2015届高三数学一轮复习教案:10圆与方程 必修二

合集下载

高中数学必修2第四章第一节《圆的方程》全套教案

高中数学必修2第四章第一节《圆的方程》全套教案

圆的方程
4.2.1直线与圆的位置关系
【教学目标】
(1)知识与技能:掌握圆的标准方程的形式;能够根据题目给定条件求圆的标准方程;能够根据圆的标准方程找到圆心和半径。

(2)过程与方法:加深对数形结合思想和待定系数法的理解;增强应用数学的意识。

(3)情感、态度、价值观:培养主动探究知识、合作交流的意识【教学重点难点】
教学重点
圆的标准方程的推导以及根据条件求圆的标准方程
教学难点
根据条件求圆的标准方程。

【学前准备】:多媒体,预习例题
4.1.2 圆的一般方程【教学目标】
(1)掌握圆的一般方程及其特点.
(2)能将圆的一般方程转化为圆的标准方程,从而求出圆心和半径.
(3)能用待定系数法,由已知条件求出圆的一般方程.
【教学重难点】
教学重点:(1)用配方法,把圆的一般方程转化成标准方程,求出圆心和半径.
(2)用待定系数法求圆的方程.
教学难点:圆的一般方程特点的研究.
【学前准备】:多媒体,预习例题
⎪⎩

⎨⎧+++=+++=2420
F E D F E D F。

人教A版高中数学必修二《圆的一般方程》教学设计

人教A版高中数学必修二《圆的一般方程》教学设计

《4.1.2圆的一般方程》教学设计一、教材分析《圆的一般方程》安排在高中数学必修2第四章第一节第二课时.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的一般方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是思想方法上都有着深远的意义,所以本课内容在整个解析几何中起着承前启后的作用.二、目标分析知识与技能:(1).掌握圆的一般方程及一般方程的特点(2).能将圆的一般方程化成圆的标准方程,进而求出圆心和半径(3).能用待定系数法由已知条件求出圆的方程过程与方法:(1)进一步培养学生用代数方法研究几何问题的能力;(2)加深对数形结合思想的理解和加强对待定系数法的运用,认识研究问题中由简单到复杂,由特殊到一般的化归思想,充分了解分类思想在数学中的重要地位,强化学生的观察,思考能力。

(3)增强学生应用数学的意识.情感,态度与价值观:(1)培养学生主动探究知识、合作交流的意识;(2)培养学生勇于思考,探究问题的精神。

(3)在体验数学美的过程中激发学生的学习兴趣.教学重点: (1).圆的一般方程。

(2).待定系数法求圆的方程。

教学难点: (1).圆的一般方程的应用。

(2).待定系数法求圆的方程及选用合适的圆方程。

三、教学内容与过程一、复习引入圆的标准方程为:222()()x a y b r -+-=把圆的标准方程展开,并整理得220x y Dx Ey F ++++=思考:此方程都能表示圆么?二、课堂探究观察下列各式,先将它们分别配方,然后分析它们是否表示圆?(设计意图)通过对这两个问题的探究,.一方面引导学生22(1)2410+-++=x y x y 22(2)2460+--+=x y x y回顾了旧知,另一方面,抓住了学生的注意力,把学生的思维引到研究圆的方程上来,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移。

《必修2:圆的标准方程》教案

《必修2:圆的标准方程》教案

《必修2:圆的标准方程》教案适用学科高中数学适用年级适用区域苏教版区域课时时长(分钟)知识点圆的标准方程与一般方程,求圆的方程的一般方法教学目标会用待定系数法求圆的方程高二2课时教学重点求圆的方程教学难点选取适当的圆的方程【教学建议】圆的方程是在直线的基础上进一步让学生建立方程研究几何图形性质的思想、充分调动学生学习数学的热情,激发学生自主探究问题的兴趣、【知识导图】教学过程1。

如何写出圆心在原点,半径为的圆的方程?2。

假如圆心在,半径为时又如何呢?3、把圆的方程化简之后形式如何?4、这种化简之后的形式有没有限制条件?方考程点(x―1a)2圆+(的y―标b准)2=方r程2 叫做以为圆心,为半径的圆的标准方程。

特不地,当圆心在原点,半径为r 时,圆的标准方程为:x2+y2=r2。

注:圆心与半径分不决定圆的位置与大小、由此可见,要确定圆的方程,只需确定a、b、r 这三个独立变量即可。

把 x2+y2+Dx+Ey+F=0 配方得:②(1)当D2+E2-4F〉0 时,方程②表示以(,)为圆心,为半径的圆。

(2)当 D2+E2-4F=0 时,方程只有实数解,即只表示一个点(,)、(3)当D2+E2-4F<0时时,方程没有实数解,因而它不表示任何图形王新新疆敞学案综上所述,方程x2+y2+Dx+Ey+F=0表示的曲线不一定是圆新疆王新敞,只有当D2+E2-4F>0时,学案它表示的曲线才是圆。

我们把形如x2+y2+Dx+Ey+F=0(D2+E2—4F>0)的方程称为圆的一般方程新疆王新敞,其特学案点为: ①x2 与y2 的系数相同且为1;②没有含 xy 的二次项、③D2+E2-4F>0、类型三一、求例圆题的精方析程在平例面题直1角坐标系中,记二次函数()与两坐标轴有三个交点。

经过三个交点的圆记为、(1)求实数的取值范围; (2)求圆的方程; (3)问圆是否经过定点(其坐标与的无关)?请证明您的结论。

【解析】(1)令,得抛物线于轴的交点是令,得,由题意且,解得且 (2)设所求圆的一般方程为令,得,这与是同一个方程,故, 令,得,此方程有一个根为,代入得因此圆的方程为(3)圆必过定点, 证明如下:将代入圆的方程,得左边,右边因此圆必过定点; 同理可证圆C必过定点。

人教A版高中数学必修2《圆的标准方程》教案

人教A版高中数学必修2《圆的标准方程》教案

【教案设计】课题:《圆的标准方程》教材:普通高中课程标准试验教科书人教A版数学必修2 §4.1.1一、教学目标:(1) 知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据不同条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题.(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识.(3) 情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.二、教学重点、难点(1)重点: 圆的标准方程的求法及其应用.(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题.三、教学方法与手段1.教学方法采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入.2.教学手段多媒体课件进行辅助教学.四、教学过程整个教学过程是由八个问题组成的问题链驱动的,共分为五个环节:创设情境启迪思维深入探究获得新知应用举例巩固提高反馈训练形成方法小结反思拓展引申(一)创设情境——启迪思维问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?通过对这个实际问题的探究,根据半圆的对称性建立平面直角坐标系,构建数学模型.把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程求D点的纵坐标来解决.同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.【设计意图】用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.(二)深入探究——获得新知问题二 1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?2.如果圆心为(,)a b ,半径为时圆的方程又如何呢?这一环节我首先让学生对问题一进行归纳,由勾股定理得到圆心在原点、半径为4的圆的标准方程2224x y +=后,引导学生归纳出圆心在原点、半径为r 的圆的标准方程222x y r +=.然后再让学生对圆心不在原点的情况进行探究.我预设了三种种方法等待着学生的探究结果,分别是:坐标法、勾股定理法、图形变换法.坐标法:引导学生根据圆的定义,圆上的点到圆心的距离等于常数,即两点距离公式推导圆心不在原点的标准方程.推导过程: 圆是这样一些点的集合P={M|︱MC ︱=r }已知圆心C(,)a b 半径r根据两点间的距离公式,圆上任意一点M 的坐标(x, y )r =化简,得到圆的标准方程 ()()222x a y b r -+-=图形变换法:借助多媒体的演示,让学生体会平移的过程,让学生了解利用图像平移的知识也可推导圆心不在坐标原点的标准方程.得出圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节..(三)应用举例——巩固提高I .直接应用 内化新知问题三 1.写出下列各圆的标准方程:(1)圆心在原点,半径为3;(2)经过点P(5,1),圆心在点C(8,3).2.写出圆22(2)36x y ++=的圆心坐标和半径.我设计了两个比较简单的小问题,可以安排学生口答完成.【设计意图】目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为形成待定系数法求圆的标准方程打下基础,并为后续探究圆的切线问题作准备.II .灵活应用 提升能力问题四 求过原点O 和点P(1,1),且圆心在直线l:2310x y ++=上的圆的标准方程.设计这一题难度明显增大,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆. 教学中应该突出对问题的分析过程,在分析过程中,要强调图形在分析问题中的辅助作用,引导学生根据题意画出图形.根据确定圆的要素-----圆心位置和半径长,借助图形,结合题设条件可以发现关键是找出圆心位置.圆心位置一旦确定,就可以利用距离公式确定半径大小,从而求出圆的标准方程.让学生自主探究出圆心位置,最后可得出:直线l 与线段OP 垂直平分线l '的交点即为圆心位置.解题过程:∵O (0,0),P (1,1)∴线段OP 的中点的坐标为11,22⎛⎫ ⎪⎝⎭直线OP 的斜率10110op k -==- 因此线段OP 的垂直平分线 l ′的方程是111022y x x y ⎛⎫-=--+-= ⎪⎝⎭即 102310x y x y +-=++= 的解 圆心C 的坐标是方程组43x y ==- 所以圆心C 的坐标是(4,3)-解此方程组,得圆C的半径 5r OC === 所求圆的标准方程是()()224325x y -++=【设计意图】有利于培养学生逻辑思维能力和加深对数形结合思想的理解,提高分析问题、解决问题的能力,养成良好的解题习惯,并且对数学思维的严谨性具有良好的效果.再一次为学生的发散思维创设了空间,又一次模拟了真理发现的过程,使探究气氛达到高潮. III .实际应用 回归自然问题五 如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m ,拱高OP=4m ,在建造时每隔4m需用一个支柱支撑,求支柱22A P 的长度(精确到0.01m ).由于圆拱是圆的一段弧,引导学生根据对称性建立直角坐标系,构建数学模型,再应用待定系数法求出圆的三个参数a 、b 、r ,继而确定圆的方程,从而求出点2P 的纵坐标.要想求出22A P 的长度,还要求出O 点的纵坐标.这样问题就会迎刃而解.但为使求解过程简单,圆心最好设在坐标原点.解题过程: 由题意建立直角坐标系,设圆心C 在坐标原点,如图所示设圆的半径为r 即CA=r 由已知得AO=10,CO=r-OP=r-4222Rt CA =CO +AO CAO ∆在中,()2222941014.52r r r =-+==即 解得222C 14.5y +=圆的方程x2P 点的横坐标为-2,代入圆C 方程可得2P 点纵坐标为14.36∵CO=14.5-4=10.5 即2A 点的纵坐标为10.5∴ 22A P =14.36-10.5=3.86 所以,支柱22A P 的长度大约为3.86米.【设计意图】问题五同时与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生数学建模的习惯和用数学的意识.在教学中,我力求从生活走进数学,使数学回归生活.(四)反馈训练——形成方法问题六 求以点C(1 ,3)为圆心,并且和直线3470x y --=相切的圆的标准方程.【设计意图】接下来是第四环节——反馈训练.这一环节中,我设计一个小题作为巩固性训练,给学生一块“用武”之地,一个展示自己的舞台.让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.(五)小结反思——拓展引申1.课堂小结问题七 通过本节的学习,你学到了哪些内容?最大的体验是什么?掌握了哪些学习数学的方法?【设计意图】为了发挥学生的主体作用,通过三个小问题让学生从知识、方法、体验三方面,自己对圆的标准方程的形式加以小结,提炼数形结合的思想和待定系数的方法.2.分层作业(A )巩固型作业:教材P120:练习1.(B )思维拓展型作业:已知圆的方程为2225x y +=,求过圆上一点A(4,-3)的切线方程.3.激发新疑问题八 1.把圆的标准方程展开后是什么形式?2.方程2268200x y x y +-++=表示什么图形?【设计意图】在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.(六)板书设计【设计意图】 遵循简洁、明显,突出重点的设计意图,板书演示如下:五、教学反思在教学中尝试采用创设问题情景,以问题驱动、层层铺垫,帮助学生实现从被动接受知识变为主动获取知识;同时也试图改进学生的学习方式,以小组合作的方式展开,在合作中相互配合.灵活融合引导启发、数形结合、激励评价、多媒体辅助等教学方式,更好地实现教学目标.这堂课展示了一个完整的数学探究过程,提出问题、自主探究,让学生经历了知识再发现的过程,促进了个性化学习.在教学过程中,不失时机的进行数学文化渗透,除了能激发学生的学习兴趣、增强学习信心外,更是体现出了数学探索原貌,让学生看到数学探索的艰难和有趣,更客观的认识圆及现实意义,这对接受和理解圆的方程大有裨益!【教案说明】(一)突出重点抓住关键突破难点求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心坐标、半径与圆的标准方程之间的关系,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.第二个教学难点就是解决实际应用问题,这是学生固有的难题,为此我首先用一道题目简洁、贴近生活的实例进行引入,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破.(二)学生主体教师主导探究主线本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动,高效的完成本节的学习任务.(三)培养思维提升能力激励创新为了培养学生的理性思维,我在问题一中,设计了由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,分层次探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神.本节是一个“动眼观察,动脑思考,动手做题,共同提高”的动态生成过程.对生成性课堂的突出事件,因势利导,随机应变,适当调整教学环节;同时,教学反应性评价与反馈性评价相结合,促进学生的自我评价,勇于贯彻“成功教育,一贯教育”的理念,把握评价时机、评价主体和形式的多样化,从而结合课堂气氛,使课堂教学达到最佳状态.。

高中数学第四章圆与方程复习教案新人教A版必修2

高中数学第四章圆与方程复习教案新人教A版必修2
第四章 圆与方程
1.了解解析几何的基本思想 ,了解用坐标法研究几何问题 ;掌握圆的标准方程和一 般方程,加深对圆的方程的认识. 教 学 目 标 2.能根据给定的直线、圆的方程判断直线与圆、圆与圆的位置关系,能用直线与圆 的方程解决一些简单问题. 3.了解空间直角坐标系 ,会用空间直角坐标系刻画点的位置,会用空间两点间的距 离公式. 4.通过本节的复习,使学生形成系统的知识结构,掌握几种重要的数学思想方法,形 成一定的分析问题和解决问题的能力. 教 学 教学重点:解析几何解题的基本思路和解题方法的形成. 重、 教学难点:整理形成本章的知识系统和网络. 难 点 教 学 多媒体课件 准 备
2 2 所以圆心 C(2,1),r=|CA|= (5 2) ( 2 1) 10
所以所求圆的方程为(x-2) +(y-1) =10. 点评: 本题介绍了几何法求圆的标准方程 ,利用圆心在弦的垂直平分线上或者利用 两圆相切时连心线过切点,可得圆心满足的一条直线方程 ,结合其他条件可确定圆 心,由两点间的距离公式得出圆的半径,从而得到圆的标准方程.其实求圆的标准方 程,就是求圆的圆心和半径,有时借助于弦心距、圆半径之间的关系计算,可大大简 化计算的过程与难度.如果用待定系数法求圆的方程,则需要三个独立的条件,“选 标准,定参数”是解题的基本方法,其中选标准是根据已知条件选择恰当的圆的方 程形式,进而确定其中三个参数. 变式训练 圆:x +y -4x+6y=0 和圆:x +y -6x=0 交于 A、B 两点,则 AB 的垂直平分线的方 程是( A.x+y+3=0 D.4x-3y+7=0 答案:C(由平面几何知识知 AB 的垂直平分线就是连心线.) 例 2 两定点 A、B 相距为 8,求到 A、B 的距离的平方和为 50 的点 P 的轨迹方程. ) B.2x-y-5=0 C.3x-y-9=0

人教课标版高中数学必修2《圆的标准方程》教学设计

人教课标版高中数学必修2《圆的标准方程》教学设计

4.1圆的方程4.1.1圆的标准方程一、教学目标(一)核心素养通过本节课的学习,掌握圆的定义,并根据此定义得出圆的标准方程.(二)学习目标掌握圆的定义及圆的标准方程,会利用条件求圆的标准方程.(三)学习重点利用各种条件求圆的标准方程.(四)学习难点根据圆的定义推导圆的标准方程以及求圆的标准方程.二、教学设计(一)课前设计1.预习任务读一读:阅读教材第118页到119页,填空:确定一个圆的最基本的要素是圆心和半径;圆心为点(,)a b ,半径为r 的圆的标准方程为222()()x a y b r -+-=.2.预习自测(1)圆心在点(1,2),半径为5的圆的标准方程为( )A.22(1)(2)5x y +++=B.22(1)(2)25x y +++=C.22(1)(2)5x y -+-=D.22(1)(2)25x y -+-=【知识点】圆的标准方程.【解题过程】由条件知1,2,5a b r ===,代入标准方程得:22(1)(2)25x y -+-=【思路点拨】熟记圆的标准方程,明确各字母的具体含义.【答案】D(2)若点(15,)M a a +在圆22(1)26x y -+=上,则实数a =( )A.1B. 1±C.2D.【知识点】点与圆的位置关系.【解题过程】由条件,将点M 的坐标代入圆的方程得21a =,故1a =±【思路点拨】点000(,)M x y 与圆C :222()()x a y b r -+-=的位置关系:(1)点0M 在圆C 上⇔22200()()x a y b r -+-=;(2)点0M 在圆C 内⇔22200()()x a y b r -+-<;(3)点0M 在圆C 外⇔22200()()x a y b r -+->;【答案】B(3)已知点(1,1),(1,1)A B --,则以线段AB 为直径的圆的标准方程为( )A.221x y +=B. 22x y +=C. 222x y +=D. 224x y +=【知识点】圆的标准方程.【解题过程】由线段AB 为直径,所以圆心为(0,0),半径12r AB ==圆的标准方程为222x y +=【思路点拨】求圆的标准方程就是要找出圆心坐标和半径.【答案】C(二)课堂设计1.知识回顾:(1)在直角坐标平面中确定一条直线的方法有哪些?两点可以确定一条直线;一点和倾斜角可以确定一条直线;横、纵截距可以确定一条直线等等. (2)直角坐标平面中两点间的距离公式:设点1122(,)(,)A x y B x y 、,则这两点间的距离AB =2.问题探究探究一 圆的定义•活动① 在直角坐标平面中,如何确定一个圆?显然,当圆心位置和半径大小确定后,这个圆也就唯一确定了.因此,确定一个圆的最基本的要素就是圆心和半径.【设计意图】通过和直线的类比,引导学生分析出圆的基本要素,为后面圆的定义打基础.•活动② 当圆心位置C 和半径r 的大小确定后,如何定义一个圆?平面上到定点C 的距离等于半径r 的点M 的集合,叫做以C 为圆心,为半r 径的圆.【设计意图】从理性分析到感性认识,得出圆的定义.探究二 圆的标准方程•活动① 如果圆心C 的坐标为(a,b ),半径大小为r ,那么圆的方程是什么?设圆上任意一点M (x,y ),则M 到圆心C 的距离等于半径r ,圆心为C 的集合就是{}P M MC r ==,由两点间的距离公式,点M 适合的条件可以表示为22()()x a y b r -+-=两边平方,得:222()()x a y b r -+-=……………………⑴ 若点M (x,y )在圆上,由上述讨论可知,点M 的坐标适合方程(1);反之,若点M (x,y )的坐标适合方程(1),这说明点M 到圆心C 的距离等于半径r ,即点M 在圆心为C 的圆上.我们就把方程(1)称为圆心为C (a,b ),半径为r 的圆的标准方程.【设计意图】利用两点间的距离公式和圆的定义推导出圆的标准方程,实现从几何到代数的转化.探究三 点和圆的位置关系•活动① 由探究二我们知道,如果点000(,)M x y 在圆222()()x a y b r -+-=上,则满足22200()()x a y b r -+-=.那么点000(,)M x y 在圆222()()x a y b r -+-=内又要满足什么条件呢?在圆222()()x a y b r -+-=外呢?点000(,)M x y 与圆C :222()()x a y b r -+-=的位置关系:(1)点0M 在圆C 上22200()()x a y b r ⇔-+-=;(2)点0M 在圆C 内22200()()x a y b r ⇔-+-<;(3)点0M 在圆C 外22200()()x a y b r ⇔-+->;【设计意图】掌握点与圆的位置关系和刻化方法.巩固基础,检查反馈例1. 圆22(2)(3)2x y ++-=的圆心坐标和半径分别为( )A. (2,3),-B. (2,3),2-C. (2,3),-D. (2,3),2-【知识点】圆的圆心坐标和半径.【解题过程】由圆的标准方程可知圆心坐标为(2,3)-,半径r =【思路点拨】比较该方程与圆的标准方程即可.【答案】A同类训练 圆22(1)(2)5x y -++=的圆心到直线y x =的距离为( )A. B. C. D. 5 【知识点】由圆的方程得圆的圆心坐标以及点到直线距离公式的使用.【解题过程】由圆的方程可知该圆的圆心为(1,2)-,由点到直线的距离公式得所.【思路点拨】比较方程和圆的标准方程得出圆心坐标,再利用点到直线的距离公式即可求解.【答案】C例2.已知点A (0,-1),B (2,1),则以线段AB 为直径的圆的标准方程为( )A.22(1)1x y -+=B.221)1x y ++=(C.221)2x y -+=(D.22(1)2x y ++=【知识点】求出圆心坐标和半径,进而写出圆的标准方程.【解题过程】因为线段AB 为直径,所以圆心坐标为(1,0),半径12r AB ==所以圆的方程为221)2x y -+=( 【思路点拨】找圆心坐标和半径大小是求得方程的关键.【答案】C同类训练 圆心在直线:230l x y --=上,且过点(5,2)(3,2)A B -和的圆的标准方程为( )A.22(2)(1)10x y -+-=B.22(2)(1)x y -+-=C.22(2)(1)10x y +++=D. 22(2)(1)x y +++=【知识点】求出圆心坐标和半径,进而写出圆的标准方程.【解题过程】∵圆过点(5,2)(3,2)A B -和,所以圆心必在线段AB 的垂直平分线上,即在直线:24l x y '+=上. 由条件圆心必为l 与l '的交点,所以由23022401x y x x y y --==⎧⎧⇒⎨⎨+-==⎩⎩,所以圆心为(2,1)C ,半径r AC ==,所以所求圆的方程为22(2)(1)10x y -+-=【思路点拨】如果圆过两个点,那么圆心一定在过这两点的弦的中垂线上.【答案】A强化提升、灵活应用例3、已知圆与x 轴相切,圆心在直线y =2x 上,且被直线x +y -3=0平分周长,求该圆的标准方程.【知识点】由条件确定圆心坐标和半径大小,进而确定圆的方程.【解题过程】∵圆被直线平分周长,∴圆心必在直线x +y -3=0上,所以由条件可知圆心为直线y =2x 和x +y -3=0的交点,即圆心C (1,2);又圆与x 轴相切,所以半径即为圆心纵坐标,即r =2,故圆的标准方程为22(1)(2)4x y -+-=【思路点拨】直线平分圆周长,则圆心必在该直线上.【答案】22(1)(2)4x y -+-=例4. 已知点1)A 在圆22()(1)15x m y m ++-=-的外部,则实数m 的取值范围是( )A.32m -<<-B.23m <<C.32m m <->-或D.1325m m <--<<或 【知识点】圆的标准方程以及点与圆的位置关系. 【解题过程】条件等价于2150715m m m->⎧⎨+>-⎩,解得:1325m m <--<<或 【思路点拨】要注意圆的标准方程中等号后面是半径的平方(容易遗漏)【答案】D同类练习 已知过点(1,2)A 的直线始终与圆222()()2C x a y a a -++=:相交,则实数a 的取值范围是___________.【知识点】点与圆的位置关系.【解题过程】条件等价于点A 在圆C 的内部,所以有222(1)(2)2a a a -++<,解得52a -≤ 【思路点拨】过定点的直线始终与圆相交等价于定点必在圆内部. 【答案】52a -≤ 3.课堂总结知识梳理(1)确定圆的基本要素是圆心和半径;(2)圆心为C (a,b ),半径为r 的圆的标准方程为222()()x a y b r -+-= (3)点000(,)M x y 与圆C :222()()x a y b r -+-=的位置关系:点0M 在圆C 上22200()()x a y b r ⇔-+-=;点0M 在圆C 内22200()()x a y b r ⇔-+-<;点0M 在圆C 外22200()()x a y b r ⇔-+->重难点归纳(1)圆的标准方程的推导思想和过程;(2)在各种条件下会求圆的圆心坐标和半径大小,进而求出圆的方程.(三)课后作业基础性 自主突破1.经过点(5,1)P ,圆心为(8,3)C -的圆的方程为( )A.22(8)(3)25x y +++=B.22(8)(3)25x y -++=C.22(8)(3)25x y -+-=D.22(8)(3)25x y ++-=【知识点】圆的标准方程【解题过程】有条件知,圆的半径为5r PC ==,所以圆的方程为22(8)(3)25x y -++=【思路点拨】圆上一点到圆心的距离即为半径.【答案】B2.已知圆22(1)(2)5x y -++=,则点(1,0)M 与该圆的位置关系是( )A.M 在圆内B. M 在圆上C. M 在圆外D.以上都不对【知识点】点和圆的位置关系.【解题过程】由于22(11)(02)45-++=<,所以M 在圆内.【思路点拨】点和圆的位置关系由点到圆心的距离和半径的关系决定.【答案】A3.圆22(3)(2)5x y -+-=关于原点(0,0)对称的圆的方程为( )A.22(3)(2)5x y -+-=B.22(3)(2)5x y ++-=C.22(3)(2)5x y +++=D.22(3)(2)5x y -++=【知识点】圆关于点的对称圆.【解题过程】圆22(3)(2)5x y -+-=的圆心(3,2)关于原点(0,0)的对称点(3,2)--即为所求圆的圆心,半径保持不变任为,故所求圆的方程为22(3)(2)5x y +++=【思路点拨】圆关于点的对称圆只是圆心对称,半径不变.【答案】C4.已知点(51,12)A a a +在圆22(1)1x y -+=的内部,则( ) A.1a < B.113a < C.15a < D. 113a < 【知识点】点与圆的位置关系 【解题过程】由点与圆的位置关系可知221(5)(12)113a a a +<⇒< 【思路点拨】点和圆的位置关系由点到圆心的距离和半径的关系决定.【答案】D5.已知圆C 的圆心在直线270x y --=上,且圆C 与y 轴交于两点(04)(02)A B --,、,,则圆C 的标准方程为( )A.22(2)(3)5x y -++=B.22(2)(3)25x y -++=C.22(3)(2)5x y ++-=D.22(3)(2)25x y ++-=【知识点】圆的标准方程【解题过程】∵线段AB 为圆的弦,∴圆心C 在线段AB 的中垂线3y =-上,又圆心C 在直线270x y --=上,∴圆心为(2,3)C -,半径r AC ==,∴圆C 的标准方程为22(2)(3)5x y -++=【思路点拨】求圆的方程就是想办法确定圆心坐标和半径大小.【答案】A6.已知ABC ∆的三个顶点分别为(05),(12),(34)A B C ---,,,,则ABC ∆的外接圆的方程为( )A.22(3)(1)25x y -++=B.22(3)(1)5x y -++=C.22(3)(1)25x y ++-=D.22(3)(1)5x y ++-=【知识点】线段的垂直平分线和圆的标准方程.【解题过程】∵线段AB BC 、为所求圆的两条弦,∴圆心在AB BC 、的垂直平分线的交点,即在直线7100x y -+=和250x y ++=的交点(3,1)M -,半径5r AM ==,所以所求圆的方程为22(3)(1)25x y ++-=【思路点拨】圆的圆心必在弦的垂直平分线上.【答案】C能力型 师生共研7.与圆22(2)(3)16x y -++=有相同的圆心,且过点(11)P -,的圆的标准方程为( )A.22(2)(3)25x y ++-=B.22(2)(3)25x y -++=C.22(2)(3)16x y ++-=D.22(2)(3)16x y -++=【知识点】同心圆问题.【解题过程】由条件知所求圆的圆心为(2,3)C -,半径为5r PC ==另解:由条件设圆的方程为222(2)(3)x y r -++=,将点(11)P -,代入可求得225r = 【思路点拨】同心圆问题可以直接找圆心和半径求解,也可以用同心圆系方程222(2)(3)x y r -++=解决.【答案】B8.圆22:(3)(1)10M x y -++=关于直线20x y -=的对称圆的方程为( )A.22(1)(3)10x y -+-=B.22(1)(3)x y -+-=C.22(1)(3)10x y -++=D.22(1)(3)x y -++=【知识点】圆关于直线的对称圆问题.【解题过程】设对称圆的圆心为(,)a b ,则由条件有31201221323a b a b b a +-⎧-=⎪=⎧⎪⇒⎨⎨+=⎩⎪=-⎪-⎩,【思路点拨】圆关于直线的对称圆,只需将圆心对称,半径不变.【答案】A探究型 多维突破9.已知圆C 过点(12)P ,和(23)Q -,,且圆C 在两坐标轴上的截得的弦长相等,则圆C 的方程为( )A.22(1)(1)5x y ++-=B.22(2)(2)25x y +++=C.22(1)(1)5x y ++-=或22(2)(2)25x y +++=D.22(1)(1)25x y ++-=或22(2)(2)25x y +++=【知识点】圆的标准方程和弦长问题.【解题过程】如图,由于截得的弦长相等,即AD EG =,所以它们的一半也相等,即AB GF =,又AC GC =,所以直角ABC GFC ∆∆≌,BC FC =∴,设圆心(,)C a b ,则a b =……①,又圆心(,)C a b 在线段PQ 的垂直平分线34y x =+上,所以34b a =+……②,联立①②解得:11a b =-⎧⎨=⎩或22a b =-⎧⎨=-⎩,半径r =或5.【思路点拨】根据几何关系,用待定系数法求圆心坐标是关键.【答案】C10.已知四点(20),(100),(113),(61)M N P Q ,,,,,那么这四点共圆吗?如果共圆,求出圆的方程;如果不共圆,说明理由.【知识点】圆的方程和点共圆问题.【解题过程】设MNP ∆的外接圆的标准方程为222()()x a y b r -+-=,把点,,M N P 的坐标代入得到:222222222(2)()6(10)()3(11)(3)5a b r a a b r b a b r r ⎧-+-==⎧⎪⎪-+-=⇒=⎨⎨⎪⎪-+-==⎩⎩,即外接圆为22(6)(3)25x y -+-=,将(6,1)Q 代入圆的方程得22(66)(13)425-+-=≠,即点Q 不在圆上,故,,,M N P Q 四点不共圆.【思路点拨】多点共圆问题可以先求三点所共的圆的方程,在用点与圆的位置关系判断其他的点在不在圆上.【答案】不共圆自助餐1.已知点(32),(54)A B --,,,则以线段AB 为直径的圆的方程为( ) A.22(1)(1)25x y -++= B.22(1)(1)25x y ++-=C.22(1)(1)100x y -++=D.22(1)(1)100x y ++-=【知识点】圆的标准方程.【解题过程】由于线段AB 为直径,所以圆心为(32),(54)A B --,,的中点即(1,1)-,半径152r AB ==,所以圆的方程为22(1)(1)25x y ++-= 【思路点拨】【答案】B2.过点(11),(11)A B --,,,且圆心在直线20x y +-=上的圆的方程为( ) A.22(3)(1)4x y -++= B.22(3)(1)4x y ++-=C.22(1)(1)4x y -+-=D.22(1)(1)4x y +++=【知识点】圆的标准方程.【解题过程】线段AB 的垂直平分线y x =与直线20x y +-=的交点(1,1)M 即为所求圆的圆心,半径2r AM ==,所以圆的方程为22(1)(1)4x y -+-=【思路点拨】圆的弦的垂直平分线必过圆心.【答案】C3.若点(2,2)在圆22()()16x a y a ++-=的内部,则实数a 的取值范围是( )A.22a -<<B. 02a <<C. 2a <-或2a >D.2a =±【知识点】点与圆的位置关系.【解题过程】由条件有22(2)(2)1622a a a ++-<⇒-<<【思路点拨】点在圆内即点到圆心的距离小于半径.【答案】A4.已知圆221:(1)(1)1C x y ++-=,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为( )A.22(2)(2)1x y ++-=B.22(2)(2)1x y -++=C.22(2)(2)1x y +++=D.22(2)(2)1x y -+-=【知识点】圆关于直线的对称圆.【解题过程】设圆2C 的圆心为(,)a b ,则依题意有11102221211a b a b b a -+⎧--=⎪=⎧⎪⇒⎨⎨-=-⎩⎪=-⎪+⎩,对称圆的半径保持不变任为1,故圆2C 的方程为22(2)(2)1x y -++=【思路点拨】圆关于直线的对称圆,即为圆心的对称,半径不变.【答案】B5.设点(00),(11),(42)A B C ,,,,若线段AD 为ABC ∆外接圆的直径,则点D 的坐标为( )A.(8,6)-B. (8,6)-C. (4,6)-D. (4,3)-【知识点】圆的标准方程和点与圆的位置关系.【数学思想】【解题过程】线段AB 的垂直平分线10x y +-=与线段AC 的垂直平分线250x y +-=的交点即为圆心(4,3)-,直径为10,易得点D 的坐标为(8,6)-【思路点拨】圆的弦的垂直平分线一定过圆心.【答案】B6.若圆22()()8x a y a -+-=,则实数a 的取值范围是( )A.(3,1)(1,3)--B.(3,3)-C. [1,1]-D. (3,1][1,3)--【知识点】圆的定义.【解题过程】若0a ≥,由条件可知圆上距原点最近点d <,最远点d <<,∴最近点(2,2)a a --,最远点(2,2)a a ++,<,<<,解得13a <<;同理当0a <时有31a -<<-【思路点拨】根据圆的定义把存在为题转化为距离问题.【答案】A。

2015高中数学4.1.1圆的标准方程教案新人教A版必修2

2015高中数学4.1.1圆的标准方程教案新人教A版必修2
(3 分钟)
M
点在圆外
|OM|>r
O
引导学生自己总结(代数表示)
(x0 - a)2 +( y0 - b)2 <r2 点在园内 (x0 - a)2 + ( y0 - b)2 = r 2 点在圆上 (x0 - a)2 +( y0 - b)2 >r2 点在圆外
例 1(课本 P119 例 1):写出圆 心为错误!未找到引用源。半径长 等 于 5 的圆的方程,并判断点
M1(5,-7),M2(- 5,-1)错误!未找
到引用源。是否在这个圆上。
例 1 主要考查方程的应用,以及点和圆的 通过练习
位 即 解置 可 :因圆关 。为(心系x为A-,a(错教5),误21师)+!,巡B未(视(y找7,-,到-b3学)引),生2C用=(独2源,r立8。)2完都半成在径应长圆用等
于 5上的圆的方程是(x - 2)2 +( y +3)2 = 25
3,课后思考:已知圆的方程是 x2 + y2 = r 2 , 求过圆上一点( x0 , y0 ) 的切线的方程。
圆心 C(a,b),半径 r 圆的标准方程是
(x - a)2 +( y - b)2 = r2
小结 课本知识,加强记忆
七、教学评价设计 学生自我评价表: 1.圆的标准方程:
圆 C 圆心 C(a,b),半径为r ,则标准方程为:
5
10
B(7,-3) m
15
AB中垂线的斜率为- 1 = 1 ,
解法二:
kAB 2
AB的中点为(6,-1)
∴AB中垂线l的方程为
较高,但是 计算简单, 不容易错, 提醒学生 选择适合 自己的方

【人教A版】2015年秋高中数学必修二:4.1.2圆的一般方程学案设计 新人教A版必修2

【人教A版】2015年秋高中数学必修二:4.1.2圆的一般方程学案设计 新人教A版必修2

第四章圆与方程4.1 圆的方程4.1.2 圆的一般方程学习目标1.在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心、半径.掌握方程x2+y2+Dx+Ey+F=0表示圆的条件.2.能通过配方等手段,把圆的一般方程化为圆的标准方程.能用待定系数法求圆的方程.3.体会数形结合思想,初步形成代数方法处理几何问题能力.能根据不同的条件,利用待定系数法求圆的标准方程.学习过程一、设计问题,创设情境我们已经学习了圆的标准方程,请同学们思考方程(x-1)2+(y+2)2=4表示什么图形?它与方程x2+y2-2x+4y+1=0是什么关系?问题1:把圆的标准方程(x-a)2+(y-b)2=r2展开后是什么形式?问题2:方程:x2+y2-6x+8y+20=0表示的曲线是什么图形?二、自主探索,尝试解决1.我们知道,圆的一般方程是(x-a)2+(y-b)2=r2,它体现了圆心和半径.展开后是一个关于x,y的二元二次式:;2.圆的标准方程展开都是一个关于x,y的二元二次式x2+y2-2ax-2by+a2+b2-r2=0,反之关于x、y的二元二次方程x2+y2+Dx+Ey+F=0都表示圆吗?三、信息交流,揭示规律3.圆的一般方程是(x-a)2+(y-b)2=r2,它体现了圆心和半径.展开后是一个关于x,y的二元二次式:x2+y2-2ax-2by+a2+b2-r2=0.关于x,y的二元二次式x2+y2+Dx+Ey+F=0表示圆,通过对其进行配方得:;当,即时表示圆心为(-,-),半径为r=的圆.当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0表示.当D2+E2-4F<0时,x2+y2+Dx+Ey+F=0不表示任何图形.四、运用规律,解决问题4.求下列各方程表示的圆的圆心坐标和半径长:(1)x2+y2-6x=0(2)x2+y2+2by=0(3)x2+y2-2ax-2ay+3a2=0总结规律:(试总结如何判断“点与圆的位置关系”)5.求过三点O(0,0),M1(1,1),M2(4,2)的圆的方程,并求这个圆的半径长和圆心坐标.解:总结规律:(试总结如何判断“点与圆的位置关系”)五、变练演编,深化提高从所给的题目来看,题目主要涉及圆的一般方程的求解和利用圆的一般方程确定圆心和半径进行设计,而所涉及的条件主要是圆上的点,同学们仿照例题可以自己进行题目的编写.6.平面直角坐标系中有A(0,1),B(2,1),C(3,4),D(-1,2)四点,这四点能否在同一个圆上?为什么?解:六、信息交流,教学相长请同学们把你编写的较为典型的题目选几个写在下面.七、反思小结,观点提炼1.圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0)2.求圆的一般方程的方法:待定系数法.3.求圆的一般方程需要三个条件:待定方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)中的D,E,F.参考答案二、1.x2+y2-2ax-2by+a2+b2-r2=0三、3.不都,(x+)2+(y+)2=>0,D2+E2-4F>0,一个点(-,-)四、4.(1)(x-3)2+y2=9 圆心(3,0) 半径r=3(2)x2+(y+b)2=b2圆心(0,-b) 半径r=|b|(3)(x-a)2+(y-a)2=a2圆心(a,a) 半径r=|a|5.设所求圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0)则解得所求圆的方程为:x2+y2-8y+6x=0圆心为(4,-3),半径为r=5五、6.设经过A,B,C三点的圆的方程为x2+y2+Dx+Ey+F=0,把A(0,1),B(2,1),C(3,4)的坐标分别代入圆的方程,得解得∴经过A,B,C三点的圆方程为x2+y2-2x-6y+5=0.再将点D的坐标(-1,2)代入上面方程的左边,得(-1)2+22-2×(-1)-6×2+5=0,所以点D也在经过A,B,C三点的圆上,即A,B,C,D这四点在同一个圆上.。

高中数学必修二《圆的标准方程》教案

高中数学必修二《圆的标准方程》教案

教案说明圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用。

一、设计理念设计的根本出发点是促进学生的发展。

教师以合作者的身份参与,课堂上建立平等、互助、融洽的关系,师生共同研究,共同提高。

二、设计思路(1)突出重点抓住关键突破难点求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路。

在例题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成。

(2)学生主体教师主导探究主线本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。

从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。

另外,我在例题2的教学,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,他们体验到成功的快乐,感受到数学的魅力。

在一个个问题的驱动下,高效的完成本节的学习任务。

三、媒体设计本节采用powerpoint媒体,知识容量大,同时又有图形。

为了在短时间内完成教学内容,故采用演示文稿的方式,增加信息量,节省时间。

同时动态演示图形,刺激学生的感官,引起更强的注意,提高课堂教学效率。

一、教学目标1、知识目标(1)在平面直角坐标系中,探索并掌握圆的标准方程;(2)会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程。

2、能力目标(1)进一步培养学生用解析法研究几何问题的能力;(2)使学生加深对数形结合思想和待定系数法的理解;(3)增强学生用数学的意识。

高中数学必修2《圆的一般方程》教案

高中数学必修2《圆的一般方程》教案

高中数学必修2《圆的一般方程》教案高中数学必修2《圆的一般方程》教案一.复习引入提问:以A(a,b)为圆心,半径为r的圆的标准方程是什么?讨论并归纳回答。

复习巩固加强记忆。

二.新课讲授1.思考:我们先来判断两个具体的方程是否表示圆?2.教师提问:(1).是不是任何一个形如的方程表示的曲线都是圆?(2).如果不是那么在什么条件下表示圆?(提示:与圆的标准方程进行比较。

)综上所述,方程表示的曲线不一定是圆,只有当时,它表示的曲线才是圆,我们把方程 ( )称为圆的一般方程与一般的二元二次方程比较我们来看圆的一般方程的特点:(启发学生归纳)学生根据已有的知识,经过配方,把方程化成标准形式,然后加以判断。

1.2.(让学生相互讨论后,由学生总结)配方得总结当时,此方程表示以(- ,- )为圆心, 为半径的圆;当时,此方程只有实数解,,即只表示一个点(- ,- );当时,此方程没有实数解,因而它不表示任何图形①x2和y2的系数相同,不等于0.②没有xy这样的二次项使新知识建立在学生已有的知识上设置问题:提出疑问,诱导学生主动思考,主动探究,合作交流使学生在积极的学习中解决问题,提高学生的教学思维能力,实现素质教育的目标,同时也培养了学生的情感、态度与价值观。

提高学生分析问题和解决问题的能力。

圆的标准方程圆的一般方程方程圆心半径r优点几何特征明显突出方程形式上的特点问题:圆的标准方程与圆的一般方程各有什么特点?采用类比法加深在研究问题中由简单到复杂,由特殊到一般的化归思想的认识。

练习1.判断下列方程是否表示圆? 如果是 ,请求出圆的圆心及半径.三.例题讲解:例1:求过三点A(0,0),B(1,1),C(4,2)的圆的方程,并求这个圆的半径长和圆心坐标。

分析:已知曲线类型,应采用待定系数法使用待定系数法的圆的方程的一般步骤:1.根据题意,选择标准方程或一般方程;2.根据条件列出关于a、b、r或D、E、F的方程组;3.解出a、b、r或D、E、F,代入标准方程或一般方程。

人教版高中数学必修圆与方程的教案

人教版高中数学必修圆与方程的教案

人教版高中数学必修圆与方程的教案方程,是指含有未知数的等式。

方程是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。

求方程的解的过程称为“解方程”。

今天在这给大家整理了一些人教版高中数学必修圆与方程的教案,我们一起来看看吧!人教版高中数学必修圆与方程的教案1圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形。

(3)求圆方程的方法:一般都采纳待定系数法:先设后求。

确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:①圆x2+y2=r2,圆上一点为(x0,y0),则过此点的切线方程为(课本命题).②圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2(课本命题的推广).4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆。

高中数学4.1 圆的方程 教案2人教版必修2

高中数学4.1 圆的方程  教案2人教版必修2

圆的方程一、知识点1、圆的标准方程2、圆的一般方程3、圆的参数方程4、根据恰当的条件写出圆的方程5、由圆的方程写出圆的半径和圆心6、由直线方程和圆的方程讨论直线与圆的位置关系7、由圆的方程讨论两个圆的位置关系二、能力点1、掌握圆的标准方程、一般方程、参数方程2、能根据恰当的条件写出圆的方程3、会由圆的方程写出圆的半径和圆心4、会由直线方程和圆的方程讨论直线与圆的位置关系,会求圆的切线方程5、会由圆的方程讨论两个圆的位置关系6、进一步培养学生用坐标法研究几何问题的能力7、培养学生设参数、消参数解决问题的能力三、学法指导1、求圆的方程可大致分为五种不同情形①给出圆的半径,隐含给出圆的圆心②给出圆的圆心,隐含给出圆的半径③给出圆经过两个定点及圆心通过某条已知直线④给定圆上三点⑤给出圆上一定点,一条圆的切线方程及圆心所在直线方程2、直线与圆的位置关系的判断⑴方程观点:由圆的方程与直线的方程消去y(或x)后得到一个一元二次方程,用判别式Δ与0的大小来判别:Δ>0时,直线与圆相交;Δ=0时,直线与圆相切;Δ<0时,直线与圆相离。

⑵几何法(算出圆心到直线的距离d,然后比较d与半径R的关系):当d<R时直线与圆相交;d=R时直线与圆相切;d>R时直线与圆相离。

3、两圆的位置关系用几何法较好,设两圆的圆心的距离为d,两圆的半径分别为R1、R2,则:①d>R1+R2时两圆相离;②d=R1+R2时两圆外切;③d<|R1-R2|时两圆内切;④R1-R2<d<R1+R2时两圆相交;⑤d<R1-R2两圆内含。

4、圆的参数方程是表示圆心为原点,半径为R 的圆,由于圆的参数方程是由圆上动点坐标形式来表达的,用参数式求圆上的动点与某定点的距离,求圆上的动点与某定点所有连线的斜率范围等问题可化为三角求解,这样运算简洁,计算方便。

四、重点与难点1、重点:圆的标准方程、一般方程、参数方程的推导和应用2、难点:直线与圆、圆与圆的位置关系的讨论以及圆的相关性质的研究五、课时安排 三课时第一课时 圆的标准方程●教学目标1.掌握圆的标准方程的形式特点;2.能根据圆心坐标、半径熟练写出圆的标准方程;3.能从圆的标准方程求出它的圆心和半径.●教学重点圆的标准方程●教学难点根据条件建立圆的标准方程●教学方法学导式●教学过程设置情境:在初中的几何课本中,大家对圆的性质就比较熟悉,首先来回顾一下圆的定义。

2015届高中数学《圆的标准方程》导学案 北师大版必修2

2015届高中数学《圆的标准方程》导学案 北师大版必修2

=-
,又PC⊥MN,∴kMN=2, ∴弦MN所在直线的方程为y-1=2(x-1), 即2x-y-1=0. 全新视角拓展 B 圆的方程可变为(x+1)2+(y-2)2=5,即圆心为(-1,2),所以 3×(-1)+2+a=0,即a=1. 思维导图构建 待定系数法
求圆的标准方程 根据下列条件,求圆的标准方程: (1)圆心为点C(-2,1),并过点A(2,-2)的圆. (2)过点(0,1)和点(2,1),半径为 .
判断点与圆的位置关系 已知两点P(-5,6)和Q(5,-4),求以P、Q为直径端点的圆的标准方程, 并判断点A(2,2),B(1,8),C(6,5)是在圆上,在圆内,还是在圆外.
半径r=
|PQ|=
=5 .所以圆的标准方程为x2+(y-1)2=50. 因|AM|= = <r,故点A在圆内. 因|BM|= = =r,故点B在圆上. 因|CM|= = >r,故点C在圆外. 【小结】判断点A与圆C的位置关系,一般用点A(x0,y0)到圆心C的距 离d与半径r作比较,结合两点间距离公式:若d<r,则点A在圆内;若d=r,则 点A在圆上;若d>r,则点A在圆外.也可以直接判断:若(x0-a)2+(y0b)2<r2,则点A在圆内;若(x0-a)2+(y0-b)2=r2,则点A在圆上;若(x0-a)2+ (y0-b)2>r2,则点A在圆外.
)2=13. 2.A 由题知(1-a)2+(1+a)2<4⇒2a2<2⇒a2<1⇒-1<a<1,选A. 3.(x+1)2+(y-1)2=25 由中点坐标公式知AB中点为(-1,1),即圆心坐标 为(-1,1).又|AB|= =10,∴半径为5,∴圆的标准方程为(x+1)2+(y-1)2=25. 4.解:由题意可设圆心(3a,a),半径r=|3a|.∴圆的标准方程为(x-3a)2+ (y-a)2=9a2,代入A(6,1),解得a=1或a=37.∴该圆的方程为(x-3)2+(y1)2=9或(x-111)2+(y-37)2=12321. 重点难点探究 探究一:【解析】 (1)∵点A(2,-2)在圆上,∴所求圆的半径 为r=|CA|= =5.又∵圆心为C(-2,1),∴所求圆的方程为(x+2)2+(y-1)2= 25. (2)设圆心坐标为(a,b),则圆的方程为(x-a)2+(y-b)2=5. 已知圆过点(0,1),(2,1),代入圆的方程, 得

高中数学必修二《圆与方程》复习课教学设计

高中数学必修二《圆与方程》复习课教学设计

复习必修2 第四章圆与方程(1)一.复习目标:1.知识目标:(1)圆的方程;(2)直线与圆的位置关系.2.能力目标:(1)掌握圆的方程求法;(2)会解决直线与圆相切问题.3.情感、态度、价值观:通过本节课的学习,进一步熟悉并掌握数形结合思想的应用. 二.复习重点:圆的方程及直线与圆的位置关系三.复习难点:直线与圆相切问题四.辅助教学:多媒体课件五.教学过程:例题分析:例1. 求过P(5,-3),Q(0,6)两点,且圆心在直线2x-3y-6=0上的圆的方程.分析:知识要点:(1)标准式:(x-a)2+(y-b)2=r2(r>0),其中r为圆的半径,(a,b)为圆心。

2)一般式:220x y Dx Ey F (2240D E F ),其中圆心为)2,2(E D --,半径为 F E D 42122-+.利用待定系数法和几何特征求圆的方程.即时练习:会考指导 P48 1 3例2、求以c(1,3)为圆心,并和直线3x-4y-6=0相切的圆的方程. 知识要点分析:直线与圆有三种位置关系:相离、相切和相交。

有两种判断方法:(1) 代数法(判别式法) ⎪⎩⎪⎨⎧⇔<∆⇔=∆⇔>∆相离相切相交000(2) 几何法,圆心到直线的距离⎪⎩⎪⎨⎧⇔>⇔=⇔<相离相切相交r d r d r d 例3、 求过点P(-1,5)的圆221(2)4x y 的切线方程. 即时练习:会考指导 P48 5六、本节复习小结1、掌握求解圆的方程问题(重点);2、掌握求解直线与圆相切问题(重点、难点).七、课后预习1、直线与圆相交问题的解决办法2、圆与圆的位置关系八、课后作业 会考指导P49 第17题。

人教版高中必修2圆的标准方程教学设计

人教版高中必修2圆的标准方程教学设计

人教版高中必修2圆的标准方程教学设计《人教版高中必修2圆的标准方程教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、教学目标知识和能力1.学会圆的标准方程的推导方法。

2.掌握圆的标准方程并掌握其求法。

3.掌握点与圆的位置关系的判定方法。

过程和方法1.通过五个问题,引导学生理解归纳本节的主要内容,培养学生归纳整理知识的能力。

2.通过电脑演示,引导学生探究、分析图形的几何特征,再用代数的语言描述几何要素及其关系,进而将几何的问题转化为代数问题,体现数形结合的数学思想。

3.通过具体情景,使学生逐步形成在坐标系下用坐标法解几何问题的能力,掌握自主学习的方法和形成合作学习的习惯。

情感态度和价值观1.通过教学,使学生学习运用观察、类比、联想、猜测、检验等合情推理方法,提高学生运算能力和逻辑推理能力。

2.培养学生勇于探索、坚韧不拔的意志品质。

二、教学重点难点重点:圆的标准方程的推导。

难点:圆的标准方程的求法。

三、教学对象分析圆是学生比较熟悉的曲线。

在初中几何课中已经学习过圆的性质,这里只是用解析法研究它的方程与其它图形的位置关系及一些应用。

对此,教师可在课堂上通过各种教学方法,帮助学生经历如下过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。

这种思想应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。

四、教学内容分析本节内容首先研究圆的标准方程的特点,和怎样根据不同条件建立圆的标准方程。

由于圆的标准方程(x-a)2+(y-b)2=r2含有三个参数,因此必须具备三个独立条件才能确定一个圆,确定a、b、r,可以根据条件利用待定系数法解决。

还可通过分析图形的几何特征寻找圆心和半径,从而获得圆的标准方程。

点与圆的位置关系可通过点与圆心的距离判定。

以上的方法应尽可能在老师的启发引导下,由学生自己比较、归纳得到。

高考数学一轮复习 第二章 圆的方程导学案 新人教版必修2

高考数学一轮复习 第二章 圆的方程导学案 新人教版必修2

圆的方程1.掌握确定圆的几何要素. .1.圆的定义在平面内,到定点的距离等于定长的点的集合叫圆.2.圆的标准方程(x -a)2+(y -b)2=r 2(r>0),其中(a ,b)为圆心,r 为半径.3.圆的一般方程x 2+y 2+Dx +Ey +F =0表示圆的充要条件是D 2+E 2-4F>0,其中圆心为⎝ ⎛⎭⎪⎫-D 2,-E 2,半径为r =D 2+E 2-4F 2. 4.点与圆的位置关系设圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0)①点在圆上:(x 0-a )2+(y 0-b )2=r 2;②点在圆外:(x 0-a )2+(y 0-b )2>r 2;③点在圆内:(x 0-a )2+(y 0-b )2<r 2.x 2+y 2+4mx -2y +5m =0表示圆的条件是( )A.14<m<1 B .m >1 C .m<14 D .m<14或m >1 2.圆x 2+y 2-6x +4y =0的周长是________. 3.(2010·新课标全国)圆心在原点且与直线x +y -2=0相切的圆的方程为________.4.过圆x 2+y 2=4外一点P(4,2)作圆的切线,切点为A 、B ,则△APB 的外接圆方程为________.5已知方程x 2+y 2-2(m +3)x +2(1-4m 2)y +16m 4+9=0表示一个圆.(1)求实数m 的取值范围.(2)求该圆半径r 的取值范围;(3)求圆心的轨迹方程.6根据下列条件求圆的方程:(1)经过A(5,2),B(3,2),圆心在直线2x-y-3=0上;(2)半径为5且与x轴交于A(2,0),B(10,0)两点;7 (1)求以A(4,9),B(6,3)为直径的圆的方程.(2)圆C过点P(1,2)和Q(-2,3),且圆C在两坐标轴上截得的弦长相等,求圆C的方程。

必修2圆的方程复习教案

必修2圆的方程复习教案

高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x .解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a . ∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切,∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等. ∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x . 又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C ∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t . 解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55.∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r .则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2. ∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+=)(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52ba d -=.∴d b a 52±=-.∴2225544d bd b a +±=.将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d = ∴21422=++-k k解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x . 说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ①0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D .∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修Ⅱ-10 圆与方程
1、圆的定义:
2、圆的标准方程: 其中圆心坐标为( ),半径为:
3、圆的一般方程: 其中圆心坐标为( ),半径为:
4、确定圆的三要素: ;一般方程中D 、E 、F 且D 2+E 2-4F >0.
5. 直线与圆的位置关系的判定 :
圆心),(b a C 到直线Ax+By+C=0的距离d=
⑴相交: ⑵相切: ⑶相离:
也可将直线与圆的方程联立方程组2200Ax By C x y Dx Ey F ++=++++=⎧⎨⎩
利用判别式判断求解.
6. 经过一点M (x 0,y 0)作圆(x-a )2+(y-b )2=r 2的切线
⑴点M 在圆上时,切线方程为: ⑵点M 在圆外时,有 条切线、切线方程为:
例1 已知圆心为C 的圆经过两点A (1,1)和B (2,-2),且圆心C 在直线l :
x-y +1=0上,求圆C 的方程.
方法点拨:三种方法求圆的方程:
⑴若圆过已知的两点或三点,可设圆的一般方程;
⑵若与圆心、半径有关,可设圆的标准方程;
⑶圆的直径式方程(x-x 1)(x-x 2)+(y-y 1)(y-y 2)=0 .
例2 经过点P(2,1) 引圆x 2+y 2=4的切线,求:⑴切线方程,⑵切线长.
例3 已知方程222(3)x y t x +-+22(14)t y +-41690t ++=表示一个圆.
(1)求t 的取值范围;
(2)求该圆半径r 的最大值及此时圆的标准方程
例4 (1)过点P (2,1)作圆C :x 2+y 2-ax +2ay +2a +1=0的切线有两条,则a
取值范围是( )
A .a >-3
B .a <-3
C .-3<a <-52
D .-3<a <-5
2或a >2 (2)如果实数y x ,满足等式22(2)3x y -+=,那么
y x 的最大值是
()
B C D.3
A.1
2。

相关文档
最新文档