3-23 =-131
探究新知
素养考点 有理数的混合运算
例 计算:(1)18-6÷(-2)×(-13); 解:原式 =18-(-3)×(-13) =18-1
=17;
探究新知
(2)(-3)2×[-23+(-59)] .
解法一:原式=9×(-191) 解法二:原式=9×(-23)+ 9×(-59)

《有理数的运算》课件

《有理数的运算》课件
乘方是指将一个数自乘若干次,开方则是指 求一个数的平方根。在进行有理数的混合运 算时,应熟练掌握乘方和开方的定义及运算 规则,以便正确进行计算。
CHAPTER 04
有理数运算的应用
在日常生活中的应用
购物计算
在购物时,我们需要计算找零、 折扣等,有理数运算可以帮助我
们快速准确地完成这些计算。
金融计算
VS
详细描述
交换律是指加法或乘法中的数可以任意交 换位置而不改变结果,结合律则是指加法 或乘法中的数可以任意组合成组而不改变 结果。这些运算律在有理数的混合运算中 非常重要,可以帮助简化计算过程。
乘方和开方的定义及运算规则
总结词
乘方和开方是有理数混合运算中的重要概念 ,需要掌握其定义和运算规则。
详细描述
CHAPTER 03
有理数的混合运算
顺序与符号
总结词
运算顺序和符号的确定是有理数混合 运算中的重要环节。
详细描述
在进行有理数的混合运算时,应遵循 先乘除后加减的顺序,同时要特别注 意符号的处理。在运算过程中,应先 确定每个数的符号,再根据运算法则 进行计算。
运算的交换律和结合律
总结词
交换律和结合律是有理数混合运算中的 基本运算律。
有理数加法运算的基本法则
详细描述
同号数相加,取相同的符号,并把绝对值相加;异号数相加,取绝对值较大的数的符号,并用较大的绝对值减去 较小的绝对值;任何数与0相加,仍得这个数本身。
减法运算
总结词
有理数减法运算的基本法则
详细描述
有理数的减法运算可以转化为加法运算,即a-b=a+(-b)。
乘法运算
总结词
几何图形
在解决几何图形问题时, 有理数运算可以帮助我们 计算面积、周长等几何量 。

2022秋七年级数学上册 第2章 有理数2.13 有理数的混合运算课件华东师大版

2022秋七年级数学上册 第2章 有理数2.13 有理数的混合运算课件华东师大版

1.【中考·宜昌】计算 4+(-2)2×5 的结果是( D ) A.-16 B.16 C.20 D.24
2.【中考·杭州】计算下列各式,值最小的是( A ) A.2×0+1-9 B.2+0×1-9 C.2+0-1×9 D.2+0+1-9
3.下面是小刚同学做的一道题:-23÷49×-322.解:原式=8÷49×94 =8.四位同学看了小刚的解答,给出 4 个看法:①运算顺序
(2)写出正确的计算过程. 解:原式=-4÷-265×6=-4×-265×6=12454.
15.计算: -194+127-251÷-211+32×|-110-(-3)2|.
解:原式=-194+97-251×(-21)+32×|-1-9|= -194×(-21)+97×(-21)-251×(-21)+32×10=227-27+5+15= 13 2.
7.利用运算律简便计算 52×(-999)+49×(-999)+999 正确的是 ( B)
A.-999×(52+49)=-999×101=-100 899 B.-999×(52+49-1)=-999×100=-99 900 C.-999×(52+49+1)=-999×102=-101 898 D.-999×(52+49-99)=-999×2=-1 998
8.观察算式(-4)×17×(-25)×28,在解题过程中,能使运算变得 简便的运算律是( C )
A.乘法交换律 B.乘法结合律 C.乘法交换律、结合律 D.乘法对加法的分配律
9.计算: (1)(-2)×-274+(-8)×274-5×-274+274;
解:原式=274×(2-8+5+1)=0.
错了;②计算-23 时符号错了,应为-8;③计算结果是-8;
④第一步应该等于-8×94×94.其中正确的是( C )

2022秋七年级数学上册 第2章 有理数2.13有理数的混合运算课件(新版)华东师大版

2022秋七年级数学上册 第2章 有理数2.13有理数的混合运算课件(新版)华东师大版

7 观察下列算式:21=2,22=4,23=8,24=16,25= 32,26=64,27=128,28=256,…,则2+22+23+ 24+25+…+22 022的末位数字是( B ) A.8 B.6 C.4 D.2
【点拨】通过观察发现,2n的末位数字是2,4,8, 6四个一循环,所以根据2 022÷4=505……2且2+4 +8+6=20,得出2+22+23+24+25+…+22 022的 末位数字与2+22的末位数字相同,是6.
=16×-18-(-3) =-2+3=1.
(2)【2020·广西北部湾经济区】-(-1)+32÷(1-4)×2;
=1+9÷(-3)×2 =1+(-3)×2 =1+(-6)=-5.
(3)-72+2×(-3)2-(-6)÷-132. =-49+2×9-(-6)÷19
=-49+18-(-54) =-49+18+54=23.
(2)请将其更正.
解:原式=-4÷-265×6 =-4×-265×6 =12454.
5 【中考·梧州】按一定规律排列的一列数依次为:2, 3,10,15,26,35,…,按此规律排列下去,则这 列数中的第100个数是( A ) A.9 999 B.10 000 C.10 001 D.10 002
3 下列计算中,正确的是( B ) A.-24+22÷20=-20÷20=-1 B.232+13-12×2=43-16×2=1 C.-24-152÷15=16-15=1
D.(-2)4-[(-3)2+(-2)3]=16-17=-1
4 阅读下面的解题过程并解答问题: 计算:-22÷13-112-3×6. 解:原式=-4÷-265×6 (第一步) =-4÷(-25) (第二步) =-245. (第三步)
【点拨】第奇数个数分别为:2=12+1, 10=32+1,26=52+1,…; 第偶数个数分别为:3=22-1, 15=42-1,35=62-1,….所以第100个数是 1002-1=9 999.

有理数的混合运算课件(共19张PPT)

有理数的混合运算课件(共19张PPT)

11
解法二: 原式
9( 2) 9( 5)
3
9
6 (5)
11
书P67 --1、计算(1)(8)
(1)、
解:原式
36
(
1
2 )
6
36 1 36
1
课堂自主检测: 数学书第67页知识技能
课堂小结
回 头 一 看
一:确定运算顺序
1.若有括号,先算括号里面 的。
2.先乘方,再乘除,最后加 减。
3
解:(1) 8 (3)2(2)
原式 8 9 (2)
8 (18) 10
(2) 100 22 (2) ( 2)
3
原式 100 4 (2) ( 3)
25 3
2
22
简化运算:
加法交换律:a+b=b+a; 加法结合律:(a+b)+c=a+(b+c); 乘法交换律:axb=bxa; 乘法结合律:(axb)xc=ax(bxc); 乘法分配律:ax(b+c)=axb+axc.
, 我
3.同级运算依照从左到右的 顺序运算;

二:根据运算法则,进行计



三:利用运算律,简化运算。
课时分层B第43-44页
(1 4)
(
4) 3
5 14

:
原式
(1 4)
5 14
(
4) 3
(5)
(
4) 3
20
3
有理数混合运算顺序:
• 1、如果有括号,先算括号里面的(小括号--中括号---大括号)
• 2、先算乘方,再算乘除,最后算加减 • 3、同级运算,从左到右

《有理数的混合运算》PPT精品教学课件3

《有理数的混合运算》PPT精品教学课件3
身边的友人渐渐地脱单,越来越多的走进婚姻的殿堂,而我依然在殿堂外独自行走,关心自己的人,都在为自己着急,挑选各种各样认为好的女孩,而我却总是无动于衷。我不知道是因为自己对爱情的惧怕,还是对婚姻的恐惧,还是已无力与一个陌生人去从相识开始,也以无心去接受这一切,所以独自逃离的远远地,不提不问不想不念。 我不知道,未来,谁与我并肩看人间烟火。只是,在内心深处,有一股浓浓的思念萦绕心尖,剪不断,理还乱,或许,是一年,或许,是两年,或许,一辈子。刚刚结束了班夫的自驾游,去之前一点没做攻略,除了传说中对美景的盛赞,对那里几乎一无所知。 头一次毫无准备地上路,得益于同行的友人一家,他们已是三顾班夫了,轻车熟路,所以我放心地当了甩手掌柜,从装备到路线、酒店、景点、美食,统统不必操心,乐得轻松自在。 这是一片广袤的天地,无一处不风景,无一眼不风情。 最喜欢峡谷里的瀑布,清凉的冰水摧枯拉朽般从高耸的岩壁奔流而下,无止无休,千年万年,冲刷出今日的残岩断壁。伫立在水边,俯仰之间,山水交融,仿佛看到了久远的一幕,子在川上曰:逝者如斯夫。 而友人一家之所以乐此不疲地到此三游,则是为了一座岛——精灵岛,位于嘉士伯国家公园的马琳湖。 精灵岛已经成了他们心中的一份执念。 第一次慕名而至,临近冬季,一场大雪扑灭了他们通往精灵岛的梦幻之旅。 第二次避开了雪季,却不想又被大雾遮望眼,再一次与精灵岛失之交臂。 此行已是第三次了,虽然沿途的景致百看不厌,却比不上心系精灵岛的一眼。 遗憾的是,又一次天公不作美,明明之前连日的晴空万里,偏偏这一日阴雨绵绵云雾缭绕,注定又要错失梦想中的小岛了。 我的心情还好,因为没有过多的期待,入目皆是美景,撑起雨伞欣赏了一圈雨中湖景朦胧岛影,后来在湖边的礼品店里看到了清晰的精灵岛图片,权当完成了心愿。 友人静静地站在湖边,望着面前的雨幕,一言不发。 我向她提议,“不如我们多呆一天,或许明天就放晴了。” “天气预报说今天下午才有雨,本以为早上赶过来还能来得及看一眼的。”她失落地说。 “那明天呢?”我暗自惭愧,自己连天气预报都没看。 “明天也有雨。”她皱眉道。 “那--”我不知该说什么安慰好了。 “走吧,这就是人生,总要有点遗憾的,就让它永远留在我的心里,偶尔想念一下,作为求而不得的最美风景吧!”她甩甩头,最后看了一眼她的梦想,然后潇洒地往回走了。 她的一番话似乎把所有的不悦都带走了,突然觉得这样的遗憾竟比睛天还美。 风景自在人心,有时候不完美也是一种完美。 于是想起另一个故事。 一次聚会,有个朋友刚从张家界旅游回来,大赞那里风景绝美,堪称人间仙境。 在看过她晒出的自拍后,所有人都开始兴致勃勃地憧憬起来,相约什么时侯有假期可以同行。 只有闺蜜沉默不语。 我后知后觉地记起来,她和初恋男友分手的那年暑假,正是她男友从张家界回来之后不久。 她曾经说过,此生都不会去那个地方,因为在她心里,那是世界上最美的地方,是他曾经承诺要带她一起去看的风景,因为少了他,再美的风景都是泡影。 难道这么多年过去了,她还没能放下? 她看出我的疑惑,淡淡地笑了,“不是因为他,纯粹是不想去。我相信它是最美的,就因为相信,所以不想破坏了它在我心里的那份完美,一旦真正去了,总会有遗憾,现实永远没有想象的完美。” 她把初恋放下了,却放不下他为她描绘的那片风景。还是因为太在意啊,没有期盼,何来遗憾? 人生需要遗憾,因为遗憾,所以真实;因为遗憾,所以美丽。 就象张家界之于闺蜜,精灵岛之于友人一家,每个人的遗憾都源于心中所念。 心有所系,故有所憾。引导语:傻孩子,你记住,可以哭,可以恨,但是不可以不坚强。心若在,梦就在,你必须非常努力,因为后面还有一群人在等着看你的笑话。即便是躺着中枪,也要姿势漂亮! 傻孩子,你记住:我们有许多的梦想,不一定都能实现,有些梦想甚至要摒弃。不要把自己太当回事,也不要把自己太不当回事。好好地呵护自己,对自己好点,就要有好的心态,有了好的心态就会心胸宽广,就会豁达,就会有好的心境。 傻孩子,你记住:爱一个人不容易,忘记一个人更难。是啊,爱一个人是很苦的很苦的事,想一个人是很累的很累的事,等一个人是很傻的很傻的事,为什么我们却不能拒绝这样的相思?为什么我们心甘情愿无怨无悔?为什么我们却如此依然痴迷不悟?

有理数的混合运算ppt课件

有理数的混合运算ppt课件

1
1
1
1
1
1
解:令 x = + + + + + ,
2
4
8
16
32
64
1
1
1
1
1
则2 x =1+ + + + + .
2
4
8
16
32
1
1
1
1
1
1
1
1
1
1
所以2 x - x =(1+ + + + + )-( + + + +
2
4
8
16
32
2
4
8
16
32
1
+ ).
64
1
63
63
故 x =1- = ,即原式= .

3
解:(1)原式=-1+25×
-|-1-5|;
3

5
-6
=-1-15-6
=-22.
返回目录
数学 七年级上册 BS版
1
4
2
(2)-2 × +4÷ +(-1)2025;
4
9
1
9
解:(2)原式=-4× +4× -1
4
4
=-1+9-1
=7.
返回目录
数学 七年级上册 BS版
1
4
2
(3)-1 +|2-(-3) |+ ÷
1
1
1
1
1
1
计算:



+…+

.
1×3
3×5
5×7
7×9
2021×2023
2023×2025
1
解:原式= ×
2

华东师大版七年级上册数学课件:《2.13有理数的混合运算》 (共14张PPT)

华东师大版七年级上册数学课件:《2.13有理数的混合运算》 (共14张PPT)

1、 0 2 3 (4)3 1 ; 8
2、 (1)3 (5) 1 1 (5); 10 10
3、 14 ( 1 ) ( 1 ) [2 (3) 2];
2
7
强化练习
1、 3 2 ( 2 1 ) 2 ( 2 ) 3 2 2 ;
2.说一说我们学过的有理数的运算律: 加法交换律:a+b=b+a; 加法结合律:(a+b)+c=a+(b+c); 乘法交换律:ab=ba; 乘法结合律:(ab)c=a(bc); 乘法分配律:a(b+c)=ab+ac。
前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个 算式里,含有以上的混合运算,按怎样的顺序进行运算? 1.在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右 依次进行。 审题:(1)运算顺序如何? (2)符号如何? 说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计 算结果。带分数分成整数部分和分数部分时的符号与原带分数的符号相 同。
第2单元 · 有理数
有理数的混 合运算
导入新课
1.计算(五分钟练习): (1)-252; (2)(-2)3;(3)-7+3-6; (4)(-3)×(-8)×25; (5)(-616)÷(-28); (6)-100-27; (7)(-1)101; (8)021; (9)(-2)4; (10)(-4)2; (11)-32; (12)-23; (13)3.4×104÷(-5)。 5)-252; (6)(-2)3;(7)-7+3-6; (8)(-3)×(-8)×25; (13)(-616)÷(-28); (14)-100-27; (15)(-1)101; (16)021; (17)(-2)4; (18)(-4)2; (19)-32; (20)-23; (24)3.4×104÷(-5)。

《有理数的加减混合运算》PPT课件 北师大版

《有理数的加减混合运算》PPT课件 北师大版

3 - ( - 5)= 3 + 5 = 8 (km). 答:小明家距小彬家 8 km.
(3)货车一共行驶了多少千米?
小明家
-5
超市 小彬家 小颖家
0
3 4.5
3 + 1.5 + 9.5 = 14 (km)
单位km
答:货车一共行驶 14 km.
课堂小结
有理数的加减混合运算可以统一成加法运算.
a + b - c = a + b + (- c)
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
-3
7
0
5
她抽到的卡片的计算结果是多少? -3 + 7 - 0 + 5 = 9
小彬抽到的4张卡片依次为:
3
1
2
2
4
-5
他抽到的卡片的计算结果是多少?
3 2
1 2
4
5
分析:这个算式中有加法,也有减法. 可以根据 有理数减法法则,把它改写为
3 2
1 2
Hale Waihona Puke 4 5=3 2
1 2
4
5
=7 9 > 7 所以,小丽获胜.
1 2
5 = -2
(3)( - 11.5 ) - ( - 4.5 ) - 3 = ( - 11.5 ) + 4.5 + ( - 3 ) = ( - 14.5 ) + 4.5 = -10
练习
如图,一辆货车从超市出发,向东走了 3 km 到达小 彬家,继续走了 1.5 km 到达小颖家,然后向西走了 9.5 km 到达小明家,最后回到超市.
7 3
=

第二章 有理数的运算单元复习专题奇思妙想巧运算——有理数的混合运算 课件(共25张PPT)-

第二章 有理数的运算单元复习专题奇思妙想巧运算——有理数的混合运算  课件(共25张PPT)-

5
1 30
(2)
1-
5 6
7 12
-
9 20
11 30
-
13 42
(3)1 3 9 27 32022 32023
作业(选做):计算
(1)(1 1 1 )(1 1 1 1 )( - 1 1 1 1 )(1 1 1 )
2 3 2023
2 3 2022
23
2023 2 3
2022
计算:
解原式=
1 2 3 97 98 99
100 100 100
100 100 100
(1 99)99 2
100
= 99 2
倒序相加
99
=2
小结
一般地,多个数相加,如果每相邻两个数的差是一个固定值, ,可以用倒序相加法求解.
求和公式=(首项+末项)×项数÷2
例题2 计算:
11111 1 11 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9
第二章 有理数的运算单元复习专题
奇思妙想巧运算——有理数的混合运算
目录
情境导入
温故知新
合作探究
当堂训练
总结反思
作业布置
学习目标
1.掌握有理数的运算法则和运算律(重点) 2.灵活运用有理数的法则和公式进行巧妙运算,提高运 算的速度和准确性(难点)
创设情境,引出巧算
高斯,人称数学王子,上小学的时候,他 的表现就超乎寻常。有一天,老师给全班同学 出了一道数学题:
(2) 1 (1 2)( 1 2 3)( 1 2 49)
2 33
444
50 50
50
作业(希望做):阅读欣赏
(1) 《漫画数学 》 (2) 《原来数学可以这样学》 (3) 《数学启迪智慧》
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档